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Embeddability
of Real Analytic Cauchy-Riemann Manifolds (*).

ALDO ANDREOTTI (**) - GREGORY A. FREDRICKS (***)

The local and global embeddability problems for Cauchy-Riemann (C-R)
manifolds are as follows:

(I) Which C-R manifolds are locally isomorphic to a generic sub-
manifold of C»?

(IT) Which C-R manifolds are globally isomorphic to a generic sub-
manifold of some complex manifold?

It is well-known (see Rossi [10]) that real analytic C-R manifolds are
locally embeddable as in (I). In §2 we prove that real analytic C-R mani-
folds are also globally embeddable as in (II). This is a generalization of the
theorem of Ehresmann-Shutrick (see Shutrick [12]) on the existence of
complexifications—a theorem which was also proven independently by
Haefliger [8] and by Bruhat and Whitney [4]. It also improves a result
proved by Rossi[11]. In § 3 we give a notion of domination of real analytic
C-R structures and prove a sort of functorial property concerning their com-
plexifications. In the last section we prove a result about the convexity of
the complexification which is a generalization of a theorem of Grauert [6].

1. — Preliminaries.

The two best references for the material presented in this section are [1]
and Greenfield {7]. We will use the word « manifold » to mean an infinitely
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differentiable paracompact manifold and the word « submanifold » to mean
a subspace of a manifold for which the inclusion map is an embedding.

For each m-dimensional manifold M, let T(M)® C denote the com-
plexified tangent bundle of M so that

2 )
T(M)® C, = complex span 01‘5;0: (P)s ey 5= (D)

if (z, U) is a chart of M with pe U. A Cauchy-Riemann (C-R) structure of
type 1 on M is an l-dimensional complex subbundle A of T(M)® C such that

(@) A N A= {0} (zero section), and

(b) A is involutive, i.e. [P, @] is a section of A whenever P and ¢ are
sections of A.

Note that the zero section of T(M)X C defines a C-R structure of type 0
on M. This trivial C-R structure is called the totally real structure of M.

Observe from the definition of a C-R structure that 0 <l<m/2 and also
that if 4 is a C-R structure of type I on M, then so is 4.

Note also that condition (a) above is equivalent to the condition that
if pe M and P, Q € A, with re P =re @ then P = . Thus we can define
a complex structure on the 2l-dimensional subbundle re A of T(M), i.e. a

bundle map J:re A —re A with J* = — I, by defining J on re A4, as follows:
(1.1) JP =@ if and only if P+ iQe4d,.

A C-R manifold is a pair (M, A) where A is a C-R structure on M. The
C-R manifold (M, 4) is said to be of type (m,1) if M is an m-dimensional
manifold and A is a C-R structure of type I. A C-R manifold (M, 4) is called
real amalytic if M is a real analytic manifold and, for each chart (x, U) of
the real analytic atlas of M, there exist complex-valued vector fields Py, ..., P,
such that

(&) A, = complex span of Py(p),..., Pi(p) for each pe U, and

m
(b) P, = 3 ¢i(00x)) for i =1,...,1 with ¢;;: U — C real analytic.
j=1

)

We will now examine in detail the C-R manifold (X, HT(X)), where X
is an n-dimensional complex manifold and H7T(X) is its holomorphic tangent
bundle. Note that if (2, U) is a (holomorphic) chart of X and p € U, then

0 0 0 0
T(X)® C, = complex span of T (P)y «ees F (»), a_'-z-l (P)y +ees a’?(p)y
1 n n
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so that each Pe T(X)® C, can be written uniquely in the form
0 no 0 .
P=3%a;=—(p)+ Dbix—(p) witha,beC.
&1 0z i=1 0%;

Such a P is called holomorphic and an element of HT(X), if all the b, are
zero. Similarly, such a P is called antiholomorphic and an element of AT (X),
if all the a, are zero. Defining the holomorphic and antiholomorphic tangent
bundles, HT(X) and AT(X), in the natural way, we see that HT(X) is
an n-dimensional complex subbundle of 7(X)® C with

T(X)®C = HT(X)® AT(X) and HT(X)= AT(X).

Now HT(X) N AT(X) = {0} and it is easy to see that HT(X) is involutive.
Hence (X, HT(X)) is a C-R manifold; in fact, a real analytic C-R manifold.

Henceforth, a complex manifold X will be considered to be a C-R mani-
fold with C-R structure H7(X). When there is no ambiguity we will simply
write X for (X, HT(X )). We remark, however, that it is customary to take
AT(X) as the C-R structure on X.

We will now give a detailed description of how a submanifold of a com-
plex manifold can «inherit » a C-R structure. Since the two defining proper-
ties of a C-R structure are essentially local, we begin by considering a real
submanifold M of C» of (real) dimension m. Fixing p € M there exists a
sufficiently small neighborhood U of p in C* and 2n — m smooth functions

(1.2) fiiU—->R forj=1,..,2n—m

such that
(@) MNTU = {zeUlfi(z,2) = 0 for j =1,...,2n — m},
(®) N Nfso_m#=0 on U.

If U is sufficiently small we can also find local parametric equations of M
on U, i.e. a set of » smooth functions

1.3) pi:D—>C fori=1,...,n
defined on an open set D c R™ such that

(a) M N U = ¢(D), where ¢: D — C* is given by the equations

o ={z=g(t), for i=1,..,n},

) rk a(‘Pu ooy Py Pry eey Pn) —

m on D.
Oty «vs tm)
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If M is a real analytic submanifold of C» the functions f; and ¢, described
above can be chosen to be real analytic.
Let F(M) denote the sheaf of germs of smooth, complex-valued func-
tions on C* which vanish on M. If U and f; are as defined in (1.2) then
F(M)(U) = S(U)(fly ---7f2n_'m)}

where S is the sheaf of germs of smooth, complex-valued functions on C=.
If U and ¢, are as defined in (1.3) then

F(M)(U) = {ge S(U)|gop = 0 on D}.
The holomorphic tangent space to M at p € M is now defined by
HT(M, C"), = {Pe HT(C"),|P(f) = 0, for every f € F(M),}.
Note that HT(M, C*), is a complex vector space, and set
I(p) = dim¢c HT(M, C*), for each pe M .

PROPOSITION 1.4. The function l(p) is an upper semicontinuous func-
tion of p along M which satisfies

m—n<l(p)<

e

Proor. From above F(M), = 8,(fi, ..., fan_m) and hence

M=

P=

1

0
laiggi(}”) eHT(M,C"),

1

if and only if P(f;) = 0 for j = 1, ..., 2n — m. Thus {(p) is the dimension of

the subspace of vectors ¢ = (a,, ..., a,) € C* such that
& of; .
zacé—(P)———O for j=1,..,2n—m.
i=1 %
Hence
a(fl’ °"’f2n—m)
l = p — rk — 11 2nem)
) 3eny ey ) D)

and we see that I(p) is upper semicontinuous since the rank of a matrix of
smooth funections is lower semicontinuous. Moreover, the rank of the above
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matrix is less than or equal to 2» — m and hence l(p)>m — n. Since the
functions f; are real-valued we see that, in self-explanatory notation,

a(f) o(f)
rk —- 3) rké&—) on U.

From (1.2) (b) it follows that

o(f)
0(z, Z)

=2n—m onU,

so that rk 0(f)/0(2)>%(2n — m) on U and consequently that I(p)<m/2.
A submanifold M of C» is said to be generic at p e M if I(p) = m — n.

PROPOSITION 1.5. M is generic at p € M (and hence in a neighborhood of
P € M by proposition 1.4) if and only if one of the following conditions is satisfied.

0(f1y -y fanm)

(a) rk 0(Zyy +evy 2n)

(p) =2n—m

(b) rkM (to) = n, where ty€ D with @(t,) =p
Oty eevytm)
ProoF. The first statement follows from the proof of proposition 1.4.
For the second statement note that fcp =0 on D for j=1,...,2n—m
so that

n 0 1
2 f

for j=1,...,20—m and k¥ =1,..., m. Thus

2 0
%5;1(:0), ey ¢.87m(p)

defined by

0 & Oy azp.
Pesy (P) _aglatk( +2 o)az (»)

are m linearly independent, complex-valued tangent vectors at p which
span T(M)® C,. Moreover

m a .
P =3 ayp, 5t—(p) with (ay, ..., a,) € C™
=} *

19 - Ann. Scuola Norm. Sup. Pisa Cl. Seci.
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is an element of HT(M, C»), if and only if

m a .
zaka(tpi(to)=0 for i =1,...,n
k=1
Consequently

_ 0(P1y -+ Pn)
= ) )

and (b) now follows.
REMARK 1.6. From the preceding proof we see that the complex-valued

vector fields @u«(0/0t), ..., ¢,(0/0t,) are defined on @(D)c M and span
T(M)® C at each point of (D). We also see that

l(p@) =m —rk H (?) for every te D .

Hence if I(q) = ! (a constant) for all ¢ in a neighborhood of p in M, we
can find smooth (or real analytic if the ¢,’s are real analytic) complex-valued

functions ¢y, for ¢ =1, ...,l and k =1, ..., m which are defined near p in M
so that the vector fields

m 0 .
P'=zcik¢*5t‘ for i=1,..,1
k=1 k

span HT(M, C*) at each point of M near p.

We now consider M to be an m-dimensional submanifold of an n-dimen-
sional complex manifold X. Let F(M) denote the sheaf of germs of smooth
real-valued functions on X which vanish on M and define

HT(M, X), = {P e HT(X),|P(f) = 0, for every fe F(M),}

for each p e M. Set I(p) = dimg HT(M, X),. Note that the complex struec-
ture J determined by H7(X) as in (1.1) is defined on re HT(X), = T(X), by

u 9 "9 L)
J(i;aia + 300 ):“El””az"”ﬁ;“‘a?i‘p)

where (2, U) is a chart of X with pe U, 2, = »; + 4y, and a,, b,€ R. Now,
for each p e M, we see that re HT'(M, X), = T(M), N JT(M), and that

@.7) re HT(M, X), c T(M), c T(M), + JT(M),c T(X), .
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Hence re HT(M, X), is the maximal complex subspace of T'(X), (with
complex structure J) contained in 7(M), and T(M), + JT(M), is the
minimal complex subspace of T(X), containing T(M),. Moreover,

(1.8) dimg (7(M), + JT(M),) = m— Up) .

PROPOSITION 1.9. If I(p) is constant and equal to I on M, then HT (M, X)
is a C-R structure of type 1 on M. Moreover, if M is real analytic, then
(M, HT(M, X)) is a real analytic C-R manifold.

ProoF. From the definition of HT(M, X) we see that HT(M, X) N
N HT(M, X) = {0} and also that a complex-valued vector field P is a sec-
tion of HT(M, X) if and only if it is holomorphic and satisfies PF(M) c F(M).
It thus follows that if P and @ are two such vector fields, then so is [P, Q].
From remark (1.6) we see that we can choose a real analytic, local basis for
HT(M, X) if M is real analytic.

If HT(M, X) is a C-R structure of type !l on M we say that M inherits
a C-R structure of type 1 from X. When there is no ambiguity we will write
HT(M) for the inherited C-R structure HT(M, X). Note that R"c C» in-
herits the totally real structure from C» and that every real hypersurface
in C» inherits a C-R structure of type » — 1 from C~.

We remark again that, classically (as in the study of tangential Cauchy-
Riemann equations), one considers AT(M) = HT(M) as the inherited C-R
structure on M.

An m-dimensional submanifold M of an n-dimensional complex mani-
fold X is genericif it inherits a C-R structure of type m — n from X. A generic
submanifold of X will always be considered to be a C-R manifold with its
inherited C-R structure from X.

Two C-R manifolds, (M, A) and (N, B), are said to be <somorphic
if there exists a diffeomorphism y: M — N such that y 4 = B, where
Y, T(M)® C — T(N)® C is the natural map induced by u. Note that
two isomorphic C-R manifolds are necessarily of the same type.

PROPOSITION 1.10. If M is an m-dimensional submanifold of X which
inherits a C-R structure of type 1 from X, then (M, HT(M)) is locally iso-
morphic to a generic submanifold of C*. If M is real analytic the local iso-
morphism is also real analytic.

PROOF. Since the result is local, consider M to be a submanifold of C=»
and fix pe M. Recall from (1.7) and (1.8) that T(M), 4 JT(M), is the
minimal complex subspace of 7(C*), containing 7(M), and that it has
dimension m — . Let m, and m, be complex planes of dimensions m — !
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and n — m -+ 1 respectively, for which
(a) T(m), D T(ry), = T(C"), (transversal at p);
(®) T(m), = T(M), + JT(M),.

Define A: C* — C™! by projecting C» onto m, parallel to z, and then
identifying z, with C~! by some biholomorphic map. Then A is holo-
morphic and, by (a) and (b), there is a sufficiently small neighborhood W
of p in M on which 7 = 1|y is a diffeomorphism (real analytic if M is real
analytic) onto its image. Suppose now that z = (2, ..., 2,) are holomorphic
coordinates on C» and w = (w,,..., w,_;) are holomorphic coordinates
on C»-', and that

W; = gs(Ryy ...y 2n) forj=1,...,m—1

are the equations of the holomorphic projection A: C* — Cm!, Also as-
sume that, after possibly choosing a smaller W, the smooth functions
(real analytic if M is real analytic) ¢,: D - C for i =1, ..., n give local
parametric equations of M on an open set U in C%, as in (1.3), for which
UNM=W. Thus

w; = gi(@a(t)y ooy @ul(t))  for j=1,...,m—1 and teD

gives parametric equations of tW on tU c C™*! and we see by the con-
struction of 7 that

Since this rank is maximal we conclude from proposition 1.5 that W is
a generic submanifold of C»-*. Since A is holomorphic we have that

2 0 8
A (87,.(4)) =2 a—? (@)5,-(A@)  for every geC™,

i=1 i J

and hence 4 _HT(C)c HT(C™'). Since 7, = A, par)gc We Now conclude
that
7, HT(W, C")c HT(zW, C) .

In fact we have equality in the preceding line since 7: W— tW is a dif-
feomorphism and W is a generic submanifold of C™' so both are C-R
structures of type ! on vW. Thus (W, HT(W)) and (:W, HT(zW)) are iso-
morphic and the proof is complete.
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The local embeddability problem can be stated as follows.

(I) Given a C-R manifold (M, A) can one find, for each p € M, a neigh-
borhood U of p in M and an embedding v: U — C» such that TU is a generic
submanifold of C* and 7 (4,y) = HT(zU)?

Note that if (M, A) is of type (m,l) then n = m — L.
As we remarked earlier, (I) is solvable for real analytic C-R manifolds.
Indeed, one can prove (see [2])

THEOREM 1.11. If (M, A) is a real analytic C-R manifold, then (I) is
solvable with real analytic embeddings T.

Note that Nirenberg [9] has given an example of a C-R structure of
type one on a neighborhood of the origin in R3 for which (I) is not solvable.

We now turn to the global embeddability problem which is the fol-
lowing:

(IT) Given a C-R manifold (M, A) for which (I) is solvable, can one
find a complex manifold X and an embedding v: M — X such that M is a
generic submanifold of X and v, A = HT(vM)?

Note again that if (M, A) is of type (m,l), then X is a complex mani-
fold of dimension m — I.

We now define a complexification of the real analytic C-R manifold (M, A)
to be a pair (X, 7) where X is a complex manifold and 7: ¥ — X is a real
analytie, closed embedding such that 7 M is a generic submanifold of X and
7, A = HT(vM). In the next section we will prove

THEOREM 1.12: (a) Each real analytic C-R manifold has a complexifica-
tion. (b) If (X, t) and (Y, o) are two complexifications of the real analytic
C-R manifold (M, A), then there exist meighborhoods U of T M in X and V
of eM in Y and a biholomorphic map h: U — V such that the diagram

commutes. Moreover, h is uniquely defined if U is sufficiently small and con-
nected with T M.
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Thus (II) is solvable for real analytic C-R manifolds and the germ of the
complexification of (M, A) along M is unique. The totally real case of
theorem 1.12, i.e. the case when A is the totally real structure of M, is the
theorem of Ehresmann-Shutrick (see Shutrick [12]) which was referred to
in the introduction.

2. — Global embeddability of real analytic C-R manifolds.

Before proving theorem 1.12 we would like to collect some results con-
cerning real analytic C-R manifolds.

ProPOSITION 2.1. Suppose that M = (D) is an m-dimensional, generic,
real analytic submanifold of C™ with real analytic parametric equations

o= {2;=g@it) for j=1,...,m—1 and te Dc R™.

There ewist neighborhoods D of D in C» and W of M in C»' such that the
map @: D — M extends to a holomorphic, open, surjective map §: D — W
with the property that

rk s wvey Prt) _ m—1 onD,

O(Wyy wevy Wm)
where wy, = b, + 8, for k =1, ..., m give holomorphic coordinates on D.
Proor. The functions @;(w, ..., w,) = @, + 81, ..., ¢, + is,) are holo-

morphic in a neighborhood D of D in C» and

O(Pay +eey Pr)
rk ————— =m—1 on D
O(Wyy veey W) !
since M is generic and @ extends ¢;. Hence the above matrix has max-
imal rank on a neighborhood of D in C™ which we take to be D. The map
@: D — C™ defined by the functions ¢ is thus holomorphic and of maxi-
malrank. Itistherefore open and we can take W = q?D to complete the proof.

PropPOSITION 2.2 (Tomassini [13]). If M is as in proposition 2.1 and
f: M — C is a real analytic function with f : HT(M) — HT(C), then there
exists a holomorphic function F defined in a neighborhood W of M in Cm!
which extends f. Moreover, if F, and F, are holomorphic extensions of f de-
fined on neighborhoods W, and W, of M in C=', then F, = F, on every
neighborhood of M in C™=* which is connected with M and contained in Wy N\ W,.
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ProoF. By proposition 2.1 we can select a neighborhood D of D in
Cm so that {, = @1, ..., {m_y = @m_; are part of a system of holomorphic
coordinates ({, ..., {,) on D. Since fop is real analytic we can find a holo-
morphic function G on D (sufficiently small) such that G = fop on D.
Since for each Pe T(M)® C, we have

P = P12 (10) + BT 2 (1(0)),

we see that the condition f : HT(M) — HT(C) is equivalent to the con-
dition
Pf=0 whenever Pc HT(M), and pe M ,

or equivalently

Qf =0 whenever Qe AT(M), and pe M .

From the proof of proposition 1.5 the latter condition is in turn equivalent
to the condition

m )
(kglbk%a—tk (p)) f=0

whenever p e M and b e C™ satisfying

m 0 .
Z"a;:’: )=0 forj=1,..,m—1.

Thus dp,A...Ad@pn_1Ad(fop) =0 on D, or Al A..ANd,_ NG =0 on D.
Since

2 aCk

we see that the holomorphic functions 0G[ol, for k=m—1+1,...,m
vanish on D and hence on D (assuming D is connected with D). Thus G
is independent of {,._i 1, ..., {m and so G factors through @, i.e. there exists
a holomorphic function F defined on a neighborhood W of M in C™! such
that @ = Fod. Now F|y, = f and the unicity of F follows from the above
considerations.

Since the restriction of a holomorphic map is real analytic and maps
holomorphic tangent vectors to holomorphic tangent vectors we have

CoROLLARY 2.3. If F, and F, are holomorphic functions defined on open
sets W, and W, in G and F, = F, on a generic submanifold M of C™,
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then F, = F, on every neighborhood of M im Cm=' which i3 connected with M
and contained in WyN W,.

We now establish theorem 1.12 (b), i.e. the unicity of the germ of the
complexification of (M, 4) along M. From corollary 2.3 it suffices to prove
this result locally. Fixing p € M we apply proposition 2.2 to the compo-
nents of govr1: TM — oM near z(p) to obtain a holomorphic function &
which extends got~! near z(p). Similarly, we also obtain a holomorphic
function g which extends roo~! near ¢(p). Now goh is a holomorphic func-
tion in a sufficiently small neighborhood U of z(p) in X and goh is the
identity on U N 7M. Assuming that U is connected with 74 we conclude
from corollary 2.3 that goh is the identity on U. Similarly, hog is the
identity on the neighborhood V = h(U) of ¢(p) in Y which is connected
with ¢(M) and thus h is the desired biholomorphic map. The unicity of &
follows from another application of corollary 2.3.

The proof of theorem 1.12 (a) is established by a construction similar
to that given by Bruhat and Whitney [4] in the case of the totally real
structure. (See also [3].)

Let (M, A) be a real analytic C-R manifold of type (m,l) and let
n=m—1L

PART 1. We can find three locally finite open covers of M with the same
index set I, say {V;}, {U;} and {T;} such that

ViccU,cc T, for every icl.

For each i€ we can find local complexifications of 7; by theorem 1.11,
i.e. there exist real analytic isomorphisms ¢;: T; — 7T;, where T, is an
m-dimensional, generic, real analytic submanifold of C» and

@ie(4yp) = HI(T,) .
We now set
U,=oU, V.,=¢7V,
Uy=gU;0T,), Vy=oq(VinV)
Ty =T, N T)).
The isomorphism

‘P;°‘Pe—1‘ T;—~>1T;

extends by proposition 2.2 to a biholomorphic map y;;: T,,— T, of a neigh-
borhood 7',; of T;;in C" to a neighborhood 7';; of T,; in C». We can assume
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that 7%, is empty if T, is empty and that ¢, = y;'. For every ordered pair
(i, j) we can select open sets U,; in 7, such that U, cc T;, v;,U;; = U, and
(2.4) U,NnT,=U; and U,nNnT,=T0T,,

where the bar denotes the closure of the set. Since V; Ny (7,(\ ﬁ,i)
is a compact subset of U,; we can choose open sets W, c T, such that

Wu cC ﬁm Wz‘j = TI’M(WH) and
Vi N y( V:' N (711') c Wu’ .

The subsets V,— W,, and y,(V, N U;;) — W,; of T, are compact and dis-
joint, and therefore contained in disjoint open sets A4,; and B,; of C»
respectively, so we have

(2.5) Vicd,uW,, 1/);1(7; NT)cB,uW,.

We now choose 4, open in C» such that

(2.6) AnT,=v,, A4A.nT, =

i

and

(2.7) Aicd,; W, for all jeI such that T,; is nonempty.

The last condition can be satisfied since there are only a finite number of
j€e€I such that T,; is nonempty.

Since 4, N ﬁu is compact and contained in 7,; we have
vi(d:nTy) cp(dinTsy).
By (2.4) and (2.6) we have

wii(zi N ﬁu) NT;= zI):'i(z‘f—:' N ﬁii nNT)

= V‘ N ﬁu)
and hence

(2.8) '/’ﬁ(fL NU,)NT,c '/’ﬁ(ve NnU,).

PART 2. For any point « € U, there exists an open set U («) in C" con-
taining # and satisfying the following five conditions:

1) Uu»)c U,; for every index j such that x e U,;.
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(2) Uiw)cB; U W,; for every index j such that xey,(V,n T,).
(Compare (2.5).)

) Uyw) N %;(/L N U,;;) is empty for every index j such that
g @) ¢ V.

@) Uw) cpu(T;i 0 U 0 piu(Ure 0 Tyy) for every pair of indices
(j, k) such that z € U;; N Uy, (i.e. g~ (@) € U; N U;N Ty).

(B) w5 = puoy: on Ugw) for all (j, k) as in (4).

The conditions (1), (2) and (4) are satisfied because the number of in-
dices involved is finite. Condition (5) is satisfied on U,; N U; and hence
in a neighborhood. Condition (3) is trivially satisfied if U.; is empty. Other-
wise there are at most finitely many j’s such that U; is nonempty and
; (@) ¢ V] implies @ ¢ y,(V; N Ty) so a¢ yy(4;n T by (2.8).

PART 3. Set
ﬁi = U Ut(m)

z€U;

and let ¥, be a neighborhood of V; in C» which is contained in 4,
and relatively compact in U,. Note from (2.6) that V.NT= 7V, and

V.N T, = V,. Setting
(2.9) Vi=T:n V)ij(vf NG, V= Vi Va

we see that V,-;C 17,;5 and Yij: Vji% Vi,’.

Let ye V,.,-k, 50 Y€ U x) for some xe U, Since V. intersects
'fpﬁ(Vj N vji) a-nd wzk( Vk N ﬁki) it aJSO meets 1/),-;([1;(\ ﬁji) a;nd. wlk(gk N Uk,)
and hence z € U;; N U, by (3). Therefore y,,(y) € Vi, N Uy; and pyop,(y) =
= ;(y) by (2), so

2= y;uy) e Vi
€ %i(Vi N U.)
€ Pl Vk N ﬁki)

€ Vijir -
We therefore conclude that y;,( V.)€ Vi and by symmetry wii(V,ik) C Vijk, 50

(21 Viik = Vjik .
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We also have y,; = y;* and y; = yyoy, on V. so {V,, »,} is an amal
gamation system and we can construct the amalgamated sum

{,Q, wi} = lim {Vi’ 1/"ii} .

o
This sum is obtained from the disjoint union |J ¥V; by dividing out by the
equivalence relation

J/‘EV,-N_’I/EV,- iwaV“,yE Vji a/ndy:’lpﬁ(.’,U).

The space 2 is a complex manifold if it is Hausdorff. The natural maps
p;: V; — Q are given by the canonical open embeddings

V,“>L°JV¢—>Q,

and the isomorphisms ¢, merge into an isomorphism ¢ of M onto a generic-
ally embedded, real analytic, closed submanifold of 0.

PART 4. The proof will be complete if we show that © has a Hausdorff
topology.

We will first show that ¥,;c U, and more precisely that V,c Wi,
(when T,; is nonempty). If ye V,; then there exists x e U, such that
ye Uyw) since V,;c V,cU,.

If o ¢ y,(V; N U;) then ¢'(#) ¢ V; and hence y ¢ yy(4; N U;) by (3).
Since this contradicts the fact that ye ¥V, in (2.9), we have that
w ey, (V;n U;;) and hence by (2) that yeB, U W,;. Since V,c V,c 4,
we see from (2.7) that y € 4;;, U W, and hence that y € W,; as 4,; and B,
are disjoint. In conclusion we have

Vii c Wii c ﬁii .

Suppose now that ' and y’ are two points of 2 with ' = y'. Let z e V,
and y € V; such that y,x) = &' and wi(y) = y'. It suffices to show that
there exist neighborhoods 4 of # in ¥, and B of y in ¥, such that no point
of A4 is equivalent to a point of B.

If this was not the case we could find sequences {x;} and {y;} in C* con-
verging to  and y respectively with 2, e V;;, v, € V;; and x, = wii(yx) for

every k. Since V,;c U, we see that » € U,; and by symmetry ye U,,, so
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» = pu(y) by continuity. Thus

ye V,nUc Vii?
zeV,n ¢i!(an Un=".

and y = y;,(x), so x is equivalent to ¥ which is contrary to our assumption.
This completes the proof of theorem 1.12.

3. — Domination of C-R structures.

Let M be a real analytic, m-dimensional manifold and let A and B be
two real analytic C-R structures of types k and I on M respectively. We say
that B dominates A if A,c B, for every pe M (and thus I>k). Note that
every real analytic C-R structure on M dominates the totally real struc-
ture of M.

THEOREM 3.1. If B dominates A as above and (X, t) and (¥, 6) are com-
plexifications of (M, A) and (M, B) respectively, then there exist open meigh-
borhoods U of T M in X and V of oM in Y and a holomorphic surjective map
h: U -V of mawimal rank such that the diagram

UcX
74
w’

N

Vc¥

h

commutes. Moreover, h is uniquely defined if U is sufficiently small and con-
nected with T M.

Proor. Note that the unicity of » and the sufficiency to prove the result
locally both follow from corollary 2.3. We also have

dich=m—k>m—l=dimc Y.

PART 1. As a consequence of proposition 2.1 the result holds if A is
the totally real structure of M.

PART 2. Since (X, t) and (Y, o) are complexifications of (M, 4) and
(M, B) respectively, and B dominates A, we have

(3.2) o'*o‘r:l: HT(tM,X) > HT(M,Y).
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Assume, from the remark at the beginning of this proof, that M is an open
gset D c R which is sufficiently small so that vD and ¢D are contained in
local holomorphic coordinate systems 2z = (2;,...,2n_%) 0of X and w=
= (Wy, ..., Wn_;) of Y respectively. The equations

t={ =71, for i=1,...,m—Fk,
and

o={w;,=a) for j=1,...,m—1

with ¢ € D are real analytic, local parametric equations (see (1.3)) of v M
and oM respectively, and thus, from (3.2) and the proof of proposition 1.5,
we have

m . 90; .
z s (t)=0 for j=1,...,m—1

whenever t€ D and a € C™ satisfying

0.y =0  fori=1,..,m—k.
&%,

That is (after conjugating),
do;NAT N N Tme=0 on D for j=1,...,m—1.

Let ¥ and & be holomorphic extensions of v and o respectively, to a suffi-
ciently small neighborhood D of D in C= such that DN R” =D and

AGNAHN N =0 on D for j=1,...,m—1.

It now follows that the map & factors through the map %, i.e. there exists
a holomorphic function h: #D — gD such that = ho% on D. Since D is
a complexification of M with its totally real structure, it follows from part 1
that # and & are surjective and of maximal rank if D is sufficiently small.
Hence & is also a surjective map of maximal rank, and the proof is complete.

4. — Convexity of the complexification.

By a theorem of Grauert [6] we know that there is a complexification
(X, 7) of a real analytic manifold M with its totally real structure in which X
is Stein. Since the totally real structure is the C-R structure of type zero
and Stein is the same as 0-complete we are lead to
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CONJECTURE 4.1. If (M, A) is a real analytic C-R manifold of type (m, 1),
then there exists a complexification (X, v) of (M, A) for which X is I-complete (*).

The following theorem states that the above conjecture holds if M is
compact.

THEOREM 4.2. If (M, A) is a compact, real analytic C-R manifold of type
(m, 1) and (X, 7) is a complexification of (M, A), then there exists a neigh-
borkood U of T M in X which is an l-complete manifold.

REMARK. Since (U, t) is a complexification of (M, A) whenever U is an
open neighborhood of M in X, we see that 7 M has a fundamental system
of neighborhoods in X which are l-complete.

PrOOF OF (4.2). Let {U,, #'} be a locally finite covering of M by holo-
morphic charts of X such that for each ¢ there exist (see (1.2)) real analytic
functions fi: U, — R for which

(@) tMNU,={zeU,|f(2,2) =0 for j=1,..., m— 21}, and

1 8 s Fona)

a d =m — 2] on U;.
021y +ery Fut)

(b)
For each index 7 define v': U, -~ R by

m—2l

o= 3 Ifif
i=1
and note from (a) that

m—21

00v'(e) =2 Y [0fi(2)P>0 for each ze M N U, .
i=1

It now follows from (b) that £(¢%), has at least m — 21 positive eigenvalues
for each zetM N U,.

(*) An n-dimensional complex manifold X is l-complete if there exists a smooth
function ¢: X — R such that
(1) {2 € X|p(2) < ¢} is relatively compact for every ¢ e R, and
(2) at each point ¢, € X the Levi form of ¢,
n 2(p
L)) = 3 — (),

ij=102;0%;

has at least m —1 positive eigenvalues.
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Let {¢;: U, — R} be a partition of unity subordinate to the cover {U,}
with ¢,>0 and set

B:zgiv,i.

There exists a sufficiently small open neighborhood W of vM in X such
that 0 is smoothly defined in W with 60, 6(z) = 0 if and only if ze€ 7 M,
and with £(0), (the Levi form of 6 at z) having at least m — 21 positive
eigenvalues for each zeW.

Since 7.M is a compact subset of W there exists an open neighborhood U
of M in W with U relatively compact in W. Hence 0U = U — U is a com-
pact subset of W which does not meet M and we set

0 =minf(z)>0.
2€0U

If V={:eUlB(z) <9}, then Vc U and g(z) = (1/6)6(2) has the following
properties on V:

(1) 0<g(?) <1 and g(z) = 0 if and only if ze v M.
(2) £(g), has at least m — 21 positive eigenvalues for each ze V.

We now define ¢: V— R by

1
1—g()°

@(z) =

Thus {z€V|p(z) < ¢} is relatively compact in V for every ¢e R and also
£(p), has at least m — 21 positive eigenvalues for each ze V. Since V is an
(m — l)-dimensional complex manifold we see that it is I-complete and (4.2)
is established.
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