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Asymptotic Properties of Steady Plane Solutions
of the Navier-Stokes Equations

with Bounded Dirichlet Integral (*).

D. GILBARG (**) - H. F. WEINBERGER (***)

dedicated to Jean Leray

1. - Introduction.

It was shown in an earlier paper [1] that the solution of the two-

dimensional exterior problem for the Navier-Stokes equations which was
constructed in the fundamental work [2] of Jean Leray actually converges
to a constant velocity at infinity in a mean square sense, while the pressure
converges pointwise.

The proof was done in two parts. In the first part it was established
that the velocity, which Leray had constructed so that it was Dirichlet
integrable, was also uniformly bounded. We then showed that in any bounded
Dirichlet integrable solution the velocity has a limit in mean and the pres-
sure has a pointwise limit at infinity. We were, however, unable to show that
the limit in mean is equal to the assigned velocity at infinity.

In the present paper we investigate the properties of an arbitrary solu-
tion p} of the two-dimensional Navier-Stokes equations

(*) This work was supported in part through NSF grants MCS-75-23332-A02
and 37660-X.

(**) Stanford University.
(***) University of Minnesota.
Pervenuto alla Redazione il 15 Giugno 1977.
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in a neighborhood of infinity, y which has the property that

We shall show that while w may not be bounded under these assumptions,
it grows more slowly than (log 1.)1. The pressure has a finite limit at infinity.
The velocity either has a limit in the mean Woo or

approaches infinity as r - oo. The vorticity co = where w = (u, v),
approaches zero more rapidly than and the first derivatives of the

velocity decay more rapidly than at infinity.
A particular application of our results is a Liouville theorem, which

states that if p} is a solution of (1.1) in the entire x, y plane and 
is square integrable, then w and p are constant.

We remark that while our bounds allow the velocity to grow at infinity,
there is no known example of a Dirichlet integrable solution of the Navier-
Stokes equations which is unbounded at infinity. However, only very few
solutions which are not potential flows are known.

Under the different hypothesis that the flow is PR (physically reasonable)
in the sense of Finn, namely, that the velocity approaches a limit asymp-
totically as E &#x3E; 0, Smith [3] has shown that the Dirichlet integral
is bounded, and has derived much more precise asymptotic estimates on the -
velocity and its derivatives. The present work shows that the Liouville
theorem (Theorem 2) and the pointwise convergence of the pressure (The-
orem 3) can be obtained under the weaker hypothesis of bounded Dirichlet
integral of the velocity.

The contrast with the three-dimensional Navier-Stokes equations is

quite marked. There the finiteness of the Dirichlet integral is a more restric-
tive condition and, as Babenko [4] has shown, it implies that the velocity
approaches a pointwise limit as 0(r-i) and converges even more rapidly
outside a wake region. Whether an analogous result is true for two-dimen-
sional flows is an open question.

Throughout this paper we shall use the same letter C to represent dif-
ferent constants. The dependence of C on the given data will be visible in
context. -
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2. - Preliminary estimates.

We first establish several lemmas required in the later developments.

LEMMA 2.1. Let f c- Oll in r&#x3E;ro and have finite Dirichlet integral

Then

PROOF. By the Schwarz inequality we have

Integrating between "1( &#x3E; ro ) and r and again applying the Schwarz inequality, y
we obtain

Thus,

so that

LettÏng r1 -7 oo, we obtain (2.2).
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LEM31A 2.2. Let f = (1,, f 2 ), where f 1 and f 2 satisfy the hypotheses of
Lemma 2.1. Then there is a sequence , such that

uniformly in 0.

PROOF. We suppose 2 n &#x3E; ro, and let An denote the annulus 2 n  r  

Since

it follows from the integral theorem of the mean that for some - &#x3E;
I

By Schwarz’s inequality

for any 0 and f/J in [Oy 2]. Hence

Integrating this inequality with respect to q, we find

The conclusion (2.3) now follows from (2.4) and Lemma 2.1.

LEMMA 2.3. Let OJ = vx be the vorticity of a velocity vector w = (u, v)
satisfying the Navier-Stokes equations (1.1 ) in r ro and hacving finite Dirichlet
integral
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Then

PROOF. By taking the curl of the Navier-Stokes equations, we find that

Let q(r) be a smooth function which vanishes near r = ro and near
r = oo. Let h(w) be a function of one variable which is C1 and piecewise C2.
An easy computation which uses the fact that div w = 0 shows that

Since c~ satisfies (2.7) and q vanishes near r = ro and r = oo, integration
over the domain r &#x3E; ro yields the identity

To use this identity, we choose R &#x3E; and non-negative C2 cut-off
functions ~l and ~2 such that

and set

We choose a positive constant (00 and set

Then the identity (2.8) shows that

Consider the portion of the right integral over the annulus R  r  2R.

We have lL1n/ c and I Vq c for a constant 0 independent of R.

25 - -Annali della Scuola Norm. Sup. di Pisa
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Clearly h(co)  (02 and Therefore

Writing

,ve have for the other part of the integral over .R  r  21~

From Wirtinger’s inequality,

we obtain the estimate

From Lemma 2.1 we infer that

and hence
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Inserting (2.14) and (2.15) into (2.12) and combining the result with (2.11 ),
we conclude from (2.10 ) that

where g is a constant independent of Letting mo - 00, we infer that

and (2.6) follows.

LEMMA 2.4. Under the hypotheses o f Lemma 2.3 we have

uniformly in 0.

For 2 n &#x3E; ro,

Hence by the integral theorem of the mean, there is an rn E (2n, 2n+1) such that

One sees that
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and hence from (2.17) and Lemma 2.3

Since ei is a solution of the elliptic equation (2.7), it satisfies the maximum
principle. Noting that we infer that for rE(rn,Tn+l)

From (2.18) we now conclude the desired result (2.16).
The pieceding lemmas yield the following growth estimate for the

THEOREM 1. If w is a solution in r -&#x3E; ro of the Nccvier-Stokes equations (1.1)
and 

11.

then

uniformly in 0.

PROOF. Let r = 8 max (ro,1) and choose the integer n so that
Let An now denote the annulus with

such that (2.3) holds for f = w. Then by the Cauchy integral
formula representation of in An (see, for example, [5] p. 3),
we have

the latter equality results from the fact that

Since dist(z, It follows from Lem-

ma 2.2 that the line integral in (2.20) is To estimate the other
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integral, we write

where D is the  1 with center z. By Lemma 2.4 the first member
on the right is bounded by Cr-1; and since An is contained in the disc

 5r, we have

where En - 0 as n - oo. Combining these estimates, we see that
I as r --~ oo, and this proves the theorem.

3. - A Liouville theorem.

The results of the preceding section imply the following Liouville theorem.

THEOREM 2. Let p be a solution of the Navier-Stokes equationg (1.1 )
defined over the entire plane and assume

Then wand p are constant.

PROOF. Since oi is a solution of the elliptic equation

it satisfies the maximum principle. Lemma 2.4 shows that ro -~ 0 at infinity
and hence m m 0. Thus we have both ux + vy = 0 and Uy - Vae = 0 over
the entire plane and accordingly w = u - iv is an entire analytic function
satisfying 

-

It follows, for example by considering the Taylor series of w’(z), integrating
over Izi  B, and letting B ---&#x3E; oo that w’(z) - 0 and hence w is constant.
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4. - Convergence of the pressure.

We now show that the pressure p has a pointwise limit at infinity.

THEOREM 3. Let ~w, pf be a solutions of the Navier-Stokes equations (1.1)
in with finite Dirichlet integral

Then the pressure p has a finite limit at infinity.
This result is a consequence of the following lemmas, which are proved

under the hypotheses of the theorem.

LEMMA 4.1. The average pressure

has a limit at infinity

PROOF. Since 4u = wy and the Navier-Stokes equations
can be written in the form

It follows that

We avera,ge this equation to find that
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Hence by the Schwarz and Wirtinger inequalities, we have for any 

Since the right member of this inequality tends to zero as r1 - 00, it follows
that p(r) has a limit p., as asserted.

LIF,MMA 4.2. There is a sequence {R.,,}, Rn E ( 2 2", 2 2n+1 ), such that

PROOF. It follows from (4.1), (4.0), (2.6) and (2.19) that for any

r., &#x3E; max (r., :L)

By the integral theorem of the mean and Wirtinger’s inequality there is an
Rn E ( 2 2n, 2 2’~+1 ) such that

LEMMA 4.3. Let p. be as in Lemma 4.1. Then
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PROOF. Taking the divergence of Vp in the Navier-Stokes equations (4.1),
we find that

The right member is absolutely integrable in r &#x3E; ro. It follows that 4fi is
also absolutely integrable and hence

Let Anm denote the annulus Rn  r  the sequence of radii .Rn being
defined as in Lemma 4.2. We have the representation

where G = G(r, 8 ; o, ~ ) is the harmonic Green’s function for the annulus 
G can be written in the form (see, for example, [7, p.140, problem 2 with
answer on p. 417])

with r and e interchanged when r &#x3E; e. Since and H have average
value zero for each r, the last term in G does not contribute to the represen-
tation (4.6) and it will be omitted in the following. Writing G for G minus
the last term, we set
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when r  r  e2l with similar expressions for the other cases. The maxi-
mum with respect to ~1 and e, of this expression occurs when

.~ and ~1 = Thus

Also,

and thus, if we have

Similarly, y we see that if 

From (4.6) it follows that for

By letting m - oo and using (4.3) and (4.5), we obtain an upper bound on
the left member for r &#x3E; this bound approaches zero as n - oo .
From this we infer

Since has the limit p~, we obtain (4.4).
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LEMMA 4.4. Suppose that p~ = 0. Then

PROOF. Let the point be the origin of a new system of polar
coordinates (r’, 0’) and suppose that In these new coordinates we

still have ,

from the Navier-Stokes equations. Integrating with respect to r’ and 0’,
we find that

where

We multiply this relation by r’ and integrate from 0 to R to find that

We again see from the Wirtinger and Schwarz inequalities that
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Since the disc r’ R is contained in the annulus R  r  the second

term in (4.8) is bounded by

To estimate the first term on the right of (4.8), we note that by Schwarz’s
inequality

Thus we see from (4.8) that

We see from (4.4) with p~ = 0 and from (4.0) that the right-hand side ap-
proaches zero as R - 00. Thus we have (4.7).

Theorem 3 follows immediately from this lemma and the observation
that {w, p - p~~ is also a solution of the Navier-Stokes equations.

5. - Mean convergence of the velocity. 

It is an immediate consequence of the Navier-Stokes equations that the
quantity

satisfies the equation

Since the right-hand side is non-negative, ø cannot have an interior maximum
unless it is constant. It follows that the quantity
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also has no maxima. Hence it must be monotone for sufficiently large r.

Therefore this quantity has a limit in the extended sense:

Since p(r, 0) has a limit p., it follows that the limit

exists.

If L is finite, then Iwl is bounded so that the conclusions of [1] are valid.
For the sake of completeness we shall state and prove our theorem on mean
convergence of the velocity in such a way that it contains these results. The
proof will require the following strengthened form of Lemma 2.3.

LEMMA 5.1. Under the hypotheses of Lemmac 2.3, we have

PROOF. Choose R &#x3E; r, &#x3E; max(ro , 2 - ro) and non-negative 02 functions
~, and ~2 with the properties (2.9). Letting

we insert this function and h(c~ ) --- m2 into (2.8) to obtain

One verifies easily that there is a constant C independent of .R such that

and hence from (5.3) and (2.19)

Letting R - 00, we obtain (5.2).
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We again define the averaged quantity

and put

THEOREM 4. Let w = (u, v) be a solution of the Navier-Stokes equations (1.1)
in and let 

f8

Then

and

where .L is defined by (5.1). If 0  L  oo, then

exists and

if .L = -~- 00

PROOF. To prove (5.5) we note that because of Wirtinger’s inequality
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Since the right-hand side is integrable with respect to r, we find that

has a limit as r - oo: On the other hand, again by Wirtinger’s

inequality,

It follows that the limit must be zero, so that (5.5) holds.
To prove (5.6), we recall that there is a sequence with

such that (2.4) holds with f = w. Then

Since for any 0 and

it follows from the definition (5.1) of L that

uniformly in 0. In particular,

But for r E

which goes to zero with as n approaches infinity. Thus (5.6) is valid.
To prove (5.7) we note that if L &#x3E; 0 and y E (0, L), there is such

that iii ~ y for r &#x3E; r. We see from the form (4.1) of the Navier-Stokes equa-



399

tions that

Averaging this equation and dividing by we have

Hence for (22 &#x3E; ~1 &#x3E; r we have

Since y,

and by Wirtinger’s inequality

Since, by virtue of Lemma 5.1, the right-hand side approaches zero as e. 7
e2 - 00, it follows that 1p(r) has a limit 

If L = oo, (5.8) follows from (5.5), (5.6), and the triangle inequality.

6. - Some estimates for the derivatives of the velocity.

By using Lemma 5.1 we can improve the result of Lemma 2.4.

THEOREM 5.



400

PROOF. We note that for 2 n &#x3E; ro

Using (5.2) and proceeding exactly as in the proof of Lemma 2.4, we ob-
tain (6.1).

If L is finite in (5.1) so that Iwl is bounded, we may suppress the loga-
rithmic term in both the statement and the proof of Lemma 5.1. We may
then do the same in Theorem 5. Thus we establish the following result.

THEOREM 6. I f L C oo in (5.1), so that lwl is bounded, then

and

uniformly in 0.
The results in Theorems 5 and 6 on the decay of the vorticity can be

extended to the first derivatives of the velocity. For this purpose we prove
the following lemma.

LEMMA 6.1. The vorticity r.~ satis f ies a Hblder condition

where 0 is a constant independent of Rand

PROOF. We define
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so that (6.5) is a consequence of (2.19), (6.1), and (6.3). We need to
prove (6.4).

Let Cr, = Cr,(zo) denote the disc of radius r’ and center z,,, with

We set

and show first that

for an absolute constant C. Namely let q be a non-negative C2 cut-off func-
tion such that 27(r) = 1 for r ~ 1, r~ = 0 for r &#x3E; 2. Inserting
and h(w) = w2 into (2.8), we obtain

and ~ c C in C2 for constants C depending on the choice of q,
we have

We now derive a growth estimate for D(r), from which (6.4) will follow.
Multiplying the vorticity equation (2.7) by ill, integrating by parts, and
using the fact that V - w = 0, we find

where r’,. 0’ are now polar coordinates with respect to zo as origin.
Setting

we have in (6.8)

26 - Annali della Scuola Norm. Sup. di Pisa
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From Wirtinger’s inequality and (2.7) we see that the right member is at most

We then see from (6.8) that

It follows that

Integrating this inequality between r’ and 1, we obtain

and hence by (6.7)

Since this estimate is valid for all discs contained in

Izl &#x3E; R + 2, it follows from Morrey’s lemma (see [6], for example) that

for all zi, Z2 such that I --,L 1, IZ21 &#x3E; R + 2 and IZl - z21 1; the constant 0
depends only on the constant in (6.9) and is therefore independent of R.
This proves the lemma. 

’

THEOREM 7. If a solution w = (u, v) of the Navier-Stokeg eq2cations has
bounded Dirichlet integral in r&#x3E;ro then

0.

PROOF. We apply the Cauchy integral formula (2.20) in a disc CR = CR(z)
of radius R and center z with Izl = 21~ &#x3E; 2 mag (ro, 2). For w - u - iw

this gives
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We rewrite this formula as

and since

we may differentiate this representation to find that

where Wz One sees from (2.19) that the line integral is

We estimate the area integral by using (6.4) and the defini-
tion (6.6) of 

for a suitable constant C. We recall that 1~ = llzl and that

Combining these estimates, y we see that

(6.10) now follows from (6.5) and (6.1).
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