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Invariant Metrics on Convex Cones (*).

EDOARDO VESENTINI (**)

dedicated to Jean Leray

Let 3t be a locally convex real vector space and let S~ be an open convex
cone in JI containing no non-trivial affine subspace of Jt.

In the case in which has finite dimension, an affine-invariant riemannian
metric has been introduced in S~ by E. B. Vinberg [16], following closely a
similar construction developed earlier by M. Koecher ([11]; cf. also [14])
for the domains of positivity. The invariance of this metric under the action
of the group of affine automorphisms of SZ, coupled with a classical
lemma of van Dantzig and van der Waerden, implies that acts properly
on S~. Furthermore, if S~ is affine-homogeneous, this invariant riemannian
metric on S~ is necessarily complete [10, p. 176].

In the general case in which £ is a locally convex real vector space
we will define two metrics on SZ which are invariant with respect to the

group G(S2) of all continuous affine automorphisms of Q. After considering
a few examples we compute explicitely one of the two metrics in the case
in which S2 is the cone of strictly positive hermitian elements of a Banach
algebra A endowed with a locally continuous hermitian involution. Denoting
this metric by we will consider the particular case where A is a von
Neumann algebra and we will suitably extend to this case some of the results
of Koecher and Vinberg, proving that bo is a complete metric (Theorem IV)
on S~ and that the action of is « locally bounded &#x3E;&#x3E; (Theorem V).

The main idea in the construction of the metric bo stems from the defi-
nition of the Caratheodory invariant metric on a domain of Cn ( [1 ], [2], [3]).
A suitable class of real valued functions on the cone S~ takes the place of
the bounded holomorphic functions appearing in Caratheodory’s definition.

(*) Partially supported by the National Science Foundation (MPS 75-06992).
(**) University of Maryland and Scuola Normale Superiore, Pisa.
Pervenuto alla Redazione il 16 Marzo 1976.
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The crucial role of the Schwarz-Pick lemma in Caratheodory’s construction
is played here by an elementary property (Lemma 1.1) of the Haar measure
of the multiplicative group of real positive numbers.

Let V be the complexification of Jt, and let D be the tube domain over
Q: D = {z E flY : Im z e D}. We will show (Theorem II) that 6.Q is the restric-
tion to iD of the Caratheodory metric of D.

A new metric has been introduced recently on complex manifolds

by S. Kobayashi and has been extensively investigated by him and
others ([8], [9]). This metric, besides being of great interest in the theory
of value-distribution of holomorphic mappings and in other questions,
turns out to be useful in simplifying the construction of Caratheodory’s
metric. Adapting Kobayashi’s ideas to the framework of convex cones and
affine mappings, we will define in § 1 the other affine-invariant metric
mentioned at the beginning. As in the case of complex manifolds, this metric
turns out to be instrumental in the construction of 6D.

1. - A Kobayashi-type invariant metric.

1. - The Haar measure of the multiplicative group R* of positive real
number is given, up to a positive constant factor, by t-1 dt. Assuming as
a distance of any two points t1 and t, in R* the measure of the interval
determined by ti and t2:

we obtain a continuous invariant metric on the group R + .
An affine function f : R - R mapping jR~ into JR~ is given by + {3,

ti we have

equality occurring if, and only = 0. This proves

LEMMA 1.1. If f is any real-valued affine f unction on R, mapping R+
into R+, and if t1, t2 E R+ (t1 ~ t2 ) , 9 then

equality occurring if, and only if, f is a translation in the multiplicative group R+.
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2. - Let Jt be a real vector space and let S~ be a convex cone in tJt,
~0~. In the following we shall be mainly concerned with cones satisfying

the following condition:

i) If x E S2 and if E is any affine line in tJt such that x e C. and that

C n SZ contains a half-line, then there is a half-line r, c E n ,SZ containing x
in its interior.

Condition i) is satisfied when every point x is internal (i. e. when S~
is radial at x ) .

Suppose that 1Jt # S, that R is generated by , and that Jt has finite
dimension. Let x be a bounding point of S~ (i.e. both S~ and JtBs2 are not
radial at x) and let P be a hyperplane of support of S~ at x. Then Q g P
and for any y E QEP the affine line {z = x --E- ty: t E R} intersects ,~ on a

half-line with origin x. Hence, if i) holds, SZ is open in j{ for the standard

vector topology of Jt. Since the converse obviously holds, we have:

LEMMA 2.1. The convex cone Q satisfies condition i) if, and onty if, tor
every finite- dimensional subspace ’G of A such n S2 =A 0, -6 n Q is

open in the subspace of ’G generated n Q, for the standard vector

’G.

Throughout § 1 we shall assume that satisfies condition i). If x, y are
two points of y, either x and y are collinear with 0 or x, y and 0

determine a two dimensional space S(x, y). In both cases there are two

affine half-lines rx and rv, starting at x and y, such that

Let p° = x, pl, ... , pn = y be points in S~, let aI, ..., an, b 1, ... , bn be points
in R+, and let f 1, ... , f n be affine functions of R into tJt mapping Rf into S~,
and such that

Let

where the infimum is taken over all possible choices of n, ~1, ..., pn-1,
al, ..., bl, ..., bn, f 1, ..., fn.

Clearly yn is a pseudo-metric in Q. The following proposition is a trivial
consequence of the definition of yn.

PROPOSITION 2.2. Let S21 and S22 be two convex cones in two real vector
spaces and acnd let F : be an affine map such that c 92,.
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If both S21 and Q2 satisfy condition i), then

for all x, y E Q 1 .
In particular, if the convex cone S2 satisfies condition i), the pseudo-metric yn

is invariant under any a f f ine automorphism of Q.
By the definition of YD,

for all a, bE R+ and every affine map f : such that f (R’) c Q.
Actually yo is the largest pseudo-metric on SZ satisfying the above inequality :

PROPOSITION 2.3. If Q satisfies condition i) and if y’ is a pseudo-metric
on S2 such that

for every affine f unction f : R - Jt such that c Q and all a, b E R+ , then

PROOF. With the same notations as in the definition of yo, we have

proving our assertion. Q.E.D.
Let S21 and Q2 be two convex cones in two real vector spaces Jt, and 

If both SZl and S~2 satisfy condition i), then the convex cone 
satisfies condition i).

PROPOSITION 2.4. I f both S~1 and Q2 satis f y condition i) then for
xl , yl E Q1’ we have

PROOF. The inequality on the right follows from the triangle inequality
when we apply Proposition 2.2 to the linear maps and Z21-+ (y1, z2)
of 9i.1 and Jt, into jt1 X The inequality on the left follows directly from
Proposition 2.2, when we apply it to the canonical projections 
(j = 1, 2).
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3. - We will now construct yg in a few examples.
Let tJt = R and S2 = R+ . With the same notations as in the defini-

.

tion of yo, we have, by Lemma 1.1 and by the triangle inequality,

Thus

On the other hand, choosing a = x, bl = y, /i() = t in the definition

of we have

Hence

We consider next the case where tJt = S~ = R and we prove that

Let x =1= y. Given any two distinct positive real numbers, a and b,
there exists an affine function f : R - R such that f ( a ) = x, f ( b ) = y. Being

that proves (3. 2 ) .
We say that the cone Q is sharp (or regular) if it contains no affine line.
If the cone SZ is not sharp, there is an injective affine map f : R - Jt

such that f (R) c Q. Proposition 2.2 and (3.2) imply

LEMMA 3.1. If the pseudo-metric yo is a metric, then Q is sharp.
We will discuss later on the converse statement.

The following proposition shows that both the upper and lower bounds
described by Proposition 2.4 can actually be reached on the same cone.

PROPOSITION 3.2. Let jt=RxR, and let Q==R+xR+. The distance

y) of two points x = (x,,, X2) and y = (Y1’ Y2)’ x 0 y, in R+ X R* is
given by

or by
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according as the affine line determined by x and y in R X R intersects

R+ or in a segment.
We postpone the proof of this Proposition to n. 12.

2. - A Caratheodory-type invariant metric.

4. - Let Q be a convex cone in a real vector space Jt. Let be the

collection of all real valued affine functions on Jt mapping D into R+.
For let 6.Q be the non-negative (not necessarily finite) number

defined by

Clearly 6o is a pseudo-metric on Q whenever 6.Q(x, y)  oo for all x, 
The following lemma is an obvious consequence of (4.1).

LEMMA 4.1. I f there is a pseudo-metric ð’ on S~ such that

for all f E acnd all x, y E D, then ~s~ is a pseudometric on Q, acnd

According to this lemma, 6.Q (when it exists) is the smallest pseudo-metric
on Q for which every is distance-decreasing.

Let us assume that S~ satisfies condition i) of n. 2, and let n, ai, 
(j =1, ..., n) be as in the construction of ys~ (n. 2). For any f E 

f o f ~ is an affine function R - R mapping Rf into R’. Thus by Lemma 1.1

By the triangle inequality

and therefore

Hence 6’= yg satisfies (4.2), and Lemma 4.1 implies
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LEMMA 4.2. I f Q satisfies condition i) of n. 2, then sa is a pseudo-metric,
and furthermore

The following propositions are immediate consequences of (4.1 ) and

can be proved imitating similar arguments in n. 2.

PROPOSITION 4.3. Let S~1 and Q2 be convex cones in real vector spaces j{,1
and and let F: Jt,, - be an affine map such that F(Q1) c Q2. If the
f unetions and de f ined by (4.1) are pseudo-metrics, then

for all x, y in In particular, if ~s~ is a pseudo-metric on Q, then 6D is
invariant under any affine automorphism of Q.

PROPOSITION 4.4. If b.. and are pseudo-metries on S21 and Q2’ then
the function de f ined by (4.1 ) on (S2,. X Q2) X (,521 X Q2) is a pseudo-metric
on the convex cone Q1 X Q2 c X j{,2. Furthermore

X2’ Y 2 E Q 2 .
Suppose that 6D is a pseudo-metric on S; let r &#x3E; 0, and let

be the ball with center x and radius r for the pseudometric bg. If

then by (1.1) and (4.1)

for all f Since, for 0 c t c 1, f (tyl + (1- t)y2) = tf(yl) + (1 - t) f (y2),
then

o

i.e.

showing that C(x, r ) is convex.
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Given there is a linear form A on ~, and a real number a&#x3E; 0
such that f (x) _ ~,(x) -~- a for all Clearly I(z) &#x3E; 0 for all if

A(x) = 0 for some x E Q, then a &#x3E; 0. Let x, y E ,~, and let &#x3E; f (y). Then

&#x3E; I (y), and, by (1.1),

Since the function a - (A(.r) -f- a) j(Â(y) + a) is decreasing on R+ , then (4.1)
is equivalent to

where the supremum is taken over all linear forms I on S~ such that Â(x» 0
for every x c- 92.

5. - Let ,S2 = R’. Since the identity map of R onto itself belongs to
by (4.1) and (3.1) we have0

so that, by Lemma 4.2,

If 92 = R+ x R+, then by (4.4)

Interchanging x and y, if necessary, we may Since
the function p - (xl cos 99 -- x, sinCP)/(Y1 cos p + Y2 sing,» is non decreasing for
U c ~p c ~c/2, then by (1.1) we have

Comparing the above formula with Proposition 3.2 we see that the two
metrics and are different.

.... s
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If then

This implies that, if the convex cone S~ contains some of its bounding
points, then there are points such that 6.Q(x, y) = 00.

Throughout the remainder of this paper we shall consider the case

where tJt is a real locally convex (Hausdorff) topological vector space, and
is an open convex cone in ~i,.

For x, y E S2, 8 (x, y) will denote the vector subspace (of dimension  2)
of tJt determined by x and y. Then 8(x, y ) n S~ is an open cone in 8(x, y).
By a theorem of M. Krein (cf. e.g. [12, p. 63-64]), every linear form on

y), which is positive on S(x, y) n S~ extends to a positive linear form

on S~. By Proposition 4.3 this fact proves

LEMMA 5.1. I f Q is an open convex cone in ac real locally convex vector

space A, then for x, y E SZ

COROLLARY 5.2. be a vector subspace of A. Then for x, y 

Let be the topological dual space of the locally convex space tJt, and
let Jt* be the set of all continuous linear forms which are positive
on S~. For let

Then

while

Again by Krein’s theorem every (continuous) positive linear form on
S~ r1 S(x, y) extends to a linear form on Jt, which is positive on .~ and
continuous [6, Lemma 7, p. 417].

Thus



680

so that, by Lemma 5.1, y) = 6’0(x, y), i.e.

Suppose now that the open convex cone S in 9i, is sharp. For x, 
x =1= y ) n Q is either an open half-line or a sharp open cone in a pla-
ne. In both cases

and therefore, by Lemma 5.1, y) &#x3E; 0. Hence, if S2 is sharp, bp is a

metric, and thus, by Lemma 4.2, also ys~ is a metric.

In view of Lemma 3.1, we conclude with

THEOREM I. Let Q be an open convex cone in a locally convex (Hausdorff)
real vector space A. The cone Q is sharp if, and only if, at least one of the two
pseudometrics yn and 6D is a metric. If one of them is a metric, the other too
is a metric.

By (5.3) 6D is the upper envelope of a family of continuous functions
on Hence, the relative topology of Q in A is liner than the topology
defined by ~s~.

6. - Let ’U be a locally convex (Hausdorff ) vector space over the complex
field, and let jt be a real subspace of ’lJ such that V is the complexifica-
tion of Jt.

Let S~ be an open convex sharp cone in Jt, and let D be the tube domain
in V defined by

Let ll+ be the upper half-plane in C:

The distance between two points with respect to the

Poinear6 metric in II+ is

The Caratheodory distance of two points is given
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by the formula

where the supremum is taken over all holomorphic maps f : 
If A is any continuous linear form on 1Jt, positive on Q, the function

is a holomorphic map: 
Since, 7 for t1, ~2 E R~ , 7

then

If D = 17+, then ([9, Proposition 2.4, p. 51])

Thus, by (~.1 ),

Similarly, if D = Il+ xII+, then [9, example 1, p. 51]

Hence, by (5.2),

Going back to the general case, let and denote,
as before, the subspace of tJt spanned by Y1, Y2. Let S(Y1’ Y2)C = S(Y1, y2) -~-

its complexification. By (6.2) and (6.3) we have

Since [9, Proposition 2.2, p. 50]

44 - Annati delta Scuola Norm. rSup. di Pisa
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Lemma 5.1 and (6.4) yield

and in conclusion, by (6.1),

This proves

THEOREM II. Let %T be a complex locally convex (Hausdorff) vector space,
and let i, be a real subspace of 4Y such that V is the complexilied of -it. If S2
is an open, convex sharp cone in ~i, and if D is the tube domain over Q,

then the metric bo is the restriction to iQ of the Caratheodory metric of D.

3. - The cone of positive hermitian elements.

7. - Let A be a complex Banach algebra with an identity element e.

In the following A will be assumed to be endowed with an involution * which
is locally continuous (i.e. continuous on every maximal commutative * sub-
algebra of A) and with respect to which A is symmetric. The latter hypo-
thesis implies [13, p. 233] that the involution * is hermitian, i.e. every her-
mitian element of A has a real spectrum.

Let Jt = RA be the real linear subvariety of A consisting of all the

hermitian elements of A; is a (real) closed subspace of A if, and only if,
the involution is continuous. For any x E A, let Sp x denote the spectrum of
x in A. An element is positive, h &#x3E; 0, if Sp h c R+. Let S2o be the
cone in consisting of all the positive hermitian elements in A.

Since A is symmetric, if k ~ 0, then h + k ~ 0. Thus the cone Do
is convex. Let S~ be the interior part of Do in Do and if 0 E Sp h,
for every positive integer v, Since h - ( 1 w ) e tends to h as
v - -)- , then On the other hand, if Sp h c Rf , by the upper semi-
continuity of the map x Sp x [13, pp. 35-36], there is a neigh-
borhood of h in all of whose points have their spectra in R’.

Thus
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Given any x E Q, let xl be its positive square root. By the spectral
mapping theorem Sp xl is the image of Sp x by the map t ~ 0. Thus

xl E Q. Let x-I = (Xl)-l. The map

is a bounded linear automorphism of the Banach space A mapping onto

itself. If then x-lyx-l is invertible; since

Thus Tx maps S2 onto itself. Being Tx(z) = e, then the
group acts transitively on S. Hence the cone S is afne-

homogeneous.

NOTE. We will now discuss briefly the case where the *-algebra A does
not have an identity. For the sake of simplicity we will consider only the
case where A is a C* algebra. As it is well known, the involution * extends
naturally to the Banach algebra X C obtained from A by adjoining
the identity e, in such a way that ~1 is a C* algebra. For any x let

Sp x be the spectrum of (x, 0) in 3£i . Let Do be the convex cone in KA con-
sisting of all positive hermitian elements of A. Then h E Do if, and only if,
Sp h c R+. However, since 0 E Sp x for every x the interior part Sz of S2o
in JCA does not satisfy (7.1).

The following lemma holds

LEMMA 7.1. I f then 0 is an isolated point o f Sp h.

PROOF. The closed subalgebra 93 of A generated by h is a C* algebra
which is *-isomorphic and isometric to the uniform algebra of

all continuous complex valued functions on Sp h vanishing at 0, the ele-

ment h corresponding to the restriction to Sp h of the function i - i 
If 0 is not an isolated point of Sp h, for every E &#x3E; 0 there is a real-

valued continuous function k, on Sp h, vanishing at 0, and a neighborhood V
of 0 in Sp h, such that

max and kE(t)  0 for any t E 
c Esph

Denoting by the same symbol 1~~ the element of 93 whose Gelfand

transform is we have

Hence h is not an interior point of S~. Q.E.D.
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According to a theorem of Hille [7, p. 684], 0 is an isolated point of Sp h
if, and only if, there is a subalgebra of A which has an identity and contains h
as an invertible element.

As a consequence of Lemma 7.1, if A is the C* algebra of all compact
linear operators on an infinite dimensional Hilbert space, then Q = 0.

8. - Let be the collection of all positive linear forms fl 0 on A. All

elements of 0152 are continuous linear forms. Since SZ is open, every form

in assumes positive values at all points of ,5~. If f E 0152, then f (e) &#x3E; 0, and

f is a state of A. Let ~ be the set of all states of A, and let 
be the set of all pure states.

For any I let

By definition, or if, and only if, a ( h ) ~ 0 or a(h) &#x3E; 0,
respectively. Furthermore

where denotes the spectral radius of h, and

The first part of the following lemma is contained in a more comprehensive
result of D. A. Raikov ([12, p. 307]; cf. also [13, Theorem 4.7.12, pp. 235-236,
and Theorem 4.7.21, pp. 238-239]).

LEMMA 8.1..F’or every h G RA

PROOF. The Banach subalgebra 93 of A generated by h and e is a

commutative *-subalgebra of A. Since, by the Zorn lemma, every com-
mutative *-subalgebra of A is contained in a maximal commutative *-Sub-
algebra of A, the involution is continuous on 93.

Since CBSp h is connected, Sp h is also the spectrum of h in 93. The

space of maximal ideals of 93, endowed with the Gelfand topology, is
canonically homeomorphic to Sp h. This homeomorphism maps X E 9R$
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onto the real number being the Gelfand transform of h. If

we identify with Sp h via this homeomorphism, A becomes the restric-
tion to Sp h of the function’ 1-+’ (, E C). The algebra 33 of all Gelfand

transforms of the elements of $ is a dense, conjugation-invariant, subalgebra
of the uniform algebra C(Sp h) of all complex-valued continuous functions
on Sp h.

If g is any state of A, has a continuous extension as a positive linear
form on C(Sp h). Hence there is a finite positive Borel measure mg on Sp h
such that

for all x E 93. In particular 11 m, II = g(e) = 1, and

so that, by (8.1) and (8.2),

The Dirac measures with mass 1, concentrated at the points b(h) and a(h),
define two states on 93 which extend to two states gl and g2 of A [13, p. 235],
for which we have (1

Since the pure states and 0 are all the extreme points of the set of positive
linear forms on A with norm c 1, the Krein-Millman theorem completes
the proof of the lemma.

Since for every h E S~

By the above lemma and by (8.2) and (8.3), we have
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o

i.e.

This formula proves

LEMMA 8.2. The affine-invariant pseudo-metric ~s~ is invariant under the
map of Q onto itself.

By (8.5), for some h E S2, if, and only if, Since

any such h is the exponential of a hermitian quasi-nilpotent element, we
obtain

THEOREM III. The cone consisting of all strictly positive hermi-
tian elements o f ~ is sharp it, and only it, ~ contains no non-trivial quasi-
nil potent hermitian element.

9. - For any x E S2, and r &#x3E; 0, let B(x, r) be the open ball in RA

and let

Being then for all r &#x3E; 0. Since the

spectrum of e - h is the image of - Sp h by the translation defined by the
vector 1, then, with the notations (8.1),

so that, for every 

and therefore
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Given r &#x3E; 0, for any R &#x3E; 0 such that we have also

exp (- exp r, and therefore

where C(e, r) is defined by (4.3). Since every 3p-isometry Tx defined by (6.2)
is continuous for the norm-topology and since the family is

transitive (9.1) shows that-according to what has been proved at
the end of n. 5-the norm topology in S~ is finer than the topology de-
fined 

Given 0jRl, for any we have 

 exp ( - s )  exp s  1 + .R, and therefore,

Suppose now that A is a C* algebra with an identity. The algebra A con-
tains no quasi-nilpotent element :A 0, and therefore S is sharp. Further-

more, for every hermitian element h, we have e(h) = so that D(e, r ) =

Thus, by (9.1) and (9.2), the b.- and the II ii-topology
coincide at e, and therefore-in view of the transitivity of the group

E 01-coincide throughout . If x, y E S, both x-iyx-l and y-ixy-i
are hermitian,

and (8.5) becomes

Summing up the above conclusions we have

PROPOSITION 9.1. - If A is a C* algebra with identity, the cone Q is sharp,
the metric 6.o is defined on Q by formula (9.3), and the two topologies defined
on Q by the norm and by ~n coincide.

10. - In the remainder of this paper we will further investigate the
metric 6D in the case in which A is a von Neumann algebra of operators in
a complex Hilbert space 8 (and Q is defined by (7.1)). We will prove first
that the metric structures defined in Q by 6D and by the norm, although
topologically equivalent, are indeed quite different.
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Denoting by (,) the inner product in 8, the numerical radius of 
is related by

We show now that, with the notation (8.1),

(x~, ~ ) is a state of A for every $ E 8, ( ~, ~ ) = 1, the left hand
side of (10.2) is less or equal than the right hand side. Suppose that it is
strictly less, and let c E R be such that

Since

by (8.1) Sp (ce - h) r1 0, i.e. the hermitian operator h - ce is not posi-
tive, contradicting the fact that, for all $ E 8,

and thereby proving (10.2).
Thus by (8.2), (8.3) and (8.4),

Since, for any $ E 8, 0153 ~ ( x~, ~ ) (0153 is a normal positive linear form

on A, then we have also

In conclusion we have

LEMMA 10.1. is a von Neumann algebra, the invariant metric s is
expressed for all x, y E Q by ((8.5), (9.3) and by)
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THEOREM IV. I f jt is a von Neumann algebra, the metvic 3 p is complete on f2.

PROOF. a) Let be a Cauchy sequence in Q for the metric 3p . The

distances x,)l are bounded by a finite constant k &#x3E; 0. Hence, by (8.1),
(8.2), (8.3) and (8.4), we have

Furthermore

Denoting by A* the predual of A, x, converges to some hermitian element
for the weak topology defined by ~,~ on A. By Lemma 10.1 and

by (10.3), we have x E ,S~ and x) c 1~. We will prove that 6D(x, x,) - 0
as v - oo. By Proposition 9.1 this is equivalent to showing that

If this fact does not hold, there is a subsequence of and a posi-
tive constant r &#x3E; 0 such that

We may assume 

Since for all YEA

then there is some f Z E ~* , such that

By considering the orthogonal decomposition of f z [15, p. 31]
we see that (10.4) must be satisfied-with r in place of 2r-when we sub-
stitute to f at least one of the two positive normal forms f/ or Ii. In other
words, y there is some normal state f on A, such that

b ) By Lemma 10.1, for any e &#x3E; 0 there exists an index vo such that,
whenever v, p &#x3E; vo, then



690

for every positive normal form f on A. Thus being exp (- k)  exp k,
for all It and for every normal state f, we have

Thus (10.6) contradicts the conclusion of a ) and thereby proves the
theorem.

11. - Let S2 be an open convex cone in a real Banach space jt. It is

easily seen that S~ is sharp if, and only if, there is no non-trivial transla-
tion of A such that the image of Q is a cone (with vertex 0).

Let be the real Banach algebra consisting of all bounded linear

operators in Suppose that S~ is sharp and let and be the cones

in C(Jt) consisting of all bounded linear operators mapping, respectively,
Sd into itself and the closure SZ of Q into itself. Let be the open

group of all invertible elements in the Banach algebra and let
= n 

By Banach’s homomorphism theorem, a bounded linear operator in A
belongs to if, and only if, its restriction is a bijective map of S~
onto S2. 

0

The cone S~ being open and convex, S2 = S2. Hence any element of

C(Jt)-l mapping D onto .S2 belongs to G(S2), i.e. G(2) = C(D) r1 Thus

closed subgroup of C(jt)-l (for the norm topology).
acts continuously on S2, that is, the natural map 

defined by is continuous.

THEOREM V. Let A be a von Neumann algebra and let Q be the open
convex cone in 9i, = consisting of all strictly positive hermitian elements
of A. Let C(D) c be the set of all bounded linear operators on JeA;
mapping Q into itset f . If Yl and Y2 are any two bounded sets in Q for the
metric bp, the set

is bounded in norm in 

PROOF. There is no restriction in assuming Yl and V2 to be two open
balls C( x, r ) and C(y, r ) with centers x, y E Q and radius r &#x3E; 0, for the
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metric 3p. According to Proposition 9.1, there is some R &#x3E; 0 such that

The norm BlAII ]] of any A in (11.1) is given by

Denoting again by ~,~ the predual of A,

Considering the orthogonal decomposition f = f + - f - of any normal

linear form f on A, we have

Hence

where all the supremums are taken over the family of all normal positive
linear forms f with 11 t 11  1 -

By Lemma 10.1, for all z E C(x, r),

Since A belongs to the set (11.1), then y)  2r.

Therefore

The theorem follows then from (11.2).

Appendix.

12. - We prove now Proposition 3.2. Re-arranging the indices, if

necessary, y we may assume Xi  yl .
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a) We consider first the case where the affine line passing through x
and y has a half-line in common with Since this im-

plies 
If 9 then x2 C y2 , and, by (3.1 ) and Proposition 2.4,

we have

The affine function f : R - R X R defined by

maps R* into ., furthermore

Proposition 2.2 and (12.1) yield

If Y2)’ replacing the affine function f by the function
g : R - R X R defined by

and repeating the above considerations, y we obtain

Note that, if the affine line through y intersects RI X RI along a half-
line, for any point z belonging to the segment [x, y], we have

b) Let us consider now the case where the affine line through x and y
has a finite segment in common with R+ 

Since then x2 &#x3E; y2 . With the same notations as in the defini-
tion of (n. 2), we have

..
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For any E &#x3E; 0, we can select n &#x3E; 2, ai, bi, p j, Ii (j = 1,..., n) in such
a way that

By Proposition 2.2 and by (3.1 ) we have then

We prove now that for every choice of ( j =1, ..., n ) as
in n. 2, we have

c) If n = 2, the point pl has coordinates 
p~~. In the first case, let u = ~2) and v = (vl, x2) be the intersections
of the lines and with the segments [x, pl] and

respectively. Then u2 ~ x2 and By the final remark of a)

An entirely similar argument, in the second case, leads to the same

conclusion.

d ) We proceed by induction on n, assuming (12.3) to hold for

n = no ( &#x3E; 2) and proving it for n = no + 1. If at least one, pi say, of the
vertices p’, ..., pn-1 has coordinates YI’ X2 or pl 1  xi yz , 7 then,
by the triangle inequality, the left hand side of (12.3) is larger or equal than

which, by c), is at least equal to

e) Suppose now that no such vertex like p exists among pl,..., pn-,. At
least one of the four half-lines {(t, y2) : t  ~(xl, t) : t  {(t, X2): t &#x3E; 
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has a non-empty intersection with some side, I [pi-1,p’] (1 C
of the polygonal {[p 1, p 2], ..., [pn-2, p~-1]~. Suppose that this hap-

pens to the half-line {(t, Y2): t C (An entirely similar argument holds
for the other three half-lines.)

Let w = y2) be one of the points of intersection. By the final remark
of a ) and by the triangle inequality,

Figure 1
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By d) we may assume Then the affine line determined by x
and w intersects R+ X R+ on a finite segment. Since i  n, the polygonal
~[x, pl], [pl, p~], ... , [pi-1, w]~ has sides. Then, by the inductive hypo-
thesis

so that (12.4) yields

thereby proving (12.3).

f ) As a consequence of (12.3) we have, by (12.2),

for every E &#x3E; 0. Hence

By (3.1) and Proposition 2.4 this inequality implies (3.3). Q.E.D.
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