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An Approximate Layering Method for Multi-Dimensional
Nonlinear Parabolic Systems of a Certain Type (*).

AVRON DOUGLIS (**)

Abstract. - A new method is described of solving initial-value problems for PDE systems
of the form

in d dimensions, where d&#x3E; 1, pi &#x3E; 0. The method is an outgrowth of ideas previously
put forth by N. N. Kuznetsov [Math. Zametki, 2 (1967), pp. 401-410] and the
author [Ann. Inst. Fourier Grenoble, 22 (1972), pp. 141-227] in connection with
scalar first-order PDE’s. q’ime t starting f rom 0 is divided into short intervals
Zm={(m-I)htmh}, m = 1, 2,.... Bounded, measurable values of u =
= (Ui, ..., Un) are supposed to be prescribed at time t = 0, and the first step is to
smooth them. Then in Zl an approximate solution Vl(X, t) = vl = (vl, ..., vl) of
the first order system (E)o to which (B) reduces when the pi are replaced by zero
is obtained such that at time t = 0, vl coincides with the smoothed initial data.
Once v--’(x, t) has been constructed in the time-interval Zm-l, its terminal values
vm-I(x, (m -1 ) h) are smoothed to do duty as initial data for an approximate so-
lution of (E)o, vm(x, t), in the next following time-interval Zm . In this way, a

« layered » f unction V(h)(x, t) = vm(x, t) for (m - I)h  t  mh, m = 1, 2, ..., is built
up. If the smoothing at each step is carried out appropriately, its effects accumulate
in such a way that, for small h, u(h)(x, t) will approximate a solution of (E) at least
for a certain f inite interval of time. The derivatives of u(h) with respect to x and
their difference- quotients with respect to t will be well behaved if the fij and qi are
sufficiently smooth.

(*) This research was partially supported by National Science Foundation
Grant MCS 75-07141-A02,

(**) University of Maryland, Department of Mathematics, College Park.
Pervenuto alla Redazione il 22 Settembre 1977 ed in forma definitiva il 6 Mar-

zo 1978.
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1. - Introduction.

Summary.

In this paper, a new approach is presented to the construction of solu-
tions of multi-dimensional parabolic systems of the form

where ,ui &#x3E; 0, x = (Xl’ ..., xd), u = u(x, t) = (U,(O, t), ..., un(x, t)), and d de-
notes the d-dimensional Laplacian. Systems of equations of this kind arise
in diverse contexts, for instance in theories of chemical reactions, thermal
diffusion, population growth and diffusion, predator-prey interactions, and,
with some (not all) ,ua equal to zero, of enzyme-morphogen interaction, and
of nerve excitation.

The present study is restricted to initial-value problems, in which solu-
tions u(x, t) of (E) are demanded in time-space zones ZT = {(x, t) : 0Ty
x E Rdl of appropriate duration T under initial conditions of the form

for

(Real cartesian space of d dimensions is denoted by Rd with d &#x3E; 1.) Sub-

sequent papers will show how the methods used in these initial-value problems
can be adapted to boundary problems for (E) and can be extended to other
types of systems of equations, in general leading to convergent calculational
schemes. A treatment of the Navier-Stokes equations from this point of
view is being worked out at present jointly with E. Fabes.

We assume lij(x, t, u) and gi(x, t, u) to be sufficiently smooth and u°(x)
to be bounded and measurable on Rd. To construct functions that will ap-

proximate a solution of an initial-value problem (E), (IC), our procedure, y
in outline, is as follows:

(1) Select a suitable averaging operator (s &#x3E; 0) acting on functions
v(0153) that are bounded and continuous on Rd. For instance, Se might be re-
peated arithmetical averaging, i.e., Be = Åeb, where b is a positive integer,
and, for each x E Rd Åev(0153) is the arithmetical average of the values of v

on a d-dimensional cube of center x and edge length 2E.
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(2) Divide the half-space W++I = {(0153, t) : t&#x3E; 0, x E Rd} into thin layers

of « duration », or « thickness », h, h &#x3E; 0.

(3) Approximate the initial function u°(x) by a smooth function u*(x)
depending on h, approaching u°(x) in the sense of I’llo, as h -+ 0, and in ab-
solute value having the same bound as its limit. Then, in particular,
lu*(x) I  Mo for x c- B, where Mo = sup,,,,, luO(0153) I. Choose arbitrarily a

number M such that M &#x3E; Mo + 1.

(4) For each i = 1, ..., n determine an averaging parameter 8i by a
condition of the form 8’ Aih, in which A, is a certain constant propor-
tional to ,ut . In the first layer Zi, find a (vector) function ul(0153, t) =

(Ul(x t) ul,(x, t)) that, on the lower face of the layer, complies with
the initial conditions

and, in the interior of the layer, satisfies approximately the « layer equa-
tions »

Then in Zm, for each n = 22 31 .. , in turn, find a function um(x, t) =
=== (um(x, t), ... , u:(0153, t)) that again is an approximate solution of (E)o and
that satisfies at the bottom of the layer the initial conditions

Let mo be the largest integer, finite or infinite, for which

for

and define in the zone zmho the «layered solution », or « approximate layered
solution »,

for

Provided that, in each Z,,,, , u- satisfies the layer equation closely enough
for the purpose, U(h) will be found for small h to approximate a solution
of (E), (10).
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In more detail, our main results are as follows.

(A) A common zone ZT (T &#x3E; 0) exists in which, for sufficiently small h,
all u(h,) are defined and, in absolute value, are c M (Section 5). For certain
special types of systems (E), values of .M’ corresponding to any choice of
Tl&#x3E; 0 can be determined such that fu(h)(0153, t) 1 .M on ZT*. (An instance is
given in Section 5A.)

(B) The derivatives with respect to x of u(")(x, t) are subject to cer-
tain estimates in ZT provided that t &#x3E; 0 and that h is sufficiently small.
The derivatives of k-th order, namely, in absolute value are Gk(M, T)t-k/2
with constant a,(M, T) independent of x, t, h (Section 6). Notwithstanding
that U(h) is discontinuous across the interfaces between consecutive layers,
analogous estimates also hold for first and higher difference-quotients with
respect to t of approximate layered solutions and of their derivatives with
respect to x (Section 7). Thus, the artificial discontinuities created in the
layering method are less disordering than might be feared.

(C) Approximate layered solutions converge to a certain limit u(x, t)
as layer thickness h approaches zero. The convergence is uniform in any
subset of ZT having positive distance from the initial plane (Section 8).

(D) The limit u(x, t) is a solution of equations (E) and also satisfies
the initial conditions (IC) in a generalized sense (Section 3).

Our presentation departs from the natural order of ideas in two respects.
The central and motivating fact that the limit of layered solutions must be
a solution of (E) is the first thing proved. The discussion of averaging,
being outside the main flow of ideas in the paper, is relegated to an ap-
pendix at the end.

Remarks and short illustrations.

(1) Layering for the heat equation. The cumulative effects of the

repeated averagings performed in a layering process are a manifestation of
the central limit theorem. Only a special form of this law is involved, that
which pertains to repeated application of a type of one-dimensional averaging
operator S.. For an operator of that type, which is to act, say, on func-
tions v(x) that are bounded and continuous on the real line .R, Bev(0153) is an

integral expression,
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in which ke(E) = e-1k(E/8), where k(E) is a function on B having the fol-
lowing properties: k(E»O, fk(E) dE = 1, f$k($) d$ = 0, ms=fE2k(E)dEoo.
(The interval of integration in all cases is JR.) Thus $,.v = k. * v, the star
signifying convolution, and, therefore,

where k.() = k. * k,. * ... * ke, I k,, occurring in the convolution product j times.
The central limit theorem says that if s --&#x3E; 0 and j -+ oo in such a way that
mlj82 has a finite limit u2, then

The mechanism through which this law acts in a layering process is most
visible in connection with the heat equation

for convenience taken here in one dimension. A solution is desired in R)
satisfying the initial condition

with bounded, measurable u°(x). Select at pleasure a layer height h &#x3E; 0,
and determine the averaging parameter 8 through the condition 82 = Âh, ,
where A = 2p,/m2. In this case, the layer equation is Ut = 0 and consequently

under the convention that u°(x, 0) = u°(x) (here we can dispense with u*).
These relations imply that

and thus that

Now fixing x, Ty with T &#x3E; 0, we can easily find the limit of u(")(x, T) as h --* 0.
For each value of h, let N denote the integer for which (N - 1) h  r  Nh.
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Then

while

From the central limit theorem in the form described, we thus have

the standard representation of the solution of the problem stated.
In an entirely different connection, a somewhat similar construction for

the heat equation and, more generally, equations of the form ayat =
= (- J)k+l(a2kUlaX2k) , k = 1, 2, ..., was given in 1953 by I. J. Schoenberg
[23, pp. 203-204].

(2) Layering for scalar conservation laws. The estimates in this paper
all derive from the central limit theorem, and such estimates explode as
p -+ 0. In the scalar case (n = 1) , estimates of an entirely different kind
can be made of layered solutions u U(,,) of (E). These estimates are

uniform with respect to /z as well as h, , are passed on to U(p) = "Mh-0 u()),
and assure that a null sequence {Izkl will exist such that u(,,,,) has a limit u
as k ---&#x3E;- oo. The final limit u is a weak solution of the limit equation (E)o.
Estimates of this second kind are obtainable, for instance, with respect to
the variation of layered solutions. Exactly the same means may be used
to derive and to apply them as were given in [13] and [4] in connection with
scalar equations of first order.

History.

Existence theorems applicable to parabolic systems of type (E) in initial-
value or boundary-value problems are already available by various means.
M. I. Visik [27] uses something like Galerkin’s ideas. Ladyzhenskaya, Solon-
nikov, and Ural’ceva [15, Theorem 7.1, p. 596] prove a priori parabolic esti-
mates and appeal to the Leray-Schauder fixed-point theorem. S. D. Eidel’-

man [7], first treating linear systems by means of a fundamental solution
and its potentials, handles quasilinear systems by iteration. W. von

Wahl [28, 29] makes use of elliptic estimates and semi-groups. (We do not
mention the many papers devoted to the scalar case or abstract treatments

of evolution equations not specialized to parabolic partial differential equa-
tions.) The results arrived at in these several ways are quite general in some



199

respects, but require that the initial data be smooth in one degree or another,
while boundedness and measurability suffice in the present treatment.

The subject of greatest interest in this paper is believed, however, to be
its method. The idea of using a layering process to construct solutions of
parabolic systems goes back to 1972 and was a rather natural extension of
layering methods for first-order scalar conservation laws, and for equations
of Hamilton-Jacobi type, previously developed by N. N. Kuznetsov [13, 14]
and the author [4, 5]. Ensuing work on parabolic layering schemes was
restricted for a time to one-dimensional systems (E) with hyperbolic layer
equations (E)o (see [6]), but these limitations were overcome in 1976 by
using approximate instead of exact solutions of (E)o.

Layering procedures have an obvious relation to the so-called method of
fractional steps (see, in particular, A. Pazy [21, Cor. 5.5, p. 96], J. E. Mars-
den [19], and Chorin, Hughes, MacCracken, and Marsden [2]). A computa-
tional method of fractional steps for the Navier-Stokes equations was put
forth by A. Chorin [1] in 1973. In that scheme, Euler’s equations and the
heat equation are solved numerically in alternating short intervals of time.
Marsden [20] justified Chorin’s procedure in principle by proving convergence
for a parallel construction in which Euler’s equations and the heat equation
are solved exactly in their respective layers; the question is further discussed
in [2]. Perhaps approximate layering methods will provide an entirely dif-
ferent approach to theory and calculation in this problem.

2. - Main notational conventions.

Real d-dimensional Euclidean space is denoted by Rdg a point of .Rd,
for instance, by x = (x,, ..., xd). Such a point as well as its coordinates

are referred to as spatial, a (d + -1)-st coordinate t as temporal. All points
of Rd+l considered here are confined to the half-time-space

or to « zones » or « slabs » in time-space such as

All the closed « zones 4 slabs)&#x3E;, or « layers » in the discussions to follow
will be of the type 
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these including, in particular, the consecutive layers

for any h &#x3E; 0. The half-open counterparts

of this sequence of layers also will be considered.
To a bounded, measurable function v(x) on the domain Bl is attached

the norm

to a bounded, measurable function v(x, t) on a slab Z such as ZT or Ztl.t.,
the norms

« ess sup)) stands for « essential supremum ».

For M&#x3E;O, T&#x3E; 01 otlt"7 let

where lvl = maxi lVii, and let Z(T ; 3f) = Z(O, T ; M). For a bounded,
measurable function H(x, t, v) on Z(t’, t"; M), we define

The «length » of a vector V= (fi, ... ,£), say of s components, in

general is measured by

and the norm of a vector function V(x) = (Vi(x), ..., £(z)) with bounded,
measurable components V,(x), i = is defined by
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But if V is a function of x, t, the norm considered will relate to a particular
time t or to a particular layer Z,,,,. and if a function of x, t, v to a particular
time or to a zone Z(t’, tel; M), as in the scalar case.

The d-dimensional vectors f = (fill, ..., fid) and the array f = (f 1, ..., f n)
are partial exceptions to the previous rule, for we stipulate

and

with similar understandings for their norms, which pertain again to time t
or to some zone Z(t’, t" ; M).

Partial differentiation with respect to xi will be indicated by the symbol ai
or by means of the subscript x, and partial differentiation with respect to t
by at or the subscript t. The symbol ax will refer generically to any par-
ticular a,, a’ to any particular partial differentiation of k-th order with
respect to xl , Xd, Vk v denoting the array of all partial derivatives of v
of k-th order with respect to x,, ..., xd. For an n-dimensional vector func-

tion 1’(0153) = (vl(0153), ..., vn(0153)), Va; will denote the set of derivatives Vi.Zl’
i = 17 ... I ny j = I y .. I d, and we write

Similarly for a vector function of x, t given on some layer Z,,.,..
The vectors f = (Iil, ..., fi,) and the array f = ( f l, ..., /,,) again are par-

tial exceptions to the general rules, for we define (using the summation con-
vention)

and

with

For the array of n2 d quantities fii,uk’ we set

As to g = (gl, ... , gn), we use analogously

In all cases, similar conventions are made as to norms on appropriate zones
Z(t’, tl; M).
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In general, for a function J?(g) of an s-dimensional vector q = (Ql’ ..., Qs),
H q will denote the array of partial derivatives {H,,,, ..., H,,,I. Accordingly, ,
for any s-dimensional vector r = (rl, ..., rs), by Hq r will be meant the
scalar product Hairi (summation on i) with similar notation when JT is a
vector. Consistently with this and previous conventions, by fvvae is meant
the vector (fii,f)1t; Vk,aej)i=l,....n (summation on j and k). Extending this usage,
we also shall abbreviate by av,, a system of expressions of the form

{aUkvS,X1t;}i=l,..,n, by bv, a system of the form {bi.vvi.tli=,.....n, and so forth.
If, in (scalar or vector) functions depending upon x, t, v, the argument v

is replaced by a (vector) function w(0153, t) to produce compounds such as

derivatives of the compound functions are written in such notation as the
following:

summation again being performed on repeated indices.
In this notation, equation (E)o is abbreviated as

3. - Approximate layered solutions and a characterization
of their limit as a solution of the full parabolic system.

In this section, we describe the kind of approximate layered solution
u(h)(0153, t) to be employed in this work and verify for this kind that, if lim U(h)hO

exists, then the limit satisfies the full parabolic system (E), as desired.

We begin with some remarks about the two processes that are alternated
in a layering procedure: (a) smoothing, and (b) solving the layer equations
exactly or approximately.

(a) Smoothing in our layering procedure will be performed by means
of averaging operators Ke transforming any function v(x) bounded and
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measurable on .Rd into

(When integrating over Rd, a single integration sign is used, and the limits
of integration are not indicated explicitly. Similarly when integrating over JR.)
It is assumed that

where k(s) is a one-dimensional averaging kernel such that k(s) &#x3E; 0, f k(s) ds = 1,
k(s) = k(- s). This one-dimensional kernel additionally is required to be
sectionally continuous and sectionally of class 000, and also to have certain
other properties, all of which pertain, in particular, to the kernel

of arithmetical averaging. Iterated kernels of arithmetical averaging2013i.e. , the
kernels that belong to an arithmetical average of an arithmetical average,
and so forth-as well as a Gaussian kernel

also are acceptable for use as k(s).
With reference to a given averaging operator Ke, we shall refer to s

loosely as the « averaging distance ». When layer height h &#x3E; 0 has been

fixed, an individual averaging distance

is associated with each Izi, i = n, where Ai is a constant depending
both on P,i and on the type of averaging. A vector co(x) = (mi(z), ... , oj,,(x))
will be smoothed by applying the operator Si = K,,, to its i-th component,
the smoothed vector being denoted by Sco(x) = (S1 wl(0153), ..., Snwn(0153)).

(b) Exact solutions of the layer equations are obtainable, and can
be used in layering, only in special cases, in particular, (i) in the scalar case
(n = 1), (ii) in case the layer equations are hyperbolic, and d = 1, and (iii)
in the case in which the layer equations are ordinary differential equations,
i.e., f = 0. Approximate solutions of the layer equations are more easily
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and more generally available than exact solutions and by various means,
one of which is discussed in Section 4. There, under certain requirements
as to S, and with f and g, and their partial derivatives of various orders,
assumed bounded in a region Z(z, r + r’; M) (0 c z  T + i’, M&#x3E; 0), an
approximate solution v(x, t) of the layer equations is constructed in a suffi-
ciently narrow layer ZT;r+h’ , 0 C h C z’, to the following specifications.
Given a function co(x) of class C’°, jo&#x3E;l, such that

with certain constants cj supposed to be sufficiently large, it is required
first that

Secondly, v(x, t) is to be of class Cio and to be subject to the bounds

Thirdly, again for sufficiently small h, v(x, t) must satisfy the layer equations
approximately in the sense that

where F[v] = vt -p (I(o2 t, v)),, and where the e, are constants possibly de-
pending upon M, and r is an integer &#x3E;2. Finally the derivatives of v and
of F[v] are required to satisfy certain further conditions, which are stated
in inequalities (4.28), (4.29), (4.29)* in the conclusion to Theorem 4.3. By
means of the construction of Section 4, a positive quantity h* depending
only on X and M -11m [[ is produced such that all the foregoing demands
(with j, &#x3E; 2r) are met for 0  h  h*. Without commitment to this particular
construction, these properties always will be assumed for the approximate
solutions of the layer equations considered in this paper.

In general, the given data uO(x) have to be replaced by an approxima-
tion u*(x) of class C’° for which, with sufficiently large constants Cj,

(1b) limu*(0153) = u°(x) for almost all x in B".
h-*O

(The replacement is not necessary in the case, for instance, in which S is



205

Gaussian.) To obtain u*, we apply a Gaussian operator to u° or, in case S
is arithmetical, apply the iterated averaging 81- to uo.

Let M’ be any constant&#x3E; Mo + 1. The first step in layering, after the
previous adjustment of the initial data, is to find in Z., an exact or ap-
proximate solution ul(x, t) of the layer equations (E)° satisfying the initial
conditions u1(0153, 0) = Su*(x). (We could just as well define ul(x, 0) = u*(x).)
The second step is to find in Z2 an exact or approximate solution u2(x, t)
of equations (E)° such that u2(0153, h) = SUI(X, h). Continuing from layer to
layer in this way, let mo be the largest index for which a chain exists of
exact or approximate solutions u1(0153, t), ..., umo(0153, t) of equations (E)o on
Zl’ ..., 9 Z". , respectively, such that um(0153, t) is of class Cjl in Zm and that

and

for m = 19...9 M,, where uO(0153, 0) = u*(0153). Previous remarks imply that
mo&#x3E;l if h is sufficiently small; possibly mo = 00.

The um, m = ly ..., mo, are parts, which we assemble into a whole, the
« layered solution », or « approximate layered solution », U(h) defined as

By definition of mo,

From the properties attributed to approximate solutions of the layer equa-
tions and thus, in particular, to the um, U(h) will be of class C’° in each ZI.,
m = 1, ..., mo, and, if h is sufficiently small, its derivatives will be subject
to the bounds

The conditions

will hold upon the layer interfaces. Again for sufficiently small h, in each ZI. ,
u (h) will satisfy the layer equations approximately in the sense that
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where

as before, r is an integer &#x3E; 2. Certain further conditions result from ap-
plying inequalities (4.28), (4.29), (4.29)* to the urn, n = I y ".. 7 mo , indivi-

dually. These conditions, some of which will be used later to estimate the
quantities

are that, for 0  tmoh,

arld, if j,,&#x3E;r -f- 1,

where X, and Y; depend polynomially upon p (h) phl(t), and hl/2; Y,,’ de-
pends polynomially upon p (h)(t),...,ph),.+,(t); and X;, Y;, Y’ also depend
upon M, mo h.

Now that we have described layering, we can explain why it should be
expected to be of use in parabolic problems. Postponing all intermediate
considerations, for this purpose we make, with reference to some zone ZTo,
To &#x3E; 07 the following hypotheses:

(A) For all sufficiently small, positive h, exact or approximate layered
solutions u(h)(x, t) exist on ZT o and satisfy an inequality of the form

Ilu(h)/lzToM, where M is a constant independent of h. Moreover, Ilfllz(To.M), ,
Ilf x II Z(To.M)’ IIf u II Z(To.M)’ II g II Z(To.M) are finite.

(B) In the layers Z’n contained in ZT,7 the u(h) are of class C’ and satisfy
equations of the form

where [% (h) = 0 uniformly on any compact subregion of Zð T with any
positive b  To.

(0) A constant Mi(To) exists such that, for all sufficiently small,
positive h, IIUh)(., t)/I Ml(To)t-l if 0  tTo.
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(D) As h -&#x3E; 0, the u(h)(0153, t) approach a limit u(x, t) for t &#x3E; 0, uniformly
on any compact subregion of Z,6.,.. The limit u(x, t) is continuous in (x, t),
of class Cl with respect to t, and of class C2 with respect to x, for 0  t c To.

Of the various requirements later to be laid upon the averaging kernel
s-lk(xls), we here demand that the first four absolute moments

be finite.

Our first contention is:

THEOREM 1. Under assumptions (A) to (D), and with an averaging operator
as described, the limit u(0153, t) is a solution of the parabolic system of equations (E).

Later (Theorem 2) we shall also verify that u(x, t) satisfies the initial

condition (IC) at almost all points of the initial plane t = 0.

The main task in proving Theorem 1 is to show that u(x, t) is a « weak
solution » of equations (E) in the following sense.

DEFINITION. A bounded, measurable function u(x, t) is a weak solution

of (E) if the conditions

are satisfied with any (scalar) « test function » p(0153, t) of class 0’ and vanishing
outside a cylinder

of finite radius X,, and base-elevation 6 (0  6  To).
By figg., is meant the scalar product fijgg.,,, summation over j from 1

to d being understood. The vector (fif{Jae)i=l.....n will be denoted by fqz.

PROOF oF THEOREM 1. If u(x, t) is a weak solution of (E), i.e., satisfies (6),
and if u(x, t) also satisfies Assumption (D), then it is easily established using
integration by parts that u(x, t) also satisfies (E), as claimed. To prove

u(x, t) to be a weak solution, we start by multiplying both sides of equation (5)
by a test function gg(x, t), integrating over Zm, and then integrating by parts.
Let um, m = 1, ..., mo, again denote the « parts » of U(h), and for convenience
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assume We obtain

Summing for m = 1,..., mo gives, since 92 is supported in C(Xo; 6, To),

where

and

In view of Assumption (B),

uniformly on

and, as we intend to prove,

T(’) being the i-th component of T(h), i = -1, . - ., n. If (9) is granted, then in
view of (8), letting h -)- 0 in (7) gives (6), but with m2 Ai/2 in place of pi.
Con.sequently, u(0153, t) is a weak solution of (E) if li is determined by the
condition m2 Ai/2 = p j.

Contention (9) is implied by the following lemma.

LEMMA 1. For 8&#x3E; 0, let Ke denote an averaging operator as previously
specified. If v(x) is a bounded, measurable f unction on .Rd and rp(0153) a function
of class 04 in .Rd with compact support, then
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where

That this lemma implies (9) is seen as follows. In view of (10), Th) dif-
fers from

by a quantity that approaches 0 with h. The last expression differs by a
similarly vanishing quantity from

since, by Assumptions (A) and (D), a constant M? exists for which
T.

ut h)ll,M* for ðmkTo. Hence, Th)"and (M2/2)Aif fu(i’)Ag?dxdt differ
by a quantity that vanishes with h, while the second of these two converges
as h - 0 towards the second member of (9), in view of (A) and (D). Thus,
condition (9) follows from the indicated lemma, as asserted.

PROOF OF LEMMA 1. Accompanying any vector (1, ..., Ed) in Rd
are the « re-directed ’» vectors

where Pj = + 1 or -1 for j = 1,..., d, and # = (PI’ ..., Pd). Since k(I) is

even in each coordinate of E,

By reflection of the appropriate coordinate axes, we thus have

for each of the 2d « re-directing » vectors p. Summing over all the re-directing
vectors and dividing by their number gives

14 - Ann. Scuola Norm. sup. Pisa 01. Sci.
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Hence,

For fixed fl, by Taylor’s expansion,

where the indices i, j, k, I are summed from 1 to d, and

We need to sum both sides of (12) over all re-directing vectors fl. For each
set of values of d - 1 components of /?, however, the remaining component
can take one of just two values +1 and -1. Hence, summing linear or
cubic expressions in the #,, as occur in the terms in (12) of orders 8 or 88,
produces 0 out of total cancellation. Summing the terms of order 82 gives

(13) (82 /2)11 = (e2/2) 2 .G. #I#S) iisjqz,z,(Z) . fJ u il; fJ 

If i 0 j, then 2 PiPi = 0 for the same reasons as before. To argue this in

greater detail, consider fl.1#2 as representative of such sums. The set of
#

all re-directing vectors fl = (PI’ ..., Pd) can be grouped into pairs, the

members of which are identical except in their first components. The two
terms in the sum 2 P1P2 corresponding to the two members of such a pair

#
cancel: hence, the sum is 0, as asserted.
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For i = j, the inner summation in (13) is

there being 2d terms in the summation. Therefore, the summation (13)
reduces to

and the result of summing (12) over all fl to

where

with 199(4)1 == 10(4)(X, $)I = maxf),(l,r" Irvars(xy $) 1. Substituting this in (11) shows
that

since jk(I) [I;[kd$ = mk for all i and k. For the same reason, the coefficient
of e4, namely

is, in absolute value,

The integral in the last expression is equal to mil... mi.. and thus to one of
the monomials

m’1 , m( mz , mI ms , f m£ , m4 .

From the fact that none of the quantities ml, m) , m§ exceeds m( , it follows
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that each of the five monomials is  M4. Therefore,

and the lemma is proved.
To justify the initial conditions (IC), we add to the previous hypotheses

concerning K,. the supposition that, for any v(x) integrable on R,

where a*2 = j82 + ð2, and G(ð)v(0153) = fgð(Y - x)v(y)dy. In the case in which
K,. is Gaussian or arithmetical averaging, such an inequality follows from the
remark inserted after Theorem 2 in Section 9. (The remark pertains to
d = 1, but is easily extended to any d.)

THEOREM 2. Under supposition (14) in addition to the hypotheses of
Theorem 11 we have

(15) limu(x, t) = uO(0153) for almost all x in Rd.
t-0

PROOF. Note first that, if j = [tlh], i. e. , jht ( j + 1) h, then

(16) lim Sl u* = 2c° almost everywhere in Rd.
h-*0
1-o

Since u*(x) = G(b)uO(x) = fgð(Y - 0153)uO(y)dy, in justifying (16) component-
wise9 it suffices to show that if s = s(h) and 8 = b(h) approach 0 with h,
then for any bounded, measurable function v(x) on .Rd,

at the Lebesgue points of v.
Let k*() = k*(1) ... k*($,,) denote the kernel of the averaging operator

K* = Ki, G(b): K*v(0153) = fk* (y - x)v(y)dy. Then for any a&#x3E; 0
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I2 being an integral over the complement of the (d-dimensional) interval
Iy - xl  aa*, which is a union of semi-infinite intervals, on each of which
jyj - x, &#x3E; a(J* for at least one index j.

Let q &#x3E; 0. Chebychev’s inequality and the boundedness of v show that,
if ac is sufficiently large, then III  1]/2. Using inequality (14) in I1 gives

so that 1111 ,q/2 for sufficiently small or* if x is a Lebesgue point of v. In

this way, (16) is established.

Since

lu(0153, t) - uO(0153) I= lu(0153, t) - u(h)(0153, t) I + lu(h)(0153, t) - S; u*(0153) I + IS; u*(0153) - uo(0153) I,

and in view of (16) and assumption (D), to prove (15) it suffices to justify
the inequality

with suitable constant M’ depending on To : To do so, we consider the

equations

satisfied by the « parts um(0153, t), m = I, ..., mo, of any layered solution
U(h)(x, t). Taking a particular time x for which 0  z  To and j = [iJh] &#x3E; 1,
we apply Si-- to both sides of (19)m for I  n j and then integrate with respect
to t from (m - 1) h to mh. Since u-(X, (m - 1) A) = Su-,(x, (,m - 1) h), we
obtain

Besides these, we have similarly
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and adding all j relations, we obtain

This implies the needed inequality (18), in view of assumptions (.A)y (B), ( C)
and Theorem 2 is thus proved.

4. - A type of approximate solution in thin layers
of first-order partial differential equations.

In Section 3, we listed the properties needed in this paper of approxi-
mate solutions of the layer equations

The approximate solutions of interest exist in a layer ZT.T+h and satisfy initial
conditions of the form

where the initial data are averages, y

with averaging distances si proportional to hi. Under appropriate hypotheses, ,
we shall here show that approximate solutions as desired can be obtained
in the form

in which bl(0153), b,(x) are determined by the requirement that, for T&#x3E; 0,

(1 ) There are surely many ways of obtaining approximate solutions. We mention
in particular a new method of F. Treves [24] as possibly useful in the present context.
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A new stipulation concerning S is made, that

with certain constants Xiy ..., 0153r+18 This condition is satisfied, in particular,
by arithmetical averaging repeated r + I times.

Rather strong differentiability assumptions are called for in the present
method. With Jtf a constant for which 1100"  M, we shall assume that, in
Z( 1’, T + h; M),

have bounded partial derivatives of orders r + jO, where jO &#x3E; r. We shall
also assume co(x) to be of class Cl" and the conditions

to hold, where N &#x3E; M, and the flj are certain positive constants depending
on al, ..., OGr. Defining w(x) by (2), and using condition (4) to determine the
coefficients in (3), we shall find concerning the resulting function v(x, t) that,
if h is sufficiently small, then ii v 11 z,.,,,,,  M,

and

the constants depending on bounds in Z(r, r + h ; M) for the partial deriva-
tives of a and c of orders J -)- r.

These results will be consequences of Theorems 1 and 2 to follow.

Further properties, which are of importance in estimating the derivatives axv,
are given in Theorem 3.

Theorem 1 is not concerned directly with w or with S and requires only
the assumptions that

and

where al’ ..., aio+r are constant,
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THEOREM 1. Let 0 = l’  r + h. Under assumptions (5), (6), the coeffi-
cients bl(0153), ..., br(x) determined by condition (4) satisfy inequalities of the form

f or j = 0,1, ...,jo, k =1, ... , r. Thu8, for 02013 T:h,

If hi and ago + 2(!*ki.M, where e* = maxk=l.....t’ !!Ok, then JIVIIZ,.,,+,M. If
in addition, h,11/4(!*, then 

°

The eik depend just on bounds in Z(r, r + h ; JM’) for the partial deriva-
tives of a(x, t, u) and c(x, t, u) of orders up to r -f- j - 1, the e, on bounds

for these derivatives of orders up to r + j. The constants al, ..., I ar+j also
are involved.

PROOF. If v(x, t) is given by (3) with any coefficients bj(x), Taylor’s ex-
pansion of F[v] will produce an expression of the form

in which bo = w. Then the by, j = 1, ..., r, are determined by the conditions

Although this procedure is well known, we sketch it to call attention to
what is essential in proving contentions (7) and (8). To this end, we introduce
a concept of « weight» as follows. The weight j + k is attached to ð:bj,
j = 0,1, ... , r, k = 0,1, .... The weight of a product of weighted quanti-
ties is to be the sum of the weights of the quantities, the weight of a sum
of weighted quantities the greatest of the weights of the summands. The
weight 0 is attributed to any constant and also to a(-, -, -) and o(-, -, -), and
to their first and higher partial derivatives, evaluated at (x, t, w(x)) or

(x, t, v(x, t)). (At the same time, v(x, t) might be endowed with the weight 0,
for instance by giving to t - r a suitable negative weight such as - 1.) It

follows, in particular, that if p is a polynomial of weight j in the derivatives
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8fjw (recall w = bo), the coefficients in p being quantities of weight 0, then
under assumptions (6) lip II  const h-;/2.

As a preliminary to making the Taylor expansion of F[vl = V, +
-)- a(x, t, v) vx + c(x, t, v), we first verify that

where Pii is a polynomial-more exactly, pa is a vector whose components
are polynomials-in bl, ..., br of weight at most j with coefficients that are
bounded functions of x, t, v(x, t), and where Li  00. Analogously,

where Mi  oo, and qim is a polynomial in bl, ..., b, I bo,. I bl,. ... , br.x of weight
at most n + 1 and with coefficients that are bounded functions of x, t, v(x, t).
Each term in the polynomial qi. contains at least one x-derivative of some bj,
i. e. , at least one component of some gradient vector bi,:e.

Identity (11) is proved by mathematical induction. In the case i = 1,
we have

so that p. = c, + cu bl, and p,, = jcubi for j &#x3E; 1. The weight of pl; is j,
and thus (11) is verified in the case i = 1. If (11) holds for an integer i&#x3E; 1,
then

It is not necessary to collect the coefficients of the various powers of t - r
to verify the contention as to their weights. For instance, , in the double
summation, the coefficient of (t - T)J+k-i-11 is kpii.,bkl and its weight, which
is equal to the weight of Pil." plus the weight of bk, is at most j -}- k. This
accords with the rule stated in connection with (11), and the other coeffi-
cients also obey this rule, as is seen in a similar way. Thus (11) is proved.
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To justify (12), Leibnitz’s rule is applied to express ô:(a1Jx) as a sum of
the terms

Q;s being a polynomial in b1, ..., br of weight at most s, and mi-, being finite.
r

Since vx = I bi,ae(0153)(t - 1’)1, the product (13) becomes
o

The weight of bi,aeQi-k,s being c j + 1 +,g, it is clear that if the double sum-
mation is rearranged to take the form of the right member of (12), then the
weight of qim, the coefficient of (t - í)m-i, must be  n + 1, as asserted. Con-
tentions (11) and (12) thus are both proved.

By (11),

and Taylor’s expansion of c(X, t, v(x, t)) in powers of t - r takes the form

where P, = pii(x, T, W(x); bl, ..., b,) li! is a polynomial in bl, ..., br of weight
at most i with coefficients that are functions of x, T, w(0153). The remainder c,
is expressible as

by (11), where Pr; = pri/(r - 1)! is a polynomial of weight at most j in the
quantities bo, bl, ..., br and their derivatives with coeRicients that are func-
tions of x, s, V(X, S).

Similarly, by use of (12), we have
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where Qi = q;,ji is a polynomial in bl, ... , br, bo,x, ... , br,x of weight at most
i + 1 with coefficients that are functions of x, z, w, and where

It is important to note that each term of Q contains at least one derivative bi,x.
f-i

The expansions of c and avx, and the equality Vt = ! ( j + l)bi+I(t - rl’
give Taylor’s expansion of F[v]: ;=0

where

and

We now verify that conditions (10) can be used to determine bl, ... , br
recursively and that bj so determined is a polynomial of weight j in the
derivatives of w with coefficients that are bounded functions of x, z, w. This

work out for bl immediately. In the case i &#x3E; 0, the condition Bi = 0 is equiv-
alent to

Since Pi is of weight  i, Pi contains no bj with j &#x3E; i. Since Qi is of weight
 i + 1, Qi contains no bi with j &#x3E; i + 1 and also contains no derivative of

bi+1, ..., b,. Furthermore, each term of Qi contains some derivative bi,ae and,
being of weight i + 1, cannot also contain bi+1. Consequently, Qa is free
of bi+1, ..., br and of their derivatives, so that (16) is a recursion stating that

where each Si is a polynomial of weight c j in the indicated arguments, its
coefficients being functions of x, z, w. From this recursion, an argument of
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mathematical induction, which we omit, shows that for i = 1,..., r,

where Ti is a polynomial of weight i with coefficients that are functions of
x, 1’, w. From (17), albi is obtained as a polynomial in wx, wxx, ..., aj+iw
of weight i -)- j and with coefficients that again are functions of x, r, w. Under
assumptions (6), conditions (7), and therefore (7)’, follow from this.

Conditions (7/ for j = 0 imply that, for 0  t - r  h,

since we are assuming Vh!. (Recall ao = IIwl!, and e* = maxk=l.....,eOk.j i
Hence,

and a(x, t, u), c(x, t, u), and the partial derivatives of these functions of the
orders entering into our process, are bounded accordingly on Z,,,, + h -

Before proceeding to (8), we must consider the effect of differentiating
with respect to x an expression of the form

in which pj is a polynomial of weight at most j + C with coefficients that
are of weight 0 and are (smooth) functions of x, t, v(x, t). We shall con-
clude that a derivative of this expression of first order with respect to x is
a sum of the same form in which the coefficient of (t - -r) is a polynomial
of weight at most j + C + 1. To this end consider a typical term of p" say

in which G,(b) denotes a product of bjls and their derivatives of weight at
most j + C. Differentiating this term with respect to x gives a sum
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in which Gj+,, is a polynomial of weight at most j + C + 1. This result is of
r

the form Y_ Pi,k (t - -r) k with polynomials PJ,k of weight at most j -E- k + C + 1.
k=O

Hence, a,,pi also is of this form, so that, in form,

with Pj,,, again denoting a polynomial of weight at most j + k + C + 1
in the b i and their derivatives. Arranging the right-hand side in powers
of t - r gives a representation of Px similar to (18), except that the coeffi-
cient of (t - 7:)1 will be a polynomial of weight I + C + 1, 1 = 0, ..., J, as
contended.

The previous remark is applied to the Taylor remainders cr and AT given
in (14) and (15). With respect to the first of these, we find

where L;  oo, I and Ptri is a polynomial of weight at most i + j in the
quantities bo,..., br and their derivatives with coefficients that again are
(smooth) functions of x, s, v(x, s). In view of (7), IPiril const h-ï+S)/2, so that

for h  1, 0  t - r  h. In an exactly similar way,

Since F[v] = F,,[v] = Ar + or, by (9) and (10), the foregoing estimates
imply that

justifying (8). Theorem 1 is thus proved, except for a count of the derivatives
of a(x, t, u) and c(x, t, u) involved. Scrutinizing the previous arguments shows
that derivatives of orders up to i -1 enter into bi, derivatives of orders up
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to r - 1 into v(x, t), and derivatives of orders up to r into .F’r[v]. This infor-

mation underlies the statements made in the theorem about differentiability.
To use Theorem 1 in a layering process, it is of course necessary that

inequalities of type (6) be fulfilled in every layer. This will be the case trivially
for averaging kernels k(x) of sufficient differentiability, but less stringent
conditions will do as well. In fact, concerning S, it suffices for this purpose
that constants al, ..., a, exist such that

for any bounded, measurable oo(0153).
The proposition to follow is stated in terms of the numbers

A = max (L%,, ... Yx,), Ao=A+], and Am=AAm_l+l, m=1,2,...,

recursively defined.

THEOREM 2. Suppose a(x, t, u) and c(x, t, u) to have bounded partial
derivatives in Z(-r, z + h ; M) of orders up to (q + 2)r, where q is an in-

teger &#x3E;0. In the construction described in Theorem 1, let w(0153) be given by (2)
with S subject to (19) and thus to:

If 11m II N, m(x) E C(q+i)r, and

then v(x, t) E Oq+l)r, and for sufficiently small h,

for the same indices, i = 1, ..., r, m = 0, 1, ..., q.

REMARK. Inequality (22) justifies the assertions at the beginning of
this section concerning ax v for j = 1,..., j° in the case in which j° = (q -}- 1 ) r.
To obtain the other cases, , in which qrjo  (q -E- 1 ) r for some positive in-
teger q, only trivial changes need to be made in the following proof.

PROOF. Apply amr+’ to (3) for i = 1, ..., r, m = 0, 1, ..., q. In view of (17)
and the remarks subsequent to (18), , the result is of the form
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where Ti,k denotes a polynomial in a,,w, ... I ail’ w of Weight j --E- k with

coefficients that are bounded functions of x, r, w. The coefficients can be

estimated in absolute value by quantities that depend on N, T only, it

being understood that 0  -r  -r + h  T. For the derivatives of w of orders
up to (q + I) r, we have from (21) the estimates

For the derivatives of orders (q + I) r + 1 to (q + 2)r, assumptions (20)
(with i = r) and (21) give

By use of (24) and (25) we have estimates of the form

where Aj,,,,, is a polynomial in Ao, ..., Am with coefficients that depend
upon N, T. It follows from (26) that, if we require h to be such that

then

In the case m = 0, we use the estimate

arising from (20), to obtain

In the case m &#x3E; 0, applying (25) with m replacing m + 1 gives

and thus

these results verifying (22) completely. Theorem 2 is proved.
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The following results will be used in obtaining bounds for the derivatives
of layered solutions, which ultimately will be of the form II Ô:U(h){., t) 
t-k/2Pk in each zone in which u(h) is known to exist and be bounded.

THEOREM 3. Suppose (19) to hold for i = 1, ..., r + 1. Suppose also that
for some k&#x3E; 1,

Then for h ,r,

and

where Xk and Yk depend polynomially on Wl, ..., Wk, 7:1/2, , 11,1/2, and also de-
pend on bounds in Z(7:, 7: + h ; M) for the derivatives of a(x, t, u) and c(0153, t, u)
of orders up to r + k. If 0 j  k - r - ], then

with Y’ depending polynomially on ’W, ..., W i+r+l’ 7:1/2, and also depending
on bounds in Z ( 7:, 7: + h ; M) for the derivatives o f a and c of orders up to j + r.

PROOF. The derivatives of w = Soi of orders  k can be estimated by
means of Wl7:-I/2,..., Wk 7:-k/2, the derivatives of w of orders k + 1, ..., k +
+ r + I by means of oe,-WkT-k/2 h-1/2 for l = 1, ..., r + 1, respectively. These

estimates will imply bounds for ax+1 b, which, being of weight j -+- k + 1,
is a sum of terms consisting of products of the type

multiplied by bounded coefficients, where

In (30), (8/§w)°’ is to be interpreted as a product of Pz derivatives of w of
l-th order, the p, derivatives not necessarily being alike. Each such deriva-
tive, in absolute value, is  Oq;,Ch) "P,( T), where
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and where C is a generic constant to signify possibly different values in dif-
ferent usages. Thus, in absolute value, the product (30) is

This is of the form Oh-x/2-r-Y/2, where

By (31), X + Yj + k + 1, and our previous estimate of (30) is seen to be

Again by (31),

Hence (7:/h)X/2  (7:/11,)(;+1)/2 for h  7:, and substitution in (32) shows any quan-
tity (30) to be, in absolute value,  er-k/2h-(1+1)12. Consequently,

for h ,r, and

this justifying (28).
To prove (29), , we must estimate ô:c, and ô:A" but only the latter is

considered in detail. From (15) and the remark made in connection with (18), ,

15 - .Ann. Scuola Norm. Sup. Pisa 01. Sci.
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Here qkrm is a polynomial of weight at most k + m + 1 in the coefficients
bo, bl , ... , br and their derivatives of orders  k + 1. Since bj for j = l , ..., r
is a polynomial in the derivatives of w of orders j, it follows that qkrm is
a polynomial in the derivatives of w of orders  r + k -‘- 1. The previous
methods show from this that

to arrive at the final equality requires some elementary calculations. It fol-

lows from this and (34) that

Since ô:cr is subject to a milder estimate, inequality (29) follows. Conten-

tion (29)* is established by similar means, this completing the proof of
Theorem 3.

5. - A common domain independent of layer height,
and a common bound, for approximate layered solutions.

It is essential that, for sufficiently small h, layered solutions U(h) exist
in a common zone. As will be seen in this section, this will be so if the Si
are Gaussian, or arithmetical, or result from one or more repetitions of arith-
metical averaging. More generally, the smoothing operators in this discussion
are required to commute with differentiation and to satisfy certain inequal-
ities. Again, as in Section 3, let S = (S1, ..., S") act on vector functions
v(x) = (vl(0153), ..., vn(0153)) to produce Sv(x) = (Slvl(x),..., Snvn(0153)). Also, let

Siv(x) = (S) vi(z), &#x26;,,v,,(x)). Recall that Si = Kei’ and let

The requirement of commuting with differentiation is that for all v(x) E C1,
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The inequalities referred to state that for all bounded, continuous n-dimen-
sional vectors v(x) on Ba,

and

where sl and s2 are absolute constants. These follow (in some cases with
different constants) from the one-dimensional inequalities (9.1), (9.2).

That the U(h) exist in a common zone will follow from limitations upon
their growth implied by certain integral relations we now derive. Holding h
fixed at first, let um(0153, t), , m 11 ..., mo, denote the parts of the approxi-
mate layered solution u(h)(0153, t), as in Section 3. For each m, um(x, t) is, in

particular, a Cl-solution in Zm of an equation of the form

where

For 0  -r  mo h, define

ml = [T/h] = largest integer m such that nh ,r ;

thus u(h) _ Uml+I in Z (mlh.T) . Now apply Si + 1- m to the two members of (3)
to obtain

In view of (1),

for any positive integer j, while by construction

Hence, by integrating both sides of (5). with respect to t from (m - 1) h
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to mh we have

where by (4)

In the equation for m = 1, we have used the convention that u°(x, 0) =
= u*(0153). Similarly to (6), we also have

with IISJml+l(., z) II  eohl(1’ - M,,h). Adding the ml + i relations (6) and (6)’
and making appropriate cancellations gives

where 11 I(h) ( . ,r) II  eo -rh1. In view of the definition of U(h), , this implies the
estimate

where ,
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We interrupt our present argument with the remark, which will be of
use in Section 6, that a similar procedure to the foregoing provides estimates
of derivatives of u (h) with respect to x. It is necessary to assume u(h) to be of
class Ci-, jo&#x3E;2, in each Z’ and to satisfy conditions (3.2) to (3.5). The func-
tions I(x, t, u) and g(x, t, u) also must be sufficiently smooth. (If U(h) is con-
structed by the method of Section 4, it is simplest to require that jo = (q + 1) r,
q being any nonnegative integer, and that I(x, t, u) and g(x, t, u), in

Z(O, (mo + 1) h; M), have continuous, bounded partial derivatives of orders
up to (q + 2)r -)- 1 and (q + 2)r, respectively.) Under these assumptions,
ax can be applied to the two members of equation (3) with k jo - 1. After
that, Smt+l-m is applied and then exactly the same steps followed as previously
had led to (8). In view of (3.4) and (3.5)*, the outcome here is the inequality

with

Our present aim is to use (8) to obtain an estimate of

that is independent of h.
Let F(t, v), F*(t, v), Fl(t, v), G(t, v), G,,(t, v) be positive continuous func-

tions for &#x3E;0y v&#x3E;O, nondecreasing as t increases or v increases, such that
for xeR, 0«Ty lulvg

In case f has bounded, continuous derivatives with respect to x, u of order
k&#x3E;2, also let Fk(t, v) be a positive continuous function, nondecreasing in
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both arguments, that is an upper bound for the absolute values of the

derivatives of f with respect to x, u of orders up to k. Let Gk(t, v) play a
similar role with respect to the derivatives of orders not greater than k of

g(x, t, ").
In addition, let Uo(z) = 11 S-+1 u* 11 for mlh 7:  (ml + 1) A.
We shall use these quantities to estimate the terms on the right side

of (8). First, with reference in (8) to the integral from mlh to r, we

have

Concerning the summands in the summation occurring in (8), we have
obviously

Furthermore, by applying properties (1) and (2),

But for mml and (m - 1) h  t  r  (ml + 1) h, we have (crudely)

Hence, for (m - 1) h  t  r,

Substituting from these inequalities into (8) shows that for 0  r 
 (MO + 1) h, 11 U(’)( -, i) 11 is not greater than the right hand member of the
relation
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For that reason, this relation (10) holds for all h &#x3E; 0 and all 7: for which

0TT and U(-r)M.
From relation (10), it is easy to show that all layered solutions u(h)(0153, t)

exist in a common zone if A is sufficiently small. Assumptions appropriate
to the construction of Section 4 are made as to the smoothness of I(x, t, u)
and g(x, t, u).

THEOREM 1. Given 11 uO 11  Mo  oo, let M&#x3E;Ifo+l and T &#x3E; 0. In

Z(0, T ; M), suppose f (x, t, u) and g(x, t, u) to have bounded partial derivatives
of respective orders up to 3 acnd 2. Let u*(0153) be an approximation to uO(0153) of
class C2 satisfying conditions (3.1a,b) with jo = 2, and in carrying o2ct a

layering procedure, use averaging operators that satisfy conditions (1), (2).
(Gaussian averaging, arithmetical averaging, and repeated arithmetical averaging
are among the admitted operators. ) Under these hypotheses, positive constants To,
ho exist such that all layered solutions u(h)(0153, t) for which 0 C 11,  ho exist on ZT*
and obey the restrictions Ilu(h)IIzTo JI II uxh’ II ZTo °Ih-l, where 01 is a constant
depending on M, T.

PROOF. Recall that U,,(-r)  Iluoll 11  M,, and h8;1 = s*. For this reason,
positive ho, To exist such that when, in the right member of (10), (1) h is
replaced by 11,0’ (2) the functions of (r, U( 7:)) are replaced by the corresponding
functions of (T, M), (3) the functions of (t, U(t)) occurring in the integrand
are replaced by the corresponding functions of (T, M), and (4) the upper
limit of integration is changed from r to To, the new expression obtained
is  M. Since the replacements made can only increase the value of the right
hand side of (10), , it follows that U(-r)  M, and thus that 11 u(h) (. , z) II  if,
for 0  T  T,,, 0  h  h,,, as demanded. The estimate of u (h) follows imme-
diately from the construction.

Layered solutions u(h)(0153, t) with arbitrarily small h cannot in general
be expected to exist outside limited belts ZT. This is because the solutions

of parabolic initial value problems under hypotheses (a) to (d) in general
have restricted domains of existence. (See A. Friedman [8], H. Fujita [9],
R. T. Glassey [10], H. A. Levine [16, 17], Levine and Payne [18], M. Tsut-
sumi [25, 26].) Under special circumstances, restrictions on the domains of
existence, however, will disappear. In fact, a family of layered solutions
u (h) (x, t) will exist on a band of given height T if positive numbers My, hT
can be found such that, first, f and g have bounded derivatives of the requisite
orders in Z(T ; M) , and, secondly, it is known by some means that U(t)MT
for 0  t  T, 0  h  hT - One condition under which a priori bounds .DIT
exist for layered solutions is discussed in the appendix to this section.

Other conditions will appear in papers to follow.

We remark that a priori bounds have been given for actual solutions of
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certain quasi-linear parabolic systems (see T. D. Wentzell [31], A. Jef-

frey [11], Ladyzhenskaya, Solonnikov, Ural’ceva [15, Chapter 7], and W. von
Wahl [30]). It seems likely that the layered solutions too of such systems,
if of form (E), will be bounded a priori.

5A. - Appendix to Section 5 - The existence of layered solutions
over long periods of time. The sublinear case.

Here we consider the situation in which (in the notation of Section 5)
F(t, v) and G(t, v) are linear functions of v. The result we prove is the following.

THEOREM 1. Suppose the hypotheses of Theorem 4.1 to hold for all T &#x3E; 0,
M &#x3E; 0, and again require the averaging operators used in the layering procedure
to satisfy conditions (5.1), (5.2). In addition, suppose that for x E R, t&#x3E; 0,
and lul ’V,

with positive constants a, fl. Then for any T &#x3E; 0, a number hT exists such that,
if 0 C h  hT, , all layered sot2ctions U(h) exist on ZT. I f 0 &#x3E; 0, it is possible to
determine hT so that, if 0  h  hT, ,

where the function p (t) is representable by a certain series

converging for t&#x3E; 0. The series is described in the lemma of this section.

PROOF. Let M = MT denote the number represented by the right side
of (1) when t is replaced by T. In the light of the new hypotheses, in-
equality (5.10) can be rewritten as

the quantity C(T, M) being &#x3E;1 and independent of h, r. With any h &#x3E; 0,
this relation holds for all r for which 0 ,r  T and U(t)  M.
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Taking () &#x3E; 0, require hT to be such that

Then for 0  h  h,, we have C(T, M)htOMo, and by referring to (2) and
using standard reasoning, we have U(-r) P(-r), where P(-r) is a solution of
the equality

Under the substitution P(z) _ (1 + 0) Mop (2:nsîp2 Â;l ’1:), this equality takes
the equivalent form

where

It will be proved soon in a lemma that p(O’)  oo for 0’ &#x3E; 0, and it will follow
that if 0  h  h,, then M = P(T) is an upper bound for U(7:), and hence
for lu(h)(0153, t) I, in ZT . Hence, in particular, u(h)(0153, t) exists in ZT and also
satisfies (1). Thus the theorem is proved.

As A. Pazy has pointed out, it is not necessary to use p(u) in order to
derive an a priori bound for U(z) on an arbitrary zone. Instead, first obtain
from Theorem 5.1 positive constants 6, M’ such that U( 7:)  M’ for 0  -C  6.
For ð  r  T, make the substitution

As a result, , (2) is transformed into a more usual type of inequality from
which an a priori bound follows by standard means.

We have to characterize p(a), however, for later applications as well as
the previous use.

LEMMA 1. A.n integrals equation of the form
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with b &#x3E; - -1 has a unique solution on the interval (j&#x3E; 0. The solution can be

represented as a series

converging absolutely for (1 &#x3E; 0.

PROOF. To solve (4), it suffices to determine a series of the form (5) that
satisfies (4) formally and that converges absolutely for or&#x3E; 0. Formally sub-
stitute series (5) into (4) and use the rule

B(r, s) and r(r) denoting Euler’s beta function and gamma function, respec-
tively. Under the conventions Co = 1, c_1 = 0, we arrive at the recursions

and

These recursions are simplified by writing them in terms of the new variables

the second set, in particular, becoming

since F((i + 2)/2) - (jl2)F(jl2). The solutions of the system (8) are linear
combinations of the two solutions dk = rk, where r is determined by the con-
dition rk = rk-I -)- brk-2. This condition is equivalent to the quadratic equa-
tion r2 - r - b = 0, the two roots of which are

Thus, the solutions of (8) are quantities of the form
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The constants «i and (X2 appropriate to our recursions must satisfy the con-
ditions

with values of do and dQ_,, obtained from the first Q recursions, which per-
tain to dl, ..., dQ. With these constants, we then have

and it follows from Stirling’s formula that the series (5) converges absolutely
for cr&#x3E;O, as contended.

It is still to be shown that the integral equation (4) has no other solu-
tion than the function p(O’) just constructed. Therefore, consider any solu-
tion y(s) of the homogeneous integral equation corresponding to (4). If

ly(s)ly,, in the interval [0, 6], it is elementary to verify that, if 6 is suffi-
ciently small, then in fact y = 0. If’ [0, 8,] is the largest interval on which
y(s) = 0, similar reasoning shows that So is not finite. Since this means

that y(s) is identically zero, the solution of (4) is unique, as asserted.
We conclude with a lemma very like the previous that will be applied

in section 8.

LEMMA 2. An integral equation of the form

in which A, B, C are nonnegative constants, and B &#x3E; 0, has a unique solu-
tion for í&#x3E; o. The solution is representable as

where p(or) satisfies the equation

with c = 0/nB2 and is given by a series of the form

converging absolutely for (J&#x3E; 0.
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PROOF. Under the substitution’ (10), it is immediately seen that (9)
and (11) are equivalent. Uniqueness follows in the same way as in the previous
lemma. To justify the series expansion for p(a), again it suffices to determine
a series of the form (12) that satisfies (11) formally and that converges ab-
solutely for a&#x3E; 0. In a formal substitution of (12) into (11), rule (6) shows
that el = vn and that

for k&#x3E;2, where co = l. Since the quantities

satisfy relations

which are identical in form to (8), arguments given in the proof of Lemma 1
will show here that the series (12) does converge absolutely for a&#x3E;O, as

asserted.

6. - Estimates of spatial derivatives of approximate layered solutions.

Consider an approximate layered solution u(h)(0153, t), as described in Sec-
tion 3, that is of class C’°, jo&#x3E;2, in each half-open layer Z’ mi m = 1,..., mo,
and satisfies conditions (3.2) to (3.5) as well as (3.2)’, (3.2)*, (3.5)*. Assume

I(x, t, u) to be of class Clo in Z(O, T; M), where T = mo h, and assume
g(x, t, u) to be of class 0’0 - 1. Assume also that constants I’*, Fk, G, exist
such that, on Z(O, T ; M),

(a) 11 full  F*,
(b) the partial derivatives of I(x, t, u) of orders 0 through k are, in

absolute value,  Fk I k = 0, ..., jo, ,

(c) the partial derivatives of g(x, t, u) of orders 0 through 1 are, in

absolute value,  Gi , 1 = 0,..., jo 2013 1 ’

In this section, we shall establish the following consequences.

THEOREM 1. Under the foregoing hypotheses, positive quantities hk =

hk (M9 T) and Ork = ork (M, T), k = 1, ...,jo-l, exist such that, if r&#x3E;k and
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o  hhk, then

PROOF. It suffices to find bounds on (0, T] for

The desired bounds will result from inequalities (5.8), after estimations are
made of the individual terms of the right-hand members.

At first it is convenient to consider only those for which

In view of (1), and because

inequality (9.3) implies

By (3.5) in the case j = 0, by (9.3), and by (1) and (3.5)*,

Similarly,

By (3.2)*,
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where TTk and Wk depend polynomially upon -ri , P1(i), ..., Pk(i), and also
depend upon M. For m = 17 ... I mi , from (9.1) we have by use of (5.9)

For values of m for which

with the help of (9.3), we also obtain the alternative estimates

Let m2 = [i/2]. In view of (1), m2 + 1  ml - 2k + 1, and m satis-
fies (1)m, in particular, if m  m, +I - We shall use (6) in (5.8),, for

M = M2 + 21 ... , m,., and we shall use (7) and (8) for M = 11 ... I M2 + ’-
We also substitute from (2) to (5). Since

and since, if V &#x3E; 0, then
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the result may be written

where

(9) holding for 4(k + 1)h  T  T, k &#x3E; 1. (For such -r, h1’-lhl/[4(k + 1)] in
(10).) The remainder Rk depends polynomially upon its indicated arguments.

To estimate P,(t), 0  t  T, take k = 1 in (9). Respecting the first

summation on the right-hand side, we have

since ml - m2 - 1 &#x3E; ml/2 - 2 &#x3E; ml/4. Similarly, ,

Respecting the integral in the second member of (9), the integrand in the
case k = 1 can be estimated by {(Fi + Go) t’ + F* Pl(t)}(-r - t)w and the
integral itself thus by
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Using these results, we deduce from (9) that

for 8h ,r  T, where

For 0  í8h, (3.2)’ implies that P,,(r)  81 C,. Hence, if the first term in
the second member of (11) is replaced by a* = max (alII UO II, 81 01), the re-
sulting integral inequality will hold for 0  r  T.

Consider the function PT(t) satisfying the relation

A substitution of the form PT(t) = («* -{- 1)p(at) with suitable constant oc

I changes (12) into an inequality of the form

where d = OCT, 8 = at. As was shown in Section 5A, such an inequality
implies an a priori bound for p(a) on any finite interval. Consequently,
P*(-r) is bounded on any finite interval. Let P** be an upper bound for
p*(-r) for 0  TTy and determine hl = h,,(M T ) by the conditions that
h,h, (described in Theorem 5.1) and

Since P1(0) P;(O), since P;(t) satisfies (12), and since P1(t) satisfies an

inequality like (11 ) , but with a* in place of al, it follows that, if 0  hhl,
then PI(i)  P;(i) for 0 i T. Thus, Theorem 1 is proved in the case
k = 1.
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In a mathematical induction, now suppose that, for some integer k&#x3E;2,
constants all ..., (1k-l have been established such that

for 1 = 1, ..., k - 1. The case k = 2 has just been treated.
Conditions (13) imply of course that

We shall incorporate assumptions (13) into (9) and then use arguments
like the preceding to arrive at a bound for Pk(t), completing the induction.
The three terms in the second member of (9) containing summations are,

k

in toto,  aki T1/2 with suitable constants akl; the condition r &#x3E; k is used
i=i

in connection with the third summation. Estimating the integral in (9) is

based on the fact that, for any sufficiently differentiable function f (x, v) and
any vector function v(x) = (vl(0153), ..., Vn(0153)), the k-th derivative 8fjf(z, v(0153))
is a sum of terms of the form

M Zm

where! ! kmijmik, and where (axvm)’ symbolizes the product of j deriv-
m=l i=l

atives of vm of X-th order. The k-th derivative x vm occurs only in the term
fvm(0153, v(0153)) ovm. These remarks and (13)’ give us, in particular,

and

where the m,l are functions of Fk, cr,, ..., O’k-l, and the nkz functions of

Gk-l, cr, 7... O’k-l. The integral in (9) is estimated by means of these in-

equalities and the fact that

16 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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for oc &#x3E; - 1, where Band .T are Euler’s beta and gamma functions, respec-
tively.

Now we replace the second member of (9) by the estimate arising from
the foregoing considerations, and we replace the first member by P,(T).
The result is a relation of the form

in which ock = 1-k/2 2(k + 1)/2 81 IF*, and ak, depend upon k, A*, Fx,
Gk-1’ aig ..., O"k-1. Inequality (14) is good only for ’l’&#x3E;4(k + 1) h.

The rest of the argument to establish that Pk(t) has a bound for

0  t  T is parallel to the reasoning that followed the derivation of (11)
and need not be given. Thus, in effect, the proof of Theorem 1 is complete.

7. - Difference quotients with respect to t.

We now consider difference-quotients of various orders for u (h) (x, t) with
respect to t. These (( time- difference- quotients )&#x3E; will be seen to be equal
approximately to certain functions of the spatial derivatives ai x U(h) . The

functions are the same as those which relate time-derivatives to spatial
derivatives of solutions of the limit equation, ,

in which aa = alax,,, a = 1, ..., d. Respecting the bold-face symbol fL the

convention is adopted that for any n-dimensional vector W = (wi, ... , wn),

(The p; are the coefficients associated with the equation for ui in the

system (E).) Bold-face symbols X, £, c2 and so forth, will be used in what
follows analogously to fL.

In the formal process of constructing the functions referred to, we shall
attribute sufficient differentiability to v(x, t), a presumed solution of (1),
as well as to I(x, t, u), g(x, t, u).

It will be convenient in this section to denote by V’v the array con-
sisting of all spatial derivatives a’v, of k-th order with respect to x1, ..., xd
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of all the components vl , ,... , v,, of v. (Thus, V’ here does not represent the
Laplacian.) Let qk be a vector having the same number of components as

V:v, k = 0, 1, .... The functions of Vk v desired are n dimensional vector
functions

such that a smooth solution of (1) will satisfy

The first of these functions comes from equation (1), according to which

Hl(0153, t, qo, ql, q2) is the function obtained from the second member of this
equation when v, Vxv, V;v are replaced by qo, ql, q2, respectively.

Modifying previous notation, let (l) = (?i, ..., ld) signify a multi-index of
« order » l = tl + ... + ld with axl = 81’ ... ad . Along with H1(0153, t, qo , q1’ q2)
we must also consider the functions H1.(Z)(0153, t, qo, ..., qZ+2) for which, by
successive differentiations with respect to the X(X of the equation
vt = H1(0153, t, v, Vaev, V§v) and application of the chain rule we have

with H1.(O) = H - 1 . By Hl.l we shall mean the aggregate of all H1.(Z) for multi-
indices of order l.

For k &#x3E; 1 each function Hk(x, t, v, Vxv, ..., V;kV) results from formally
differentiating Hk-,(x, t, v, VXV, ..., V;k-2V) with respect to t, using the chain
rule, , and substituting H 1.(I)(x9 t v, 9 v,,v9 ..., 7VI+2V) x for a(’)v,. x In the notation

described in Section 2,

The difference-quotients we wish to consider are of the type
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with p = ±ly :l:: 2, ..., ’IjJ being an arbitrary function of x, t. For t &#x3E; 0
N

and any positive integer N, let L1N denote an operator of the form n L1Vt’
where PI’ ... , pN are nonzero integers such that 

i=l

for all distinct indices i, j, k, ... = 1, 2, ... , N. Our main aim is to estimate
,JN at x U(’) in a band ZT in which

the first member in (6) signifying the maximum of SUP.,C-R I a(i) x U(h) (X, t) I for

all multi-indices (j) having order j. For U(h) constructed by the method of
Section 4 and satisfying the condition Ilu(h)llzT(jO’ bounds of type (6) with
j&#x3E; 1 require f u and /,, -f- g to have bounded, continuous derivatives in

Z(09 T ; a,,) of orders 2r, where r is the degree of the polynomial introduced
in (4.3), and where 2N + lr (see Section 6). In the forthcoming discussion,
if the method of Section 4 is again used, these differentiability conditions
will again suffice with respect to any j I al x U(h) for which 2 k + l  r. What-
ever the construction of u (h) , we shall always assume with reference to a
fixed, given integer r&#x3E;2, that f and g are differentiable enough to justify
considering al x jlU(h) for 2k + Z c r.

The theorems to follow are formulated with respect to approximate
layered solutions u (h) (xl t) as described in Section 3. Such functions satisfy
within each layer approximate layer equations of the form

where, according to (3.4), (3.5),

and

THEOREM 1. Let u(h)(0153, t) be an approximate layered solution of equations (1)
in a zone ZT, satisfying conditions (6), (7), (8) in each layer. For 0  t  T,
let PI’ ... , P N be nonzero integers satisfying condition (5) as well as inequali-
ties of the f orm 
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where 0  ’YJ* ’YJ*  1. If ’YJ*&#x3E;h, then a quantity (/N.Z independent o f x, t, h
exists such that

f or multi-indices (1) of order I for which 2N + lr.

THEOREM 2. Under the same hypotheses as in Theorem 1,

where H)(0153, t) is the function that results f rom replacing qj by V u(h)(0153, t),
j = 0,..., 2k, in H N(0153, t, qo, ..., q 2N). If rJ* &#x3E; Eh!, where E is a positive
constant, then a quantity ah j independent of 0153, t, 11, exists such that

Several preliminaries precede the proofs of these theorems. In the first

place, it will be helpful to express symbolically a relation such as (9) or (11)
of the form lw(x, t) I  CO(t, h), C being a constant independent of x, h, t, as

Secondly, as in Section 4, a concept of « weight » again is convenient.
We attribute the weight 0 to any bounded function of x, t, u (h) (x, t) and,
for 00, 1 &#x3E; 09 N &#x3E; 09 the weight 1/2 + N to any member of the aggregate
,JNVI x U(A)(x t). The weight of a product of weighted quantities is to be the
sum of the weights of the quantities, the weight of a sum of weighted quan-
tities the greatest of the weights of the summands. These conventions are

to apply even to expressions in which the functions u (h) (x7 t) and their spatial
derivatives and time-difference-quotients appear in different places with
different (positive) values of the «time-argument » t. The conventions

also are to apply to integrals of such expressions with respect to the time-
argument on intervals [t’, t" ] for which 0  t’  t". Under these conven-

tions, if, for instance, p (h) (x, t -f- sO) is a polynomial of weight j in quantities
that belong to the aggregates d N Dx u(h)(0153, t + sO) for 1, N&#x3E; 0, t &#x3E; 0, t -E- s &#x3E; 0,
and 061, the coefficients in the polynomial having weight 0, then

1

fp (h)(X, t + 80) dO also has weight j. If t + g &#x3E; t/2 and inequalities (5) hold,
o

then the polynomial described and its integral are both - t-i.
The members of the aggregate H (h(X, t) have weight 1+j/2, the members

of Vi G(h) weight ( j + 1)/2. By mathematical induction from (4), H(h)(X, t)
has weight k.
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The last preliminary is a formula for the deviation of a function from
its average of a kind given in [4]. As in Section 3, but now dropping 8 as
an index, let K be an averaging operator, defined say for functions v(x)
bounded and continuous on R, by

with

The one-dimensional kernel k(s) is required to be sectionally continuous
and to satisfy the conditions k(,g) &#x3E; 0, fk(s)ds = 1, k(s) = k(- s). The de-

sired formula for Ku - u is a consequence of the one-dimensional result

holding for bounded, continuous functions v(s) on R, and easily verifiable
by carrying out the indicated differentiations (see [4, p. 177]). For any

bounded, continuous function v(x) = v(xl , ..., xd) on R’, and for each index
oc = 1, ... , d, define

For these one-dimensional transformations, K = K,... K., and, in view

of the previous identity,

Note that, if v E C2, then a,2XV = M,,a2V.

PROPOSITION 1. Define

for

the domain of each JOt being the space of functions v(x) that are bounded and
continuous on Rd. Then
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where I is the identity operator on the same space o f functions v(x). For v(x)
of class C2,

REMARK. J, is a (d - a + l)-dimensional integral operator:

where

(It is understood that for a = 1, v has arguments x I + -.’gl I ... I Xd + 8’gd ,
and that for a = d, k(8cX+1) is to be replaced by 1.) Note that

PROOF OF PROPOSITION 1. It follows from (12) that

and

When the second members of these equalities are substituted for the sum-
mands in (13), the resulting sum telescopes to K1 ... Kd - I. Thus, (13) is

verified; it results also as a special case of formulas (1, 5) in [4], pp. 176-179.

Proof of Theorem 1.

With fixed t &#x3E; 0, let m., = [t/h]. To justify (9) first in the case N = 1,
consider

Since u (h) (x, t) varies smoothly as t increases from (m - 1 ) h to mh - 0,
but is discontinuous from mh - 0 to mh + 0, m being any positive in-
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teger  mo, we have from (7)

V’

By (3.3), the summation in (14) is equal to I {SU(h)(X, (M, + m) h - 0) -
m = 1 P,, d

- u (h) (m, + m) h - 0) and thus, by Proposition 1 just proved, to C2 1 1 J(X.
m=l (X=1

.o;u{h)(0153, (m1 + m) h - 0). This and the previous calculations give the result

To the extent that U(h) is differentiable, any spatial differentiation °ae
will commute both with J", and with the other integral operators in (15).
Hence, in view of (6) and (8), applying 8§ to (15) shows that

(16) OLlVl u(h)(0153, t) - t-lll2 + h(r-1-l)/2 t-1-1I2{1 + T1+l/2}

for l + 2  r, this implying the case N = 1 of inequality (9).
In preparation for the general case of inequality (9), we show now that

if L1v., L1V8’.’" L1VN be applied serially to G(h)(0153, t + ()lP1 h), i.e. , L1V2 to

G(h)(0153, t + ()lP1 h), LlVa to L1vl G(h)(0153, t + ()lPl h), and so forth, then at each step
the weight of the expression is increased by 1 and, furthermore, the time-
arguments of the expression at each step are &#x3E;tj2. As already noted,
G(h)(0153, t -f- (J1Plh) has weight 1, and t + ()lPlh&#x3E;tj2 because plh&#x3E;- t/2 by (5).
From the integral form of the mean value theorem, we have

the starred derivatives of G(x, t, u) having the arguments
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in place of x, t, qo, ql, respectively. In view of assumption (5), the time-argu-
ments in (17) are all &#x3E;t/2. It is also clear from (17) that L1vl G(h)(0153, t + ()lP1 h)
has weight -ff 3. Next, consider L1V8L1VI G(h)(0153, t -f- 0 lpi h). To calculate this, we
apply L1V8 termwise to the second member of (17), using the identity
L1v(v(1)w(1)) = 17(1 + ph)L1vw(1) + w(a)L1vv(a), and representing J,,.G*t,
li G*., L1V80;1 by integral formulas analogous to (17). The result is an

expression in which a polynomial of weight -k in

evaluated at various time-arguments involving 61, the coefficients in the
polynomial having time-arguments that depend upon three parameters
61, 82 , 83 , is integrated with respect to 62 , 0,,. Thus, A,,. A,, G (h)(X, t -+- el pl h)
has weight 2 , and, because of (5), the time-arguments involved in it are all
&#x3E;/2. Similar reasoning in a mathematical induction will show that for
each v = 11 ... IN, the (v-l)-st order time-difference-quotient A"-’G(’)-

.(X, t + 8lpl h) = d py dpy_1 ... LIvs G(h)(0153, t -E- 01 pi h) has weight v - -1 2 and, in

fact, results from v - 1 integrations with respect to v - 1 parameters 02, ... I ov
of a polynomial of weight v - 1 in time-difference-quotients of orders up
to v - 1 of u (h) and Vx u (h). The v -1 parameters enter into the coefficients
of the polynomial, and all time-arguments are &#x3E; t/2. Since ax commutes
with the integrations performed upon the polynomials referred to, each

application of ax to L1,,-1 G(h)(0153, t + (}lPl h) increases the weight of the ex-
pression by 2. As a result,

is a quantity of weight (1 - 1)/2 + v; the time-arguments that occur in this
expression are all &#x3E; t/2.

Having this last result, we can now finish the proof of (9) by mathe-
matical induction. The case N = 1 having been established in (16), let (9)
be granted for N = v - 1, v &#x3E; 2. To justify (9) in the case N = v, we

apply x i P2 to both sides of (15). The first term on the right be-
comes

with the integrand an expression of the sort just described of weight
(1 - 1)/2 + v. The time-difference-quotients of u(h) that enter this expression
are of orders up to y2013 ly and their time-arguments are &#x3E; t/2. Since (9) is
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assumed in the case N = v - 1, we can conclude that (18) is _ t-v-(l-1)/2. .
The second term on the right-hand side of (15) becomes in absolute value, ,
when the indicated operator is applied,

Concerning the third term in the right-hand member of (15), the operator
applied commutes with J,, to give

an expression of weight 1/2 + v again containing time-difference-quotients
of u(h) of orders at most v - 1 and with time-arguments &#x3E; t/2. Therefore,
this expression - t-V-ZI2, and in view of the previous estimates pertaining
to the first two terms in the second member of (15), we find that

Since 2v + lr, h?I*  1, and 2vN, we have

(9) following for N = v. The mathematical induction thus is complete and
inequality (9) completely justified.

Proof of Theorem 2.

The first and main step in this proof is to show that

for k, 1 = 09 11...9 2k + Ir. Since
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it is clear that (15) implies a relation of the form (19) with

where

With respect to B.,, we have

the starred derivatives of G here having the arguments

Let m = [O,p,]. In the case, for instance, in which both t + 0,,p,,h and
t + mh e [(k - 1) h, kh] for some integer k, we can use (7) in the layer
[t -t- mh, t -)- 0,,p,,h] to obtain

as well as the accompanying relation obtained by applying ax to the first
and third members of this one. The complementary case to the one just
considered leads to entirely similar results. Hence, rewriting (22) according
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to these results and substituting the outcome in the integral for E1 produces
a form to which the operator a’,J’ can be applied in the same way as in
the discussion of (15). The effect in the present instance is that

With reference to E2 , for each a = 2, ..., d, let us set x’= X", = (xi 9 * * 1 9 X,- 1) ,
0153 = 0153eX= (0153eX’ ..., xd), and write x = (x’, x’) on the understanding that x’
will be empty in the case a = 1. At the same time, let s" = (seX’ ..., sd) and
write the formula in the remark after Proposition 1 as

The kernel jex is even, i.e., j,,(.g’) = jex( - s"), and for this reason

the last equality resulting from a second-order Taylor expansion with in-
tegral remainder. Using this in E2 gives

where

since p. = Xm,/2. (The bold-face symbol £ is employed in arguments of u(h)
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to signify that si will occur in u’), i = 19 ..., n.) We have

and

The last formulas show that

the result for e, depending on the fact that for any y(s) and any permis-
sible integer q

Therefore, Ôl x L1kE’ 2 Pl’" l.t-k-2-l/2 + ’YJ* -kh(r-l-l)/2 Since Ôl x L1kE" 2 ’" l.t-k-2-l/2 ,
as follows from the previous expression for E;, we conclude that

Again by familiar arguments, y
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this, (23), (24), and (21) showing that for k &#x3E; 1,

since 2k + Z c r, r*&#x3E;Ehl. This verifies (20), the first step in a mathematical
induction.

As the second step, assume that for some integer jV&#x3E;2y

where

With P = PN apply 4 = J, to both sides of (25) to obtain

By means of a second-order Taylor expansion with integral remainder, we have

where

the unstarred derivatives of H,,-, having the arguments

and the starred derivatives the arguments

In view of (4), (28) can be written as
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where

We now estimate o L1k J N. The definition of H 1,(0 implies that o) Hh)(0153, t) =
= Hiy)(x, t), the last expression denoting the function of x, t obtained from
H1.(Z)(0153, t, qo, ..., QZ+2) by replacing qi by Vu(h)(0153, t), j = 0, 1, ..., l + 2.
Hence equation (10) in the case N = 1 (or equation (19)) implies that

which implies that

Therefore, a’,J’JN is a sum of terms of the form

with the previously indicated arguments and with 0  l’ c Z, 0 c k’  k. Since

J_i has weight N -1, the weight of HN-1.Qj thus being N -1- j/2,
and since applying Ôx adds § to the weight of an egpression, and applying L1
adds 1, we find that ô L1k’ H N -l.Qj has weight  N - 1 - j /2 + l’ /2 + k’.
Therefore, 

’

so that, in view of (20), the term (31) - *t-N-1-k-l/2. Hence

Similar calculations show that

Thus, from (29),

where

Then by (25)
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where (h) 1(h) + dr (h) (33) and (26) showing thatN - N N-I’

This completes the mathematical induction and thus justifies Theorem 2.

8. - The convergence of layered solutions.

If the initial data are bounded, it will be seen in this section that layered
solutions converge uniformly as h --&#x3E; 0 in any layer Zð.T, 0  6  T. The

rate of convergence will be estimated. Our main result is the following:

THEOREM 1. Let ZT be a slab on which approximate layered solutions U(h)
produced by Gaussia% or arithmetical averaging have uniformly bounded norms

11 ul’) IlzT, say for 0  h c ho (h° &#x3E; 0). Suppose that f (x, t, v), g(x, t, v) satisfy
hypotheses (a) to (c) of Section 6 with j, = jO + r, jO&#x3E;r, the integer r (r&#x3E;2)
indicating the degree of approximation of the solution, as in Theorem 4.1. Under

these conditions, a constant O(T) exists such that, if 0  h’  hmin (11,0,8-3),
then

This theorem of course implies that a function u(x, t) exists such that

in proof of our contention.

REMARK. By using Petrov’s more refined estimate referred to in con-
nection with Theorem 9.3, the quantity log ( T /h) occurring in the previous
inequalities can be replaced by [log(Tlh)]I.

To justify the theorem stated, we begin with equation (5.7), giving the
integral relation
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where f(h)(x, t) = I(x, t, U(74)(xl t)), and similarly for g(%)(x, t) ; recall that from
Theorem 4.1 11 1(’) ( - , 1’) II  eo 1’11,(,-1)/2, where r is an integer &#x3E;= 2 specifying the
exactness with which the layer equations are solved. The required estimation
is obtained by comparing this and the analogous relation pertaining
to u (,&#x26;’*)(X , 2) .

To carry out this comparison effectively, it will be helpful to approxi-
mate ST,, " - ’ by the Gaussian operator G(i - t; p,) where

with

Let r. and 71 be numbers such that

and

The main step in making the comparison required is to reduce (1) for values
of T in the interval

to a more convenient form as follows.

THEOREM 2. Let

Then

where

O(T) representing a constant depending on T. If 8hllog (T/h), then deter-

17 - Ann. Scuola Norm. Sup. Pisa 01. S1i.
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mining 27 and í. so that

assures conditions (2a, c) and gives u8 the estimate

G(T) here representing a different constant from before. Values of h less than 8-8
will do.

(If Petrov’s estimate referred to is used, then log (T/h) occurs in place
of [log (Tlh)]l in the first estimate of "Eh)(., T)jj. The form of the second

estimate is not changed, but in it we take 2q = -r.&#x3E; [11, log (Tlh)]I.)
To prove this proposition, we shall in effect make a succession of changes

in the second member of (1), each change producing an error to be incor-
porated into -E. In stating the relevant estimates, we shall use C as a generic
absolute constant-or constant depending on Âl, ..., An (which are constants)
representing individual constants that may be different in different places.
We shall use G(T) generically to indicate quantities, such as bounds in ZT
for functions of x, t, u(h)(0153, t), that depend upon T.

We also shall drop the subscript i attached to u, f, g, 8, p, A, S.
The changes to be made are of five kinds. Let

where [x] denotes the greatest integer; then

The first change is to delete from the summation in the right-hand side of (1)
all integrals corresponding to indices m such that m  m.. The error resulting
from this change, in absolute value, is

since ax S3 = S’ ax , and 11 Si v 11  11 v ii. The part of B, pertaining to II g(h) ( ., t) 11
can be estimated by C(T) m. h. To handle the other part of E, it is useful
to distinguish two cases: (i) T. í 2 -r*, and (ii) 2Tt  z c T. In the first

case, inequality (6.1) implying that
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we have

In the second case, by (9.1) we have

while

in view of (2a). Thus again

Since m* h  -c* + h  (9/8),r*  (9/8) Tlr-I -r*, we conclude finally that

The second change in the right-hand side of (1) is to delete the integral
from ml h to 7: and also to delete from the summation all integrals corre-
sponding to indices m for which m &#x3E; m*; in consequence of the first two
changes, all integrals thus are deleted if -c ,r. + q.

The « error » produced by the second change, i.e., the difference between
the modified and the original quantities, is, in absolute value,

By Theorem 6.1, and since T2013 ?y2013 A r* - h,
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from which it will be seen that

In fact,

Substituting this into (4)’ and also using the inequality q + h  3,q/2 
 (1) I’i-’q, we obtain (4).

The third modification we make in the right-hand side of (1) is to re-

place smt+I-m in the undeleted terms of the summation by the Gaussian
operator G((m, + I - m) h ; t&#x26;). Noting that G( jh; p) = Gj (defined as

in (9.4)), , we have from Theorem 9.3 that

where L(y) = (2/3) [log (y/3)]l for y &#x3E; 1. (Since

L is concave for y &#x3E; 5.) Hence, the total absolute error Ell I committed in
carrying out these replacements is

In the last expression, since m&#x3E;m. &#x3E; 8, and 11,  Tim, the value of the
integral corresponding to the index m is
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with C(1) = (8f7)i{1 + Pi} in this instance. Therefore,

It will follow from this that

In fact, concavity implying that .L’(N -j- 1)  L(N + 1) 2013 L(N) for N &#x3E; 5,
we have 

since

and (m.h)-i  7:;l. Inequality (6) follows.
The next change to be made pertains to the integrals of the form

that have just been introduced, in which v(x, t) stands for V. ,I(h)(M, t) or
g(h)(0153, t). In these integrals, namely, we replace G((ml + 1 - m) h; /z) by
G(,r - t; p). Since, as a short calculation shows,

we have
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Hence, the total absolute error owing to the last set of replacements does
not exceed

with T" = T-,q and T &#x3E; z* + ?y.
By an elementary integration,

while

and (7: - 11,)1 + 1*+  27:1. Thus, the previous integral is estimated by

and we have

The fifth and final alteration to be made in the right-hand side of (1)
is to replace 8-, + I u*(x) by G(-c; p) u*(x). The resulting error, in absolute

value, is

The individual estimates (3, 4, 6, 7, 8) show that the total error
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.E = Ei (h)(X, -r) resulting from all five changes satisfies the inequality

This is the first inequality in Theorem 2, and the second follows from it
directly.

We are now ready to derive the estimate in Theorem 1 of II U(h) ( ., t) -
U(h’)( _, t) 11. Suppose 0  h’C ?K 8-3, and set 2q = -r. = hi log (T/h). The-

orem 2 shows with respect to both U(h) and u(h’) that

for hi log (Tlh)  r  T (the function si log (T/s) increases with s for Tlg &#x3E; e.1).
From the representations of u(h)(X z) and u(h’)(0153, -r) given by Theorem 2,
subtraction gives

We consider this relation only for i*  T T, for which values we have by (9),

With respect to 11 , using the rule that G(t; p) a., v = ðae(G(t; ,u)v) gives us

and, similarly, ,
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These estimates and (10) imply that for T*  -c  T,

where E(,r) is subject to (11), and 11311 2eo7:h(r-1)/2.
We use (12) to estimate

for 1’.  « T. Multiplying both sides of (12) by (r - 1’.)1 and referring
to the previous estimates of JIBIJ II and ))g§)) leads to the relation

for í.  í T. In terms of new independent variables

and a new dependent variable

inequality (13) can be stated as follows :

for OcrT- 7:..
We shall estimate Q(c) by means of the inequality Q(a) P(a), where P(d)

is a function that satisfies a relation identical in form to (14), except that
equality replaces inequality, and P replaces Q. It follows from Lemma 2,
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Section 5J. that

and thus that

as Theorem 1 asserts.

APPENDIX

9. - Estimates for repeated averages.

The smoothing step in the method of layering was carried out by means
of averaging operators, powers of which were required to satisfy certain
inequalities. The operators of Gaussian and of arithmetical averaging both
will be shown in this appendix to be of the requisite kind.

Only the one-dimensional case is treated in detail, since, in multi-dimen-
sional averaging, the kernels are taken simply to be products of one-dimen-
sional kernels. By arithmetical smoothing, or averaging, of a bounded,
measurable function v(x) on the real line R, we mean the transformation
defined, for any E &#x3E; 0, by

by Gaussian smoothing, or averaging, the transformation defined by

(The kernels in these two operators have equal variances, namely 82/3.) In

integrations over B, the limits of integration are omitted.
As previously, , for a bounded, measurable function v(x) on .R, let

The most vital estimates in the layering procedure are those of Theorem 1.
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THEOREM 1. If S represents either Gaussian or arithmetical averaging,
then constants sl , S2, ... exist such that

for all bounded, continuous v(x) on JR.

Proofs of (1), (2) for Gaussian averaging.

By the reproducing property of normal distributions, , the j-th power GJ
of G is equal to the Gaussian operator Gj defined by

with

(See, for instance, H. Cramer [3], equation (17.3.2), p. 212.) Since the in-

tegral in (4) can be differentiated under the sign of integration, inequalities
of the form (1), (2) will be apparent when we have proved that

To do so, using the abbreviation a = (j8’l3)1, note that

o

Thus, flg;(y)ldy = 2Jg;(y)dy = 2y,(0), this verifying (5). Secondly,
-00

We have Ii = 0, because f g;(y)dy = 1, and f y2gi(y)dy = a2. The substi-
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tution y = Qz gives

while by partial integration

Thus, I, = 4(2ne)-I(}’-2, and (6) follows at once.

Proofs of (1), (2) for arithmetical averaging.

Define

so that Av(x) = jai($)v(s + $)d$. Then define, recursively,

in terms of these kernels, ,

Each kernel aj(x) is of compact support and has sectionally continuous deriv-
atives of order j - 1. Hence, ,

similarly,

Except for the lowest values of j, we shall derive (1) and (2) from these and
suitable estimates of the integrals of la’l I and laff 1. (For the exceptional
values-j ==1 in (1) and j = 2 in (2)-direct calculations are easily given
to the same effect.) The following result is needed.
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LEMMA 1. The, kernels ai(0153) are even, i. e. , a;(- x) = a;(s). For j&#x3E;2,

For j &#x3E; 3, a positive number aj exists such that

PROOF. Their definitions imply through mathematical induction that
the aj are even. Therefore, in particular, a;(- x) = 2013 a;(0153), a;(- x) = a;(0153).
Inequalities (9) and (10) for j = 2, 3 can be verified from the explicit for-
mulas

These are obtained by elementary calculations. To justify the inequalities
for higher values of j, mathematical induction is used based on the following
formulas:

If (9) holds for some particular index j &#x3E; 2, then a;(x) is a monotonically
increasing function from - oo to 0 and a monotonically decreasing func-
tion from 0 to + oo. This and (11) show that a;+l(0153), which is 0 for

large negative x, becomes first positive, then negative, and finally 0,
as x increases. Since a;+l is odd, the transition from positive to negative
values of a’+,(x) takes place at x = 0. Thus, contention (9) is proved for the
index j -t- 1, and, by mathematical induction, therefore is valid for all j&#x3E;2.

Let us now suppose (10) to hold for a particular index j &#x3E; 3. This and the

oddness show that, as x increases, a’(x) increases monotonically from 0
to a positive maximum attained at x = - aj (ai&#x3E; 0), decreases from this
maximum mi to the minimum - mi at x = aj, and from that point in-
creases to the ultimate value 0. The graph of a’(x) is illustrated in Figure 1.
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Because of the shape of this graph, it follows from (12) that, as x increases,
a,+,(x), again 0 for large negative x, first becomes positive, then negative,
next positive, and ultimately 0 again. By symmetry, this function must
change its sign at just two points + a,+,, and contention (10) thus holds for
for the index j + 1. With this statement, proof of the lemma is complete.

The foregoing lemma implies that

In fact, by (9),

and by (10)

(The fact that a; is even also is used.)
Inequalities (1), ($) result immediately from (7), (8), (13), (14), and the

estimates of aj(O) = lIaill ) and of lia,’Il )[ in Theorem 2 to be given soon.

Proof of (3).

After (1) has been established, the following arguments produce con-
stants 8Jc for k&#x3E; 2 serviceable in (2) and (3). The determinations of the 811
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thus obtained are rather crude, but the reasoning employed is much simpler
than in the discussion of s, just concluded. First, mathematical induction is
used to prove the following.

CLAIM. If j, l, and r are integers, r&#x3E; 2, and j&#x3E; lr, then

For I = 11 this is true by (1). Then let (15) hold for j &#x3E;, lr, where I &#x3E; 1. If

j &#x3E; (I + 1) r, it follows that

a result confirming (15) for 1 + 1 in place of 1 and thus completing the in-
duction.

With claim (15) established, let r = [j/k], r thus being an integer such
that r jlk  r + 1. Then, in particular, j &#x3E;, kr, and by (15),

On the other hand, r &#x3E; (j - k)lk, so that

By assumption, r&#x3E;2, and therefore j/(j - k)  (r + l)k/(r -1)k3. Hence
(16) implies (3) with sk = (3k)k/2 s. Thus Theorem 1 is proved, except for
estimates needed of lIai" and II a; 1/, which will be justified now.

Let (Ii = (j /3)18.

THEOREM 2. For all integers j, l with j &#x3E; 2, 0  l  j,

where the constants Ci.Z l have limits
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This theorem will follow from properties of the Fourier transforms of
the kernels in question. The Fourier transform of a,(x) is

and since aj(x) is the convolution of al(x) by itself j times, we have for the
Fourier transform of aj(x),

Furthermore, as is well known,

Let

The following result will be very helpful.

LEMMA 2. For 0  Es  a/2, a f unction a(s) exists such that 0.006 987 
 a(s)  0.0969 and

PROOF. By Taylor’s expansion of sin t, we have

where

the pairs of terms in parentheses in (21) all having positive derivatives if
t  6. Thus, if 0  t  a/2, we have A(n/2)  A(t)  A(O), i. e. ,

where, , by (20), ,
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Since, for JU I  1, log (1- u) = - u - u2/2 (1- OU) 2with 0  0  1, we have
by (19)

where B = (! )[1- ()(t2/6 - At4)]-2 evidently, B &#x3E; -land B  (-!) (1 - n2 /24)-2,
i.e.,

Thus,

where C = - A + B(- 1/6 + At2)2. In view of the estimates previously
obtained for A and B,

It follows that for 0  88  nj2

and thus that

which coincides with (18) with a(s) = 3C. Thus, the lemma is proved.

Proof of Theorem 2.

First consider the case I = 0. The Fourier integral inversion aj(x) =
== (1 j2n) jd,(8) exp [- ixs] ds implies that

00

Using the estimate Yi(S)Zi(S) in (0,11:/28), as follows from (18), and the
estimate IYj(s) 1  (8S)-i in (11:/28, ao) gives
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The first term on the right-hand side is  (2n)-iO’;1, and the second term is

Combining the estimates for the two terms gives (17) in the case I = 0.

The norms of derivatives of the aj are estimated similarly. The Fourier
transform of the 1-th derivative being given by

we have 11 a," 11  (27r) -’f Is llyi(8) d8, and in the same manner as before,

Thus, Theorem 2 is proved.
In earlier versions of this paper, Theorem 2 in the case I = 0, but with

a larger constant in place of ct,o, was proved by use of the inequality

The inequality follows from Euler’s product representation and was suggested
for this application by P. Mikulski and R. Syski.

REMARK. Consider the operator .K* = KJK’j", where Xe and E., are
operators of Gaussian or of arithmetical averaging with kernels k8() and
k,,,($), respectively. The kernel k;) of the operator KI, is of course the con-
volution of k,($) with itself j times, and similarly for the kernel k,’,($) of K[I’.
The kernel A*() of -K* is the convolution of k, with k,,. Let o and y de-
note the respective variances of the distributions with densities k.($), k,,,($):
for instance, cr = f 7e. ($) $2 4. The variance of the distribution with density
k* ($) is (/*2 = jae- + j’ (1’2, and we have

18 - Ann. Scuola Norm. Sup. Pisa 01. Sci.
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for any v(x) integrable on B. This follows from the inequality

and an estimate of Ilk." jj obtained by use of (18) as in the proof of Theorem 2.
The next results are used in showing that layered solutions converge

as layer heights approach zero.

THEOREM 3. Constants A and B exist such that

and that

where we can take A = 0.40, B = 4.1.

REMARK. In a far more thorough analysis than that which follows,
Petrov [22] gives general asymptotic expansions that pertain to aj - gi

(Theorem 15, p. 206) and to flai- gj I dx (Theorem 18, p. 212) for large j.
His results imply inequalities (22) and (23), but without the logarithm. In

Section 8, in which the inequalities are applied, the improvement from
using Petrov’s result is, however, rather slight. Hence, and for the sake of

completeness, we use Theorem 3 as stated, its proof being comparatively
direct.

Proof of Theorem 3.

First we must estimate 11 gi - a;lI. Let a abbreviate aj. Then using the
Fourier inversion formula as before, and referring to the previous lemma,
we have

To estimate Ii, we use the inequality 1- exp [- 0153]0153, which holds
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for 0153;.&#x3E;O, to obtain

where «* - max l0153(s) 1 0.097.
o8n12

Concerning 12, we have

By the well-known rule

we have

and, since

for positive ot, fl, C, E,

In addition, ,

since j = 3 or2/82. In this result replacing 2 jn by exp [- log (nl2)] and again
referring to (25) shows that

and in view of the previous finding for I2 ,
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In sum, therefore,

with

in verification of (22).
In proving (23), we shall require a serviceable estimate of

for large negative x, an estimate we shall obtain by comparing Aj(x) with

Since dj(8) = yj(8) is even, the Fourier inversion formula for aj takes the form

Therefore, integrating with respect to $ on an interval (0, x) gives

A similar formula holds for Gj(x), and by subtracting the two formulas we
obtain for the quantity

the expression

in which
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Consequently,

To estimate J1, again by use of (18) and the inequality 1 - e,-’ x for x &#x3E; 0,
we obtain 

.

Concerning J,, we have

while

and

In sum,

with

This result implies, in particular, that for x &#x3E; 0

while, as follows from rule (24),

Thus,
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This and (22) permit us to estimate

in which we take X = 2[log (ajE)]+a. By (22),

and by (26) and (27),

where A. = A,, + 2(2;r)-i if j&#x3E;3. In sum, therefore,

with A3 = 2(2A + A2)  4.1, as stated in (23).
The final theorem is concerned with El norms, the estimates in this

theorem pertaining to bounded, measurable functions v(x) that either are
periodic on R of period P &#x3E; 0 or else are integrable on B. We set

THEOREM 4. Let S = 88 denote the operator of Gaussian or arithmetical
averaging. If v(x) is integrable on R, then a constant so exists such that

If v(x) is periodic of period P, an inequality of the form (29) still holds, but
with so replaced by a quantity of the form constant + eji. For v(x) of either
type, a constant Sl exist8 such that
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2yL addition,

Let ki() denote the kernel of Si:

(For arithmetic averaging, k;(;) = ai(;); for Gaussian averaging, k;(E) = gj($).)

Inequality (29) is immediate in the case of integrable v(x), since

with a suitable constant 8*, see (17) with I = 0.

If v(x) is periodic of period P &#x3E; 0, we have from (32)

the summation being over all integers m. For 0  E  P, of course mP  E +
+ mP (m + 1) P, and since kj (y) is even and decreases as y increases starting
from 0,

Therefore,

evenness accounting for the second equality. Because k;() decreases for $ &#x3E; 0,
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Therefore,

and

This formula justifies (29) in the periodic case.

Proof of (30).

By (32),

Hence, for integrable v(x),

inequality (30) following from the expression for k’ in the case S = G. and
from (17) in the case S = As.

For periodic v(x) of period P, we obtain from (35), analogously to (34),

the summation again being over all integers m. Since k’() is an odd function,

while for 0$P

Hence,
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by (14) in the case S = A and by the analogous equality in the case S = G.
Using this in (36) proves

from which and from (17) pertaining to A and the analogous estimate per-
taining to G, (30) follows.

Proof of (31).

Let j&#x3E;2. Again starting from (35), we have for integrable v(x),

(31) following from this.
In the periodic case,

(31) again being the consequence.
For j = 1, the previous methods again suffice in the cas e S = G, while

if S = A the formula (dldx) Av(x) = (2s)-l [v(x -E- s) - v(x - s)] is used.
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