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Littlewood-Paley a Priori Estimates for Parabolic Equations
with Sub-Dini Continuous Coefficients.

E. FABES (*) - S. SROKA (*) - K.-O. WIDMAN (**)

0. - Introduction.

Consider the initial value problem

where the coefficients .A;£¥(0153, t) of the parabolic operator

are assumed to be uniformly continuous for la = m and bounded and meas-
urable for la I  m.

From the theory of singular integral operators, see [4] and [11], it fol-

lows that if the initial data g are smooth enough, say g E Co-, then a solu-
tion of (0.1) exists. On the other hand, it is of course well known that if
the coefficients are smooth, then (D,I) is solvable if g E Lp(Rn); the initial
values are then taken on in the sense that lim IIu(., t) - gill, = 0.to

In the last decade there has been a growing interest in parabolic equa-
tions with continuous-only coefficients, mostly in connection with diffusion
processes. The standard reference is [14]. However, at present it is not

known whether uniform continuity of the highest order coefficients is suf-
ficient to guarantee the solvability of (0.1) with .Lp data g.

(*) Department of Mathematics, University of Minnesota, Minneapolis.
(**) Department of Mathematics, Linkoping University.
Pervenuto alla Redazione il 10 Febbraio 1978.
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In this paper we consider operators whose coefficients are slightly more
regular in that we assume that the modulus of continuity w(r) satisfies

a property which we have dubbed « Dini (1) continuity ». For these oper-
ators we give a priori estimates which allow the whole existence and unique-
ness program to be carried through.

The crucial necessary estimate, sufficient to imply the solvability of (0.1)
with g in Lp, see [3], is

valid for all solutions of (0.1) with g c Co (Rn), say. In fact we prove much
more, namely so called Littlewood-Paley estimates, involving also the deriva-
tives of the solution, as well as a supremum estimate, see Theorem 1 below.
These estimates lead, via approximation arguments, to the existence, The-
orem 2, and uniqueness, Theorem 3, of solutions. Note that the supremum
estimate implies that the solution takes on the initial data also in the almost

everywhere sense.
We also prove an inverse Littlewood-Paley inequality, i.e. an inequality

where the Lp norm of the initial values are estimated by a weighted integral
of derivatives of the solution, see Theorem 4. An immediate consequence
of the Littlewood-Paley inequalities is a Fatou type result, Theorem 5.

The program for finding the key Littlewood-Paley inequality is the fol-
lowing. First the proof is reduced to the case when the coefficients depend
on x only, and the elliptic part of the operator contains only highest order
terms. Then a representation formula for solutions and their spatial deriva-
tives is derived:

Here D(X, rz(Y, s) is a derivative of the fundamental solution of the constant
coefficient operator obtained when freezing the coefficients of L at z. For

]a] = m the integrals in this representation become singular.
In order to be able to use the theory of (vector-valued) singular integral
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operators the potential integrals are modified, in section 6, by the splitting
off of terms which can be treated e.g. by approximation, integration by
parts, and the Hardy-Littlewood maximal theorem.

The remaining hard core terms involving genuinely singular integrals are
handled in section 7, using a result on Hilbert space valued singular in-
tegrals by Benedeck, Calderon and Panzone.

We end this introduction by a short review of earlier work in the area.
To facilitate the discussion of continuity conditions which are weaker than
that of Dini we propose the label Dini (a) continuous for a function whose
modulus of continuity satisfies

For operators L whose coefficients are Holder continuous in either the

x-direction or the t-direction the estimate (0.2) is known through the work
of Eidelman [2], and Kato [8]. (See also [5], chapter IX). However, , the
Littlewood-Paley inequalities seem to be new even in this case.

One of the present authors showed in [3] that Dini (1) continuous coem-
cients is sufficient to guarantee the estimate (0.2) and in [12] the second
named author extended this result to Dini (1) coefficients in the case

2 p oo.
In the elliptic case, with Holder continuous coefficients, the Littlewood-

Paley inequalities for p = 2 as well as Fatou type theorems for p &#x3E; 1 were

proved by the third of the present authors in [15]. See also [10] for a related
result.

The only relevant counterexample known to the authors is that of

Il’in [7], which shows that (0.2) cannot hold in general for p = 1 if only
Dini (a) continuity with a  I is assumed.

1. - Notations and statement of results.

We will let Da denote differentiation with respect to x = (XI, X.) e .Rn,
a being the usual multi-index (OC1, ..., ocn), while t-differentiation is denoted
by Dt . The convenient abuse of the symbol .D’ for an arbitrary, or all,
derivatives of order j will also be continued in this paper.

The principal part of the operator, L,
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where m :&#x3E; 2 is an even integer, is assumed to be strongly elliptic, i.e. for all
(x, t) E ST = Rn X (0, T) and for all $ E Rn we have

for some Â &#x3E; 0. Also, all coefficients are assumed to be bounded and measur-
able with

while the coefficients of order m are uniformly continuous in S,. We put

and define

We will say that the m-th order coefficients are Dini (l) continuous

when

The space LP(L2(Sð,T))’ Sð,T = -R" X (ð, T), consists of those locally integrable
functions for which

and by W;:’i(ST) we denote the closure of Co (.Rn + 1 ) with respect to the norm

while Wm,l - Wm.1:p V,V -

Note that all elements of TVm,,21(8,,) have a locally integrable trace on
(t = -r} for all 7: E [0, T].
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THEOREM 1. Suppose that j(m§(i)fi) di  00. Then for 1  p  oo and

for all U e Wm,l(S ) 0

for every positive nondecreasing f unction 0 on (0, T] such that I (02(-r)f’r) d-r 00
o

and such that 0(t) &#x3E; co(t) + tll-. The constants C and C, depend on p, T, n,
Â, p, m, Wo, and 0. Moreover, for f ixed p, CT tends to zero with T.

THEOREM 2..Let 1 C p  c&#x3E;o and suppose that

Then to every g E Lp(Rn) and every f such that

for some non-decreasing 0 such that f ((J2(7:)/7:) d7:  oo, there exists ac func-
tion u with the following properties: 0

(ii) Lu = f almost everywhere in ST;

(iii) lim u(r, t) = g(x) for almost every x in .Rn.
,_o+

Furthermore, if f E La, 1 C q  00, locally in ST then u belongs to W:,l locally.

THEOREM 3. Let L have Dini (!) continuous m-th order coefficients, i. e. as-
sume that

and let p, g, f be as in Theorem 2. Then there is at most one f unetion satisfying :

(i) U E -W,,’21(86,T) for every 6 &#x3E; 0;

(ii) Lu = f almost everywhere in ST;

(iii) lim u( ., t) = g weakly in Y(Rn).
t-O+
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THEOREM 4. Let L, f, and p be as in Theorem 3. If a solution u o f .Lu = f
satisfies

for some i E (0, T], acnd if

then, provided O(t) Iti is monotone,

(i) u(., t) E Lp(Rn) for all t E (0, T) ;

(ii) u(., 0) == t im u( ., t) exists as a limit in Lp and as a pointwise limitto+

almost everywhere; 
-

where C depends on ill and the parameters mentioned in Theorem 1.

THEOREM 5. Let L, f, and p be as in Theorem 3. I f u is a solution of
Lu = f satis f ying 

and

then u(x, 0) == lim u(0153, t) exists as a limit in Lp(Rn) and pointwise almost

everywhere in Rn.

2. - Proof of Theorem 1.

We will start by showing that the proof can be reduced to a simpler
case. In fact, we first observe that it is sufficient to prove Theorem 1 for
some T = To &#x3E; 0, depending on the parameters indicated.

Let y E C’(0, oo) be zero in (0, To/2) and one in (To, T). By the results
of [4] and [11], for 0  j  m
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and trivially

On the other hand,

and for 1jm

Combining the above inequalities we find

which obviously implies the assertion.
The next step is the observation that it is sufficient to consider operators

of the form

i.e. operators with derivations of the highest order only and whose coeffi-
cients are independent of t. In fact, if Theorem 1 is valid for this type of

operator then for one of general type we write

where Then
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We need now only observe that for 1  j  m -1

while remembering that 6(t) &#x3E; cv2(t) -+- tum and that OT tends to zero with T,
in order to realize that the undesireable terms in the right hand side may
be absorbed by the left hand side for small enough T.

Thus, in the remaining parts of the proof we assume that the operator
has the form (2.1). Also, it is obvious that it is sufficient to consider func-
tions belonging to (,Yo-(_Rn+].).

We define

where Yi denotes the Fourier transform with respect to $ and Cn is a suit-
able constant depending on n only, such that F. becomes the traditional
fundamental solution of .L with coefficients frozen at z, i.e. for the operator

For u E Co-(Rn+,) and t &#x3E; 0 we have the following easily derivable represen-
tation formulas.

where

and where the limit exists for all x and t. Now we write Lx u = Lu +
+ (L.-L)u and so for 1jm
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In section 6 it is proved that the limit of the last two terms exists in

LP(L2(ST)) .
We now define for 0  j  m

and in terms of these operators we have

and for 1jm

Theorems 6, 7, and 8 show that

where

To complete the proof we note that we can choose To such that

0, C(TO)  -1 and then absorb the final sum on the right side into the left
hand side of the above inequality.

3. - Proof of Theorem 2. 1

For an arbitrary g E _L2,(Rn) choose a sequence gv -&#x3E; g in Ep such that

gl1 E C§°(R"), and let fl1 E C§°(R" x (0, 00)) be such that
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in LP(L2(ST)) as v tends to infinity. By the results of [4] we know there is
a solution, u,, of the initial value problem

lying in W:,l(ST) for every 1  q  00.
Set W;:’;(ST) = (u e W;:i(ST): u(0153, 0) == 0}. Now L is an isomorphism

from W;:i(ST) onto LP(L2(ST)) (see [4]). Hence if cp(t) e 0;(0,00) we have
11p(t)(uv - u,&#x3E; ll wgis,&#x3E;  C( ll wt&#x3E; fv - t,) 11LP(L2(ST») + II p’(t)(uv - u,) IILP(L2(ST»)). By
Theorem 1 the last term is bounded by

We conclude that the sequence {uv} is convergent in W;:i(Sð,T)’ for every
ð &#x3E; 0, to a function u which clearly satisfies Lu = f. By selecting a sub-
sequence we may also assume that

pointwise almost everywhere in ST for 0  j  m.

To prove (i) we note by Fatou and Theorem 1 that

To show (iii) we first set

Now for a fixed positive number 6 we have
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since J,,,,(x) = 0 for all x. Hence

which, by Theorem I, tends to zero as v - 00: We conclude that lim u(0153, t)
exists pointwise almost everywhere. But also

The first two terms on the right side are small for all v large enough uni-

formly in t E (0, T), while for v fixed the final term tends to zero as t tends
to 0 +. In conclusion we have shown that

and, therefore, also

Finally, if f E Lfoc we may choose the approximating functions fV above
so that they converge to f in Lfoc. By Theorem 1 we know that

uv E W,l(ST) locally, uniformly in v, with qo = min (2, p). This implies
that Djuv converges in .Lio(,S’T) for

Also, since L is an isomorphism from

we have for

Hence the sequence converges in ZYa’1 (’z,) locally if ql :::;: q.
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Now the above process can be repeated, with q, instead of qo, so that
in the j-th step we obtain convergence in -W,"’(ST) locally with any qj  o0

such that llq, &#x3E; llqo - j/(n + m), qj  q.
This proves the assertion.

4. - Proof of Theorem 3.

We start by proving the implicit proposition that (i) and (ii) imply
that u(-, 1’) E Lp(.Rri) for every z E (0, T]. In fact, let 99 E O;’(R) be one in
(,r, T) and zero in (0, T/2). Then for almost every x

and the observation is completed by taking Lp norms over Rn.
Now let u satisfy Lu = 0 with a weak Ep limit equal to zero at t = 0.

We set

Since we have assumed Dini (I-) continuity of the coefficients in the whole
slab S, we may apply the representation formula (2.2j) in Sr,T and with
respect to Lr :

where the kernel of Io,r and V, is F0153(., t - r) and r0153(.’.- r) respectively.
As in section 2 we find from Theorems 6, 7, and 8, and from Theorem 1,

where (
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If 99 E Co (Rn) we multiply (4.1) by q and integrate to find

llq -t- ilp = 1. Since the weak Lp limit of u(x, r) as r - 0-)- is zero we find
that the integral on the right converges to zero when r tends to zero.

Hence we have Iju(., t) IILP(Rn) : Ot where liM Ct = 0, i.e. tlim u(x, t) = 0t-+o + t-+o +

where the limit is taken in Lp(Rn). Hence, by Theorem 1, we conclude
that u vanishes identically.

5. - Proofs of Theorems 4 and 5.

In view of the monotonicity property of 6 it is clearly sufficient to show
the inequality (iii) for r small, dependent on n, m, and p only.

The first step is to see that (i) follows from the inequality

which for pi C 2 gives

To prove (ii) and (iii) it is sufficient to prove that
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for all r less than some e &#x3E; 0 which depends on the parameters in the
theorem. In fact, we may then choose a sequence u(-, tk), tk -&#x3E; 0, which
converges weakly in LP(RN) to some function u(., 0) satisfying (iii). Bor-

rowing from the proof and notation of Theorem 3 we see that

and 11 u( ., t) - 10,tk( u( ., tx))(’, t) IILP : °t-tk where °t - 0 as t -+ 0+. As

tk -&#x3E; 0 the final integral on the right side converges to

We conclude that u is the solution, in the sense of Theorem 3, of the initial
value problem with data u(x, 0), and then (ii) follows from Theorem 2.

As in the proof of Theorem 1 it is no restriction to assume that the

operator has the form

In fact, if we set LO == I ÁlX(0153, 0)Da - Dt and assume that (5.2) holds
j«j=m

for L°, we find that (5.2) holds in the general case with (LO - E) u + f
substituted for f. All the terms of (L° - L) u except Ao n are trivially swal-
lowed by the remaining part of the right hand side of (5.2). To estimate

we write, with g depending only on n, m, 0 and f-l
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This last estimate yields the inequality

Choosing T so that Ki = 2 we see that the desired estimate follows.
Let (p E O;’(Rn) be arbitrary, and denote by (p,, the solution in Sr,7: of the

initial value problem

By Theorem 2 we know that

Also we have

Now put A(X(x) = A:(0153) + [A(X(x) - A:(0153)] with (J = (t - r)l/m, where
is a suitable regularization of Jtex, see section 6. The third (and worst) in-

tegral on the right hand side of (5.4) is then a sum of terms of the type

The first integral in (5.5) is treated to an (m - 1)-fold integration by
parts and yields a sum of terms of the form
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For 0  i  m - I we divide the area of integration in two, Sr,2r and S2r,z 
In the former we get, using (6.1), 

llp + l/q = 1. By (5.3) and Theorem 1 applied to u in 8 this is less than
or equal to 

r,

In the latter case we get, again using (5.3), the estimate

For j = 0 we divide the area of integration into Sr,f} and Se,z with p to
be chosen, and estimate the Lp norms of sup lu(., t) I and sup lu(., t) Irtt.f} f}t-tT

by Theorem 1 and (5.1) respectively, and after applying Holder’s inequality
and (5.3) we see that these integrals are estimated by

and

respectively.
In the case j = m - 1, finally, a simple application of the Holder in-

equality and (5.3) yields the estimate

Returning now to (5.5) we divide the second integral into two by con-
sidering Sr,1J and 8,,,, separately and proceeding as in the case j = 0 above
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we find that

Collecting all our estimates we have for (5.5) the majorization

Going back to (5.4) we realize that there are still three terms to estimate.
The second term on the right hand side is treated in a manner similar to
that of the third one; in fact, our task is simpler here in that, after having set
A. = A§ -E- [A. - A.], we need integrate by parts only once, and it is not
necessary to divide the area of integration. We end up with a majorization
of these terms by (5.6).

The first and last terms of (5.4) yield, via Holder’s inequality and (5.3),
an estimate which again can be subsumed under (5.6).

All in all, the left hand side of (5.4) is less than or equal to (5.6) and the
following inequality holds for r  e

where K depends only on the parameters of the theorem and K. in addition
on e. It is now easy to see that (5.2) follows.

The proof of Theorem 4 is now complete.

PROOF OF THEOREM 5. By Theorem 1 and the assumption on

II u( ., t) IIL(l(Bft) We find that

21 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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and then it follows from Fatou’s lemma that

Hence the assumptions of Theorem 4 are fulfilled, and from this the state-
ment of the theorem follows immediately.

6. - Estimates for the potentials.

In this section A will always denote a Dini (!) continuous function on Rn
i.e. a function whose modulus of continuity satisfies f (ro2(T)/í) di C oo.
By A(1 we denote a regularization of A, 

°

where q is an arbitrary but fixed non-negative C°° function with support
in the open unit ball and integral one. It will be convenient to set

The following inequalities are immediate:

We will also have occasion to use the Hardy-Littlewood maximal function,



323

which satisfies

THEOREM 6. For 1  p  o the potential

satis f ies

Here the constant 01) can be chosen independently of the modulus o f continuity
of the coefficients Aa.

PROOF. The proof of the supremum estimate is of course standard

(see e.g. [13, p. 62]) since

where

The estimates for Djl,, are proved in Theorem 9.

THEOREM 7. -lior 1  p  o0

where C = C( p, n, m, Â, p,).

PROOF. If we set i(y,8) = s!(}-l{s)f(y, 8) we realize for the sum it is

sufficient to show that for 1  j  m the limit

exists in Lp(L2(ST)) and that the operator Xi maps Lp(L2(8,)) continuously
into itself. This is done in Theorem 10.
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It remains to prove the supremum estimate. Note that

Hence, if once again we set h(x) = (1/[l + IX12](n+2/2)),

The desired estimate now follows from the Hardy-Littlewood maximal
theorem.

THEOREM 8. For 1  p  c&#x3E;o

where C = O(n, m, p, Â, p,).

PROOF. We start by proving that
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By an integration by parts

In the first term we use the decomposition

and after an integration by parts in the y-variable

By (6.1) we find, using the technique of the proof of Theorem 6, that the
final two integrals are majorized by

For the second term we use (6.1) directly with cr = (t - 8)11- and obtain
the estimate
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Together with the Hardy-Littlewood maximal theorem this proves (6.2).
Next we prove for 1  j  n

By writing tilm-l = silm-i + s-l(stilm-i - silm+l) we divide the integral to

be estimated into two parts the first of which is seen to satisfy

after we use the decomposition A(x) - A(y) = 1p(J + qJ(J with a = T’l- and
the known fact that the operator f D- VI is continuous from L’ (_L2(ST))
into itself (see [9]).

The second term is handled by an integration by parts in the s-direction,
giving

and using (6.1) with o*= (t - s)"- we find the pointwise estimate

and the proof of (6.3) is completed by squaring, integrating over t, and

using the Hardy-Littlewood maximal theorem.
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An inspection of the proof of (6.3) shows that we may substitute any
function Ã(y,s) satisfying IÃ(y,s)l Ow(sl/m) for (ae(0153)- ae(y)), and we

obtain
/ r&#x3E;im

Finally we show that for 1  j  n - 1

Using that

and

one finds

Now (6.3) and (6.4) gave the desired estimate for the first two terms here,
while (6.1) and Theorem 7 do the same for the remaining ones.

Theorem 8 is proved.

7. - Singular integral estimates.

We recall the potentials

and
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Our main tool in showing that these operators are continuous from
L"(R") - LP(L2(SaJ) and LP(L2(ST)) -+ Lp(L2(ST)), respectively, will be the
following theorem by Benedek, Calder6n, and Panzone [1] on vector valued
singular integral operators.

Let HI and H2 be Hilbert spaces and k: .Rn - £(Hl, H2) (= the space of
bounded linear operators Hl -+ H2) be such that

is defined for all simple f unctions f with compact support in Rn and values
in Hl. Assume

Then T can be extended to a continuous mapping f rom L1J(Rn, Hi) - Lp (Rn H2)
f or 1  p  00 and

It is obvious that (ii) is implied by the condition

THEOREM 9. For 1  p  oo and f or all g E LP(R")

where C = C(ni m, p, Â, p,).

PROOF. Since

Because of the parabolicity there is a constant c &#x3E; 0 such that
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where h(y, E) is rapidly decreasing in $, uniformly in y, i.e. for all multi-
indices a and p,

. 
Hence

where

Finally we have the representation

where

We will now apply the theory of vector valued singular integral operators
mentioned above to show that for figed z Iz: L’P(Rn) - L’P(L2(Soo)) con-

tinuously for 1  p  oo with norm bounded by a constant times (1-j- 1__IN).
Let H= L2(o, oo) and for x E Rn fixed define k(x): 0 -* H ( C = com-

plex numbers) by

and for f E Lp(Rn) we define the operator

Of course XI is nothing more than the function I,,(g). Using Parseval’s
theorem it is easy to see that



330

with C independent of z. Also for x =A 0 Vk(x) is a continuous mapping from
C - H defined by

As such a mapping its norm

where x’ = xllx I. Observe now that

with again C independent of z.

From the above we conclude that for 1  p  o0

From our representation of ti!rn-! Di lo(g) and with the use of Minkowski’s
inequality we have

and this concludes the proof of Theorem 9.

THEOREM 10. For 1  p  oo, I  j  m, and each T  oo, Ki maps
LP(L2(Sr)) into itself continuougly and

where C = C(n, m, p, Â, Il).

PROOF. A standard argument in singular integral theory reduces the
proof to showing that the norms of the operator, Xi,s, defined by

is bounded independently of 8 by
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Using the same functions as defined in the proof of Theorem 9, we can
represent the operator Xi,s as follows:

where gx is the (vector-valued) convolution operator

Again we use the theory of vector-valued singular integral operators to
prove that J: Lp (L2(ST)) - Lp (L2(ST)) continuously with norm bounded by

We first set H = L2(o, T) and for x c- R,, we define k(x): H - H by

For f E L2(ST) we set f($, t) = :Fae(f(0153, t))($). Then from Parseval’s relation

we have

Recalling that Y(Q;)($) = (I$)? exp (- c[$[2), the second integral above is
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bounded by

In the case 1  j  m we note that

and using a well-known lemma of Hardy ([6] p. 227) we see that

In the case j = m we note that

Since we now have convolution in the time variable with an Ll-kernel, it
is easily seen that

We have now completed the proof that

with C independent of z and 8. For x 0 0 the mapping Vk(0153): H - H
defined by
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has norm bounded by a constant, independent of E, times

To see this fact observe first that

and hence the L2-norm over (0, T) of this function is bounded by

Secondly by Minkowski’s inequality we have

This last expression is bounded by
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