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Uniqueness Theorems for Some Open
and Closed Surfaces in Three-Space (*).

J. J. STOKER (**)

dedicated to .Hans Lewy

1. - Introduction.

The problems considered are the following:

1) Christo f f et’s problem. The sum R2 of the principal radii of
curvature of a surface is prescribed as a function of the direction of its

normals.

2) Minkowski’s problem. This the same as 1 ) except that the Gauss
curvature g = 1/RlR2 is prescribed as a function of the direction of the
normals.

3) Weyl’s problem. The line element is prescribed as a function of
Gaussian parameters on the surface. 

’

4) Liebmann’s problem. This is an infinitesimal version of 3) in which
a surface S(0) is embedded in a set of neighboring surfaces 8(ë), in one-
to-one correspondence with ,S(o), with a few continuous derivatives in E

near e = 0. It is assumed that the surfaces S(s) are approximately iso-

metric in the correspondence set up near e = 0, in the sense that corre-
sponding curves differ in length by a quantity of order ë2.

(*) This paper is dedicated to Hans Lewy; at the end of the introduction a
few remarks about that are made. The author wishes to express thanks to the Gug-
genheim Foundation for an award. The ideas that resulted in this paper came about
in the course of using it.

(**) New York University, Courant Institute of Mathematical Sciences, New York.
Pervenuto alla Redazione il 6 Luglio 1977.
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In all of these problems it is to be shown that any solutions for a surface
S(u, v), with continuous third derivatives, say, is uniquely determined within
orthogonal transformations, or, put differently, that any two surfaces satis- -

fying the conditions of the problems (which must, of course, include boundary
conditions in case the surfaces are not closed surfaces) can differ only by a
rigid motion plus a possible reflection in a plane. In all cases the Gauss

curvature .K is assumed not to vanish, except possibly at boundary points.
In the case of problem 4) uniqueness refers naturally to infinitesimal rigid
motions, which in effect means that 0, the displacement field of sur-
face points is that of a rigid motion within second order terms in E.

These problems have been treated at length by many writers. A good
deal of the relevant literature up to 1950 is cited in the author’s paper [9],
in which the closed convex surfaces were treated, together with some having
boundaries of a very special character. More recently the books of Pogo-
relov [7], Efimov [1], and a paper by Voss [14], give discussions of these

and various other problems concerning surfaces with boundaries, and with
the use of a considerable variety of methods. Only references to papers
cited here are given in the bibliography.

In the paper of the author cited above, the object was to give uni-
queness proofs in all four problems by making use of Minkowski’s support
function, which means that the problems are treated using homogeneous
functions in three-space. At the same time it was desired to give proofs
with a certain unity since the problems seemed to be in some sense closely
related. This was partially successful, but not as completely as was desired.
The purpose of this paper is in part to bring this out more clearly by
procedures using only the maximum principle in quite simple ways which
avoid, for example, the need for the symmetry relation between three arbi-
trary homogeneous functions of degree one, followed by an integration over
the unit sphere in three-space to obtain an invariant integral with an inte-
grand of one sign. All four of the uniqueness problems for closed surfaces
can be treated with the aid of a properly chosen covariant differentia,l form «
of first degree. Its exterior derivative da vanishes when it is integrated over
the surface, and « is selected so that the integrand does not change sign and
hence is everywhere zero, and in addition, is such that this leads to the

desired uniqueness theorems. In the author’s book [11] uniqueness proofs
for all four problems are treated in this way. They are quite concise, but
somewhat mysterious, since the choice of the differential « has little motiva-
tion, and the conciseness of the proofs results from the compactness of the
notation, which conceals a great deal of differential geometry.

The present paper also deals with various problems for open surfaces
when boundaries on the surfaces occur, or they extend to infinity. All bound-
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aries are assumed to be simple disjoint closed curves on the surfaces. These

problems are also solved in quite elementary ways using the maximum
principle. Some problems for complete open surfaces with 1£ &#x3E; 0 are

treated (these are boundaries of unbounded three-dimensional convex

bodies).
Papers by Volkov and Oliker [13] and by Oliker [6], published in 1970

and 1971, deal with uniqueness theorems for problems 1 ) and 2) when for-
mulated as boundary problems for relevant partial differential equations on
the unit sphere. I They are treated in the spherical image of the surfaces
in terms of Minkowski’s support function h as dependent variable. The

condition imposed for the uniqueness theorems is h = 0 on the boundary
of SZ. Uniqueness theorems for such problems also lead, of course, to uni-
queness theorems for the surfaces in three-space. The author feels that

they can be obtained in a rather more elementary way by working in three-
space. Also, though it is quite natural from the point of view of uniqueness
theorems for boundary problems for a second order linear partial differential
equation on the sphere to prescribe that solutions should take on prescribed
values at the boundary, it is not the only reasonable way to formulate
boundary conditions for the surfaces in three-space. For example, in the
paper by Volkov and Oliker simple examples are given showing that the
solution of Christoffel’s problem for certain surfaces with boundaries is not

always uniquely determined by prescribing the value of the support func-
tion on them. But in all cases the solution of these problems for the surfaces
is uniquely determined if any one of the Cartesian coordinates at its boundary
(rather than the values of the support function) has a prescribed value,
since it then follows (as will be shown later) that the other two coordinates
are uniquely determined within translations. The same remark applies to
Minkowski’s problem. It has long been known (apparently since- Darboux)
that the same thing holds for Weyl’s problem (and also, within the infini-
tesimal approximation involved, for Liebmann’s problem). The author has
not seen this remark in the literature about the first two problems, although,
as will be seen, it is very easy to verify it.

This paper is dedicated to Hans Lewy. He and I have been friends for
more than thirty years. I At the time it began we worked closely and fruit-
fully together for about a year on problems in fluid mechanics. However
I, and students, have been much influenced by his two classic papers about
Weyl’s and Minkowski’s problem, in which he dealt mostly with difficult
existence questions; but he also gave the first uniqueness proof for the solu-
tion of Minkowski’s problem for closed analytic surfaces. Thus it seems

appropriate to me to write a paper for this occasion in the field of differen-
tial geometry in the large. I
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2. - Formulation of the problems using Minkowski’s support function.

The formulas needed for this paper will be set down without deriva-

tions. These can be found in the paper [9] cited above or in the literature
otherwise-in any case the theory is quite elementary in character.

The support function is defined as follows. A point p of a regular sur-
face 8(u, v) in three-space is considered and a Cartesian coordinate system xi,
i = 1, 2, 3 is chosen with its origin not on S. The direction cosines of a

normal to S at point p are denoted by oci. The function M2, is defined

as the distance from the origin to the tangent plane at p. Since the

Gaussian curvature .g is assumed not to vanish, the points of S in a neigh-
borhood of p are in one-to-one correspondence with the directions of the
normals. I The function M2, a3) is then extended into three-space as a

homogeneous function x2, x3) of degree one by setting

This is Minkowski’s support function. I It means that an infinite cone with

vertex at the origin is mapped on the surface in such a way that all points
on each ray from the origin (except the origin itself) map on a single point
of ~S. This makes it possible to regard the surface as defined by H, with

as independent variables defining normal directions of the surface. I
The Cartesian coordinates the points of S are then shown to be
given by

In effect these are conditions that result because ~S is the envelope of its
tangent planes. The coordinates xi of the points of S are therefore deter-
mined by homogeneous functions of degree zero, since H is homogeneous
of degree one, and that is as it should be because it means that every point
of a given ray from the origin does indeed map on a uniquely determined
point of S. It is vital to observe that (2.2) leads to the following conclusion:
if two support functions of surfaces differ by a linear f unction then the two
surfaces are identical within a translation.

Curvature properties of S are defined through consideration of the prin-
cipal radii of curvature R,, -R~ in connection with the formula of Rodrigues.
It is found in a straightforward way that Rl and I~2 are roots of the following
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algebraic equation:

Here Hik is a symbol for second derivatives of H. This equation, seemingly
cubic in R, is really quadratic, since the constant term in it, i.e. the deter-
minant IHikl, y vanishes simply because H is homogeneous of degree one.

It then follows that the support function satisfies two differential equa-
tions containing R~ and R2 in coefficients. One of them is

which results from consideration of the sum of the roots of (2.3). The

second results because the product of the roots of (2.3) is RIR2 = I.K, and
because H is homogeneous of degree one:

The following identities occur later; they hold when H and Ware any
homogeneous functions of degree one (not necessarily derived from a surface):

If H and W were identical, the three ratios in (2.6) would all be equal
to 1/r2K in view of (2.5); thus each equation of (2.5) is equivalent to the
others. For the sake of ready reference some of Euler’s relations for a homo-
geneous function H of degree one are set down; they are used in deriving
the above identities:
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The second results because the first derivatives Hi are homogeneous of

degree zero.
Suitable partial differential equations for problems 1) and 2) are, clearly,

given by (2.4) and (2.5). For Weyl’s and for Liebmann’s problem the
formulation in terms of a support function is less direct. If X(u, v), Y(u, v)
are two surfaces ~51, ,S2 which are isometric in the same parameters (u, v),
it follows that dX ~ dX = dY ~ dY, the differential d to be taken with respect
to (u, v). Introduction of V = X - Y and Z = -E- Y), the so-called mean
surface, y leads to the condition dV.dZ = 0. It can then be shown that a

uniquely determined rotation vector 8(u, v) exists such that

in which X means the vector product; provided that the mean surface Z
is a regular surface in the parameters (u, v). It is easily seen that this con-
dition on Z will be satisfied if the two surfaces ~~1 and ~2 are so placed in
three-space that no pair of tangent vectors that correspond by the isometry
are parallel in three-space, but oppositely directed. In the book of Pogo-
relov [7] the regularity of the mean surface is verified in a special case;
in a recent letter to the author he states that this intriguing question remains
unsettled in the general case. However, if the two surfaces are placed so
as to be tangent to each other at a pair of corresponding points, it is clear
that the mean surface will be regular even if not too large finite displace-
ments of corresponding points in three-space occur. I This, of course, y means
that an unwanted restriction is imposed if the mean surface is used, but
nevertheless WeyFs problem rather than Liebmann’s problem is involved:
in the second problem the original surface S(o) can be used legitimately in
place of a mean surface.

The connection of this with a support function W results by defining
W as the scalar product 5. n of the rotation vector with the unit normal n
of the mean surface, hence first as a point function on a unit sphere (the
spherical image of the mean surface), y which is then extended into three-

space as a homogeneous function of degree one. An elementary discus-
sion (carried out in [9] for Weyl’s problem) shows that if 8 is a constant
vector in the parameters (u, v) that then the isometric surfaces can differ
only by a rigid motion. It turns out that the uniqueness theorems for
problems 2), 3), and 4) then all lead to the same linear differential equations
for a relevant homogeneous function (in spite of the fact that the differential
equations for 2) and 3) are Monge-Amp6re equations, hence not even quasi-
linear). This is basically the reason why a unified treatment of the uni-
queness problems would seem feasible and worth looking for.
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3. - Christoffel’s problem.

Consider two surfaces ~51, 82, possibly with boundaries, such that T~ ~’. 0
holds, but K  0 as well as K &#x3E; 0 may occur. For both, the support func-
tions H~2~ are then sometimes assumed to have the same values at any
boundaries of their spherical images. This is the assumption made by Volkov
and Oliker [13], and by Oliker [6]. In effect, and .H«&#x3E; are assumed to be

prescribed at boundaries of the spherical image. In the papers quoted the
significance of this for the surfaces Si and S2 is mentioned only in passing,
probably because the problem is dealt with as a boundary problem on the
sphere, with differential equations also defined on it. It seems to the author

easier to deal with the problem in three-space since the differential equation
is simpler and the uniqueness theorems are proved in a straighforward way
that is quite elementary.

THEOREM C1: It has some point to deal with the classical problem first,
i. e. the case in which 81 and ~S2 are closed convex sufaces with the origin
in their interiors, and thus the spherical image covers the whole sphere.
It is to be shown that ,S1 and S2 differ only by a translation. Their support
functions H(l), H(2) both satisfy (2.4) with the same right hand sides. Thus

is evidently a harmonic function in three-space (it would be
whether ,Sl and ~2 are closed or not, and also whether T~  0 or I~ &#x3E; 0

holds) :

The harmonic function H is defined in the entire xl, x2, x3-space, except at
the origin. However, the origin is an isolated point with H defined and
single-valued in its neighborhood, and H - 0 as r - 0 because .H is homo-
geneous of degree one, hence H is bounded near the origin. Consequently
the origin is a removable singularity and H is harmonic there if its value
is defined to be zero. The function behaves linearly in r when r - 00; it

follows that H is a linear function of the variables xi (from Liouville’s

theorem for harmonic functions in three dimensions), and because of (2.2)
the coordinates Ti of the points of the two surfaces 81 and ~S2 differ by a

constant, and thus 81 and ~3 differ by a translation. Thus an exceedingly
simple proof of uniqueness of the solution of Christoffel’s problem for
closed convex surfaces results.

In the paper by Volkov and Oliker cited above examples are given
(involving surfaces with K  0) for which the solution of the problem with
boundaries is not uniquely determined when the support function H is

prescribed at boundaries. However, the solutions are uniquely determined
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if any one of the Cartesian coordinates Xi = Hi (cf. (2.2)) is prescribed, as
will be shown next.

THEOREM C2: For surfaces with K&#x3E; 0 or .KcO and any number of bound-

aries, the uniqueness proof is hardly more complicated than it was for closed
surfaces if the boundary condition imposed is that a Cartesian coordinate, x3
say, is prescribed at all boundaries. I Since H in (2.4), hence also in (3.1), is
rather naturally assumed to have at least continuous second derivatives,
it follows that solutions of (3.1) would have continuous derivatives of all
orders since they are harmonic functions. Thus the derivative H3 =

= H31’ - .H3 ’ would be a solution of

Consider the values of on the spherical image Q, regarded as an open
set, which lies on the unit sphere centered at the origin. I At the points of 8Q
corresponding to boundary curves of ~’1 and ~’2, the boundary condition
assumed means that the difference Ng~ 2013 H32~ has the value zero at all bound-
aries. Thus unless H3 =-= 0 holds in Q, a positive maximum of H3 could be
assumed to exist at a point p in S~. H3 is a homogeneous function of degree
zero, hence is constant along each ray from the origin to points of SZ; it
therefore takes on a maximum in three-space at p. But that is impossible
since H3 is a harmonic function. I Thus H3 = 0 holds, and H = H~2~ is

independent of x3.

LEMMA C : From this it follows readily that the other Cartesian coordi-
nates xl and x2 of S’1 and S2 differ by constants at all corresponding points.
The proof is simple. Since H is independent of x3, it follows that HII +
-f- H22 = 0 holds. At the same time it follows from (2.8) that

and since these are identities for arbitrary values of xl and x2, the deter-
minant Hl1H22- H;2 = 0 ; because Hll = - H22 it follows that HIl = H22 .-
= I~x2 = 0 holds everywhere. Thus g’~ and H2 are constants and this means
that the coordinates Tl and x2 at all corresponding points of 81 and S2 differ
everywhere by a constant, and the desired lemma is obtained. With it the
proof of Theorem C2 is completed. I

THEOREM C3: Examples of surfaces with boundaries for which this uni-

queness theorem holds for .~  0 as well as ~ &#x3E; 0 are readily given. I For
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example, any closed convex surface with holes cut out anywhere, for exam-
ple, a band in the form of a ring with two boundaries, and thus not simply
connected, would serve for the case K &#x3E; 0. For .K C 0 such bands also
exist. In addition the bands might be such that the spherical image could
have a number of sheets, and the surfaces could have self-intersections. I The
maximum principle would again serve to establish the uniqueness theorems,
since that involves a purely local statement, and the fact that H would
be defined as a harmonic function in a multi-sheeted domain in three-space
would cause no difficulty. I

Other uniqueness problems have been considered by M. Tsuji [12], in-

cluding particular kinds of closed surfaces having arbitrary genus. Such

surfaces have of necessity regions in which K must be positive, as well

as negative. To construct such examples, the surfaces were assumed to be
built up of pieces of negative curvature joined to pieces with positive
curvature across special curves where K = 0 holds. On the parts with
T~  0, the Christoffel condition is assumed to hold, while on a part with
-If &#x3E; 0 either that condition or Minkowski’s condition is assumed. I

THEOREM C4 : The books of Pogorelov and Efimov cited earlier

deal extensively with the case of bounded surfaces 8 in which .KT = 2a
and the spherical image is a hemisphere. For Christoffel’s problem such
cases are readily treated in three-space not only when a coordinate of

boundary curves is fixed, but also if the support function is prescribed.
In case H is prescribed at the boundary suppose that X3 = 0 contains the
great circle that bounds the spherical image. It follows for two surfaces S1
and ~2 that H = H~ 1 &#x3E; - H(2) = 0 on the unit circle centered at the origin in
the plane x3 = 0. The origin is located so that H &#x3E; 0 holds generally. But
H ~ 0 when r - 0 on any ray from the origin, and since H = 0 on each
ray as it crosses the unit circle in x3 = 0, it follows since H is homogeneous
of degree one that it vanishes everywhere in the plane X3 = 0. Since H is a

harmonic function it can be continued analytically by reflection across the
plane x3 = 0, and consequently can be defined as a harmonic function every-
where in three-space except at the origin, where as in the earlier discussion
it has a removable singularity. As before, H behaves linearly at oo, hence
is a linear function, so that the derivatives Hi are constants, which means
that 81 and S2 are congruent. I The uniqueness theorem C4 is thus proved.

4. - Minkowski’s problem.
This problem is to be attacked on the basis of the three equivalent equa-

tions (2.5), with a representative example of the form
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The two others are found by cyclic permutation of the subscripts. I
The device used by the author in [9] will again be used here. It con-

sists in introducing the sum H = H(l) + H(2) , and the difference W = 
- H(2) of the support functions of two convex surfaces S1 and S2 (K &#x3E; 0

holds throughout this section, in other words) such that (4.1) is satisfied

when g is the same for both. The result is readily found to be the following
linear differential equation for W :

The functions W and H are both, evidently, y homogeneous functions of

degree one, and H is the support function of a closed surface with positive
Gauss curvature since it is the sum of support functions for two such sur-

faces, y and the surface is then the boundary of a bounded convex set

(Hadamard’s theorem). It follows that

if s3 # 0 holds, in view of (4-1), which is valid when H is the support func-
tion of any surface with .K &#x3E; 0. As was pointed out earlier two other identi-
ties like (4.2) and (4.3) hold when the subscripts are changed cyclically.
Thus always one at least of the equations of the form (4.2) is elliptic at a
given point since xl = x2 = z3 = 0 never occurs.

THEOREM Mi: As in the preceding section, the discussion begins with
the uniqueness theorem for the case of two closed convex surfaces S2
so that their spherical images cover the entire unit sphere. In that case

H = -+- ’2&#x3E; is defined in the entire xl, x2, xs-space, except for the

origin, and yY = H(l) - H(2) as well. It is to be shown that 81 and 82 are
identical within a translation. This will be done by considering any one
of the Cartesian coordinates xi = Hi of ~’1 and S2, x~, say, and showing
that W, = H31’ - H (2) is everywhere constant. Once that is done it is clear

from symmetry that the same statement would hold for the other coor-
dinates.

LEMMA J-1: If there are boundaries, symmetry in all three variables does
not in general exist, and the latter statement is not necessarily applicable.
It does hold, however, as will now be shown. Suppose again, as in Lemma
C, that W3 is found to be identically constant so that W depends only upon
xl and x2. If X2 0 0 is assumed (the 0 can be treated in the same

fashion) then W would satisfy the appropriate equation of the type (4.2)
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for this case, i.e.

Since H,,,, =A 0 and W31 = 0 and W33 = 0 hold, it follows that W11 = 0, first
for r2 # 0, then for all values of x2 by continuity. Also, as was noted in the
previous section, it follows from Euler’s theorem for the first derivatives

, ~2 (when W3 = const holds) that

for any values xl, x2, and as a result IWikl = 0. Since WIl = 0, it follows

that Wi~ = 0. Finally, for x3o 0, (4.2 ) holds with HIIH22 - H 1 2 &#x3E; 0; thus

W22 = 0 everywhere, including X3 = 0, again by continuity. Consequently
WIt, are identically zero, so that W is a linear function of x1, x2, x3, I
and its first derivatives are constants. In other words, 81 and S2 would
differ only by a translation. This proves Lemma M, and verifies a state-
ment made in the first section to the effect that two surfaces satisfying
the basic condition, i.e. the partial differential equation, imposed in Min-
kowski’s problem would differ at most by a translation if it is assumed that
any one of their Cartesian coordinates xi is the same for both at correspond-
ing points.

THEOREM Mi: The uniqueness theorem for closed surfaces is now to be
proved with the aid of a maximum principle. To this end consider the« ver-
tical » Cartesian coordinates T3 of them at corresponding points; their differen-
ce is the function W3 (cf. (2.2)). If this is not everywhere constant on the unit
sphere centered at the origin (which implies that it is constant on every ray
from the origin since it is homogeneous of degree zero), it may be assumed
that it has a positive maximum at a point p on the sphere, and consequently
a maximum at that point in the x1, X2, x3-space. Consider first the case in

which p does not lie on the x3-axis, so that xl and x2 cannot vanish there
simultaneously. Assume, say, 0 holds at p. The differential equa-
tion (4.4) is valid there, and is elliptic when it is regarded as an equation
for W as a function of x1 and z3 in the plane z2 = const through the
point p since 01532 =F 0 at p is assumed. The maximum principle does not
immediately apply to this equation since yP, being homogeneous of degree
one, does not necessarily have a maximum in three-space at p, and thus
not necessarily so in the plane x2 = const. However, a device can be intro-

43 - Annali della Scuola Norm.. Sup. di Pisa
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duced so that the maximum principle may be used. That is done by ob-
serving first that .H33 ~ 0 holds. The equation (4.3) can therefore be divided
by it and then a differentiation of the equation with respect to 01533 yields
the following second order differential equation for the derivative W3:

Here the coefficient B, for example, is given by Since 

being homogeneous of degree one, has a maximum at p in three-space, it

has also a maximum at p in the plane x2 = const. But that, as is well

known (and not difficult to prove), is not possible because the discriminant
of the relevant quadratic form for (4.5), i.e.

is clearly positive. Thus W~ = const would hold everywhere, and Lem-

ma if would yield the proof of Theorem ifi.
The uniqueness proof will therefore be completed once the special

case in which p is at the point (0, 0, 1) on the unit sphere has been dealt
with. This is done by showing that a contradiction results also in this
case, as follows. It may be assumed through an appropriate translation
of 82 that W3 = 0 at (0, 0, 1), i.e. at p (it is legitimate to assume x3 =1
at p since is in any case constant along the z3-axis).

3

Consider the function Wa(x1, x2,1 ) ; it satisfies, from WiXi = W, the
relation "~

in which W1 and W2 depend only upon xl and x2. In addition, the equa-
tion (4.2) holds for W. The basic fact is that W, has ~P3 = 0 as a max-
imum at p, hence also in the plane x3 = 1; it follows from (4.6) that

W = 0 at xl = 0, X2= 0 1 i. e. at the origin in the plane 
matter of simple direct verification to see that the right-hand side of (4.6)
is unaltered if W is replaced by i.e. if an arbitrary linear
function is added to it. By a proper choice of the constants a and b the
first derivatives Wi and W2 of the new function would have the value zero
at the origin. It follows that W may be assumed to vanish to second order

at the origin. The existence of the maximum of W3 = 0 at p means that
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the following inequality holds:

This can be put into a useful form by noting that

so that

holds. From (4.7) it then follows that

is valid. Since W vanishes to second order for r = 0, it follows that

as r - 0, and results since Wjr is a non-decreasing func-
tion of r in view of (4.9) (*). Consequently W also has that property; in
other words W would take on the minimum value zero at r = 0. But that

is impossible unless W = 0 holds since W satisfies (4.2) in the plane x3 = 1
and HllH22- Hi2 &#x3E; 0 holds.

For the closed surfaces Si and ~2 therefore, W3 --- 0 holds, and Wl and
W2 would be constant, as was proved earlier. This completes the uniqueness
proof of theorem ~Il.

THEOREM lVl2: For surfaces Si and 82 with boundaries, such that any
one of their Cartesian coordinates is assumed to be the same for both at

corresponding points, the uniqueness theorem is proved in the same way
as above by using the maximum principle: a positive maximum of 

say, could be assumed to exist in the spherical image Q, and the discussion
above would once more lead to a uniqueness proof. The observations made
concerning Theorem Cg (but restricted to the case K &#x3E; 0) are also relevant
here.

(*) This device is adapted to the present problem from a much more general
unpublished lemma by D. Koutroufiotis and L. Nirenberg. The lemma states:

Let u(x, y) be such that 0 holds in a bounded star-shaped domain D
relative to the origin. Then the function u - xux - YU1/ takes on any maximum
value in D also at some point on the boundary of D. The lemma has an intricate
proof except when the maximum occurs at the origin (which is the case in the pre-
sent discussion).
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In case it is the value of the support functions and H~2~ of ~’1 and S,
that is prescribed at boundaries, as is done by Oliker and Volkov, rather
than a Cartesian coordinate, it is also possible and advantageous in some
cases to give uniqueness proofs by working in three-space rather than on
the surface of the unit sphere, y since the proofs then require only elemen-
tary procedures, rather than such things as the use of Hilbert’s theorem,
proved with the aid of his theory employing integral equations, to make a
statement about relevant linear eigenvalue problems on the sphere. A few
examples will be given. I

THEOREM Suppose that the spherical image ,S2 lies in a hemisphere
without touching the great circle that bounds the hemisphere, and this in
turn is assumed to lie in the plane x3 = 0. In that case the rays from

the origin to D will cut out a bounded domain D in the plane 01533 = 1,
say, with any number of distinct curves forming the boundary aD of D,
on which W = H~1~- H(2), when solutions H(l) and H(2) are support func-
tions of two surfaces satisfying the boundary conditions, would have the
value zero. On that plane (4.2) holds, with HllH22- Hi2 &#x3E; 0, when H is
defined as H = H~1~ -+- H~2&#x3E; since x3 = 0 does not occur in ,5~. Multiplication
of (4.2) by W and integration over D yields, evidently

The parenthesis can be written as a divergence expression, i.e. (H22 
- (Hl1 W2- TV1)2 = O2 since third derivatives cancel out.
Integration by parts then results in the identity:

with F and G defined as indicated above. Since W = 0 on 8D it follows
that

1.J

and since the integrand is a positive definite quadratic form in W, and W2,
it follows that W1 and W2 vanish everywhere, and consequently W3 also.
Thus the uniqueness proof of Theorem jtfg is carried out in elementary
classical style.

THEOREM M4 : Another interesting case in which H is prescribed at a
boundary is that of bounded surfaces with a spherical image SZ that is a
hemisphere, and the uniqueness within translations of such surfaces is to
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be proved. This special case has received a good deal of attention in the
literature, as was pointed out earlier. If the great circle arc that is the

boundary of D lies in the plane a;3 = 0, 1 it follows that W = .g 1 - H 2 va-

nishes on every ray from the origin lying in that plane, as was pointed out
in the same situation in the preceding section. Thus W = 0 in the plane
s3 = 0 holds. (This is the main reason why this case is so special.) But if
W == 0 holds for all xl, x2 in the plane 01533 = 0, its first derivatives Wx and

W2 also vanish everywhere there. Consequently both Wl and W2, if

not zero everywhere, could be assumed to have a positive maximum for
x3 = on the unit sphere, hence also in the plane x3 = c. As a result
the same discussion as was carried out on the basis of equation (4.5), y but
with subscripts 1 and 2 rather than 1 and 3, would lead to a proof of
uniqueness.

THEOREM lVl5: If the spherical image S~ lies on a hemisphere bounded
by r3 = 0, but a part of 3~3 lies on x3 = 0, a more complicated discussion
is required to prove the uniqueness theorem for bounded surfaces when

the support function is prescribed at boundaries. The earlier discussion of
a similar case in which Green’s theorem sufficed to prove uniqueness would
not yield the desired result in this case since the projection on a plane
r3 = const by rays from the origin to points of SZ would result in an un-

bounded domain D in the plane 01533 = const, and the boundary integrals in
Green’s theorem would not necessarily tend to zero at oo. However, this
difficulty can be overcome because the differential equation in the present
case has the special form

for W = W(xl, x2) in any plane x3 = const 0 0, and because it is natural to

make the assumption that W - 0 upon approaching boundary points of S~
in the plane x3 = 0.

The basic idea is to avoid boundary integrals by introducing an auxil-
liary C°°-function Co(x, y) = r2 = (xl)2 + (X2) 2, that has the value 1 for
r  1 and the value 0 for r &#x3E; 2 and integrating by parts twice in order to
get rid of boundary integrals altogether. A function y) (*) is defined as

(*) The basic idea of getting rid of boundary integrals by successive integra-
tion by parts is due to S. BERNSTEIN. The generalization of it through the use of the
auxiliary multiplier ~ in what follows is due to L. NIRENBERG,
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for a positive value of R. It follows that second derivatives of ~ are bounded
for R large by const/.R2. Multiplication of (4.10) by W~ (instead of W, as
in the preceding) and use of Green’s theorem leads to

The integrals are taken over a part of the domain D that lies inside of a
sufficiently large circle so that on its circumference ~ = 0 holds and boundary
integrals vanish either because W = 0 on any boundaries in that circle, y or
because ~ = 0 on the intersection of D with it. The above identity can be
written as follows:

The symbols I and J have an obvious significance. I Green’s theorem is used

once again with respect to J, with the result

The limit of J when R - oo is now considered. The term behaves
like const/.R3 since (since Hii is homogeneous of degree -1) and
’22"" l/r2, as was noted above. Thus if W were uniformly bounded in
the X2-plane as R - oo the term would be such that .R2 W 2

Hll’22 -+ 0 uniformly as R - 00, and the same observation would apply to
the other terms in the integrand of J. Thus for .R  r C 2.R, J -~ 0 as

B -* oo. Consequently 1 - 0 also. As a result, since ~ = 1 in this range of
r, it follows that

hence W _--_ const = 0, in case boundaries of D occur. If S~ is a hemisphere,
hence 2n, so that D is the entire plane x3 = const, only W = const
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is proved, but the desired uniqueness theorem for the surfaces results-
provided that the boundedness of W at oo is established.

In the present case this can be done. At first sight it seems not reason-
able since W is homogeneous of degree one in three-space and hence becomes
linearly unbounded at oo along rays from the origin. However in the plane
x3 = const. W is not homogeneous. The circumstance that its value on the
unit sphere is assumed to be zero where x3 = 0, together with the assump-
tion (which is now made) that ~W has continuous first derivatives upon

approaching the boundary of SZ leads to the boundedness of W at oo in a
plane x3 = const. In the accompanying figure, the r-axis passes through a
boundary point of S~ in x3 = 0 at the point in the intersection of the r,
x3-plane and the plane 01533 = a. It is known that e m W(1, 0) = 0, and W(p) =0-*0

-W((o, 0) = 0), with O = a/sin 0. The behaviour of W(p) is to be

investigated when 8 --~ 0, hence p - 001 Thus for W(e, 0) the equation

holds and

Fig. 1. - Behavior of W(e, 0) in X3 = a,
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since We(1, 0) is assumed to be continuous at 0 = 0. Hence 0) is

uniformly bounded in the plane x~ = c~ when p - 00. This concludes the

proof of Theorem 

5. - The problems of Weyl and Liebmann

The uniqueness theorems to be discussed here for these problems have,
in a sense, already been proved. I It remains only to recall the partial for-
mulation of these problems in Section 2. The isometric surfaces 81, ~2 de-
fined by vectors X(u, v), Y(u, v) were supposed given. The mean surface

Z = 2 (X -f- Y) was introduced and assumed to be regular in the parame-
ters (u, v), and in that case its curvature g is positive since Si and S, have
that property (cf. [9]). The difference V = X - Y was also introduced.

From the isometry the existence of a rotation vector 8 can be proved
such that

holds when the differentials are taken with respect to u and v, and the
symbol X denotes the vector product. A scalar function W(U,1)) is intro-

duced as follows:

in which W is the scalar product of 8 with the unit normal n of the mean
surface given by Z(u, v). Thus W can be considered as a function of the
directions of the normals of the mean surface, hence as a point function on
its spherical image. It can therefore be extended into three-space as a homo-
geneous function of degree one. It then is found that the components ði

in xi-space of 8 are given by

Since dV in (5.1) is an exact differential, a compatibility condition is satis-
fied. The mean surface can be represented by its support function H, and
the compatibility condition then takes the form

with two other like conditions obtained by permutation of subscripts, all

of which are equivalent. This theory was derived by H. Weyl[15] for
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Liebmann’s problem, but it is valid also for Weyl’s problem (cf. [9]). Thus

a uniqueness theorem proved for one is also valid for the other, although
for Liebmann’s theorem no restriction involving the mean surface is needed
since the original unperturbed surface takes its place.

In other words the differential equation for W is the same as it was for
Minkowski’s problem, although W now determines through Wi = bi the
components of the rotation vector instead of the difference of the Cartesian
coordinates of the surfaces ~S1 and ~2 to be compared. As was already noted
in Section 2 the surfaces Si and S, will differ at most by a rigid rotation if
8(u, v) is independent of u and v.

THEOREM Wr : If the surfaces considered are closed and convex, the

function W defined in (5.2) is defined in the entire xl, x2, x3-space except
at the origin, and the vector 8= (&#x26;1, ~2, ~3) also. It is to be shown that

they are congruent. The derivatives Wi are continuous on the whole unit

sphere, hence bounded. The uniqueness theorems are therefore proved
for Weyl’s problem for closed surfaces by resorting once more to the device
that leads to equation (4.5), and the discussion that follows it, and the

proof by the maximum principle for that equation leads to the result that
the components bi i of the rotation vector are of necessity everywhere
constant.

THEOREM .L1: For Liebmann’s problem (5.4) is also valid, as Weyl show-
ed (although he was apparently not aware that the theorem is valid for

the problem named for him), with .H now the support function of the orig-
inal surface 8 and 6 an infinitesimal rotation vector + 6S,
for ð8 small of first order in a deformation parameter. Thus for closed

surfaces the uniqueness theorem for this problem is proved in the same

way as for Weyl’s problem, although they are basically quite different since
an exact isometry is not required in Liebmann’s problem. I

THEOREMS W2, L2 : For surfaces with boundaries uniqueness theorems
can also be proved in various cases for Weyl’s problem, and of course
also for Liebmann’s problem. If, for example, it is assumed that the sur-
faces ~S1 and 82 have the same fixed boundaries in space, which means

that their three Cartesian coordinates xi are the same at corresponding
points, the uniqueness theorems of the present section can be proved in the
same way as they were proved in section 4 for various cases in which the
support function was prescribed at boundaries. That can be seen as fol-

lows. At boundary curves the vector function V =: X - Y would be the
zero vector, since X and Y are by assumption identical on them. It then

follows from (5.1) that 8 and dZ are linearly dependent along such a curve,
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or put differently, 8 falls along a tangent vector of the mean surface and
thus its component in the direction of the normal to this surface vanishes.
Consequently W = 0 along the boundary, in view of (5.2). Thus theorems

W2, L2 hold (cf. Theorems ~V14, 
Theorems of this kind were proved by Hsiung [2] by the method using

an integral of the exterior derivative of a properly chosen invariant differ-
ential form of degree one. However, such theorems were proved first for
rather general cases by Rellich [8] who, however assumed only that one
of the Cartesian coordinates was prescribed at a boundary. (As was noted
earlier, and is anyway well known, if one such coordinate xk is assumed

known for a surface then any other surface isometric to it which has the

same xk coordinate will differ from S only by an orthogonal transformation.)
Thus to prescribe all three coordinates at boundaries, as was done above,
and as is also done by Hsiung would seem to be unnecessarily restrictive.

The formulation of Weyl’s problem in terms of the rotation vector is not
well adapted for dealing in general with uniqueness questions when bound-
aries occur and a particular coordinate in three-space of the boundary is
prescribed, since it is not (for the author at least) easy to see how that results
in a suitable boundary condition on W in terms of a mean surface and its
unknown normals at the boundary.

THEORE31S W., L,,: However, in the special, but interesting, case of
what is called in the literature a convex cap (konvexe Mftze) with to-
tal curvature 2x, i.e. a convex surface with spherical image a hemi-
sphere, and which has a boundary in the plane 0153S = 0, say, a uniqueness
theorem can be proved. Surfaces isometric to S are to be considered which
also have their boundaries in x3= 0 and with spherical image a hemisphere.
Thus the Cartesian coordinate 5;3 would be zero at such boundaries. Once

more this proves to be an exceptional case; it is dealt with as follows. It

is first of all readily seen that the mean surface, if regular, is also a con-

vex cap, with its boundary in the plane x3 = 0. Boundary curves of S,
and S2 are in isometric correspondence on 81 and ~52, hence their tangent
vectors also correspond in the respective tangent planes of ,Sx and S2.
Thus in these planes the tangent vectors of 81 and S2 orthogonal to the
plane 0153S = 0 would also correspond in the isometry since they are both at
right angles to directions in the plane 0153S = 0 that are known to correspond.
It is then clear that the rotation vector 8 (known to be uniquely deter-
mined) must be orthogonal to the plane X3= 0 for all boundary points of
S1 and S2. This, however, means that 8 is in the tangent plane of the
mean surface at its boundary. Consequently, from (5.2), W = 0 at the

boundary, and the uniqueness theorem is proved in the same way as for
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this case in Minkowski’s problem, since the differential equation and bound-

ary condition are the same for both problems (cf. Theorem M,).
E. Kann [3], [4] established new proofs for uniqueness theorems for

Liebmann’s problem and Weyl’s problem for convex surfaces with bound-
aries ; his method, which employs projective transformations and is rather
complicated, is different from all others known to the author.
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