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The Class Number of Quadratic Fields and the Conjectures
of Birch and Swinnerton-Dyer.

DORIAN M. GOLDFELD (*)

1. - Introduction.

The value of the Dirichlet L-function

formed with a real primitive character x(mod d), at the point s =1 has
received considerable attention ever since the appearance of Dirichlet’s

class number formulae

where h is the class number, ~,u the number of roots of unity, and 1 the

fundamental unit of the quadratic field Siegel’s basic ine-

quality (see [18], [7J )

is fundamental in this field, and has wide applications in the theory of
numbers. The only disadvantage is that there is no known method to

compute the constant c(s) &#x3E; 0.

(*) Scuola Normale Superiore di Pisa and Massachusetts Institute of Technology.
Pervenuto alla Redazione il 4 Febbraio 1976 ed in forma definitiva il 29 Apri-

le 1976.
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In this connection, it is interesting to note, [6], [9], that if L(l, X) =
= then L(s, X) will have a real zero @ (Siegel zero) near to s =1
satisfying

where the sum goes over all rational integers a, b, c such that b 2 - 4ac =

= X(-1) d, - a C b c ac  41/d. This, of course, contradicts the Riemann

hypothesis, and it is, therefore, likely that E(l, X) log d will never get
too small.

Non trivial effective lower bounds for Z(l, X) seem to be very difficult
to obtain. Heegner [13], Stark [19] and Baker [1] established that there

are only 9 imaginary quadratic fields with class number one. Also, Stark
and Baker, [20], [2] by using a transcendence theorem showed that there
are exactly 18 imaginary quadratic fields with class number two. As a

consequence, the lower bound

was obtained.

By developing a novel method, we shall prove

THEOREM 1. Let E be an elliptic curve over Q with conductor N. I f .E’ has
complex multiplication and the E-function associated to .E has a zero of order g
at s =1, then for any real primitive Dirichlet character X(mod d) with

(d, N) = 1 and d &#x3E; egp egp (c1 Ng3), we have

where It = I or 2 is suitably chosen so that x(- N) _ (-1 )g-~, and the con-
stants c1, C2 &#x3E; 0 can be effectively computed and are independent of g, N and d.

If the condition (d, N) = 1 is dropped, then Theorem 1 will still hold.

In this case, however, the relation x(- N) _ (-:L)9-9 will have to be re-
placed by a more complicated one.

Theorem 1 is also true for elliptic curves E without complex multiplication
provided L(8) comes from a cusp form of 1-’o(N) as conjectured by Weil [23].
It can even be shown that if II (1- has a

p

zero of at s =1, and if rj (1- a~p’~s)-1(1--~pp-s)-1 has a zero
p
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of ordere or at s = 2, then

with c, effectively computable. The value of e is given in the conjectures
of Tate [22] on the zeros and poles of L-functions associated to products
of elliptic curves, and as shown by Ogg [17], ~ =1 assuming Weil’s conjecture.

If the curve .E may be taken in Weierstrass normal form

then the associated .L-function is defined as

where t,, = p -E- 1- Np, and Np is just the number of solutions (including
the point at infinity) of the congruence

If then t,, is the  trace of Frobenius &#x3E;&#x3E;, and otherwise tp = 1 or 0.
Weil [23] has conjectured that LE(s) is entire and satisfies the functional

equation

where N, a certain integer divisible only by primes is the conductor of E.

If the group of rational points on E, which is finitely generated by the
Mordell-Weil Theorem ([16], pp. 138-149), has g independent generators of
infinite order, then Birch-Swinnerton-Dyer [4] have conjectured

CONJECTURE. has a zero of = 1.

This conjecture has been confirmed in hundreds of cases (see [4], [21])
for which g = 0, 1, and 2. Stephens [21] has shown that the curve
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has rank g = 3, that LE(s) satisfies the functional equation (4) with

N = 33.732 and the minus sign, and that L(s) has a zero of odd order &#x3E;1
at s =1. It is a particular example of curves admitting complex multipli-
cation by V::~-3. The constant L~(1) was calculated to three decimal places
and turned out to be 0.000, all in support of the Birch-Swinnerton-Dyer
conjecture.

The only curve (*) that seems to be known with rank g &#x3E; 4 and complex
multiplication is the example given by Wiman [24]

This curve has complex multiplication by and is 2-isogenous to the
curve

Using the results of [3], it can be shown that for this example LE(s) satisfies (4)
with N = 2g ~ (3 ~ 7 ~ 11 ~ 17 ~ 41) 2 and the plus sign, and that L(s) has a zero
of even order &#x3E; 2 at s =1.

If in the last example one could prove that LE(s) has a zero of order 4
at s =1, then h(- d) -~ + oo with d in a constructive way and hence the
class number problem h(- d) = const is effectively solvable.

The proof of Theorem 1 is divided into three parts. First, LE(s) is

« twisted » (in this connection see also [8]) by X and Liouville’s function A
where

the series

being obtained. The key functions

and

are then defined. Note that if .LE(s -E- 2 ) _ ~ (1- ~~p-s)-1(1- ~pp-$)-1
then = II (1- ~"’)’’(1 2013 ~P")’’. We also let

(*) For this example I am indebted to Professor A. SCHINZEL.
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where it is clear that G(s) == 1 under the absurd assumption that X(p) = - 1
for all primes p. If and then G (s, x )

nx

measures the deviation by which X(n) differs from A(n) for 
In the second part of the proof, by a careful analysis of ~(s) L(s, 

we show that can be measured in terms of L(1, X) and x. For

example, if Q( V d) has class number one, then == -f -1 if and only
if p = x2-~- xy-+- (d+1)/4)y2 so that x(p) _ -1 for all primes p(~+l)/4.
In this case, G(s, x) ---1 for x  (d + 1)/4. In general, if .L(1, X) is small,
then -~ 1 for suitable x.

In the final part, we prove that

where A = U = and 6 - 1 + (-1 ) K x (- N ) . Assuming that
q(s) has a zero of order g at s = 2 , this leads to Theorem 1 as long as

is suitably chosen so that 6 =A 0.

I wish to express my grateful appreciation to Professor Enrico Bombieri
for the illuminating discussions and patient interest he showed for this work.

I thank the C.N.R. and Scuola Normale Superiore, Pisa, for their sup-
port during the past year.

2. - Hecke .L-functions with « Grossencharakter ».

Let .g be an imaginary quadratic field of discriminant k, and f an integral
ideal in K. A complex valued, completely multiplicative function y(a)
defined on the integral ideals a E K is a « Grossencharakter » if = 0

whenever a and f have a common factor; and if there exists a fixed, positive
rational integer a such that

for any integer a E K. The ideal f is called the conductor of 1p, and if there

is no smaller conductor f1lf, then is said to be primitive. The Hecke .L-func-
tion (with primitive y)
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where the sum goes over all integral ideals a e K with norm N(a) satisfies the
functional equation [10]

In the case of an elliptic curve with complex multiplication, Deuring [5]
has proved.

THEOREM 2. Let E be an elliptic curve over Q with complex multiplication,
so that K ~· End(.E’) 0 Q is an imaginary quadratic field. Then L(s) =
= for some primitive  Grössencharakter)} of K.

Assume .E has complex multiplication by 1/- k. By comparing Euler
products (here yk is a real primitive character mod k)

where llx,,l =1 by the Riemann hypothesis for curves, and p is a suitable

prime ideal of K = dividing the rational prime p, it follows from
Theorem 2 that

if and only if Furthermore, the fact that Joel == 1 implies that the
integer a defining the «Grossencharakter )&#x3E; must be equal to one. Since

LE(s) is real for real values of s, we get from (5) that in the case of complex
multiplication satisfies the functional equation (4) with N = kN(f),
it being clear from this discussion that N is divisible only by primes p 111.

From now on let E’ and X satisfy the conditions of Theorem 1. The

twisted series
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is again a Hecke series with « Grðssencharakter)} having conductor (d) f.
The function X) satisfies the functional equation

with the same sign as in (4). This is in accordance with Weil’s principle [23].
Consequently, y the function

satisfies the functional equation

We shall make essential use of the fact that if L(l, X) is too small, then
x(p) _ -1 for most primes p « d, so that X(n) behaves like Liouville’s

function ~1(n). If

then it is clear from (7) that

Now, write

and note that if ~(p) == 20131 for all primes p then G(s) == 1. So we expect
G(s) to be near to 1 if z) is «small ». We also note that if

then

LEMMA 1. For n  x, the n-th coefficient in the Dirichlet series expansion
for agrees with the n-th coe f f icient in the Dirichlet series expansion of
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G(s, z&#x3E;q~2s&#x3E; where G(s) = and

is majorized by (1(8)L(s, X)l~(2s) )2.

LEMMA 2. If LE(s) = E.,,(s, V) as in Theorem (2), then

where Xk is a real, primitive, Dirichlet character (mod k)

PROOF. Upon comparing (6) and (7), we get

The Lemma now follows from (10) on noting that

Q.E.D.

3. - Zeta functions of quadratic fields.

Let

In order to estimate sums of the type
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it will be necessary to obtain an asymptotic expansion for C(s) L(s, X), the
Dedekind zeta function of 

LEMMA 3. Let «, be real numbers with « &#x3E; 0 and 4«y - ~2 = L1 &#x3E; 0.

Then for any x &#x3E; 0

where the sum goes over rational integers m, n with n 0 0 ; and ~6 ~ ~ 1 and
0  O  1 are real numbers.

PROOF. The argument is due to Iseki [14]. S(x) is equal to the number
of solutions of

which is equivalent to

Therefore,

THEOREM 3. Let d &#x3E; 4 and X(-l) = -1. Then lor 8 = a + it, 

where the sum goes over the set of reduced forms am2 + bmn + en2 of dis-
criminant - d. (That is to say - a C b c a C c or 
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PROOF. Again following Iseki [14]

where b, is equal to half the number of solutions of

Now,

But S(u) = 0 for u  d/4a since there are no solutions to

(2am + bn) 2 +  d.

Therefore, by Lemma (3)

where the last integral is regular for a&#x3E; -1 and bounded by

The Theorem is obtained by summing over all (a, b, c) and using the fact
that a  1/d/3 for a reduced form. Q.E.D.

An analogous Theorem for the zeta function of a real quadratic field
does not seem to be in the literature. We, therefore, give complete details
for what appears to be a new technique. The ideas go back to Hecke [11].

Let C be an ideal class in F = Q( vd), and let l~p(8, C) denote the zeta
function of the class. If b E C-1, then the correspondence
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is a bijection between ideals a E 0 and principal ideals (~,) with A E b.

Two numbers ~,1 and Å2 define the same principal ideal if and only if

Å1 = eÂ2 for some unit 8 of U == 1± 8"), where U is the multiplicative group
of units of F, generated by and 1, the fundamental unit. Hence

and in view of the well known correspondence between ideal classes and

binary quadratic forms (see [12]), we can choose

for rational integers m, n.
Since,

it follows that

where 21 &#x3E; 0 is arbitrary.
In (11) make the transformation 99 --- &#x3E;- el’ and sum over all classes. Then

where

41 - Annati delta Scuola Norm. Sup. di Pisa
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and

The Epstein zeta function occurring in (12) can be expressed

Since &#x3E; 1 and 0 &#x3E; &#x3E; -1 (so that co is reduced) it can be

expanded into a continued fraction 00 = [0, bi, b2, ..., where the bar
denotes the primitive period. The corresponding complete quotients

form again a periodic sequence, where for all v &#x3E; 0, c~ ~ 0, £01) is reduced.

Letting

denote the v-th convergent to w, it follows that for

that

as long as g~ ~ l.
Now, f (z, s ) is invariant under the unimodular transformation
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Therefore

The condition (13), y subject to cp ~ 1, can be expressed

Letting =1, = I for n &#x3E; 0, it is easy to see that

and after making the transformation

it follows that

for

Now, let

Also, let M denote the least integer n for which

Choosing q = in (12), we get

where in the interval we take z* = z.
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Using the results of § 3 of [9]

where the new form (a’, b’, c’) satisfies

and is uniquely determined by Moreover by formula (14) of [9]

and every form satisfying (18) with can be obtained by such
a transformation.

Now,

which implies for

and therefore by equation (17) of [9] we must have ~VI = [k, 2]. This

insures that there will be no repetitions among the forms (a’, b’, c’)
associated to the transformations (16) in the range It now fol-

lows from (12), (16) and (19) that

THEOREM 4. Zet d &#x3E; 1, x(-1) _ + 1 and a* _ + 1/cp) ~ ~ where

la’l = ]] for Then lor 8 = and (1) 1



637

where the outer sum goes over the set of reduced, inequivalent forms (a, b, c)
o f discriminant d.

PROOF. In equation (20)

Let ~2 C ... be the real numbers represented by the form (cx*, f3*, y*)
and r’IJ the exact number of solutions of

Now, ~,1 ~ d/a* since there are no solutions to

By use of Lemma (3) it follows that

where the last integral is regular for a &#x3E; 2 and bounded by

LEMMA 4. For d &#x3E; 4,

PROOF. As in the proof of Lemma (1) of [9[, every ideal a of i

can be uniquely represented in the form
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u, a are positive integers such that

Consequently, y since N(a) = u2 a

where 2* goes over all a, b satisfying (*), and therefore

When x(-1 ) _ -1, each solution of (*) with corresponds to
a reduced form. Hence

by Dirichlet’s class number formula (1).
In the case that x(-1 ) _ -f -1, every form (a, b, c) satisfying (*) is

equivalent to a reduced form (ocy fl, y ) with

It now follows from (21) and Lemma (3) of [9] that

and by equation (17) of [9]

Hence, by Dirichlet’s class number formula (1), we get

Q’E.D.
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LEMMA 5. Let d &#x3E; 4 and X(-l) = -1. Then f or 0  10y  x a,nd

0e1~10

PROOF. If and 

It follows that

Substituting the expression for X) as given in Theorem 3, the
above integral is trasformed into a sum of 3 integrals. These are calculated

as follows. I

after shifting the line of integration to a == 2013 ~ and using

after shifting the line of integration to a = 1 2 - s with 0  8  1110.
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The extra term arises from the simple pole at s = 2 .

LEMMA 6. Let d &#x3E; 1 and x(-1 ) _ -~ 1. 

PROOF. For c &#x3E; 0, let

As a Mellin transform

Now, for and 

Hence,

It follows that
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Now, substitute the expression for C(s)L(s, X) as given in Theorem (4). The

resulting integrals are calculated as follows.

Here, we have used Dirichlet’s class number formula (1) in conjunction
with the fact that for each of the h forms (a, b, c)

The second integral is

after shifting the line of integration to a = 1 - 8 with 0  s  1/10. Finally,

Here, we have shifted the line of integration to a =1 and used the bound
for I given in Theorem 4 together with the upper bound a* ~ ~ Vd.

Combining these last three estimates



642

Hence,

LEMMA 7. Let x &#x3E; d &#x3E; I -%/d acnd 10  y  I A/i. Then

PROOF. For x &#x3E; d 

By Lemma (4), (5), (6) and the simple bound

we get for any 0  s  1/10

The Lemma follows on choosing

Q.E.D.

LEMMA 8. Let x  d and 10  y  min (I Then
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PROOF. The proof is almost identical to the proof of Lemma 7.

It is only necessary to note the inequality for

0~1/10. Q.E.D.

4. - Proof of theorem 1.

Actually, we prove the stronger

THEOREM 5. Under the conditions 01 Theorem 1

where the implied constant can be effectively computed and is independent of g, N
and d.

In order to deduce Theorem 1 from Theorem 5, we appeal to the fol-
lowing simple result.

LEMMA 9. Let d &#x3E; exp (500 gs). Then either

or

PROOF. We can assume that

It follows from Lemma 4 that

where ’Vn is the n-th coefficient in the Dirichlet series expansion of

C(s)L(s, On examination of the Euler product

it can easily be seen 1 if n is squarefree and divisible only by primes p
for which x(p) ~ -1.
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Now, let 9 denote the set of primes p for which X(p) 
and X the set of squarefree integers divisible only by primes 
We also take As usual, 1 X denote the cardinalities of 9 and X,

k

respectively. If then it is clear that n P, EJV provided
1

Consequently, y if

the number of integers contained in ~ having exactly k prime factors is

Hence

But for n c-X. It, therefore, follows from (22) that

We get
Q.E.D.

In order to prove Theorem 5, we expand

into a rapidly converging series whose main contribution comes from the
terms n « .A. It will be seen that the success of the method lies in the fact

that A is of order d. We make use of an idea due to Lavrik [15].
Let g = or -~-- it with 0  a  1. On using the functional equation for 99(s),

we have
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Therefore

The integrals occurring in (23) are calculated as follows

Similarly,

Substituting these expressions in (23) and differentiating both sides K times
at s = 2 yields

where we have written

A simple estimate using integration by parts gives the bounds
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We now divide the right hand side of (24) into two sums as follows

where we have put

Evaluation of T2 .

LEMMA 10. I f K ~ g and d &#x3E; exp (500 g~), then

PROOF. Since the Dirichlet series expansion of is majorised by
that we have

Hence, by (26)

Furthermore, 2 (8 -E- K)

after integrating by parts.
Consequently, since K ~ g and .A &#x3E; 1~4~2 egp (500 gg), we see that

IT21 c 1. Q.E.D.
Evaluation of T,.

LEMMA 11. Let d &#x3E; exp (500 gS), and K ~ g. Then either
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or

where U = (log d)8Ø, and the constant implied by the 0-symbot is effectively
computable and independent of g, K, N, d and A.

PROOF. We henceforth assume that L(],, X)  with d &#x3E;

and K c g.
Let be an analytic function satisfying

for two fixed positive constants c, and c2 in the half-plane a&#x3E;2.

We define the transform

The growth condition on ~I~’(s) ~ ensures that the integral converges. Recall that

where G (s ) == 1 if = - 1 for all primes p.
If and then as in Lemma 1, an is iden-

n x

tical with the n-th coefficient in the Dirichlet series expansion of

for n  x.

It follows that

The 0-term comes from the terms n &#x3E; A1, and is estimated precisely as in
Lemma (10). The constant will not exceed one since K c g and A &#x3E; 1/4n2.
. exp (500 g8).

Now, let 0  Ao  A1, and define
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If P(y) denotes the product of all prime powers for which X(p) =1= -1,
then it is clear that bn = 0 for n  A, unless

and in this case

the bound (29) being obtained by noting that the k-th coefficient of 
is bounded by the number of divisors of k while the m-th coefficient of

G(s, A.1) is bounded by 1 
11m

It follows from (27) and (28) that

with the contribution of all terms n &#x3E; ~.1 being absorbed in the 0-constant.
Now choose

Since bn = 0 for n  Ao, y we may write

On using the bound

as given in (25), y it follows that

By (29) and Lemma 7, we get for any 10  y  41/d  J
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Now, recall that A1=A(8+2K)logA)2, and choose

Consequently, y it follows from (33) that

The implied constant is absolute.
On combining (32) and (34), y we get

where the implied constant can be effectively computed.
In the estimate of we use the bound

as given in (25). We get

Let It follows from (29) and Lemma 7 that

Now, choose

Substituting into (36) gives

42 - Annali della Scuola Norm. Sup. di Pisa
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Finally, we have

On combining (30), (31), (35) and (37) we get

The constant implied by the 0-symbol can be effectively computed and is
independent of g, K, N, d and A.

The estimation of T(G(8, A,)).
The evaluation of Ti has now been reduced to the determination of the

transform Ao) ~ (cf. (38)). Accordingly, we now turn out attention
to this transform. Let

where we have put

with

It is clear that the function g(s) may be expanded into a Dirichlet series
whose n-th coefficient is bounded by

It now follows from Lemma (8) that on the line cr = I + 8 with e &#x3E; 0 (recall
that Ao = A (log A )-2°° )

In order to estimate T(g(s)), we shall need to know the growth of I
just to the right of a = 1. This is easily accomplished since on the line
a=1+8 with it is easy to see that
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Now, let C be the circle of radius e centered at s = ~ . By Cauchy’s
Theorem and the bounds (40) and (41), we get

Here, we have shifted the inner integral to Re(z) = 2E, so that

Choosing

it follows that

Consequently, by (38), (39) and (42)

The constant implied by the 0-symbol can be effectively computed and is
independent of g, K, N, d, and A.

The estimation of T(G(s, U)).
In view of (43), the final step in the proof of Lemma 11 is to evaluate

T (G(s, U)). It will be demonstrated that

where 10 1  1. This clearly establishes Lemma 11.
Let C be the circle of radius 2E &#x3E; 0 centered at s = 2 for some 6 to be

chosen later. By Cauchy’s Theorem
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We evaluate T (G(s, U)) by replacing the line integral in (44) by a suitable
contour integral and computing the residue at z = 0. This residue is just

To be precise, let

where

and ltl is a large number to be determined later.
In order to estimate the above integrals, it is necessary to know the

growth conditions of the functions occurring in the integrand. We shall,
therefore, deal with each of these functions separately. By Stirling’s asymp-
totic expansion

Consequently

Since

it follows for a &#x3E; 0 that

Now, for Re(s + z) &#x3E; 0
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To estimate ~~1(s) ~, we recall Lemma 2

We shall consider each function on the right-hand side of (48) separately.
For Re(s) &#x3E; 0

For 

where the implied constant is absolute and can be effectively computed (*).
We also need the known zero-free region for ’(8) (**)

where the constants °4’ °5 can be effectively computed and are indepen-
dent of s.

Now, suppose f (s) is regular and of finite order for Then if

on the lines a = {31 and a = it follows that c B in the

strip (***). This convexity principle will be applied in deter-

mining the growth of Lg(s, lp2). If ip2 is not primitive, we let y’ be the pri-
mitive  Grössencharketer &#x3E;&#x3E; which induces it. Then

where

is a finite product going over the bad primes. If f11f is the conductor of 1p’,

(*) K. PRACHAR, Primzahlverteilun,g, Springer (1957).
(**) E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Bd. 1,

Leipzig (1909).
(***) G. H. HARDY - M. RiESz, The general Theory of Dirichlet series, Cambridge

(1952).
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then by (5)

Since y’ is not principal it follows that is entire and its Dirichlet
series expansion will be absolutely convergent for o &#x3E; 2. It is easily
seen that

Consequently

Hence, the function

is bounded by

on the and a = 1. By the aforementioned convexity principle,
this implies that

Since

it follows that

Combining all the previous estimates, we arrive at
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We now return to the estimation of the integrals r = 1, 2, 3, 4, 5.
Recall that g lies on the circle of radius i8 centered at the point §.

First of all,

It follows from (46), (47), and (49) that

Similarly

We next consider

In order to be able to apply (49), it is necessary that

which implies that

We can therefore choose

with an effectively computable constant. We get

It only remains to estimate
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Again using (46), y (47), (49), we find that

It now follows from (45) that

If we choose

for a sufficiently large c7 , then

5. - Proof of theorem 5.

It follows from (26), y Lemma 10 and Lemma 11 that for d &#x3E; exp (500 g3)
and K  g that either Theorem 5 is true or else

where

Now, if LB(8) has a zero of order g at s =1, then also has a zero
of order g at s = ~ . This implies that

for 

Let us now choose

This ensures that
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We, therefore, get from (50) and (51) that

If H denotes the expression on the left-hand side of (52), we see on
applying Leibniz’ rule that

since has a simple zero at s = 2 . Hence

Again, by Leibniz’ rule

The derivatives of G(s, U) at s = 2 can be computed by Cauchy’s The-
orem as follows. Let C be the circle of radius  centered at s = 2 .
We have

Moreover,

since there are at most 2g(log log d) primes p (logd)8 for which

-1, as we have seen earlier in the proof of Lemma 9.
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It now follows from (53) that for 

where the constant implied by the 0-symbol can be effectively computed
and is independent of g, d, and A.

In order to bring the 0-term in (54) in its final form, we will obtain
bounds for the derivatives of T2(s + %)qi(2s) at s = 2 . This can be easily
be accomplished by employing Cauchy’s Theorem.

Let C be the circle of radius 8 centered at s = 2 . By Cauchy’s The-
orem and (46) and (49) we have

Consequently

with an effectively computable absolute constant.
Now, by Lemma 2

We also need the lower bound

In order to prove (55) we denote by P(s, U) the partial Euler product
of G(s) for primes p U; we also write
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Since

it is only necessary to show that U) is sufficiently small. If

then

We have

Since Ignl I is bounded by the n-th coefficients of (C(s)L(s, X)/C(2s))2 it

follows from Lemma 4 that

To estimate R2 we note that

and since R(s, U) is majorized by

it follows that
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by the estimate

obtained in the course of proof of Lemma 9. Hence

and since by Lemma 9 the product must be larger than

the lower bound (55) easily follows.
It follows that

where c8 is an effectively computable absolute constant. To get a lower
bound for H, we use the following facts:

where 1p’ is primitive and induces 1p2.

LEMMA 12. Let 1p be a primitive ( Grössencharakter &#x3E;&#x3E; with conductor f of
K = Q( 1/-1, satislying 1p( (ex)) = a, oc ---1 (mod f). Then if LK(s, 1p) is en-
tire and has real coefficients

and the constant implied by the «-symbol is effectively computable and inde-
pendent of K and 1jJ.
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PROOF. We sketch the argument. First of all, on examination of the Euler
product, it is easy to see that

where

Since 1-’(s ) F(s - a/2) is entire except for a simple pole at s =1- a/2, we
see that

To estimate the last integral above, we need to know the growth of

F(s - al2) on the line a = - 2 . This is easily achieved by using functional
equations. We have

A tedious calculation gives

Choosing x = e,(k2N(f) )211 for a sufficiently large constant c9, it follows
from (60) that

with an absolute effectively computable constant. The term



662

comes from the easily proved upper bound (*)

We now get from (56), (57), (58), (59) and Lemma 12 that for

d &#x3E; exp exp (cNg3 ) and c sufficiently large

This together with (52) gives

which is precisely Theorem 5. Q.E.D.
An alternative proof of Theorems I and 5 can be obtained by direct

use of the Kronecker limit formula for T(8). If E admits complex multi-
plication by then 9’(8) will be a Hecke L-function of the biquadratic
field Qv - k, 1/x(-1 ) d. The assumption that L(I, v) is small implies that
most of the inequivalent binary quadratic forms ax2 + bxy + cy2 of discri-
minant with coefficients actually have
coefficients a, b, e E Q. It is noteworthy to remark that the limit formula
(in Hecke’s notation) occurs at the point s = 1, that is to say, at the center
of the critical strip of 9’(8), instead of at 8 =1, which is the natural point
for Hecke L-functions with ray class characters.
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