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Families of Analytic Discs in Cn
with Boundaries on a Prescribed CR Submanifold (*).

C. DENSON HILL (**) - GERALDINE TAIANI (**)

dedicated to Hans Lewy

1. - Introduction.

The inspiration for this work stems from the series of penetrating
papers [12], [13], [14], of Hans Lewy. Let S be a sufficiently smooth real
hypersurface in C" (n&#x3E;2) whose Levi form at the origin does not vanish
identically. Then there is an open set S~ in C", lying on one side of S,
with S m Q a neighborhood of the origin in S, such that any sufficiently
smooth function uo on S r1 i2, which satisfies the tangential Cauchy-Riemann
equations to S there, has a unique extension to a holomorphic function u
in S~ with This is the well known theorem of Hans Lewy
(presented in [12] for the case n = 2; see [22], [10] for a proof when n &#x3E; 2).
The same sort of extension phenomenon can also occur, as Lewy demonstrated
in [14], when the hypersurface 8 is replaced by a real submanifold M in Cn
whose codimension is greater than one.

The region S,~ mentioned above is the region swept out by the interiors
of an appropriately chosen family of complex one-dimensional analytic
discs in Cn, whose boundaries lie on jM" (or S). The holomorphic extension u
can be obtained via the Cauchy integral formula by integrating uo around
the boundary of each analytic disc. In the hypersurface case, the requisite
family of analytic discs can be obtained simply by an elementary slicing
technique, using an appropriate system of local holomorphic coordinates.

When M has codimension greater than one, it can be shown that no
such elementary slicing technique will work to produce the requisite discs;

(*) Research supported by a National Science Foundation Grant.
(**) SUNY at Stony Brook.
Pervenuto alla Redazione il 10 Giugno 1977.
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in fact, in order to find even a single analytic disc with boundary on M,
it is necessary to solve a certain system of nonlinear singular integral equa-
tions : Following the work of Lewy, Bishop [3] introduced a functional equa-
tion, involving the Hilbert transform T on the unit circle, which must be
solved in order to produce such a disc. Bishop then showed how to solv.,
the functional equation by the method of successive approximations, working
in the Sobolev space and using the boundedness of T on L2(SI). He
thereby produced a particular family of analytic discs with boundaries on M
which depends on certain parameters involved in the construction. Since

then a number of authors [3], [22], [6], [11] have discussed generalizations
of Lewy’s ideas, in various forms. But they have all relied rather heavily
on the use of the discs constructed by Bishop, modifying his argument only
by working in a higher Sobolev space deriving estimates for higher
derivatives, and thereby getting increased smoothness of the discs and their
dependence on parameters. This involved a loss of approximately nj2 de-
rivatives between the original manifold l~ and the solution. The best results
in that direction are those of Weinstock [21].

In any event experience has shown that the hardest part of the problem
in codimension greater than one is involved with the investigation of the
analytic discs and their properties; previous work has suffered from an
inadequate discussion of these points. See for example [7] where the Lewy
extension phenomenon is discussed by merely postulating the existence of a
family of discs which sweep out a manifold with certain desired properties.

The purpose of this paper is to give a treatment of these questions about
the analytic discs from a more precise and hopefully more useful point of
view. Our main results should be thought of as providing local para-
meterization and lifting theorems for families of analytic discs in C" with
boundaries on a prescribed CR submanifold. Actually we treat these ques-
tions in three categories: real analytic and C°°. Our viewpoint differs
from that of previous authors in that we introduce suitable Banach spaces
of parameters, and characterize each analytic disc with boundary on D~ as
the lift of a corresponding parameter disc in the tangent space. In particular,
in the category, we lose only 1+ e derivatives between the original
manifold 1~ and the family of discs. To our knowledge these questions have
never before been discussed in the real analytic and C°° categories. The

results alluded to here are summarized in Theorem 5.1, Theorem 6.1, The-
orem 7.1, and Theorem 8.1. We have also obtained a useful stability result,
Theorem 5.2.

To simplify conceptually the exposition we have derived our results via
the implicit function theorem in Banach spaces. But we would like to em-
phasize that, since the implicit function theorem has the apparatus of the
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method of successive approximations stored up once and for all in its proof,
our method is actually constructive. In order to obtain sharp results we
have at certain points used an improved version of the implicit function
theorem due to Nijenhuis, which uses the notion of strong differentiability.

We have made an important application of our work in Section 9 to solve
a specific problem: Given a suitable manifold if whose Levi form at the origin
does not vanish identically, the problem is that of constructing a local
manifold-with-boundary, of real dimension one greater than that of if,
which is nicely attached along lVl with ~VI as its boundary. This involves an

additional difficulty which has the nature of a « regularity up to the

boundary ~) type of problem. In previous work [3], [22], [21], [6] an Iff
was obtained merely as the image of the set where a certain Jacobian had
maximal rank, thereby avoiding singularities which were present, and M
was attached to M only in the sense of being in the point-set theoretic
closure of M. We have achieved rather precise results in Theorem 9.1.

We would like to express our thanks to Michael E. Taylor for a number
of useful suggestions, especially the use of the space in Section 7.

Another application is Theorem 8.2 on the extension of germs of holo-
morphic functions. As for the original question of extendibility in the sense
of Hans Lewy, we have confined ourselves to a brief discussion in Section 10.

2. - Bishop’s functional equation.

Let .lVl = c Cn be a real n + m dimensional manifold embedded
in Cn. The precise differentiability class of lVl will be specified later. Let

Ip(M) denote the real tangent space to .M at a point peif. The holo-

morphic tangent space at p is the complex vector space HT1J(jJ) = r1

n and dimeHTv(M) is the OR-dimension of if at p. If the

CR-dimension is minimal; i.e., dime = m, is said to be generic
at p. M is called an Embedded CR-manifold if its CR-dimension is a con-
sent cf p. Since genericness is an open condition, M is always

(R nfar a generic point p. In what follows we assume that is an

1:(àà(d CR.m3njfoJd of OR dimension m and of real codimension

p E can find an affine complex linear change of
that p = 0 and and

where We can

31 lccally as a graph over its tangent space; so that 3f== =

- h-~ (xl , ... ; Xl’ -’I-i I 1 zn ) ., ~ = l , 11 where the h~’s are real valued functions
which vanish to 2nd order at the origin.
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Consider a map which is holomorphic in the open unit disc
D c C and belongs to some differentiability class on its closure D. Then g,
or sometimes the ima,ge g(D), will be called an analytic disc in Cn. The restric-
tion of g to ~S~ = aD, or sometimes the image g(Sl), will be called the

boundary of the disc.
Bishop derived a functional equation whose solution leads to the con-

struction of a family of analytic discs whose boundaries lie on M. In order
to derive this equation, Bishop first noted that if h = (h1, ..., hz) is identically
zero, then ..., Zz are all real on M and must, therefore, be real and con-
stant on any analytic disc with boundary on M. Thus, for h _--_ 0, each

analytic disc in Cn with boundary on if is uniquely determined by an analytic
disc in Cm in the variables ... , zn and by I real constants for the values
zl, ..., ZI.

In general, suppose g is an analytic disc whose boundary lies on M.
Then, using an obvious vector notation for u and w, we have that

where uj(ei8) + ihj(u(ei8), w(ei8)), 1 ~ ~ ~ 1, and wk(ei8), 1  k  m, are bound-

ary values of holomorphic functions in D. Consider a R, valued harmonic

function U in D which belongs to an appropriate differentiability class on D.
Let V be the unique conjugate harmonic function such that Y(o) = 0. Let T
be the operator (acting componentwise) which takes the boundary values
of U to the boundary values of V. In our case, h(u, w) - iu are the boundary
values of a holomorphic function in D. Hence T[h(u, w)] and - u must
differ by a constant c = U(o) E RZ, where U denotes the harmonic func-
tion with boundary values u. Therefore the real part u of the first I com-

ponents of g(Sl) must satisfy Bishop’s functional equation:

On the other hand, suppose e E R is prescribed and w : D - Cm denotes
an analytic disc in C~. If u satisfies (2.1) then

are the boundary values of a holomorphic function such that

Re f (o) = c. It follows that the function g: defined by 
I
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defines an analytic disc g(D) in Cn whose boundary lies on M. Thus
whenever the Bishop functional equation can be solved, the solution provides
a lifting:

of an arbitrary analytic disc in to an analytic disc in the ambient space
with boundary on the graph Mover To(M).

We summarize the above discussion in the following:

PROPOSITION 2.1. An analytic disc g(D) in Cn with M exists if
and solution of (2.1) corresponding to some choice of the
constants c E Ri and to some analytic disc w(D) in Cm.

3. - Properties of the Hilbert transform on the circle.

The operator T defined in Section 2 can be expressed in two distinct
ways: Since T acts componentwise, there is no loss of generality if we as-
sume that u is a real valued sufficiently regular function defined on the unit
circle S’. Then ’U(ei8) has a Fourier series

and Tu can be expressed as the conjugate Fourier series of u

Alternately, T can be written as the limit of a convolution operator with
the conjugate Poisson kernel,

o

oo 7



332

(see Hoffman [9] for more details). We shall call T the Hilbert Transform
on the unit circle. T is closely related to the classical Hilbert Transform for
the line under a transformation of the upper half plane to the unit circle,
differing from it by a weight function on the measure. We shall be concerned
with the properties of T on the space 

For any K compact and ca(K) = is defined by

For k any non-negative integer we define

(For now our spaces Ck,a(K) will consist of real valued functions ; in sub-
sequent sections may sometimes consist of complex valued func-
tions. Exactly which we intend will always be clear from the context, and
should cause the reader no confusion.)

is a Banach algebra under the Ilk,lX norm. We have the following
proposition which, in the case k = 0, is just the classical theorem of Privaloff.

PROPOSITION 3.1. Let be holomorphic in D and

with norm I then o
and where c depends only on k and (X. Thus T :

is ac bounded linear operator. Moreover, T commutes with (tangential)
differentiation and I

PROOF. This proposition is well-known from several points of view-the
reader who is willing to accept it as a fact may skip on to Section 4. How-
ever, in order to make this paper as elementary and self-contained as pos-
sible, we include a proof of the proposition based on the maximum principle,
which is modeled on an elegant proof of Privaloff’s theorem due to

Bers ([4], p. 401) :
Let g, V be as above and k = 0. For any 0, 0’ we have

Fixing e’, let O(z) denote the single-valued harmonic
function in D such that and We have

, where v is argl the angle
between the straight lines from 1 to the points 0 and the angle
between the straight lines from to the points 0 and z (rotating by 
Thus,
Therefore, cos av. For z on the unit circle
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implying that

Hence z implies

Since V(z) - is harmonic we have

Consider the disc For ZE C we have

Thus for

z E C (3.3) implies

Now V(z) - is harmonic in C c D, so Poisson’s formula holds. Thus
and 

’

Calculating the directional derivative in the direction determined by cp,
we have

which implies the bound

independent of q. Hence we have a bound on the gradient and it follows
that I I and are both bounded by
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But and since 0’ was arbitrary this yields

for all z E D .

Now where y is any curve from z.
to z2. Assume We look at the following
three cases:

Case a) Since we have : , and ~ 1,
, where) ! and, 

where C,, denotes a generic constant depending only on a.

Case b) and i Let I

~ 3 where y
and
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where Ca is a generic constant depending only on a.

Case c) , Thus

again letting Ca be a generic constant.
Therefore, we have shown that g E 
The linearity of T and the fact that T commutes with differentiation is

a consequence of the expression for T in (3.2). The above inequalities imply
that is bounded. Therefore, is

bounded with For if 1 we have

We shall now prove that implies that
We have for j  k. Since is harmonic on D with har-

monic conjugate De U we have, from the above that .
Since g is analytic on D the Cauchy Riemann equations hold, i.e. J

and for ( where )
Thus for any we have

and similarly for . This implies that
t for all 1 Since U and V are harmonic on D

we have Therefore . and hence -

are Ca continuous on D for 1 Thus

All that remains to be proven is that 
I i. e. the mapping

defined by where
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g holomorphic in D, is continuous. G is a linear map between two Banach
Spaces. By appealing to the closed graph theorem, all we need prove is that G
has closed graph. Let (Y~ , g f) be a sequence in the graph of G. Suppose
Vi -+ V, in Cl,a(Sl), ek,a(_D) respectively. In particular, gi - g un-

iformly on D and therefore g is holomorphic in D. Also

since T is continuous on Thus g = G(V) and we are done.

4. - The implicit function theorem for strongly differentiable functions.

In order to solve the Bishop functional equation (2.1) we will make use
of the implicit function theorem in Banach spaces. Recall that the standard

elementary form of this theorem states that if f(u, x) is a function of class
ek (k ~ 1 ) on a neighborhood of the origin in into 1~’, where X, E, F
are Banach spaces, if f(O, 0) = 0 and if the partial differential 0) :
E - I’ is an isomorphism of E onto F, then the equation f(u, x) = 0 has
a local unique solution u = of class ek in some neighborhood of the
origin in X. Unfortunately this standard theorem does not give the best
results when applied to (2.1). To obtain the sharp results we want in section 5
it is necessary to use an improved version of the implicit function theorem
due to Nijenhuis [15]. His version uses the notion of strong partial diffe-
rentiability, which is not standard and is a bit subtle upon first encounter.
Therefore we state here its precise defin.ition, list some basic properties,
and give the exact statement of the theorem we need. All of this can be

found in [15], y with proofs.
Consider a function f(u, x) from an open set in E x X to F, where E, F

are normed vector spaces and X is a topological space. Then f is called
strongly partially differentiable with respect to u at (uo, xo ) if:

(i) there is a continuous linear map (also denoted by
x,,)) such that to every 8 &#x3E; 0 there is a 6 &#x3E; 0 and a neighborhood

N(xo) of xo in .X such that imply

(ii) the map z « f (uo, x) of .X to F is continuous at zo.

Note that these hypotheses imply that f is continuous at (uo, xo).
An f which is independent of x and satisfies (i) above is called simply
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strongly differentiable at Uo. Strong differentiability implies differentiability;
on the other hand, if f(u) is differentiable in a neighborhood of and the

derivative Du f (u) is continuous in u at then f is strongly differentiable
at uo . Thus strong differentiability lies somewhere between differentiability
and being of class Cx.

If f (u) is strongly differentiable at ~o it follows that f satisfies a Lipschitz
condition with respect to u in a neighborhood of Uo. The usual rules hold for
strongly differentiable functions: closure under addition, scalar multiplica-
tion, composition of functions, and products (provided the latter are de-

fined).
Whenever f(u, x) is strongly partially differentiable with respect to

both u and x at (uo, it follows that f is strongly differentiable at (~o, xo)
with respect to (u, x), and the usual rule holds which relates the total dif-
ferential to the partial differentials. If f (u, x) is merely partially differ-

entiable with respect to both u and x at (uo, but one of the partial
derivates is strong, then f is differentiable at (uo, xo) with respect to (u, x).

The statement of the theorem of Nijenhuis is as follows:

THEOREM 4.1. Consider a function f (n, x, y) from an open set in E X X X Y
into F, where E, F are Banach spaces, X is ac normed vector space, and Y is

a topological space. Assume that f is strongly partially differentiable at

(uo, xo , y/)) with respect to both u and x, and that Duf(uo, xo, yo): is an

isomorphism. Then there exists a neighborhood N1 of (uo, xo, yo ) in E X X X Y
and cc neighborhood N2 of (f(uo, Xo, yQ), Xo, yo) in F X X X Y which are in a
one-to-one correspondence under the macp

the inverse macp ,

is strongly partially differentiable at (vo, xo , yo) = Xo, yo ), xo , Yo) with

respect to 
Note that the hypotheses above tacitly assume that f(uo, xo, y) is con-

tinuous in y at yo, and the conclusion tacitly implies that the solution ~p(v, x, y)
is continuous in all variables jointly at (vo, xo, yo).

5. - Solution of the Bishop equation in ek,,,.

In what follows we will use the following notation: B will denote a com-

pact neighborhood of the origin in RI For the function h we introduce

22 - della Scuola Norm. Sup. di Pisa
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the Banach space

(1-times), y

with norm For the analytic dise, w in Cm we introduce the
Banach spaces

(na-times)

with norm where and ~(D) = holo-
morphic functions in the open unit disc D. Actually in this section we shall
only use the boundary values

and do not need the fact that they fill in to an analytic disc WC so

that throughout this section could be replaced by But we have

introduced the spaces because we will need them later. If u is an 1-tuple
of bounded functions on 81, or is an m-tuple of bounded functions
on Sl (later on D), we shall denote the supremum of their Euclidean norms
over or D, by and lwl., respectively. It will also be convenient to

introduce the notation

for the partial Lipschitz constant of h with respect to u; here the sup is
taken over all w), (u2, E B with ’U2.

First we consider the question of uniqueness of solutions to the Bishop
equation: Let c be a given vector in RI and let w be a given m-tuple of bounded
measurable functions on Si. Corresponding to this choice of the parameters
(e, w), consider any bounded measurable solution of (2.1), considered
as an element of In order that the composition h(u, w) be well
defined, we shall consider only u and w with luloo’ sufficiently small
so that (u, E B.

PROPOSITION 5.1. I f and LipB(h)  1 then such solutions u

of the Bishop equation (2.1 ) are unique.

PROOF. It follows from the representation (3.1) for T, by Pavseval’s
equality, that T is a bounded operator on with 1. Let U2

be two solutions of (2.1 ) as above. Since on
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it follows upon subtraction that

hence ul = ~c2.
An interesting consequence of the above proposition is the fact that

solutions to the Bishop equation are locally unique at a point of strong
differentiability of M : Namely, consider a function h(u, w) defined for (u, w)
in some neighborhood of the origin in RI X C~ and tak ing values in Ri ; we have

PROPOSITION 5.1’. If h is strongly differentiable at 0 acnd dh(O) = 0, then
sufficiently small bounded solutions u of the Bishop equation (2.1), corresponding
to sufficiently small pccramaters c and w, are unique.

PROOF. It follows from the definition of strong differentiability that
in a sufficiently small neighborhood B of the origin, the Lipschitz constant
for h is less than one.

REMARK. The above uniqueness results also apply in the case where u
and h are complex valued, provided T is extended by linearity to act on the
real and imaginary parts of h. This remark will be useful in section 6.

Next we state our main theorems concerning the existence and depend-
ence upon parameters of solutions to the Bishop equation in the spaces 
It will be convenient to denote the space of parameters p = (c, w) by

it is a Banach space with norm

where jol is the Euclidean norm in Ri.

THEORER 5.1. Let k 0 be an integer and 0  oc  1.

a) There exists a positive constant c = c(Z) such that if h E

8 &#x3E; 1, and Lip’ . then there is a local unique solution u
o f (2.1) such that is of class 0’ in its dependence upon the parameters
p = (e, measured in the norm i.e., there exists a neighborhood
U = U(k, 0153) of the origin in P such that u is given by a map n : U --&#x3E; 

of class C S..lVl oreover, if h E Ca + $ + 1.1 (B ) then is of class OS,1 with

respect to Ip Ik,cX .
b) If h E Ci + 1.1 (.B ) and dh(O) ~: 0 then there is a local unique solution

u E of (2.1) such that is Lipschitz continuous in its dependence
on the parameters p = (e, w) measured in the norm 1PIk.,,,’ I n fact lulk,cX is

strongly differentiable with respect to at the origin in P.

Note that part b) above gives a sharper existence result than part a) ;
e.g., when k = 0 it is a question of assuming that h E 01,1 instead of h E C2,
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and in either case we get a solution u E Ca. Part b) also gives a sharper result
about dependence on parameters.

It is also of interest to have a stability theorem which exhibits the de-
pendence of the solution u on the defining function h as well. Let 0)
denote the Banach subspace of functions such that h(O) = 0.
We will also introduce a new space of parameters (p, h) = (c, w, h):

In the following theorem W/
will denote a neighborhood of the point (0, no) = (0, 0, ho) in ØJ, and UI, U2
will be the unique solutions of (2.1 ) which correspond to the parameters
(CI, WI’ (C2’ W2, h2) ) respectively.

THEOREM 5.2. Let 1~ ~ 0 be an integer and 0  cx  1. Assume that

ho E 0) and dho(O) = 0. Then there is a neighborhood Gl of the point
(0, ho) and there is a constant C = a, ho) such that

for all (e1, WI’ h1 ), (C2, W2, h2 ) E 0&#x26;. lYloreover, u = u(., c, w, h) is strongly
differentiable as a function of (e, w, h) at the point (0, 0, ho) with respect to

the norms indicated above.

Let Ak = Ak(cx) be an open set in

such that B for Define the operator 11

on Ak by

where p = (c, w). For the proofs of the theorems above, we shall need the
following

LEMMA 5.1. Let k &#x3E; 0 be an integer and 0 c oc c 1,

a) I f h E and 8&#x3E; 0 then Ak - is of clags 08.

tnd 8&#x3E;0 then ~: Ak - is of class OS.1.

c) It hE and dh(O) = 0 then ~: Ak is strongly
differentiable at the origin.

PROOF OF THEOREM 5.1. For the moment let us assume Lemma 5.1.
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a) Under the given hypotheses on h, let Ak c and 1%° be

as in Lemma 5.1 and consider the nonlinear mapping
defined by

Now we want to find a solution u to the functional equation F(u, c, w) = 0.
First of all we note that I’(o, 0, 0) = 0. Both T and the identity I are con-
tinuous linear maps from to itself; hence they are smooth, and the
smoothness of F is precisely that of the smoothness of -41. Therefore by
the lemma F is of class 0- with 8&#x3E; 1. Since 0) corresponds to
multiplication by a constant matrix where entries are the first partial deriv-
atives of h evaluated at the origin, it is clear that there is a c = c(l) such that

Hence

is an isomorphism of onto itself. Therefore by the standard implicit
function theorem in Banach space, there is a neighborhood of the origin
U = U(k, a) c P and a map u : II -~ such that w), c~) =0
for all (c, w) E U. In addition, u is of class Cs with respect to p = (c, w)
when both u and p are measured in their appropriate norms. If h E
one has by Lemma 5.1 that and hence F, is of class The usual proof
of smoothness of the solution u, as in the proof of the standard implicit
function theorem, then shows that u is actually of class 

b) Let 7 .3f and F be as above. Under the given hypotheses on h
we have from Lemma 5.1 that 3Q is strongly differentiable at the origin.
It follows that .~’ is also strongly differentiable at the origin, and since

= 0, Du.F(0, 0) = I. Applying Theorem 4.1 we obtain that there

exists a neighborhood of the origin and a solution

map u: U’ ~ such that u is strongly differentiable at the origin with
respect to p = (c, w). In particular, is Lipschitz continuous with
respect to uniformly for pe II’.

PROOF oF LEMMA 5.1. The proof will be done in a number of steps:
Note that in general if g E and f E then the composition

f og E First we show that if h E then ~ maps Ak into 
Without loss of generality we may assume that h is scalar valued. Also,
for simplicity of notation, we shall often let be the
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vector in Ri+2m consisting of u and the real and imaginary parts of w. Then
for each

= a finite sum of terms of the form

where is a constant, y 2m, each

L and 1, - Since each derivative of h of order  k belongs
top I and - for I , and since Ca is a Banach al-

gebra, it follows that

Hence

Next we show that if ; ’. then 3Q is Lipschitz continuous. For
k = 0 we again assume, without loss of generality, that h E is scalar

valued. Let (u, p), (uo, po) E Ao and consider the boundary values v, vo

on 81 of the’ corresponding (u, w), (uo, wo). We have

Using the normalized form of the Taylor series with integral remainder, and
the fact that h E OI,I(B), we obtain

Since the term inside the { } can be written as
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it follows that

Thus , is of class C~.1.
Now assume that . We must estimate

But for 0  j --- k we have that can be expressed as
a finite sum of differences of terms of the form (5.2). Putting in all neces-

sary mixed terms, and using the triangle inequality and the given smooth-
ness of h, we obtain

Therefore as desired, where C
denotes a generic constant.

Finally we assume that ¡ and show that is of

class At a point (UO’ po) E Ale the differential (uo, po) of must

be the linear transformation from which is associated
to the matrix where the preceding
notation indicates a block decomposition: is zero

matrix, and [h,,] is Since all of the first order partial derivatives
of h(u, w) are of class it follows from the discussion above that

, where . denotes the space of

bounded linear maps from X to Y. Using the normalized integral form for
the remainder in the Taylor series expansion for h(v), we obtain as above that

Thus ,Y is differentiable with differential DJe.

To show that :7e is a map we need to prove



344

is of class 0°,1; i.e., that for (uo, po) E Ak we have

with a constant C that is independent of po). The L.H.S. is bounded by

where the constant c = c(t, nz), since DYE is associated with the Jacobian
of h. But the first partial derivatives of h belong to Ck+l,l (B), so by what
was shown above we have that (5.4) is bounded by (uo, 
which is just the desired inequality (5.3).

It follows by induction, continuing this line of argument, y that if

h E then W is of class Csn as a mapping from Ak into Ca~". Thus
we have established part b) of Lemma 5.1.

To prove part a) we shall show that the weaker assumption that h E 
actually implies that maps Ak into continuously. It is well known

that C’(B) is dense in CI(B) for any integer j ~ 0 (but Coo is not dense in Ci,/¥
if 0  ex: : 1). Thus given h E Ck+"(B) and an s &#x3E; 0 there is an hi E C°°(B) c

and an such that h = hi + h2 and
From part b) applied to hi it follows that for a fixed (uo, po) E Ak,

where C, = C1(hl). In order to handle the last two terms above we observe
that for f E and v E Ok,fX with there is an inequality of the
form

(Recall that I I. denotes the sup norm). The inequality (5.5) follows from (5.2)
as in the first paragraph of the proof of part b). Thus there is a constant

C2 = C(k, a, ~) which is independent of (u, p), p.) c- Ak such that
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if we choose This shows thatt’is

continuous.

As in the proof of part b) the differentials of 3Y? correspond to multi-

plication by matrices which involve the various partial derivatives of h.

Therefore if h E Ci + s + 1 (.B ) then -V is a map from A7, to of class Cs. This

completes the proof of part a).
For the proof of part c) 0 be given and consider (UI, pi)y (u2, p2) E 

Since = 0 we have

which can be obtained by applying (5.5) to the first partial derivatives of h.
The last term is bounded by , if we choose
This shows that 3Q is strongly differentiable at the origin, and completes the
proof of Lemma 5.1.

PROOF OF THEOREM 5.2. To each h E we associate the oper-
ator ;;e defined by (5.1 ) and define F = w, h) by ,

Then the nonlinear mapping

is well-defined. Under the given hypotheses, we claim that F is strongly
differentiable with respect to all of its variables at the point (o, ho) _

= (0, 0, 0, ho ) . Since = 0 we have then that 0, 0, ho ) = I,
and the desired conclusion of Theorem 5.2 follows from Theorem 4.1

(taking Y = 
To justify our claim we need only show that ~ is strongly partially dif-

ferentiable with respect to both (u, p) = (u, c, w) and h at the point (0, 
Since it is obvious that

I is continuous in h at denote the partial dif-
ferential of iF with respect to (u, p) = (u, c, w). Since = 0 we have

for any v = I that Thus
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if v,, V2 E Ak then

Given an E &#x3E; 0 there exists a 6 &#x3E; 0 such that imply both

and

Choosing min( we have that the

L.H.S. of (5.6) is less than Thus ,F is strongly partially dif-
ferentiable at (0, ho) with respect to (u, p).

For fixed h = ho we have already shown in the proof of Theorem 5.1
that ~’(~, c, ~,v, ho) = F(u, c, w) is strongly differentiable, and hence even
Lipschitz continuous at the origin = (0, 0, 0). Now let denote the

partial differential of -5F with respect to h. We have I
Therefore, again setting v = (u, c, w),

Since we have that sup 1 su.p
Thus the B.H.S. of is less than

Given 0, choose

Then the L.H.S. is less than hllk,l, and it follows that W is strongly
partially differentiable at (0, ho) with respect to h. This completes the proof
of Theorem 5.2.
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6. - Solution of the Bishop equation in the real analytic category.

The goal of this section is to prove the theorem below about the exist-
ence and dependence upon parameters of real analytic solutions to the
Bishop equation for real analytic h. Since we have the stability Theorem 5.2
in the setting, we do not develop here a theorem about the real analytic
dependence of the solution u on the defining function h. That could easily
be done, however; we leave the details to the interested reader.

With B as in section 5 let 9f(-B), be the space of real valued real

analytic functions on B, or ~1, respectively, and let %i(B) , denote their

1-fold Cartesian products. Do will denote the open disc about the origin in C
of radius 1 + ~, and will be the circle about the origin of radius r. Ao will
stand for a ð-neighborhood of S1 in its complexification, with S1 considered
as a real analytic manifold. To be concrete, we will identify A4 with the
annulus Aa = . We will also need the Banach

spaces

as well as its 1-fold Cartesian product ~a,a . Instead of the norm 11,, taken
over Aa we will take the norm in ~s~8, or ~a,a, to be

The fact that the norms ] ] are equivalent on a follows by the
same reasoning as that given in the proof of Proposition 6.1 below (Schauder
estimates up to the boundary). The Banach space

or its m-fold Cartesian will however, be taken with its

usual norm (taken over 
Fix a 30 &#x3E; 0 and an 0  a  1 and consider, in this section only, the

new parameter space

with norm

THEOREM 6.1. Let h E I and There exists a positive
constant such that if ’ ’, then there is a local

unique solution u E o f (2.1) such that u is real analytic in its depend-
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ence upon the parameters p = (c, w) measured in the norm i.e. there

exists a neighborhood U= U(a, ð) of the origin in P such that u is given by
the values on S’ of a real analytic map u: U &#x3E; 

For the proof of Theorem 6.1 we will need two propositions. The first

is an extension of Proposition 3.1 and the second is the analytic analogue
of Lemma 5.~..

We extend the operator T, defined on the unit circle, to an operator T
defined on the annulus As by:

where f E s/§ and : 1

PROPOSITION 6.1. For 0  a  1 and 0  6  1, T is ac bounded complex
linear operator from to itset f .

PROOF. T is obndously coluplex linear. For each r E [1- ð, 1 + 6]
define f r on 81 by Since f E ~ we E more-

over : So Proposition 3.1 applied to the real and imaginary
parts of f r yields for each

Differentiation under the integral sign shows that Te f E 1,
since Consider now a function f E and set

Then as e t 1 we have that T, f converges uniformly on 81 to

Namely, y we have that
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and the R.H.S. of the latter tends uniformly to zero if f E because

then there is a uniform bound and 0   1, Ke(q) - 0
except at q = 0. Returning to our , we have in particular that
fr E C’(Sl) for each r E (1 - ~,1-~ 6). Thus for such r it follows that

uniformly on By the maximum modulus principle
uniformly on compact subannuli of JL$. Hence 1

To show that T f E Cx(ii) we observe that the real and imaginary parts
of T f are harmonic in Aa and, as we have seen, have boundary values on the
inner and outer rims r = 1- 6, 1 + 6 that are in Ca. Consider, for ex-
ample, the outer rim r = 1 + 6. We have, regarding !Tf(reiO) as an 
valued function of r, that

which tends to zero because f E Thus the Ca boundary values are
assumed in an L2 sense. It then follows from straightforward estimation
of Poisson integrals, as in the proof of the classical Schauder estimates for
elliptic equations, that One could also concoct a proof that

based on the maximum principle, by techniques similar to

those used in the proof of Proposition 3.1.
Finally we note that

Thus T is bounded on s/§ and the proof is complete.
By letting T act componentwise we have that T :

bounded complex linear operator, whose norm will be denoted by 
Since h : is real analytic there is a compact neighborhood B of

the origin in the complexification C(RI X Cm) on which h has a holomorphic
extension h : .B -~ ~Cz. It will be convenient to use the following notation:

(c forgetting &#x3E;&#x3E; the complex structure on 
for the real analytic function
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we express its holomorphic extension by

where w : and W2 are the complex extensions
of the real and imaginary parts of the original w. Thus u = real corresponds
to the real domain in C(RI) and w* = 11i corresponds to Cm which is the real
domain in C (C~ ) .
Let be an open set in ~ e such that 

for all (u, c, w, w*) c- 1 and all Define the

operator 3fi on h by

PROPOSITION 6.2..Ye maps A into holomorphically.

PROOF. The composition c, w, w* ) e for (u, c, W, w*) e zi
because it is well defined and (u, c, W, w*) e Since 1í E we

have that 1í e for all s e N, and it follows from a trivial modification
of Lemma 5.1 (replacing Sl by that ~(u, c, w, w*) e and the mapping
is of class C°° . To conclude that 3fi maps into holomorphically, we need
only observe that the analyticity of 1í(u, w, w*) implies that the differential
of :R is complex linear.

PROOF OF THEOREM 6.1. Define .F: A -~ ~i,a by

We will find a solution f e to the functional equation c, w, w*) = 0.
Clearly 0, 0, 0) = 0, and 1~ is holomorphic by Propositions 6.1 and 6.2.
As in the proof of Theorem 5.1 there is a constant c = c(l) such that

if Lip(h)  {c(l) max ] Here we have used the

Cauchy-Riemann equations to estimate at the origin the first partial deriv-
atives of A in pure imaginary directions in terms of those of h in pure real
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directions-which in turn are dominated by Lip(h). It follows that

Du JP(Oy 0, 0, 0) is an isomorphism of the complex Banach space onto

itself; hence we can apply the implicit function theorem for holomorphic
maps. Thus there is a neighborhood of the origin in (

and a holomorphic map ic : i such that

for all (c, w, w* ) E CT.
Now in (6.5), if we choose c to be real, w* to be equal to w on S", and

set r =1 we obtain ’

The constant c(Z, cx, 6) can be chosen so that the hypotheses imply that
Lip(h)  1. Thus by Proposition 5.1 the solution u of (6.6) must agree with
the real valued Ca aolution u of (2.1) which was constructed in Theorem ~.1,
since u also solves (6.6); hence u is real valued on Sl.

To finish the proof, we merely have to choose w*) as follows : Let
w E 9’ (Do,,) be given. For any 0  6  00, its restriction to Aa belongs
to ~m,a . Let w* be the holomorphic extension of the real analytic func-
tion The Cauchy-Schwarz estimates for the derivatives of w can be
easily used to show that the power series expansion of w* about any point
on Sl converges on a disc of radius 6’ for any 0  6’ 60. Therefore the

restriction of w* to h6 exists and belongs to ~~. The norm in the

space can be trivially dominated by the norm taken over .Dao .
The map from 9L"’ (D,,.) to defined w* as above is linear and is

obviously closed. Hence by the closed graph theorem there is a constant C
such that Thus there is a neighborhood of the origin
U = U(oc, b) in RI X for which (c, w, w*) E 0 if (c, w) E U. There-

fore we have produced a map u: U 2013&#x3E; whose values on Si define a solu-
tion in to (2.1). Since ii is holomorphic and the linear map from

to bounded, it follows that the composition u is a real analytic
map. This completes the proof of the theorem.

7. - Solution of the Bishop equation in the C°° category.

Suppose that hE Cco. Then for any fixed integer k &#x3E; 0, the results of

section 5 give a solution uk of (2.1 ), with parameter domain that is of

class Ck. For ~/  ~ we have by uniqueness that uk, = Ul on their common
domain But unfortunately, y as ktoo, the arguments of section 5
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do not rule out the possibility that the parameter domains Uii might shrink
down; hence one cannot conclude directly that there exists an open set U
in some appropriate parameter space on which there is a C°° solution u to (2.1).
The purpose of this section is to fix up that difficulty so as to obtain a local
C~ solution.

Let . be any sequence of positive real numbers. We shall
need to consider the normed linear space where of all
real valued (or complex valued-just which is intended will be clear from
the context) C~ functions f defined on S’ for which the norm

Note that is a Banach space: All one has to check is that is

complete. be a Cauchy sequence in In particular {fn} is
a Cauchy sequence in so there is an f E 000(81) such that Dk f n - Dk f
in CII(SL) for each k &#x3E; 0. Since a Cauchy sequence is bounded, there is an L
such that

for all n. Taking limits we get that for all k ; hence

f e Given s &#x3E; 0 there exists an N = N(E) such that n, m &#x3E; N implies

for all k. But for each fixed k, there is an Ni, for which

provided m ~ N~; . Thus for all k we have that

if n &#x3E; N, and it follows that in 

We will let and -B~{M} denote the Cartesian products of 
I times and m times, respectively. For simplicity we will denote the norm
in either space again by II 11M. As in section 5, B will be a compact neigh-
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borhood of the origin in As in section 6, D6 is the open disc of
radius 1 + 6, and with norm lwl, (taken over D?).

THEOREM 7.1. Let h E and Then there exists a positive
constant c = c(l), and there exists a sequence M = such that:

a) If LipB(h) . . then there is a local unique real 000

solution u E of (2.1); i. e. there is a neighborhood o f the
origin in such that u is given by a map u: where

depends in a Coo way on the paranaeters I for

b) For any fixed 6,, &#x3E; 0 the sequence M = can be chosen so that u

is defined for the parameters in a suitable neighborhood Uo = Uo (a, ~o , M)
of the origin in lVloreover l!ullM is C°° in its dependence on the
para,meters measured in the norm (taken over D,,.).

REMARKS. 1) The choice of the sequence depends on the function h,
but it can be chosen to work uniformly for all h in any bounded set in C~(J5).

2) The w in a) actually refers to the boundary values on thus we

could choose as parameters discs w E Eo§~(31), where -9’{Ml denotes the
subspace of n of functions with boundary values in 
But the choice of parameters w E 9’(D,,,,) in b) is simpler and useful for
applications.

3) Given any sequence N = possible to choose M to
dominate N ; i.e. for all k, as can easily be seen from the method
of proof. Thus -9’fN} c so (2.1) can be solved for parameter
discs w E -q’{N}.

PROOF OF THE THEOREM. Let v be the I + 2m dimensional real vector
valued function consisting of u and the real and imaginary parts of Zu.

For any multi-index y we set = (D7h)(v) and let Jf denote the func-
tion defined as in (5.1) which corresponds to h.. A{M} will be the open
cylinder in of the where R is chosen

small enough that v : whenever (u, c, w) E so that the com-

positions gy are defined. The method of proof relies on choosing the se-
quence lVl so that i) is closed under multiplication and ii) maps

into a bounded set in for each multi-index y.
We will determine the recursively so that, for each y,

23 - Annali della Scuola Norm. Sup. di Pisa
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is bounded. Set

and choose Mo = .~1 = 1. Since we have that

Assume that M,, ..., M,-, have been chosen. As in (5.2) we have that

where the second summation is taken over 2 ~ q c k, l ~ j~, ... , ja ~ L -~- 2m,
each and 1, -)-...+ ~ = k. Setting N = I + 2m it follows that

For k &#x3E; 2 the second term on the R.H.S. is bounded by a constant

which depends only on the quantities indicated. We choose 1~~ such that

The second of the two conditions in (7.2) assures us that if f, g E 
then that is forced to be closed under multi-

plication. The first condition, with (7.1), tells us that for 0  Irl  k

which is independent of k. Thus for any sequence constructed in this

manner, we have that for each multi-index y,

for hence each Jey maps boundedly into 
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Using the normalized form of the Taylor series with integral remainder,
as in the proof of Lemma 5.1, we obtain

where the constant

is bounded for V1, V2 E A{M} according to (7.3). Therefore each is dif-

ferentiable and hence continuous on Since Dye consists of multi-

plication by a matrix whose entries are the 01,, with Irl = 1, and since 
is closed under multiplication, it follows that D.Al: A{M} -&#x3E; X

and that 1%i is of class 01. Since the differentials

of Je of order s are associated with the By for Irl = s, it follows that A’
is of class C°° on A{M}.

Using the fact that T commutes with 8-derivatives, it is easy to see

that T :. is bounded; in fact I
The remainder of the proof of part a) now is just like the arguments of

section 5 and 6: We ’have a C°° nonlinear mapping F : ~{M} 2013~ ~{~} which
satisfies the hypotheses of the implicit function theorem. Hence we obtain
a C°° solution map u: 

To prove part b) it suffices to make the additional requirement in (7.2)
that for k&#x3E;2 the -NI, be chosen to satisfy

It then follows from the Cauchy-Schwarz estimates that

and the inclusion map being linear, is C°°. By choosing
IwllX sufficiently small we therefore obtain a neighborhood of the origin Ua
in such that Uo c U. This completes the proof of Theorem 7.1.

8. - The local family of analytic discs.

Having discussed in sections 5-7 the solvability of the Bishop equa-
tion in the Ok.cx, real analytic (C~’) and C°° categories, we now return to the
basic problem formulated in section 2: Given a suitably prescribed family
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of analytic discs in RI we want to be able to lift it to a family of
analytic discs in C- such that each disc in the lifted family has its boundary
on M. In this section we collect together the previous material and for-
mulate precise theorems in these directions.

According to Theorems 5.1, 6.1 and 7.1 equation (2.1) can be solved
by solution maps

in each of the categories Ow and C°’, respectively. Each solution
= u(eie, p) determines a unique disc

in Cn with boundary on M, where f (, p) has the boundary values p) +
-f- iv(ezes p) with p) = h(u(e?°, p), and Re f(0, p) = c.

Let (c, #’), 97 and 9 denote the maps defined on D X TT by
and (~, p) 1-+ g(~, p), respectively. Their restric-

tions to U will be denoted by (c, b~ and bg. Thus 9 = (W, */’),
Re W(0, p) = c and there is a commutative diagram

We will speak of 9 as being the lift of the family (c, to M, and of b#
as being the lift of its boundary (c, 

By a local family of analytic discs in RI we will mean a family of
(c, that is sufficiently small (in a sense that depends on which category
we are working in) so as to satisfy the hypotheses on h (and hence on M)
stated in either Theorem 5.1, 6.1 or 7.1. These three cases (the Ow and

C°° categories) will in the sequel be referred to by (i), (ii) and (iii), respectively.
In order to state the next theorem, we define the classes and 

as follows: A function p) of two variables is of class provided

1) f has continuous partial derivatives of all orders which involve at
most k derivatives with respect to ~ and at most s derivatives with respect
to p, and
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2) for any such partial derivative of f, the order in which the deriva-
tives are taken doesn’t matter.

The function f is of class if, in addition,

3) all the derivatives mentioned above are of class Ca. Our work

up to now can be assembled to obtain :

THEOREM 8.1. A given local family (c,ir) of analytic discs in R’xC,,,
has a unique lifting to a corresponding local family 9 of analytic discs in Cn
satisfying (8.2). lVloreover, in each case, we have:

(i) If s &#x3E; 1 and h E Ck+s+’(h E Ck+S+l,l) then 9 is of class Ck,S(class 
p) E ~’n’" for all p E U.

(ii) If h is real analytic then 9 is real analytic ac~ad ~( ~ , ~ ) 1. s the

restriction to D of a real analytic Wi with ~a( ~, ~) E ~~(Da), U and

(iii) If h E Ceo and the parameters p are chosen in Rl X (para-
meters in I then 9 is of class C°° with respect to I

respect to ] i ] + Ilpll) and ~( ’, p) E ~n~~tT~ for p E U.

REMARK. (Case 8 = 0) If h E and = 0 then the proof of the
theorem yields also the following : If k = 0 then exists strongly at
points of the form D X {0}. If k &#x3E; 1 then at such points 9 is strongly dif-
ferentiable and D.,,Di 9 exists strongly for 0  j  k.

PROOF. (i) First we show that is of class 

Since IF is a continuous linear operator with respect to p, its smoothness
is limited only by its smoothness in ~: For fixed p, if/(’, p) is of class Ck,a:
with respect to C. If 0  j  k then

where here and in what follows we assume that U has been chosen so that

pe U implies with .R ~ 1. Hence .D~~’ is jointly continuous, and
of class Ca. Since p,,) maps p to an easier version of the

above argument shows that, for 0  j  k, = DtpDtif/ is of class Ca.
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As there are no higher derivatives of ifí with respect to p to consider, we have
that is of class C~~ °° ~".

Consider next the map By Proposition 3.1 we have

for each fixed p E U. Theref ore ~ ( ~ , p ) c- ~n~°‘. Since ~( ~ , p) ] f) is of class
with respect to and t(eies p) :

it follows by Lemma 5.1 and the equivalence of the norms on .

that if(-, p)1’5, is of class 08(08,1) with respect to lpl7,,,. Moreover U can be
chosen so that u : i is Lipschitz continuous with Lipschitz con-

stant .L, because Using (8.3) and the same argument that was ap-
plied to 0, we obtain

for 0  j  k. Thus each is jointly continuous, and of class 0(1,.

Let denote the differential of the map

~ from :1~ set

Then

so that LIP, Cl} is the partial differential of the map
To show that it is jointly continuous, we observe that
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Since 8:&#x3E; 1 there is a 6 = 5(~) for which i implies
that the last term above is less than 81p (Or, f or h E the last term

above is bounded by an expression of the form

so in that case is not only jointly continuous, but of class 
For Ors let

(r times)

be the r-th differential of the map and for 0  j  k set

By the same argument as given above for the case r = 1, it follows that

this is the r-th par-
tial differential of . and that is jointly continuous (or of
class i

Since and exist and are continuous, a theorem of
H. A. Schwarz [2; Theorem 20.15, p. 243] says that also exists

and = !F.

To show that W E ek,. we proceed by an induction on both k and s as
follows: Obviously W E C°,°. Assume that ~’ E e-,n for some m  s.

To show that ~ E one uses the above theorem of Schwarz to show

a separate induction: if ~ E then if E To show that W E 

one uses a similiar induction: if Cm+’,r then Cm+’,r+’. (When
h E Ck+s+1,1 we get that 

This completes the proof in the category.

(ii)Now and for any 1

is the restriction to of a map The argument we
have given above shows that is differentiable, and that its differential
is complex linear. Hence ~Y’a, and in particular 1r, is holomorphic.

Next consider the holomorphic map 11: 0 - ~i.8 , where 0 c s/§~,~ ,
that was constructed in the proof of Theorem 6.1. The value of 11(c, w, 
at Q e Ao will be denoted by 11(’, c, w, w*). For fixed (c, w, w*) c- 6 the
function

is holomorphic in ~ for ~ E Aa. Let
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be the real and imaginary parts. Since u is a solution of (6.5) we have

Recalling that T = T on we see from (8.5) that there exist holomorphic
functions 11, f 2 in D which have the real analytic boundary values

on respectively. But
the holomorphic function agrees with (8.4) on hence it has

an extension to a holomorphic function f = !(’,c, w, on Da which be-

longs to the space Define by
Once again, we apply to iF the same type of arguments

that was applied to iF in (i): We obtain that ~ is jointly continuous, and
that the differentials D~ z-l Dw* 9-:~ exist and are complex
linear. Hence F is a holomorphic map.

Going back to the proof of Theorem 6.1, we defined there a continuous
linear map W 1-+ w* taking Thus there is a real analytic
map r : U --&#x3E; C7 defined by be the

restriction of ~’a, where ~;76 is defined by the commutative diagram

It follows that # = -1r) is real analytic, and that 96( -, p) c- -q’(D,§),
where ~a = (~?y~!). This completes the proof in the real analytic category.

(iii) When hE C°° we take the parameters p =

Clearly Ji’1 ~ for each p E ZT and is a C°° map
with respect to the norm I"~ -i- lip 11M. Since for u: we know

that 11 u ll,,, is C with respect to lip 11M, we have also that is C‘° with

respect to lip 11M. But there are constants c(k) such that I
Hence the same argument that was used in (i) shows that ,.F:
is a C°° map. Also } for each p E U. If instead, we take
parameters then we obtain that W is C°° with

respect to the norm defined in b ) of Theorem 7.1. This com-

pletes the proof of Theorem 8.1.
For any set S c C" we denote the algebra of germs of holomorphic func-

tions on S by U(S) and equip it with the inductive limit topology
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where each (9(,Q) has its usual Fréchet-Schwartz topology of uniform con-
vergence on compact subsets, and the S2 are partially ordered by inclusion.

Consider a local family 9 of analytic discs in Cn which is the lift to M
of a local family of analytic discs (c, in Ri X Cm. For any subset 27 c U

we will denote by

the images in Cn of those analytic discs and their boundaries in the family 9
which correspond to the subspace of parameters p e Z. Note that the image
of a disc in 9 consists of a single point iff it corresponds to a parameter
disc which is also a point; i.e. one of the form (co, 0), Such a disc

will be called a degenerate disc.
The following is a refinement of a theorem of Wells [22].

THEOREM 8.2. Let Z c U be any subset such that

i) 27 degenerate disc,

Then the map

induced by restriction, is a topological isomorphism.

COROLLARY 8.1. If S c .M is any connected subset such that c S

for some such choice of l7, then every holomorphic f unction on S has ac unique
holomorphic extension to 

PROOF OF THE THEOREM. Let OJ be a connected open neighborhood of
in Cn. We will show that there exists an open connected neighborhood

Q = Q(oi) of ;9(1:), with 12 D m, such that the restriction map

is an isomorphism.
Consider an arbitrary point ~(~). First we will show that there is

a connected open neighborhood S2(z) of z, with co, such that every

f E Ø(w) has a unique extension to an Fe (9(92(z)). Without loss of gener-

ality we can assume that the image in RI X ·Cm of the degenerate disc in ,
as well as its lift to M, is the origin in Cn. Choose some Po E 1: with

. Since = 0 there is a continuous path
such that y(O) = 0 and = po. For 0T1 set
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We will analytically continue f along T(i) from T(0) c c~ to fz}.
Let (1 denote the subset of [o, 1] consisting of those 7: for which there

is an open connected neighborhood of T(~), with co, such that

every holomorphic function in eo has a unique holomorphic extension to Q(7:).
It is clear from the definitions that a 4 0 and a is open. To show that a
is closed, let be a sequence in (1 converging to a point iso. Without

loss of generality we may assume that and that

Setting we have that is an open connected set with
~=1

such that Do is a neighborhood of r(t) for every 0 ~ t C 7:0’ and

such that every holomorphic function in w has a unique holomorphic ex-
tension to Do. Thus in order to show that To E a, we need to extend Do
to an open connected set QI D Do such that Di D r(To) and such that every
holomorphic function in Do extends holomorphically to ,~1.

The parameter point e 27 corresponds to a specific analytic disc
with compact image Since

uniformly as z~ ~ To it will sufnce, by compactness, to show that
each point zi E go(D) has a neighborhood such that all holomorphic
functions in Do have analytic continuations to Do U N(z,). Let .I~ be a com-
pact neighborhood of with and let 4 be the distance from K

to the complement of w, measured in the maximum norm. For jo chosen
sufficiently large we have and there is a point

such that zl belongs to the open polydisc of radius 4

centered about zo . If f E C(Q,,) then hence zo belongs to the
K

holomorphic hull 

taken with respect to Qo . Now we use the classical argument of the Cartan-
Thullen theorem: Consider any f E any 0  .l C L1, and any z’c K.
For any multi-index fl we have

where M( f ) denotes the maximum of If taken over the closure of an jR-neigh-
borhood of K. But since follows from the definition of -k
that (8.6) also holds at the point zo e i. Hence the power series expansion
of f about zo converges in the polydisc about zo of radius R’, for any 0  R’  1~.

Thus each f has an analytic extension F to a fixed neighborhood N(zl) of zi .
We have shown that a = [o,1] and that the desired neighborhood S2(z)
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of the original point z exists. Set

Since = 0, the argument from the monodromy theorem shows that
the procedure described above gives a well-defined analytic continuation
of an to an I’ E a(SZ).

The restriction map r is injective and is obviously continuous, since each r2
is continuous. Let r-1 be defined by the commutative diagram

Since rw is surjective, it follows by the open mapping theorem that (~)-l
is continuous. Therefore r-1 is continuous, since it is continuous on each 0(cm).
This completes the proof of Theorem 8.2. ~

9. - On going up one dimension.

Now that we have at our disposal a suitably ample family of local analytic
discs with boundaries on M, we turn to our first main application: The

problem is the one discussed in the Introduction; namely, if the Levi form
of at the origin does not vanish identically, we will show how to con-
struct a local manifold 1fl near p, of one real dimension greater than M,
which is nicely attached along if in such a way that M is the (partial) boundary
of M in the good sense of a « differential manifold with boundary». For a
more precise statement of this result, see Theorem 9.1 below.

Recall that if = Mn+m c C" is a generic real n + m dimensional mani-
fold embedded in Cn. Let

be the second fundamental f orm of M at p E M, where denotes the

normal space to M at p. It assigns to each pair of tangent vectors u, v the
normal vector

where V denotes the standard connection in R2n "-J and where X, Y are
local tangent vector fields near p with X(p) = u, Y(p) = v. By the Levi
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form of IVI at p we will mean the vector valued Hermitian form

defined by

where J denotes the almost complex tensor of multiplication by ~/-1
in Cn. Thus .Lp assigns to each complex holomorphic tangent vector Z(p)
the normal vector L~(Z). We will call L1J(Z) the Levi vector associated to the

holomorphic tangent vector Z(p) at p ..
Suppose p = 0 and let ~l = {z: = 01 be local defining equations

for M, where each component ..., ez) is a real valued func-

tion, and Frequently we will identify with

the space of covectors spanned by dO2 (o ), ... , dO Z (o ) . Furthermore

we shall assume that d(!2(0), ..., are orthonormal. Let

where Then a calculation (see [5]) leads to

the following expression for the Levi form of if at the origin:

Here the second equation in (9.1) is just the requirement that Z(O) E 
We can now state the principle result to be proved in this section:

THEOREM 9.1. Let M be a generic real n + m dimensional mani f old em-
bedded in Cn, and at some p E M, let $ =1= 0 be a normal vector in the range of
the Levi form L1J. Then (with the precise differentiability assumptions stated
below) there exists a local embedded generic real manifold- with- boundary, lVl,
of real dimension n + m + 1, with the boundary of lVl equal to an open neigh-
borhood of p in M, and with = span ~}. Moreover l12 is foliated
by a real n + m - 1 parameter family of complex one dimensional analytic
discs with boundaries on M:

(i) I f M is o f class C’ acnd k &#x3E; 5 then 11 is o f ctacss
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(ii) I f .M is real analytic then ~ is real analytic; moreover 1fl has a

« border &#x3E;&#x3E; ltl a - M in the sense that lVl extends real analytically to a slightly
larger lVl a such that n lVl a forms an embedded real analytic hypersurface in 

(iii) I f M is of class C°° then 1ft is of class C°°.

REMARK. Our proof actually shows more than is stated; e.g. in the dif-
ferentiability-up-to-the-boundary of lii, in (i), we lose only 1 -- deriva-
tives except along an exceptional set which is an n + m - 2 dimensional
sub manifold of M.

PROOF OF As usual we take p = 0. Let 0 be a covector
in the range of the Levi form. Without any loss of generality we can assume
that a system of holomorphic coordinates

has been introduced so that ~ = dy, and ~ = It follows from (9.1),
upon setting ei(z, ~,u) = h2(x, w) - yi, that

and for

Moreover we can assume that the Taylor expansion of h(xl, ..., 7 XI 7 Zl+l 0, ..., 0)
about the origin has the form

Here d is a column vector whose transpose td is the 1-tuple (1, 0,..., 0), 7
the aik = aki are real column vectors, and 0(n) denotes terms bounded by
a constant times 11 (x, ... , 7 X17 0,..., in a suitably small neighborhood
of the origin.

Indeed, since = 0, the Taylor expansion of h(xl, ..., 7 XI, Zl+l’ 0, ..., 0)
out to terms of the second order would look like (9.3) except, possibly, for
additional terms of the form

with tc = (cl , c2 , ... , c t ) . But then, in a neighborhood of the origin, the
biholomorphic transformation
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would carry the local defining functions into new

in which the terms (9.4) disappear, and the Taylor
expansion of h’ would have the desired form (9.3). It should be noted also

that this change of variables would not destroy the relations described in
the paragraph above.

Now that the coordinate system (z, Zu) has been fixed, let us describe some
notation to be used in the proof : t =

where D is the open unit

disc in C; Q is the infinite salad bowl

and

is the full salad bowl. Since I + 2m = n + m we have that
and are real analytically diSeomorphic to copies of Rn+m and

respectively.
The manifold J0’ of real dimension n + m + 1 which we are going to

construct will be exhibited as the image in Cn of a map G of the form

defined for (t, z, a, s) in a suitable neighborhood of the origin in -
with F taking values in Cl. The restriction

of G to will be such that it provides a nonsingular parame-
trization of a corresponding neighborhood of the origin in M.

The map -P(t, r, a, s) is constructed as follows: To each point (t, r, 8) E
we associate the parameter disc p(t, r, s) = (t, 8)),

where w(r, 8): D - Cm is defined by Note that p(t, r, s)
defines an analytic disc in ~i X Since

we will have that p(t, r, s) E U(k, a) c P provided that Itl, Isl
and r are kept sufficiently small. Then by Theorem 5.1 we can solve the
functional equation
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and thereby lift each parameter disc p(t, r, s) to an analytic disc

in ~n with boundary on M. The center of each lifted disc is given by

and when r = 0 we have the degenerate disc

Finally let

denote the pullbacks via the map
defined by i with Note that the restric-

tion (9.6) does map a neighborhood of the origin in RI x Q into a neigh-
borhood of the origin on M.

We claim that fl, and hence G, is a sufficiently smooth map defined on a
neighborhood of the origin in Actually this investigation of
the amount of smoothness of fl is the most tedious part of the proof. There-
fore we postpone it until the end, and give the remainder of the proof under
the assumption that F is as smooth as is needed.

To start with we show that

In view of (9.8 )- (9.10 ), it will suffice to show that

as or equivalently, that

as rj0, where td = (1, 0, ..., 0). Now f (0, r, 0)(~’) - idr2 has on Sl the

boundary values where denotes the solution of (9.7)
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corresponding to (t, s) = (0, 0), and where

Therefore

We obtain from Theorem 5.1, by comparing with the trivial solu-

tion corresponding to r = 0, an estimate of the form 1,
(Here, and in what follows, C will denote a generic constant that does not
depend on any variables relevant to the argument at hand). In particular
l’uILI, Now in a ball in RI X C of radius RCr, we have an
estimate on the Lipschitz constant for h(xl, ..., ZZ+I, 0, ..., 0) of the form

Lip(h)  Cr. Thus

and by keeping r so small that

we can arrange that Now using (9.3) we obtain that

Since &#x3E; we obtain finally that

Then by the Schwarz inequality we have

and the proof of (9.12) is complete.
Next we show that the Jacobian matrix of the map G, evaluated at the

origin in RI X Q x C--’, has maximal (column) rank equal to n + rn + 1.
Because of the special form (9.5) of G, it will suffice to prove that the (partial)
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Jacobian matrix J(O) of the map

evaluated at the origin, has maximal column rank equal t,o I + 1. In fact

we will show that

where I is the 1 x I identity matrix, and where td = (1, 0,..., 0). Now the last
column in (9.14) is just

as was shown in (9.11). Thus all that remains to prove is that

But

so (9.15) follows since h vanishes to second order at the origin.
Our map 1i is defined and will be at least of class C’ in some neighborhood

of the origin in RI x Q Therefore there is a neighborhood of the origin,
which we can take to be of the form

for 01, O2, ro &#x3E; 0 sufficiently small, such that M = G(N) is an embedded
manifold in Cn, with boundary, of real dimension n + m + 1. The boundary
of M is given by M = G(N) where

The tangent space to 1ii at the origin is the space spanned by To(M) = Cm

and the Levi vector ~. Since Sf has real dimension n + m + 1 the holo-
morphic tangent space at each point of M must have complex dimension
m + 1, which is minimal; hence M is automatically generic. Moreover,
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M - M is foliated by (locally closed) complex analytic submanifolds of Cn
of complex dimension one: a typical leaf in the foliation is determined by
setting (t, r, s) = const. in (9.5).

Now we turn to the task of justifying our claim that .F is a sufficiently
smooth map.

First of all Theorem 8.1 gives us a precise amount of smoothness for the
map Since the map from to 1

I defined by is real analytic, y the

composition which is defined on D X (a neighborhood of the
origin in has as much smoothness as ~(~ p) does. The

connection between the notation of this section and that of section 8 is

Now the map ,u : . 1, defined by I
with 1 is a local real analytic diffeomorphism at

points where, Hence at such points the pullback .F has as
much smoothness as # does. Thus the whole issue here is that of investigating
how smooth is along the locus r = 0.

Let denote the taken over the closed disc of radius r,
with Consider any function f (~) defined for CED and define by

Then for f E 9," one has

where the last inequality comes from Proposition 3.1.
let denote any partial derivative of ~y of order k

with respect to (1, and of total order j with respect to the variables (t,8),
where the mixed partial D’t8 ,8 P is taken in any order with respect to those
variables. Consider the continuity of at an arbitrary point
(to , 

’ 

,
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Now

so III = 0 unless k = 0, in which case

provided h c- Ci,’. Let be a temporary notation for the terms

let be related to il,j as in (9.16),
and f ~ = to,;. In what follows we set r = 1:i&#x3E; 0. On S’ we have

provided hE according to Theorem 5.1. Therefore

But then

and

Thus is not only continuous at (to, 0, 0, so), but is of class Cl in a
neighborhood of the origin in RI xQ X C--l. Finally, using the theorem of
H. A. Schwarz and arguing by induction (as in Section 8), we obtain the
existence of a partial derivative (taken in any order) of order k in a and
total order j in (t, s), as well as its equality with 

Unfortunately the simple argument given above does not apply to a par-
tial derivative of which involves some differentiations with respect to r.
Therefore we are forced to develop a different approach.

First suppose that h = h(w) is a (vector-valued) polynomial in the vari-
ables w = (WI’ w2, ..., w) = s) and = (ivl, 8) alone. Then h can

be written as

with coefficients that are complex (vector-valued) polynomials in s
and 8, and where is real. In this case (9.7) becomes an explicit ex-
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pression

for the solution, and it is easy to verify that

Since m-(j-7c)=2k if j+ k=m we obtain

which is a polynomial in t, z~, a, s and s.
Second suppose that h = h(u, w) is a polynomial in the full set of

variables u, w and i6. Then in multi-index notation we have

where each h~(w) is a polynomial of the form (9.25) with coefficients 
and sum on m up to .~(~,). In this case we will show that .F’ is real analytic
in the variables t, 1:, a, s and s at the origin.

Let the sequence of functions un be defined recursively by
and

Obviously u, has the form (9.26); i.e. it is a real polynomial in reio and re-i8.
Because of (9.29) it follows by induction that each succeeding un is a poly-
nomial of the form (9.26). It follows that a corresponding f~(t, r, 8)(’) can
be defined by (9.27); hence each r, a, s) is a polynomial of the form (9.28).

We now pass to the complexifications of RI xR+ xCm-1 and Si, and adopt
the notation from Section 6. Thus h(u, w, w*) is the holomorphic ex-

tension of the real analytic function h(u, w, w), etc. Set w(i
and let denote the holo-

morphic extension of which is defined for complex t, r, 8, 8* and C E A,6.
The holomorphic extension of (9.30) is
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Let : the value of at

denote the holomorphic solution of

that was constructed at the end of Section 6. We will show that, as n - oo,
uniformly for ) E j6 and for (t, r, s, s* ) kept in a suitably small com-

plex neighborhood C of the origin in
Since A vanishes to second order at the origin, there is a neighborhood B

of the origin in such that

then Õ can be chosen such that

the radius of B .

For (t, r, s, s* ) E C we have

from which it follows that for all n

Now bounded sets in C°~ are precompact in for any 0  «’ cc. Thus

any subsequence of the u. has a subsequence which converges in A§) to a,

limit u’. But by passing to the limit in (9.30) and using the argument of
the uniqueness theorem, we can identify u’ with u(t, r, s, 8*)(’). Conse-

quently the entire sequence un - u uniformly for ~ E 16 and (t, r, s, s*) E C.
Corresponding to un and u we have, as in Section 8, the functions

in(t, r, s, 8*)(C) and r, s, s*)(~), respectively; they are holonlorphic on
l XD6 and uniformly there. Since, in a compact neighborhood of
the origin, each partial derivative of f is the limit of the same partial
derivative of the in, it follows that the Taylor expansion about the origin
of the real analytic function s)(~) is an infinite series having the general
form of (9.27). Hence .F = 6, s) is real analytic in a neighborhood
of the origin.

Third we suppose that h = h(u, w) is a function of class with ~&#x3E;0.

Let = to) be a sequence of polynomials, like (9.29), such that in
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some compact neighborhood of the origin in R, hen) - h in the el+2-norM,
and = = 0 for all n. In what follows the superscript n will
refer to solutions ’U(n) etc., of (9.7) corresponding to hen).

Let Dj denote temporarily any mixed partial derivative of total order j
taken with respect to the variables t, r, s, 0, which involves at most j - I
differentiations with respect to 0. We will show that Dju(n) - Diu in 
for 0~~-)-1. When j = 0 this is a consequence of our stability the-
orem 5.2. For the induction step, it is convenient to first observe that

where w) is a universal finite linear combination of terms of the form

where denotes any partial derivative of total order p with respect to u
and of total order q with respect to w, and in which
- -

and ,

Therefore with w = w(r, s)(eiO) we have

Now

Since h~n~ - h in at least the C2-norm, there is a compact neighborhood B
of the origin in RI xCm and there is a constant C such that in B

for all n. By using our induction hypothesis (for j = 0) we can find a
bound of the form
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provided (t, r, s) is kept in a suitably small compact neighborhood K of
the origin in 1$i X R+ x Cm-l. Likewise the last two terms on the right in (9.3~),
as well as II, can be bounded by an expression of the form

As for III, each term in it can by repeated use of the triangle inequality,
and the induction hypothesis, be bounded by expressions of the form

where 0 ~ ~, ~ j -1. Combining (9.34)-(9.38) we obtain an estimate for

which tends to zero as n - oo, uniformly for (t, r, s) E K,
provided j I --1.

Consider the functions which correspond
to and u. By applying Proposition 3.1 in the standard way we obtain that

as n - oo, for 0 ~ ~ ~ Z -f-1, where here Di now denotes any partial deriva-
tive of total order j taken with respect to the variables t, r, s, ~, which in-
volves at most y20131 differentiations with respect to C; the convergence is
uniform for (t, r, s ) E K. 

-

Finally we consider a partial derivative of the form of

total order p + i + q, where 2p + i -~- 3q  1.
Since

it follows by repeated use of the chain rule that

where are numerical coefficients, 0 c ~Y ~ q, and where the
denote certain partial derivatives with respect to r and ~ of order lyi.

Therefore

with and where now

represents a derivative of total order
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Each Dv f has a Taylor expansion of the form

in which v, q) can be expressed, via the Lagrange form of the remainder
applied to each of the 21 components of Dv f, in terms of eval-

uated at intermediate points in (0, r). Hence we can write

where is a linear combination of terms of the form

with k  p + 2q - 1, and where is a linear combination of cer-

tain terms like those in with k  p + 2q, plus the q)’s.
The universal formulas (9.40)-(9.42) are also valid with -P and f replaced

by F(n) and f ~n~, respectively. Since each is known to be real analytic
at the origin, and it follows that = 0 for all I and all n.

As n - oo we know that --&#x3E; A,(/)7 by (9.39); hence At( f ) = 0 for
all l. But our assumptions imply that each of the terms Bl( f ) remains
bounded as so that

exists in a neighborhood of the origin in RI X 

This argument shows that is continuous, and in fact of

class ell at r = 0. Using the theorem of H. A. Schwarz as before, we
obtain the continuity of the mixed partials taken in a different order, and
their equality with Thus .F’ is of class in a neighborhood
of the origin. This completes the proof of Theorem 9.1 in the category.

Now for the proof in the real analytic category: Assume that h is real
analytic in a neighborhood of the origin in RI X Cm. Then we can use The-
orem 6.1 in place of Theorem 5.1, and the proof we have given above goes
through without change down to the point of investigating the smoothness
of P(t, z, a, s) at r = 0. We will show that, under our current assumption,
j~ is a real analytic function of all of its variables at the origin in

The function h, although no longer a polynomial, still has a convergent
multiple power series expansion about the origin that can be written in the
form of (9.29) and (9.25). Let the functions un be defined recursively as
in (9.30) and (9.30). Since uo _--_ 0 it follows that ul, and hence each suc-



377

ceeding ’Un, has a multiple power series expansion that has the form of (9.26).
Now the rest of the argument following (9.30) applies, since it did not rely
on h being a polynomial. Hence we can conclude that the

and the corresponding

uniformly f or ~ E A a and (t, r, s, s* ) E ð, where C is a neighborhood of the
origin in Therefore the multiple power series expan-
sion of the real analytic function f(t, r, ~)(~) has the form of (9.27), and it fol-
lows that ~, 6, s) is real analytic at the origin with a power series ex-
pansion having the form (9.28).

In particular F is well-defined for sufficiently small negactive values of r.
Therefore for some 6 &#x3E; 0 we can take = with

where

This completes the proof in the real analytic category.
Finally for the proof in the C°° category: Let h E C°° and let B be a com-

pact neighborhood of the origin in Ri X Cm. Then by the diagonal trick we
can find a sequence of polynomials w), with = 0 and = 0,
such that h(n) - h in Ck(B) for all k ~ 0. Let the sequence of functions Un
be defined recursively by ~o m 0 and

As before each ’Un is a polynomial of the form (9.26), and corresponding 
can be defined by (9.27), so that each -lfin has the form (9.28). Since hen) ~ h
in at least the C2-norm we can, without loss of generality, assume that B has
been chosen so small that

for all n. Then the argument leading to (9.32) applies.
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Hence there is a neighborhood V of the origin in RI X R+ X such that

for all n and for (t, r, s) E V. Thus any subsequence of the un has a sub-
subsequence which converges to a limit in Cf’ for any 0  a’C a. For

simplicity we drop the prime on oc. Once we verify that u’ is a solution of (9.7 )
on some neighborhood of the origin in Ri x R+ X C--’, we can without loss
of generality assume that TT has been chosen such that the original sequence

in Or uniformly for (t, r, s ) E TT, where u is the C°° solution of (9.7)
constructed in Theorem 7.1.

To verify that u’ solves. (9.7) we write

and let n run through the subsubsequence. The second term on the R.H.S.
is bounded by

which tends to zero as n - oo . The third term on the R.H.S. tends to

zero because ~f is continuous on Ca.

Next we show that in C’ for any derivative D’ of total
order j, taken with respect to the variables t, r, s and 0, uniformly on V.
The proof, by induction on j, is exactly as in (9.34)-(9.38) except for the
fact that two additional terms arise in (9.34):

The terms I, II, III are exactly as before, and

Since hen) ---&#x3E; h in ej+2 we have that

as n - oo. Likewise

Therefore 
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The rest of the proof following (9.39) goes exactly as before. Therefore

F E C°° in a neighborhood of the origin in This completes the
proof of Theorem 9.1.

10. - On the Hans Lewy extension phenomenon.

Now that we have the results of Section 9, it would be appropriate to
consider in some detail the problem analogous to the Hans Lewy extension
phenomenon. Due to limitations of time and space we confine ourselves here
to a simple illustration of the type of theorem that can be obtained. We
plan to discuss these matters more fully in a future publication.

Let denote the algebra of C°° functions on which

are annihilated by the tangential Cauchy Riemann equations to M (M).
In what follows M, M, will be as in part (ii) of Theorem 9.1, and X will
be chosen so that If = aM.

THEOREM 10.1. Let M be real analytic and satisfy the hypothesis of The-
orem 9.1. Then the restriction map

is a topological isomorphism.

PROOF. We employ some of the notation of [7] and [1]: will denote

the tangential Cauchy Riemann operator to is the coho-

mology of the "äM-complex on with supports in and Ba = 

{the interior of 1 in will denote the border. There is by [1] an exact
sequence

because is a noncharacteristic hypersurface in for Ð"M. Since liio is
real analytic, the operator 8 jii has real analytic coefficients. By the argument
of the Holmgren uniqueness theorem it follows that has the unique con-
tinuation property on Hence -I- By definition

and Therefore it will suffice to show

that But that statement is the content of Lemma 1 of [7],
because (M, has a top hat foliation, as defined in [7]. This completes
the proof of Theorem 10.1.

One can work in other categories beside C°. For example, by employing
the results of [8] it is possible to treat these questions in the hyperfunction
category, see [17], [18], [20], [19].
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