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On Some Schrödinger Operators
with a Singular Complex Potential.

TOSIO KATO(*)

dedicated to Hans Lewy

1. - Introduction.

Consider the differential operator

In Rn, where d is the Laplacian and q is a complex-valued, measurable
function. Suppose that

Then L is formally accretive (or - L is formally dissipative), and it is ex-
pected that .L has an m-accretive realization A in the Hilbert space L2(Rn).
(A is m-accretive if - A is the infinitesimal generator of a strongly continuous,
contraction semigroup {exp [- tA] ; t ~ 0~.) Moreover, one may expect that
the semigroup is given by the Trotter product formula

In a remarkable paper [1], Nelson showed (among other things) that the
above results are true if Re q = 0 and if q is only continuous on RnB.F’,
where F is a closed subset of Rn with capacity zero; no assumption is made
on the behavior of q near F. Furthermore, it is interesting to note, he proves
first that the limit in (1.3) exists and forms a semigroup, and then that the
(negative) generator A of this semigroup is indeed a realization of L in L2(Rn).
In the convergence proof he makes an essential use of the Wiener integral.
It will be noted that Nelson does not give a direct characterization of A,

(*) Department of Mathematics, University of California, Berkeley, California.
Pervenuto alla Redazione il 3 Maggio 1977.



106

but he does show that D(A) c H1(.Rn), Where D denotes the domain and HI
the Sobolev space of L2-type.

The purpose of the present paper is to generalize Nelson’s results, using
more conventional operator theory without recourse to the Wiener integral.
We shall consider the operator L on an arbitrary open set Q c .Rn and con-
struct a distinguished m-accretive realization A of L in H = L2(S~), With a
complete characterization of D(A). Our assumption on q is that

if n&#x3E;3, p &#x3E; 1 if n=2 and p=1 
in addition to (1.2). Roughly speaking, A is the realization of L with the
Dirichlet boundary condition (see Definition 2.1 and Theorem I below).

We shall then show that the Trotter product formula (1.3) holds, where 4
should also be taken as the realization of the formal Laplacian with the
Dirichlet boundary condition (see Theorem II).

Nelson’s results for S~ = can easily be recovered as special cases
of these results (see Remark 2.5).

Our proof depends only on the familiar theories of monotone and ac-
cretive operators, y except that an essential use is made of a lemma which
the author proved in another occasion [2].

[NOTE]. In this paper we distinguish between accretive and monotone
operators, y even when the underlying spaces are Hilbert spaces. Accretive

operators act within a space, while monotone operators act from a space
into its adjoint (anti-dual) space.

2. - The main results.

In what follows we assume (1.2) and (1.4) for q.

DEFINITION 2.1. We define an operator A in H = L2 (,Q) by

with the domain D(A) consisting of all u E H such that

REMARK 2.2. H’(Q) is the usual Sobolev space defined as the comple-
tion of C*(D) under the Hl-norm
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where 1111 )) denotes the (for scalar and vector functions). Thus A
satisfies the Dirichlet boundary condition in a generalized sense.

REMARK 2.3. If u E then u E L~~(S~) by the Sobolev embedding
theorem, where p’-’ = 1 - p-1, so that qu E by (1.4). Hence Lu is

a distribution in Q, and condition (2.2) makes sense.

REMARK 2.4. It is not at all obvious that D(A) contains elements other
than 0. Actually D(A) is dense in H. In fact we have a stronger result.

THEOREM I. A is m-accretive.

THEOREM II. The Trotter product formula (1.3) holds for our A, where d
on the right is the special case o f - A for q = 0. (In other words, d is the
realization of the Laplacian in H with the Dirichlet boundary condition.)

REMARK 2.5. Suppose that Q = .RnBF as in Nelson’s case, where .F’ is

a closed set with capacity zero. Then H = L2 (Rn) because I’ has measure
zero. Furthermore, ~(~3) = in an obvious sense (see Lemma 2.6
below). It follows that d extends, and therefore coincides with, the canonical
realization of the Laplacian in L2(Rn) (with domain H2(Rn)). Then (1.3)
shows that our semigroup {exp [- tA]} coincides with Nelson’s and, con-
sequently, our A with his generator. In this way we recover Nelson’s results
for a wider class of potentials q.

LEMMA 2.6. H’(S2) = H1(Rn) if and only if .RnBSZ = F has capacity zero.

PROOF. Since Co (,~) c in an obvious sense, may be iden-

tified with a subspace of H1(Rn). Then = H1(Rn) if and only if

v E and (v, ç)1 = 0 for all cp E together imply v = 0. [(, )i de-
notes the inner product in the Hilbert space H1(Rn).] But the latter condition
is equivalent to that the distribution w = (1 - 4 ) v annihilates C’ (0), that
is, w is supported on F. Since WE H-i(Rn), this implies w = 0, hence v = 0,
if and only if 1~’ has capacity zero (see H6rmander and Lions [3]).

3. - Proof of Theorem I.

Besides the realization A in H= L2(Q) of L, it is convenient to introduce
another realization of L between the Hilbert space j5~(.S) and its adjoint
space H-1(.Q).
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DEFINITION 3.1. We define an operator T from H’(D) into by
Tu = .Lu, with D(T ) characterized by

REMARK 3.2. T is the maximal realization of L between these two

Hilbert spaces. Note that condition (3.1) makes sense because Lu is a

distribution in Q if (see Remark 2.3). Since Ltu E H-1(Q) then,
the second condition in (3.1) is equivalent to qu E H-1(Q).

PROPOSITION 3.3. Co (SZ) c D(T).

PROOF. implies qcp E by (1.4). But c H-1(Q)
because H’(Q) c (see Remark 2.3). Hence qcp E and (3.1)
is satisfied. III ]

DEFINITION 3.4. We denote by To the restriction of T with D(To) = C’ (92).
( To is densely defined.)

REMARK 3.5. To may be called the minimal realization of L between

HI(92) and In this connection, it should be noted that there is no
minimal realization of .L in H. Indeed, D(A) need not contain C’(92) (see
Remark 2.4).

PROPOSITION 3.6. T = T* where To is the operator To for q replaced by
its complex conjugate q and * denotes the adjoint operator. (Thus T is closed.)

PROOF. We have to show that given u E H’(S2) and f E Tu = f
is true if and only if ~~,  f, cp) for all (p E Co (SZ), denotes

the pairing between H’ 0 and But this is obvious from the defini-

tion of T. III

PROPOSITION 3.7. To is monotone.

PROOF. This is obvious because for 99 E C’ (S2),

PROPOSITION 3.8. 1 --~ To is monotone and coercive in the sense that

~~(1 -~- 1Iq;lh for 92 E D(To), where 1111-1 denotes the 

PROOF. (3.2) implies that
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Since the left member does not exceed the desired

result follows. III ] 

PROPOSITION 3.9. To is closable, with closure To *. + closed.

(R denotes the range.)

PROOF. Since T) = T by Proposition 3.6 and since T D To is densely
defined, exists and equals the closure of To. Since 1 + is coercive

with 1 + To, R(I + To * ) is closed by a well-known result. III

PROPOSITION 3.10. jR(l -[- the whole space H-1(Q), so that 
maximal monotone. [This is our key proposition. Note that the Lax-Milgram
theorem is not useful here, since is not a bounded operator.]

PROOF. In view of Proposition 3.9, it suffices to show that u e 

and  (1 + u) = 0 for all rp e Co ( S ) together imply u = 0.
The stated condition implies ((~ 2013 + qlp, u) = 0 or u - 4u + qu = 0

in the distribution sense (recall that by Remark 2.3). Since

this implies that 4u = u + qu e it follows from a lemma in [2J that

in the distribution sense, y which means that

Now it is known that lul belongs to with u (see Stampacchia [4]).
Since lul:&#x3E; 0, there is a sequence with such that lul
in Ho (,S~ ) as j -+ oo, a nontrivial result due to Stampacchia (private com-
munication). Then

where we have used the fact that I in the distri-

bution sense; the last inequality is due to (3.4). Letting j - oo, we obtain

(Iul, hence = 0. III I

PROPOSITION 3.11. T = T**. Hence T is maximat monotone.

PROOF. To c T implies c T because T is closed by Proposition 3.6.
But 1 -E- already has the whole space as its range by Proposi-
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tion 3.10, while 1 -~- T = 1 -E- To has trivial null space because its adjoint
1 -~- has range by the same proposition. Hence T cannot be

a proper extension of To *. This shows that T = and T is maximal

monotone by Proposition 3.10. 111 [

We can now complete the proof of Theorem I. A is the part of T in
H = L2(Q), in the sense that u E D(A) if and only if u E D(T) and Tu E L2(Q),
in which case Au = Tu. Since .R(1 -+- T) covers all of it is obvious

that R(I + A) covers all of L2(Q). Furthermore, Re(Au, u) = Re Tu, u) &#x3E; 0
because T is monotone. It follows that A is m-accretive (see e.g. Kato [5]).

4. - Proof of Theorem II.

First we note that in (1.3) we may replace A by 1 -~- A and d by d - 1
without affecting the theorem.

As is usually the case with the Trotter formula, we base the proof of the
modified formula (1.3) on Chernoff’s lemma (see [5, 6~) . According to this

lemma, y it suffices to show that

as tj0 . For our purpose, it is convenient to modify (4.1) slightly and prove that

The equivalence of (4.1) and (4.2) will be seen from Lemma 4.1 given at the
end of this section.

To this end we first note that the inverse operator on the left of (4.2)
exists for t &#x3E; 0 because exp [t(1- L1)] is an (unbounded) selfadjoint oper-
ator majorizing et ~ 1 -~- t while exp [- tq] is a contraction operator.

For any u E H let

This implies that

Taking the inner product in H of (4.4) with wt, we obtain
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Since the first term on the left dominates ((1 2013 wt) = II w, and the

second term has nonnegative real part, we have

Given any sequence we can therefore pick up a subsequence along
which wt converges weakly to a w E H§(Q) in Ho-topology. We shall show
that w = (1 + A)-l u. To this end, we apply exp [t(d - 1)] (a bounded

operator) to (4.4), obtaining

Taking the inner product in H of (4.6) with a we obtain, after a
simple computation,

Now the following relations hold.

as t~0. (4.8) follows from the facts that the left member is majorized point-
wise by which is in by (1.4), and converges pointwise to so

that the convergence takes place also in by Lebesgue’s theorem.
(4.9) follows from the facts that t-i (I - exp [t(4 - 1 )) g - (1 - 4 ) g in L2(Q)
and that exp [- tq] -~ 1 strongly as an operator on L2(Q).

Since both Lp(Q) and L2 (Q) are continuously embedded in (see
the proof of Proposition 3.3) and since wt tends to w weakly in along
the subsequence considered, it follows from (4.7), (4.8), and (4.9) that

Since this is true for every cp e Co (S), we have (1 - + qw = u in the
distribution sense, where it should be noted again that It

follows from Definition 2.1 that with (1 -f- A) w = u. Hence

w = (1 + A)-lu.
Since w is thus independent of the subsequence chosen, we have

proved that
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To prove (4.2), y it remains to show that

To this end, we first note that (4.11) already implies (4.12) locally due to
Rellich’s lemma. Thus the desired result will follow if we show that wt is

« small at infinity in L2-sense, uniformly in . ~ (The precise meaning of this
statement will be clear from the following proof.)

We have from (4.3)

the series converging in H-norm. Since exp [~(z) 2013 1)] is positivity pre-
serving, we have lexp [t(4 - 1)] f] c exp [t(d -1)~~ f ~ pointwise for each f E H.
Since I by (1.2), we see from (4.13) that

Since the right member tends as to (1- strongly in H, it is clear
that Wt is « uniformly small at infinity in the L2-sense.)} This completes
the proof of Theorem II.

LEMMA 4.1. t &#x3E; 0, be families of bounded operators on a
Banach space X, such that II Ut [- t], 11 Yt ~~ c 1, and Ut -+ 1, V t -~ 1

strongly as t~,0. Assume, moreover, that exists as a (possibly) unbounded
operator. Then the following three conditions are equivalent.

where C is a bounded operator on X and ---&#x3E;- means strong convergence.

PROOF. This is obvious from the identities :
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1

5. - Supplementary remarks.

(a) If we strengthen condition (1.2) to

then condition (1.4) can be weakened to

In this case an m-accretive realization A of L in H can be constructed as

before, with D(A) characterized by (2.2) and

Notice that (5.2) and (5.3) together imply qu E so that Lu makes

sense as a distribution in Q.
The proof that A thus defined is m-accretive is essentially contained

in [5, VI-~ 4.3]. There it is assumed that ,S2 = R3 and q is real, but these
assumptions are not essential. It is interesting to note that the proof again
depends on the lemma of [2] and Stampacchia’s lemma, which are used in
the proof of Proposition 3.10 above.

Trotter’s formula (1.3) also holds in this case; it is a consequence of a

general result given in Kato [7] (Simon’s generalization of the author’s

theorem).

(b) One may also include in q a negative part q_. If q- is sufficiently
weak relative to -,d , one can define the realization A in the same way as
above. This was done (essentially) in [5, loc. cit.] when the main part of q
satisfies (5.1) and (5.2) and q- satisfies a certain condition of the Stummel
type. A similar result is expected when the main part of q satisfies (1.2)
and (1.4).

(c) These results may also be generalized to the case in which L1 is

replaced by a general second-order differential operator of elliptic type with
variable coefficients, under certain assumptions on the continuity and growth
rate of the coefficients.

(d) When Q = Rn and it is known (see Kato [8]) that
the operator A considered in (c~) is the only m-accretive realization of L in H.
This result can be extended to the case of a nonreal q satisfying either (1.2)
and (1.4) or (5.1) and (5.2).

8 - Annali della Scuola Norm. Sup. di Pisa
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