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Classical Solution to a Second Order

Nonlinear Elliptic System in R3.

J. NE010DAS (*) - J. STARÁ (**) - R. 0160VARC (*)

dedicated to Jean Leray

The paper is concerned with the regularity properties of weak solu-
tions of a Dirichlet boundary value problem for an elliptic nonlinear system
of second order. It is well known that there exists a unique solution of
the given problem under suitable conditions on coefficients but this solution
need be nor bounded nor continuous even if the coefficients are analytic
functions (see J. L. Lions [1], Ch. B. Morrey [2], E. Giusti, M. Miranda [3],
J. V. G. Mazja [5]).

In this paper we shall consider coefficients defined only on a subset J~f

of Ram. Similar problem arised in studying the existence of solution in the
theory of hyperelasticity (see J. Ne6as [4]). The coefficients satisfying the
condition of ellipticity non necessarily uniformly will be supposed and the
existence of classical solution will be proved in the following (briefly and
non-exactly said) sense: if ic is a classical solution of the given problem
with the right-hand side i and the boundary condition fo and if we prescribe
a continuous path of right-hand and boundary conditions

beginning in f and ico then there are only two possibilities: either
there exists a continuous path of regular solutions on the whole (0, T) or
there is a critical value T) where the path of solutions ends; in
this case the gradient Vu(t) tends to the boundary of .~ or to the point
where the ellipticity conditions degenerates or the norms 11 u as

t --~ to .
In the first part-i 2-apriori estimates will be proved. If the given

equation is considered as Euler’s equation of a functional 0, it is possible

(*) Matematicko-fyzikální fakulta UK, Malostransk6 nim6sti, Praha 1.

(**) Matematicko-fyzikalni fakulta UK, Sokolovska, Praha 8.

Pervenuto alla Redazione il 28 Giugno 1977.
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to say that the apriori estimates are based on the local behaviour of the
fourth G,4teaux differential of 0.

In the second part"§ 3- regularity results are proved by means of
implicit function theorem.

All the results are formulated for two types of domains-a bounded
domain with an infinitely smooth boundary and a half-space. The proof
of the apriori estimate for a half space is simpler and shows clearly its

basic idea but the second part (the implicit function theorem) brings some
complications caused by the nonexistence of compact embeddings. For a

bounded domain the proofs in the second part are the standard ones and
the proof of the apriori estimate is analogous to that for a half space, but
a lot of difficulties is caused by using the suitable partition of unity and
complicated test functions.

We shall consider systems of second order with coefficients dependent only
on the gradient Vu.

1. - Notation.

Let SZ be a domain in B3 with an infinitely smooth boundary and M
be a domain in Ram containing the origin. Let us denote by x = (x,, x2, x.,)
(respectively $ = = 1, 2, 3; r = 1, ... , m~ a generic point of Ra (re-
spectively with the norm

is the space of all functions with continuous and bounded first

derivatives on S~ such that all these first derivatives can be continuously
extended on S2. On the Cartesian product [Ol(Q)]3m a pseudonorm

will be used.
For a bounded domain Q we shall denote by or [1~’2(S~)]m the

usual Sobolev spaces with the norms

and
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Let us remind that the norms Ilullk.2 and 1I’U11.2 ard equivalent on the
0

space W2.
For Q = Ri = X3 &#x3E; 0 ) we shall denote by [T~Y’2(.R3 )~m the com-

pletion of infinitely smooth functions with compact support in R3 with
respect to the norm

By ~~2’~R3 )~"Z we shall denote the completion of the space of infinitely
smooth functions with compact support in Ri with respect to the norm

(respectively [~(-?3~) is a completion of the space of all infi-

nitely smooth functions with compact support in R; with respect to the
norm (respectively ~~.2)’

Let F be a four times continuously differentiable real function defined
on M and let us denote

Let we shall write

and denote the graph of the gradient by

We shall deal with the regularity properties of a weak solution of a
Dirichlet problem for a system of the form
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By the weak solution o f this problem we shall understand a vector function
u E such that

(ii) the equality

for every

2. - Apriori estimates.

.A. Estimate8 on half -space.

In this part of Section 2 the domain
will be considered.

2.1. Let R be a positive number with the following properties :

(i) 

(ii) there exist f unctions

800k that, for every we have

Then there exists a continuous f unction D : (0, .R) -~ (0, -[- oo) such that for
every U E I W2 "(R’) 3 t1 *2"(R+)]-, 3 which solves the equation (1.2) with uo = 0,
f E [ W2(1~3 )]3’~ and satis f ies the inequality
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the inequality

holds.

PROOF. Roughly said the derivatives in the directions of the axis xl, x2
will be estimated by choosing suitable test functions, then the normal deri-
vative will be calculated from the equation.

Let us fix e E (0, and deal with the terms with the first and second

derivatives at first.

The condition (2.1) (ii) together with = 0 implies

Putting (1.2) and using (2.3), we get

Let w’ denote the derivative of a function w in the tangential direc-
tion, i.e., in the direction of one of the axes ri, x2. Let us 
and put q; = 1p" in (1.2). Integrating by parts we get

and, putting again = ~,

Under the assumption on the function u the equation (1.2) can be written
on Q in the form

for r = 1, - - ., m. The matrix (b33) is regular with a uniformly bounded
inverse and we can estimate by means of (2.6). Thus
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Let us now put q = 1p"" for the same function in the

equation (1.2). Integrating once more by part, we obtain

Let us and consider the second integral on the left-hand side
of (2.9). Integrating by parts for the third time, we obtain

but the last integral is not less than

Using the density of in the space W2(.R3 ), we can easily prove
a special case of L. Nirenberg’s interpolation inequality.

2.2. LF,31MA. Let W E be ac bounded f unction on RN . Then 2v’ E

E and

(w’ has the same meaning as in the foregoing proof, i.e., the derivative
of w in any of the directions Xl’ ...~~i).

Now we can estimate the first integral in (2.9) by (ii), the second integral
by (2.11), (2.12) (applied to every function and (iv), the third inte-
gral by Holder’s inequality. Thus we have

which according to (2.1) (iii) gives an estimate for the tangential deriva-
tives in the form

The next step is the estimate of the derivatives of the form
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where i, j = 1, 2, and it immediately follows from

2.3. Lr,,mlVIA. There exists a positive constant 0 such that for every func-
tion w E the inequality

holds.

The proof of this lemma is an easy consequence of the Plancherel’s

theorem applied to the function w prolonged on the whole space J~.
Thus

Let at least one of the indices i, j be less than 3. Then according to
Lemma 2.2,

The L4-norm of a’ulax’ , can be calculated from the system (2.7) as before.
Differentiating once more in (2.7) in a tangential direction, we get the
equality

All the terms on the right-hand side are L2-functions and the matrix (b33~
has a uniformly bounded inverse; therefore

If now ~/= owjox3 in (2.17) we can repeat all the procedures with the
(2.18) estimate instead of (2.16) and we get a bound for in the form

which together with (2.18), (2.4), and (2.8) accomplishes the proof.
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The following lemma deals with the same type of an apriori estimate as
Lemma 2.I ; we suppose there that u is a solution of a non-homogeneous
Dirichlet boundary value problem and that it lies in a neighbourhood of a
smooth function ~.

2.4. LEMMA. and Let R be a positive
number with the following properties :

(ii) there exist functions

such that, for every

(iii) for every ~o E (0, R), 3d(e) e2 c(~o). Then there exists a continuous

function D : (0, B) -* (0, oo) such that, for every which solves

the equation (1.2) with the boundary value u,, E [ W2~ (I~3 )]m and the right-hand
side f E [ 1~2(.R3 )]3m and satisfies the inequality

the estimate

holds.

PROOF. Repeating the first part of the proof of Lemma 2.1 with the test
function u - uo instead of u, we obtain the inequality

The first difference is caused by the fact that the equality (2.10) does not
hold in such a simple form. Integrating by parts in the second integral
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in (2.9), y we obtain

Now ’U - Uo can be written in the equality instead of 99 and

where

Substituting y = u - uo into (2.9) and using (2.24) and (ii), we obtain

In this case Nirenberg’s lemma will be used for the function v = u - ~.
Thus for every positive E we get
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By means of Nirenberg’s lemma and the Fourier transform we get the
continuous embedding of the space W2 (R’) into and thus

Using (2.26) in the inequality (2.25), we have

where Z contains the terms on the right-hand side of (2.25) and the second
term on the right hand side of (2.26). The derivatives of the coefficients

b~! are uniformly bounded on 9. and we can estimate the right-hand side
of (2.25) by

Further, y in virtue of (2.26),

In order to get a bound for 11’1/," 11~12 we shall use a simple algebraic lemma :

2.5. LEMMA. Let a,, ..., an be nonnegative real numbers, Then

the inequality

implies

Choosing a sufficiently small 8, I we obtain

The rest of the proof is quite analogous to that of Lemma 2.1.

B. Bounded domain Q.

In the next lemma, S2 will be a bounded domain with an infinitely
smooth boundary in The required smoothness of the boundary can be
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described as follows:

The boundary 8Q is described in a neighbourhood of every point by an
infinitely differentiable function r which is defined on a ball

in the corresponding coordinate system. The boundary is covered by a
finite number P of such system, i.e., for every x E 8Q there exists a coordi-
nate system in which x = (Xl’ X2, Ti(x,, X2)). Let us suppose

for every i = 1, ..., P and a suitable or &#x3E; 0. Let us add a domain

Vo with an infinitely smooth boundary and such that

Let be a partition of unity corresponding to the system i. e. ,
the functions y (for i = 1, ..., P) are infinitely differentiable

and supp V~ U {.c = (x’, ~i(x’ )) ; x’ for i = 1~ ... , P. Moreover, all

yQ are nonnegative and

The form of the apriori estimate for a bounded domain is quite analo-

gous to that for a half space. We include it for completeness and point out
the different part in the proof.

2.6. LEMMA. Let’ 11 E [ W2(S~)~m and c Let R be a positive numbers
with the following properties :

(ii) there exist functions
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such that, for every.

Then there exists a continuous f unction D : (0, R) -~ (0, -f- oo) such that

for every u E which solves the equation ( 1.2 ) with the boundary value

uo E [ -W’(S2)]- and the right-hand side f E [W2(S2)] 3- and satisfies the condition

the estimate

holes.

PROOF. Apriori estimate on YQ will be obtained by choosing a suitable
test function of the form a sufficiently large K. Further we

can transform the considered part of TTQ into a half-space and use the
methods of previous lemma.

With respect to the equivalence of the norms in the space W2(S~), it

is sufficient to bound the highest derivatives of u. The index Q will be

fixed throughout the proof and will be omitted.

PART I. Estimates on VI.

Substituting the test function 99 = (yO)2K.U into (2.9), we can divide
the left hand side into two parts, one part containing the highest deriva-
tives of u and the second one with the derivatives of non-zero order of (y°)2x.
The symbol w’ denotes here the first derivative of the function w in any
direction. Thus 

_

where

Z2 consists of the terms of the form
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and Z3 contains the expressions

with
1 n ,  1   , .. n

Using the equality (2.23) for this special case of 99 = (yl)2K.U, we have
that the second integral in (2.35) equals

where Z, contains the expressions

and Z5 the expressions

where and

(2.36), we obtain
. According to (2.33) (ii), (2.35), and

To follow the method of the proof of Lemma 2.1 we have to overcome two
technical difficulties. In the first step we must replace by v = îi - u
in order to get sharp estimates, y but Nirenberg’s lemma cannot be used
directly for the function because the powers of y° on the
left-hand side of (2.37) would not agree. We shall use the following modi-
fication :

2.7. LEMMA. Let w be a bounded measurable fonction on a domain 
j be a positive integer less than or equal to N. Suppose that the derivatives



618

exist in a weak sense and are square integrable. I Let 1p E D(Q) be a nonnega-
tive f unetion. I Then "1p E L4(Q) and

The lemma can be proved by means of the simple integration by parts
and the Holder’s inequality.

If we apply Lemma 2.7 to the functions simulta-

neously, y we shall obtain

Here Z6 contains the terms

with , Z7 contains the expressions

and Z. the difference between the left-hand side of (2.37) and the same

expressions with v instead of u. Returning to the solution u on the left-hand
side of (2.38), we get another additional term which can be included into Zg .

We shall now estimate Zi by means of

to the power less than 2 and the norms of f, u, 1. Let us recall that

and

The function and the equivalence of the norms in
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this space implies that there exists a constant C so that

and

we get forK&#x3E;4

To bound the integrals I and Jn we shall use the following inequalities
(which can be proved integrating by parts) and Lemma 2.5.

2.8. LEMMA. Let h E W2(S~) be bounded by a constant M and y E D(Q).
Then there exists a constant 0 depending only on y and Q so that

and

40 - Annali della Scuota Norm. Sup. di Pisa
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Putting ; " we obtain

and with respect to (2.38), (2.40) and Lemma 2.5 we get finally

and

PART 2. Estimates on Vi.

Let us fix an index i = 1, ..., P and consider the corresponding coordi-
nate system. Let x = Ø(x) be the coordinates of a point x E Ra in this
system. We shall transform the set Vi into a part of a half-space. Let y
be a mapping

and z = Then the absolute value of Jacobi’s determinant

of x is identically equal to 1. Let us write

Let us define

If we consider the test function in the equality (1.2) and
write u = uoX-1, we can conclude that u solves the equation of the form
analogous to (1.2) and the interesting part of the boundary 8£5 is

a part of a plane. Especially we get that for 
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Now the coefficients ak satisfy the conditions (2.33) (ii) with the same con-
stants e(e) and on the equally transformed balls 9,. If we write

yi = and Ko = uooX-1 we shall repeat the proof of Lemma 2.4 choosing
the test function = ()(2013 o)’ Combining the estimates of Lemma 2.4
and 2.6, we get

and using the equivalence of the norms, we have

An additional term with the derivatives 2dlaxi does not cause any diffi-

culty as are infinitely smooth functions. The functions

belong to L,(D) according to Nirenberg’s lemma for all the indices k, j
such that k + j  5. The second derivative of K with respect to x3 can be
calculated directly from the equation as in the proof of Lemma 2.4. By
the same method the last third derivatives can be estimated. Thus we get
the inequality

Returning to the original coordinate system, we obtain the estimates for
the solution u on the set Vi and summing these estimates for i = 0, 1,..., P,
we get

3. - Main theorem.

The main theorem will be proved by means of the implicit function
theorem and the apriori estimates of the last paragraph.

In this part the symbol Q denotes the half-space Rg or a bounded
domain with a smooth boundary, y simultaneously.
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3.1. THEOREM. Let U E [ W2 ~ (.~ )]m be a solution o f the equation (1.2) cor-

responding to the right-hand side i E [,W2(0)]" and the boundary condition

ilo E us suppose that there exists a positive number R satisfying
the conditions (2.33) of Lemma 2.6.

Then for every e E (0, R) there exist positive numbers 8, 6 so that, for each

and

there exists a unique solution

of the equations (1.2) corresponding to the right hand side f and the boundary
condition UO. If we denote by G the mapping of Ua( f ) X U.5(ilo) into Ue(u) such
that G(f, uo) = u, then G is a continuous mapping from

PROOF. Let us put

with the topology of

and let us define the in the following manner:

where
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The assertion of the Theorem 3.1 is an immediate consequence of the

implicit function theorem applied to the mapping 0. To verify the assump-
tion of the implicit function theorem we shall need an embedding theorem
of this type:

and, moreover,

These theorems are well known (see J. Necas [6]) for a bounded domain Q
with a smooth boundary. For the case S~ = RI the first inequality can be
proved by means of Fourier transform and the second one is a consequence
of (3.1) and Lemma 2.2.

’ Thus @ is an open subset of the Cartesian product Y x X and

The convergence of and in ~~W2’(S~)~m implies the uniform con-
vergence of their gradients and together with the continuity of b~3 it gives
the continuity of the mapping 0 on C~i.

Let us prove that the partial differential ~2 exists on Ci and it is a

continuous mapping of @ into the space of all continuous linear mappings
of X into Z. The above mentioned embedding theorem implies that the
expression

belongs to the space Z for every
ciently near to u*,

Let us write, y for u suffl-
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Every component of H is a sum of the expressions of the type

After easy calculations (the mean value theorem) we get

where 7: is a measurable vector function with 17:1  1. Now the term
in the brackets is of the order The norm can be estimated

quite analogously.
Let us prove the continuity of ø~. Let ~( f~, uon, u,~)~,~ 1 be a sequence

in 0152 tending to (f, uo, u) and put

and

We get immediately

But the convergence of 1 implies that 0 and thus

Analogously we get the inequality

and it gives the required result.
The most important part of the proof is that 02(j, uo, u) is a continuous
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one-to-one mapping of
. (v ) = 0, then

on S~ for r = 1, ..., m. Multiplying every equation by vr, integrating by
parts over Q, and using (2.33) (ii), we get

and it implies that v = 0.
In the next part we shall prove an apriori estimate for a linear partial

differential equation with continuous coefficients

saying in fact that [Ø~]-l is a continuous mapping from Z in X. Such

estimates can be obtained by the multiple use of regularity theorems for
linear differential equations (see [7]). We shall prove it here for com-

pleteness by a method analogous to the proof of Lemma 2.4. For a bounded
domain Q we shall use the complete continuity of the embedding of the
space W2(S~) into O(Q) and W~(.Q) into L4(Q). For a half-space such an
assertion does not hold and we replace it by

3.2. LEMMA. Let 8 be a positive real number. Then there exists a con-

stant C(8) so each 

PROOF. Let g be an extension of h on the whole space Ra. If we

denote by ’ the Fourier transform of the function g, then

Using the Holder’s inequality we get for each positive the relation
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The second integral on the left-hand side equals to ~r~-4. Using Minkowski’s
inequality for the first integral on the left-hand side of (3.10), we get

We can choose the function g so that there exists a constant C’ so that

and

and it gives, together with (3.9) and (3.11 ), the inequality (3.7). The ine-

quality (3.8) is an easy consequence of (3.7) and Lemma 2.2.
Let us now return to the proof of the Theorem 3.1. Let and

and 99 E Multiplying g by q and integrating by parts we get

The condition (2.33) (ii) and the Lax-Milgram theorem give

We shall repeat the procedure of the proofs of Lemma 2.4, respectively 2.6.
Let D and let us take cp = ’IjJ" for y E (Here again y’ = ayaxi
for i = 1, 2.) Integrating by parts in (3.13), we obtain the equality

Putting V = v and using (2.33) (ii) and (3.8), we get



627

The derivatives can be calculated from the equation (3.12). Let

now where y E and let us integrate once more by
parts in (3.15). Putting x = v and using (2.33) (ii), (3.8) and (3.7), we shall
have

By standard means we estimate the last third derivatives and get, for

sufficiently small E,

If Q is a bounded domain we have to return to the partition of unity and
the test functions as in the proof of Lemma 2.6 but basically the proof
remains without changes. Lemma 3.2 will be replaced by J. L. Lion’s lemma
for spaces with the completely continuous embedding 

The equality 0’(X) = Z will be proved by the homotopy method. Let

us define

for every t c- 0, 1&#x3E; - At is a one-to-one continuous linear mapping of X
into Z. It is well known that Ao(X ) = Z. Let Q be maximum of the con-
stant C of (3.18) and the norm of the mapping Let us put

Then is a closed subset of

{v,.,} is a bounded sequence in the Hilbert space X and thus there exists
a subsequence (let us denote it by fv"}, too) and an element v E X so that

converges weakly to v. The embedding inequalities imply that

in Z and thus According to (3.21),
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and is an open subset in ~0, 1~ : Let g E Z,
Let us define a mapping B: X -&#x3E; X in the following manner:

!~2013~o!!3.2~}’ Let us prove that the mapping B has a
fixed point in ? for a sufficiently small It - tol. But ? is weakly compact
and B is weakly continuous. Moreover,

where , and

with ~S that depends on and does not depend on v and t. There
exists a positive s (it does not depend on g) so that, for It - tol  E,

B(St) and B has a fixed point v but such a function solves the

equation A,(v) = g.

3.3. THEOREM. Let U E [W~‘(S2)]m be the solution of the equation (1. 2)
corresponding to the right-hand side and the boundary vaclu e

U E [ -W3’ (92)]’. Let us suppose that there exists a positive number R sactis -

fying the condition (2.33) o f .Lemmac 2.6. Let F be ac continuous mapping of
o, T) into Y such that F(O) = [1, uoJ. Then there exists a unique contin-
uous mapping U of Si) c ~0, T) into X so that

U(t) solves (1.2) with the right-hand side f (t) and the boundary
condition uo(t) such that [f(t), uo(t)] = F(t) for every t c- Z .

Moreover there are only two possibilities of the shape of the domain ~J : either

Z = 0, T) or there exists a critical value to &#x3E; 0 80 that 0, to ) and

PROOF. Theorem 3.1 implies immediately that the domain of the

required « solution path &#x3E;&#x3E; is open. Clearly 0 E ~. Let us consider the com-
ponent ~1 of D containing the point 0. If = ~0, T) then the con-

tinuity of U follows from Theorem 3.1. Let 0, T) and let us put
~1 = o, to). It remains to prove the condition (3.24). Let tn E 0, to),
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and

Then c KR-r¡/2 for a sufficiently large n, and using the continuity
of F at the point to and Lemma 2.4 or 2.6, we get the bound

for all sufficiently large n. According to the weak compactness of a ball
in X, there exists a subsequence {U(t.,,)l and a function u E X so that

converges weakly to u in By the usual limiting process
we get that u solves the equation (1.2) with the right-hand side f (to ) and
the boundary condition uo(to) and the uniqueness implies that u = U(to).
With respect to Theorem 3.1 we get the continuation of U on the interval
to, + e), which is a contradiction with the assumption on the domain 

3.4. THEOREM..Let M = R, let Ù E [ W2~ (S~)]m be the solution of the

equation (1.2) corresponding to the right-hand side f E and the

boundary value Ùo E us s2cppose that there exists a continuous

f unction c: 0, -~- oo) so that for all 71, ~ E Ram the inequality

holds.

Let F be a continuous mapping of 0, T) into Y such that F(O) = [1, 
Then there exists a continuous mapping U of  0, T ~ into X so that

(3.26) U(t) solves the equation (1.2) with the right-hand side f(t) and the

boundary value such that [ f (t), uo(t)] = F(t) for every t 

Moreover, there are only two possibilities of the shape of the domain ’Z:

either 0, T) or there exist8 a critical point to &#x3E; 0 so that ~0, to) and

PROOF. Let ~1 and to be defined as in the proof of Theorem 3.3. Let

Then we can choose a sequence and a so that U (tn) 2013~
in [ W2’ (S)’. According to the embedding theorems, U solves the equa-
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tion with the right-hand side f (to) and the boundary value uo(to) so that

we can define U(to) = u. If to = T or

the proof is completed. Let and

Then there exists a neighbourhood -~- KR of V U(to)~ so that all
the assumptions of Theorem 3.1 are satisfied and U is defined on 0, to -~- 8),
which is a contradiction with the assumption on 

3.5. THEOREM. Let U E [ W2’ (SZ)]~‘ be the solution of the equation (1.2)
corresponding to the right-hand side i E [W,2(Q)]" and the boundary value

ilo E [ W2’ (S)]’. Let us suppose that there exists a continuous function c : M --&#x3E;

- 0, -- 00) so that for all 71 E E M the inequality

holds.

Let F be a continuous mapping of 0, T) into Y such that F(O) = [1, uo].
Then there exists a continuous mapping U of t¡) c 0, T) into X so that

U(t) solves the equation (1.2) with the right-hand side f(t) and the boundary
value uo(t) (where F(t) = [ f (t), u,,(t)]) .for every t E 1).

Moreover, there are only two possibilities of the shape of the 
either ~ _ 0, T) or there exists a critical value to E 0, .~’~ so that ~ c 0, to) and

The proof is quite analogous to the proof of Theorem 3.4.
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