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A Uniqueness Theorem
for Nonstationary Navier-Stokes Flow Past an Obstacle.

JOHN G. HEYWOOD (*)

1. - Introduction.

In this paper we consider the initial boundary value problem for the
Navier-Stokes ’equations in the case of a three-dimensional exterior domain.
Using results given in [11] and [17] (1) concerning the completions of certain
classes of solenoidal functions, we show that the difference w of two solu-
tions n and v must satisfy the identity 

-

provided Vu, Vu,, 4u and similar derivatives of v are square-summable over
a space-time cylinder. Then, estimating the right-hand side of (1 ) and

integrating with respect to t, we prove the continuous dependence of solu-
tions on their initial values in the Dirichlet norm. Finally, y estimates of

the same type used to prove this result are shown to provide the basis for
an existence theorem. In equation (1) above, P is a projection of L2(Q)
onto a subspace of solenoidal functions; our notation is fully explained in
section 2.

The results of this paper are obtained without hypotheses on the pres-
sure functions corresponding to u and v, and without assuming that u and v
differ from the prescribed velocity at infinity, or from each other, by only
square-summable amounts. Thus, in contrast to the uniqueness theorem

given in [11, p. 89], which is based on an energy identity, the continuous

(*) University of British Columbia, Vancouver, Canada.
(1) I wish to thank Dr. Chun-Ming Ma for supplying the proof of Lemma 2;

this important lemma is presented in his paper [17].
Pervenuto alla Redazione il 9 Maggio 1978.
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dependence and uniqueness theorem given here applies to solutions which
may possess non-finite wake energies. Although the present theorem re-
quires more regularity of solutions than the theorem in [11], the regularity
required is no more than what is known for solutions obtained by the method
of Kiselev and Ladyzhenskaya [15, p. 167], or by the method given in the
concluding section of this paper. Related uniqueness theorems have been
given by Graffi [7], Cannon and Knightly [2], and Rionero and Galdi [20].
These theorems, in contrast to ours, require assumptions concerning the
pressure as well as the velocity, but do not require the velocity to tend to
a limit at infinity or to satisfy any global integrability conditions. Another

uniqueness theorem which should be mentioned here is one given for the

Cauchy problem by Cannon and Knightly [3] and Knightly [13]; this the-
orem is particularly remarkable for being based on an integral representa-

tion which yields asymptotic estimates for the solution.

In the final section of this paper we give a method of proving existence
which, like the uniqueness theorem, is based on an estimate of the Dirichlet
integral rather than the energy integral. In this respect, it is related to

existence theorems for bounded domains of Prodi [19] and Shinbrot and
Kaniel [21], where such estimates were first used. Even though our estimates
for an exterior domain give only local existence (i.e., the solution is shown
to exist for only a finite period of time), we have chosen to give them in the
specific context of the starting problem (which concerns accelerating a body
from rest to a constant terminal velocity). We think these estimates may
be of use, eventually, y in proving that a solution of the starting problem
exists globally and converges to steady state. In any case, giving our esti-
mates in this context will serve to illuminate some of the problem’s inherent
difficulties. It should be mentioned that a potential theoretic study of the

starting problem has been recently initiated by Knightly [14].
Throughout this paper, Sz represents a spatial region filled with fluid

and is taken to be an open connected set of .R3, with a bounded (possibly
empty) complement Q’ and a twice continuously differentiable (possibly
empty) boundary 8Q. Spatial points are denoted by x = (Xl’ X2, x3) and
the time variable by t. Space-time cylinders Q x (E, T), with 0  ê  T, will
be denoted by QS,T or simply by QT if E = 0. The initial boundary value
problem to be considered is that of finding an R3-valued vector field u(x, t),
which is defined in the closure of a given space-time cylinder QT and satis-
fies the following: there exists a scalar function p(x, t) such that
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This formulation of the initial boundary value problem is sufficiently general
to include the case of flow around a body which undergoes translational ac-
celeration because a time dependent velocity at infinity is allowed. The

time derivative of the velocity at infinity appears in equation (2a) as a

fictitious force; instead it could have been absorbed into the pressure term.
By taking S2 = R3 and dropping condition (2d), the Cauchy problem is

included as a special case of problem (2).
Our results concern what we call class Ho solutions of problem (2), in

keeping with the terminology of our papers on the Stokes equations [9, 10].
A class Ho solution is a vector field u E Lfoc(QT) which, with its distributional
derivatives, satisfies the following conditions:

(3a) Vu and 4u are square-summable over Qp, and Vu, is square-sum-
mable over Qe,T for every positive s  T;

(3b) u satisfies (2b), and a scalar function p(x, t) exists which together
with u satisfies (2a) ;

(3c) JIVu(t) - Vall -&#x3E; 0 as t -&#x3E; 0+; :

(3d) (2d) is satisfied by the trace of u on aD x (0, T), and (2e) is satisfied

in the sense that

Regarding (3d), we remark that every function u E Lloc(QT), with deriva-
tives Vu square-summable over QT, possesses a limit u_(t) at infinity in

the sense that see Lemma 3. The limit

u_(t) is unique up to a set of t-measure zero because Il0153l-2d0153 = 00.
n .

It may be noticed that without assumptions about the prescribed initial
and boundary values, conditions (3) do not imply the initial condition (2c).
Condition (2c) is assured, in the sense that Ilu(t) - a1lL8(,Q) --&#x3E;- 0 as t -&#x3E; 0+,
if one assumes either that lim f lb(x, t) - a(x)12ds = 0, or that Jim b_(t) = aoo’t-+o an t-0

where aoo satisfies Neither of these assumptions

is needed for the following continuous dependence and uniqueness theorem,



430

which is our main result. However, for this theorem we assume that

THEOR,EM. Let u and v be two class Ho solutions of problem (2). Sup-
pose the prescribed boundary values and forces b, boo, f are the same for both a
and v, and that the initial values no and vo, which are permitted to be dif-
ferent, satisfy

where It is a constant depending only on v and Q, and where

Then, f or all t E [0, T],

The proof of this theorem is given in section 3, following some pre-
liminary lemmas in section 2. The related existence theory is presented in
section 4.

2. - Preliminaries. 

The notation of this paper is similar to that of our papers [9, 10].
Function spaces consisting of R3-valued functions are denoted with bold-
faced letters. In particular, the spaces LP(G) and LP(G) consist of functions,
vector and scalar-valued respectively, which are p-th-power summable
over a given region G of space or space-time. The spaces Lfoc(G) and Lfoc(G)
consist of functions locally p-th-power summable over G. Co (G) is the

space of smooth vector-valued functions with compact support in G. If X

is a Banach space, L2(tl, t2; X) is the space of measurable X-valued func-

tions ;(t), which are defined on the interval (t1, t2) and satisfy f 11q; Iii dt  00.t1

In keeping with the usual notation of vector analysis, the i-th components

of u.Vv, 4u and Vp are and respectively;

also and
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Some frequently needed norms and seminorms are, for p &#x3E; 1 and G c R3 :

The subscripts to these norms and seminorms will be suppressed when they
take the values p = 2 or G = Q; thus 11.11 ll - 11 . ll z,n , 11 . llp = II-/lp,n, and
1/.//0 = /1-//2,0. The spaces W£(G) and JF’§(G) consist of R3-valued functions
with finite norms

and

respectively. If aG is k-times continuously differentiable, functions u E W,(G)
possess boundary values (or « traces ») in W,’-I(aG). Denoting these boundary
values also by u, the inequality

holds, with a constant Ca depending only on G; conversely, , assuming a
little more regularity of aG, it is known that every function in wl,,-’(aG)
can be extended to a function in Wk(G) satisfying the reverse of inequality (6),
with a different constant. These results as well as definitions of W:-!(oG)
and its associated norm can be found in [18, pp. 81-104].

We denote some spaces of solenoidal functions as follows:

The projection P mentioned in section 1 is the orthogonal projection of L2(Q)
onto its subspace J(SZ). The following lemma was proved in [11], where it
was used to prove a uniqueness theorem for the steady Stokes equations.
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The assumption that Q contains a complete neighborhood of infinity is

used in its proof ; as was pointed out in [11], the result is not true for some
types of domains.

LEMMA 1. In order for a f unction u E Ll,,, lo,(S2) to belong to Jo(Q), it is neces-
sary and sufficient that its first derivatives be square-summable over Q and
that V.u == 0 in Q, u == 0 on ôQ, and Ilu(x)12.lxl-2dx oo .

0

We need two further spaces of solenoidal functions which were introduced

in [9]. Their elements may be regarded as certain solutions of the inhomo-
geneous Stokes equations.

DEFINITION. Ko(Q) is the set o f all u E Jo(Q) such that f Vtt: VT dx =
= -If.cpdx holds for some fED(Q) and all cpEJo(Q). 0

9

Clearly, at most one f corresponds to each u E Ko(Q), and therefore a
map A : Ko(Q) -+ J(Q) is well defined by setting in - f. Adopting this
notation, we have

for all u E Ko(Q) and q E Jo(Q). It can be easily shown that the map
d : Ko(Q) - J(,Q) is closable.

DEFINITION. Ho(Q) is the domain o f the closure of the map d : Ko(Q) -&#x3E;. J(Q)
or, equivalently, the completion of Ko(Q) in the norm l/uIIHo(!}) == ())Vu))2 +
+ lljUll2)1. The extension of J to Ho (Q) is denoted again by A.

The proof of identity (1) hinges largely on the following result due to
Ma [17] ; Ma’s proof utilizes, again, the assumption that Q is an exterior
domain.

LEMMA 2. In order for a function u E Jo(Q) to belong to Ho(Q), it is neces-
sary and sufficient that LJu E L2(Q). In this case d u = P d u.

In the next lemma, due to Finn [5, p. 368], we let Er = fx: Ixl &#x3E; rl,
where r&#x3E;,O is arbitrary.

LEMMA 3. If u E L’ I I and if Vu is square-summable over Er, then
there exists a constacnt vector u 00 such that
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As Uoo is uniquely determined, it will be regarded as the generalized
limit of the function u at infinity. Below, a number of different constants
will all be denoted by C, usually with subscripts to indicate what they
depend upon.

We let Q, == {x e Q: Ixl  r}, where r &#x3E; r* == max Ixl. Setting A, =

== {x: r*  Ixl  r}, (8) implies ]) u - u [ £  6r ]] Vu ]] . Using a type of

Poincaré inequality [18, p.1131, namely llwlll,«n,,(llvwlll, + llwll£,),
one thus obtains

This leads to the following :

LEMMA 4. I f u E Ll,(.Q) and i f Vu is square-summable over Q, then

Because of (9), u - Uoo can be extended to a function v which is defined
in all R3 and satisfies IlVvll,,,C,IlVull; see [18, p. 75]. Further, v can be
approximated in norm JIV- .IIRs by smooth functions with compact supports,
see [5, p. 368], and therefore satisfies the Sobolev inequality

Clearly, (10) follows from (11).

LEMMA 5. I f u E Lloc,(D), if both Vu and Au are square-summable over S2,
and if V. u == 0 in Q, then

This lemma will be proved in several steps. First, we can show

by referring to Lemmas 3 and 7 of our paper [11]. Setting v = u - u’0153,
one finds as a consequence of inequalities (26), (32) and (33) in [11] that

where C is a scalar cut-off function which equals one for Ix I&#x3E; r and vanishes
for Ix I  (r + r*) /2. The inequality (9) for v implies 1I(L1’)vllnrOn,rIlVv/l.
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Since the derivatives of u and v are the same, we obtain (13).
In the bounded region S2r, again letting v = u - uoo, we use the estimate

of Solonikov; see [15, p. 78]. It can be shown that the fractional derivative

norm over aS2, satisfies

and thus (14) implies

This together with (13) implies (12), if we observe that

Here A = ix: r  Ixl C r + 1}; in the first step we have used the inequal-
ity (6), and in the second step the inequalities (13) and (9), the latter with r
replaced by r + I -

LEMMA 6. Under the hypotheses o f .Lemma 5, there holds

Since 8Q is of class C2, there is a family F of geometrically similar cones,
each contained in SZ, such that each point of SZ is the vertex of one of them.
The inequalities (10) and (12) imply

from which (15) follows by a well-known Sobolev inequality.

LEMMA 7. Under the hypotheses of Lemmac 5, there holds

To prove (16) we only need to know that functions 99 E W.’ (S?) satisfy
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because one can then obtain (16) by substituting Vu for 99 and using (12).
For cp E C,-(R’), and by a density argument for 99 E -W’(R’), the inequality

is well known [6, p. 24]. This implies (17) because it is possible to extend
functions 99 defined in Q to functions Eq; defined in R3, in such a way that

11 EP ll R3  CQ ll P 11 and 11 vEP) ll R8  CQ ( 11 vP + I/q;I/); , see [18, p. 76].

LEMMA 8. Suppose u is a class Ho solution of the initial boundary value
problem (2), and that the prescribed boundary values and limit at infinity

T T

satisfy f 11 b 1123/2(aQ)dt  oo and flbool2dt  00. Then, for every positive 8  T,
0 

2 
0

flu. Vul2d0153dt  00.

Qs,T

The conditions (3a) imply sup ))Vu(t) 11  00. Therefore, in view of
stT

conditions (3a) and (3d), the inequality (15) implies

LEMMA 9. Let w be the difference of two class H 0 solutions of problem (2),
both of which satisfy conditions (3d) with the same values on as2 and at in-
finity. Then w E L2 (0, T ; Ho(Q)) and, for every positive E  T, w, E L2(s, T ;
Jo(Q)). In particular, w E L 2,(QT)

Lemmas 1 and 2 immediately imply w E L 2 ( o, T ; H,,(Q)), in view of

conditions (3a) and (3d). Similarly, Lemma 1 will imply w, E .L2(E, T ; Jo(Q)),
once wt is shown to belong to L’,,(QT) and to tend to zero on 8Q and at in-
finity. To prove the distributional derivative wt is a locally summable func-

tion, one must use, in addition to (3a), either the boundary condition or the
condition at infinity. We will consider first the case S2 = R3, for which
there is no boundary condition to work with. Clearly, wt belongs to LI.,r.(QT)
and tends to zero at infinity, if, for every positive s  T/2,
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holds uniformly as e -&#x3E; 0, where w. represents a mollification of w with
respect to the time variable (or the space and time variables) of radius o.

T-8 
’

Now, from condition (3a), one obtains f f IVW(}f/2dxdt  C, for small
e R3 

values of e. Thus, by Lemma 3, there is a function u(t; e) such that
T-a

f f IW(}t(x, t) - fl(t; e) 12 .lxl-2dxdt  °e. To get (18), we will show lt(t; e)
8 Rs 

e

vanishes almost everywhere as a function of t, for each fixed o. For any
values of tl and t2 satisfying 8  tl  t2  T - s, we obtain through the
Schwarz inequality:

Using the condition at infinity (3d), one obtains

for every t. So, by the triangular inequality, , 

This implies It = 0 almost everywhere because tl and t2 are arbitrary and

f (x (-2 dx = oo .
R3

If aS2 is not empty, we set w = 0 in G, and the arguments above remain
clearly valid; in particular, wt and Vwt are seen to be locally square sum-
mable over R3 X (0, T). Since w = 0 in 0’, the trace of w on 8Q vanishes
for almost every t.

3. - Proof of the continuous dependence and uniqueness theorem.

Let u and v be two class go solutions of problem (2), let w = v - u
be their difference, and let q be the difference of their associated pressures.
Then equation (2a) implies
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Each term in this equation is locally integrable over Q X (0, T], as a result
of Lemmas 8 and 9. Thus, for every solenoidal vector field f E Co-(Q X [0, T]),
and for every positive 8  T, there holds

The pressure term is absent from (19) because it vanishes through an in-
tegration by parts.

It was proven in Lemma 9 that 2v E L2(o, T; Ho(,Q)). Because Ko(,S2) is

dense in Ho(Q), this implies the existence of a sequence of solenoidal func-
tions f n E C-(D X [0, T]) such that

as 1’11 -&#x3E; oo, where 99.,, is the unique element of L2(o, T; Jo(Q)) which satisfies

for every V C- L2 (0, T; Jo(Q)). One may insert these functions f n into equa-
tion (19) and let n --&#x3E;- oo. Since wt E L2 (s, T ; Jo(Q)), as proven in Lemma 9,
one has

Remembering also the result of Lemma 8, that n - Vu, v - Vv c L2(Q" 1), one
can pass to the limit in (19), , obtaining

Equation (1) follows now, because 8 is arbitrary.

REMARK. The uniqueness theorems based on energy estimates given
in [11] and [8] depend upon inserting into equation (19) a sequence of sole-
noidal functions f n E Co ( SZ x [0, T]) such that
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as n - oo . For several types of domains, including that of a three-dimen-
sional exterior domain, and for w, Vw E L2(QT), the existence of such a

sequence of functions was proven in [11]. The resulting uniqueness theorem
is valid for all solutions u of problem (2), such that u - bro, Ut - brot, and
Vu are square-summable over QT and u - bro E LOO(O, T; L4(Q)).

Since v-Vv- u-Vu = w-Vw + w-Vu + u-Vw, equation (1) can be re-

written as

The first term on the right side of (20) can be estimated using Holder’s
inequality and Lemmas 4 and 7. For any a &#x3E; 0, one obtains

The constants Ca , here and below, depend on S2 as well as a. In estimating
the term IlVwijillPJwlll, we used Young’s inequality ab allp + blllq with
p == 4 and q = 3. The second term on the right side of (20) can also be
estimated using Holder’s inequality and Lemmas 4 and 7. For any a &#x3E; 0,
there holds

The third term on the right side of (20) can be estimated using Lemma 6.
For any a &#x3E; 0, one obtains

Using these estimates for terms on the right side of (20), and setting a = vl3,
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we obtain

where

and It is a constant depending only on v and Q.
Conditions (3a) and (3c) imply that ))Vev(t)]]2 is continuous on [0, T]

and absolutely continuous on (0, T], as a function of t. Over any sub-

interval I of (0, T] on which IIVw(t) II is everywhere positive, (21) implies

If ti  t2 are numbers lying in such an interval I, one clearly has

From this it can be seen that

holds for all t E [0, Z’], regardless of whether II Vw(t) II is everywhere positive
or not. To verify this, let t2 represent an arbitrary point of (0, T] with

11 Vw(t,) II &#x3E; 0, if there are any such points, and then pass to the limit as tl
tends to the left boundary of the largest subinterval 7 of (0, T], which con-
tains t2 and on which IlVwll is positive.

Now suppose ))Vev(0)() II  A, where A is any given positive number,
and let [0, TA] be the largest subinterval of [0, T] on which 11 Vw (t) II A.
Then using (22) and setting

one obtains

for t E [0, TA]. Clearly TA = T if

Choosing A = (4T)-L, our theorem follows at once.
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4. - Existence theory. The starting problem.

The estimates used in the last section to prove uniqueness can be used
in some situations to prove the local existence of a class Ho solution, even
when the external forces are not square-summable. This observation may

prove useful in dealing with the « starting problem », which is to demonstrate
that a steady wake develops at t ---&#x3E; 00, if a body initially at rest and sur-
rounded by a fluid at rest is smoothly accelerated to some constant (slow)
velocity and then held at that velocity indefinitely. Methods based on a

similar observation have proved useful in treating the starting problem
for the Stokes equations [9, 17]. To date, the starting problem for the
Navier-Stokes equations has been solved only in special cases where the
prescribed boundary values and forces are such that the limiting steady
wake possesses finite energy [8]. Here, we will examine the starting problem
for a body with rigid boundaries to which fluid adheres; this is a case for

which the expected steady wake possesses infinite energy [4].
The starting problem can be considered as a special case of the initial

boundary value problem (2) by prescribing the data appropriately. In order

to find a solution of problem (2), or of the starting problem in particular,
the first step is to choose an extension into Q x [0, T] of the boundary values
b(x, t) prescribed on aS2 x [0, T]. We will denote the chosen extension, as
well as the prescribed boundary values, by b(x, t). We require the extension b
to have derivatives Vb, L1b, Vb, square-summable over QT, to be solenoidal,
to have trace on oQ X [0, T] equal to the prescribed boundary values, and
to satisfy f (b(x, t) - bQ)(t) )2/xl-2dx  oo for all t E [0, T]. Then the solution

’2

of problem (2) can be reasonably sought in the form u = v + b, with
v E L2(0, T; Ho(Q)).

It is known from the investigations [16], [5], [1] and [8], that the ex-
terior stationary problem

has a solution w(x) with Vev square-summable over 0y and that this solu-
tion is unique and stable (as a time dependent motion) provided Woo is suf-
ficiently small. Thus, if Woo is sufficiently small, w(x) can be expected to
arise as the steady limit of a time dependent solution representing fl.ow

around a rigid body 921, which is accelerated from rest to the constant

velocity - Woo’ Let us suppose the body’s velocity is given by - ’(t)woo
relative to the inertial frame in which the fluid is initially at rest, where Q(t)
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is a smooth function of t E [0, oo), which vanishes for t near zero and equals
one after the initial period of acceleration. The appropriate data for

problem (2) is then boo(t) - C(t)w,,, f (x, t) - 0, a(x) - 0, and b(x, t) = 0 on
a.Q X [0, 00). As the extension of the boundary values into Q X [0, oo) we
choose b(x, t) = ’(t) w(x); this function meets all the required conditions.

Inserting u = v + b into equation (2a), one obtains

where g = vL1b- b.L1b + boot- b t . We seek v by a variant of the Galerkin
method. As basis functions, we choose a sequence fal(x)l which is contained
in Ko(Q), complete in Ho(2), and orthonormal in Jo(.S2). As n-th approxi-
mate solution we take the solution

of the initial value problem: v’(x, 0) = 0 and

for t &#x3E; 0 and 1 = 11 2y ..., n. The brackets here indicate integration over Q.
The equations (27) are obtained, formally, by multiplying equation (26)
through by d a t, integrating the result over Q, and using the identity (7).

REMARK. The differential equations for approximate solutions, used

when the existence theory is based on energy estimates, are obtained by
multiplying (26) through by a i rather than by Pd a t . For problems in a
bounded domain Q, one can choose eigenfunctions of the operator P4 as
basis functions and thereby obtain at once estimates both of energy type
and of the type given here; see Prodi [19].

Taking linear combinations of the equations (27), and of the t-derivatives
of these equations, one obtains the following identities for the Galerkin

approximations (the superscript n is suppressed):
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The first three terms on the right side of (28) can be estimated in much
the same manner as were the terms on the right side of (20). For any « &#x3E; 0,
one obtains

The term (g, dv) may appear to present a difficulty because g is not square-
summable. However, the steady solution w can be written as w = wl + w2,
with wl a function that vanishes in a neighborhood of 8Q and equals Woo
in a neighborhood of infinity, and with W2 E Jo(Q). Thus one can write

9= g1+ g2, where gl = v’L1w - ’2W.B1w + ’t(woo- Wl) is bounded in L2(Q)
as a function of t, and g2 - - ’t W2 is bounded in Jo(,S2) as a function

of t. Using the identity (g2, Jv) == - (Vg2, w), I one obtains

By combining these estimates for terms on the right side of (28) and setting
« = vl8, one finds that

The form of this differential inequality implies the existence of an interval
[0, T*] and of a constant C, both independent of the order n of the ap-
proximation, such that

Equation (29) can now be used to estimate IIVVtll. For terms on the

right side of (29), we have
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Using these estimates for terms in (29) and setting a = v/14, one obtains

This inequality can be integrated over the same interval [0, T*] on which
the estimates (31) are valid, yielding the further estimates:

for and

Since 11 Vv,(O) II - 0 for each Galerkin approximation, the constant C is again
T*

independent of n. The estimates (31) and (32) for 11 VV 11, f llJV 11 2 dt, and
0

II ov t Il are enough to ensure that a subsequence of the approximations con-
verges to a function vEL2(O,T*;Ho(Q)) with vtEL2(O,T*;Jo(Q)), and
that u = v + b is a class .Ho solution of the starting problem, on the interval
O c t c T*. We remark that by taking still another linear combination of

equations (27) one obtains

which leads to the estimate lljv(t) II  C on [0, T*].
A local existence theorem for strong solutions for the starting problem

can also be based on energy type estimates, , if the extension b is chosen

so that g is square-summable. For instance, one can take b(x, t) = ((t) Wl(X),
where as before wl(x) is a solenoidal function which vanishes in a neighbor-
hood of 8Q and equals Woo in a neighborhood of infinity. Then, setting
v = u - b, the norm Ilv(t) II will be finite for every t; it can be shown to

grow at most linearly by a method of Hopf [12 ] . However, liv(t)ll II must

necessarily grow infinite as t - oo, and g will not vanish after the initial
period of acceleration. The advantage in choosing b as before and of relying
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primarily on estimates of the Dirichlet integral is that g then vanishes after
the initial period of acceleration and also 11 Vv(t) 11, the principal quantity
being estimated, is expected to tend to zero as t --&#x3E;- 00. Even if it could be

’r

merely sliowii that holds for all i &#x3E; 0 and for a sufficiently

small value of 6, (30) would yield a global existence theorem.
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