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Complexes of Partial Differential Operators (*).

A. ANDREOTTI - M. NACINOVICH (**)

dedicated to Hans Lewy

Introduction.

This research can be considered as a sort of commentary to the work
of B. Malgrange on the theory of division of distributions. Our indebtness
to this work is deeper than it may be superficially appearent from the con-
text of the paper. It was from Seminars held by Malgrange in Pisa in 1962
through 1966 that we have been introduced to the theory of division of distri-
butions developed by Ehrenpreis, Lojasiewicz and Malgrange himself for its
general formulation.

Given an open set 2 in R" and a matrix A4(&) = (a:;(£));<i<, Of pOly-
1<i<e
nomials in n variables &,,...,&,, one considers the differential operator

A(D): §4(Q) — &(Q)

(where &'(£2) is the space of C* maps from 2 to C°) and the corresponding
system of equations

(*) ADyw=f [eb& (), wue& ().

If the equation is solvable and if Q(&) = (Q.(&),...,@,(§)) is a vector
with polynomial components such that Q(£)A(£) =0 then one must have

QD)f=0.

(*) During the preparation of this paper the authors were supported, in part,
by a N.S.F. grant and by an Italian C.N.R. fellowship.
(**) Istituto di Matematica dell’Universitd di Pisa.
Pervenuto alla Redazione il 25 Febbraio 1975 ed in forma definitiva il 29 Di-
cembre 1975.
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8.(8)

Also if §(§) = . is another vector with polynomial components
8e(§)

such that A(§)8(§) =0, if u is a solution of (%) then u 4+ S(D)v, Yve §RQ)
is also a solution of (k).

The collection of the vectors @ (integrability conditions) and the collec-
tion of the vectors S (cointegrability conditions) form finitely generated
modules over the ring § of polynomials in the variables &s.

To take these into account is to insert the operator A (D) into a complex

8(Q) 92, g4(Q) AD), g(2) 2D, 7(0)

where the matrices B and C are obtained from a basis of the integrability,
resp. cointegrability, conditions for A(D).

Thus the study of a system of linear partial differential equations with
constant coefficients leads us to the study of complexes of differential oper-
ators with constant coefficients.

Up to now only the complexes associated to the gradient operator
(de Rham complex) and to the Cauchy-Riemann equations (Dolbeault com-
plex) have received extensive study, apart from the complex arising from a
single equation.

In section 1 to 5 we rehearse the fundamental theorems of the theory
of division of distributions bringing in some additional remarks that will
be used later.

The problem of extending the complex defined by the given operator A
to the right is then related to the theorem on syzygies of Hilbert (sections 5
to 9) of which we give here a direct proof, for which we are indebted for a
substantial help to E. Vesentini.

Section 9 is devoted to the problem of extending the complex to the left
as much as possible, as it is an experimental truth that « the longer the
complex is, the simpler is the initial operator ». This leads to the proof of
a theorem that in a different form appears in Palamodov [22].

Section 10 and 11 are devoted to the study of the « generic » situation
and provides us with generalized Koszul complexes. These have been in-
troduced and studied by Auslander, Buchsbaum and Rim [2], [4], [5], [6].
The complexes we propose here are closely related to a resolution established
by Eagon and Northcott [8] for the ideal generated by the top minor deter-
minants of a matrix. The proof of the exactness of these Koszul complexes
is obtained by an argument of Macaulay that here is presented for the sake
of completeness.
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It is clear that the theory of division of distributions transforms theorems
on differential operators with constant coefficients into theorems of algebra
and therefore this first chapter is a chapter of some commutative algebra.

We will postpone the theory of convexity to a second chapter.

Part of the results of Chapter I have been the subject of the J. K. Whit-
temore lectures given by one of the authors at Yale University in
March 1974 [1].

CHAPTER 1

COMPLEXES OF DIFFERENTIAL OPERATORS
WITH CONSTANT COEFFICIENTS

1. — Notations.

a) Let 2 be an open set in R*. We denote by &§(£2) the space of all C*
functions on £ with the Fréchet-Schwartz topology. This has a Hausdorff
locally convex topology defined as follows. Let K,c K,c K,c... be an in-
creasing sequence of compact subsets of £ with the properties

Kz-Cffm for i =1,2,...

U.K,' == Q .
For every K, and every integer k>0 we define

prax(f) = sup Y |D*f(x)], Vfe&(R)

reK; |x|<k
where
aal-l-... +on

Dr=
ox ... oagn’

Zy,..., %, being the coordinates in E=.

The Fréchet-Schwartz topology on &) is the topology defined by the
set of seminorms pg ., for 1=1,2,..., k=0,1, ....

This topology is independent of the choice of the sequence {K;} and can
be defined by the sequence of seminorms

Pi=DPgy,
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which has the property that, for every fe §(£2)

2u(f) <pa(f) <ps(f) < ...

For every K; we set
D(K,;)= {fe &)|suppfc K;}.

With the induced topology this is also a Fréchet space.
We denote by

D(RN) the space of C° functions in 2 with compact support in Q

we have

D(Q) = UD(E,)

i=1
and we consider on D(L) the inductive limit topology
D(Q) = im K(K,) .
i
We denote by

D'(2) = the strong dual of the space D(2)= the space of all distribu-
tions on Q;

8'(Q2) = the strong dual of the space §(2)= the distribution in £ with
compact support.

If p is an integer p>1 we denote by &(£2) the space
&2(2) = §(02) X...x &) p times

and similarly for D(2), D'(Q), &§(Q).

b) Let § = C[x,, ..., x,] be the space of all polynomials with complex
coefficients in the indeterminates x,, ..., z,.
If P(x)= P(®,,...,2,) is a polynomial we denote by P(D) the differential
operator obtained from P(x) by the substitution
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For a€ R* we denote by ¢, = C{w,—a,, ..., #,—a,} the space of formal
power series centered at a, i.e. in the indeterminates z, —a,, ..., Tn—ay,.

Let &, be the space of germs of C® functions at a point a € R"; we set
for every fe &,

1
Balf) = z = Df(a)(x —a)*,
aeN" &
the Taylor expansion of f centered at «. We have thus defined a linear map
G, 85 > Ps .

¢) Given a function f which is absolutely integrable on E" with respect
to the Lebesgue measure, fe L'(R" dx), we define the Fourier transform
of f by

@) = F(1)(9) = [f(@) exp [ 2mica, y>) do
2

where <z, y>= > &Y.
We have

F(P(—2mia)f) = P(D,)F(f)
F(P(D,)f) = P(2niy) F(f).

Let S(R") denote the space of rapidly decreasing functions.
This can be defined as the completion of the space D(R”) under the
topology defined by the set of seminorms

Pup(f) = sup [0 DPf(@)], o, feN".

Then ¥ defines a topological isomorphism
F: 8(Rn(w)) - S(R(y))

whose inverse (left and right) is the inverse Fourier transform

Flg) = [exp [2mica, y>lgty)dy .

R"

The strong dual of the space 8 is denoted by 8’ and is called the space
of tempered distributions.
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2. — Theorems of Lojasiewicz-Malgrange.

We recall four important theorems which one deduces from the theorem
of division of distributions.

Let A = (a,(®));<i<, be & matrix of type (p, q) with polynomial entries.
1<k<e

We denote by A(D)= (a,(D)) the system of partial differential equations

{kzlaik (D)u, =71,

1<i<y

defined for u e &(R") and fe §?(R"). We briefly write
&(Rr) A2y Ev(Rm) .

THEOREM A. Let 2 be an open conver subset of R*. The necessary and
sufficient condition for the system

AD)yu =

to have a solution we DY) for a given fe D?(2) is that for any point
a€ C" the equation

Bo(4)z = Bu(f)

admits a solution x € @S (i.e. by formal power series centered at a).

Notice that, f having compact support, the Fourier transform f is de-
fined as en entire function on the whole gpace C*.

Similarly we have a completely analogous statement for &'(£2) re-
placing D(£):

THEOREM A'. Let £ be an open conver subset of R* and let fe §°(R2).
The necessary and sufficient condition for the system

admits a solution x € @;.
The other couple of fundamental theorems is the following one.
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THEOREM B. Let 2 be an open convex subset of R* and let fe &(£2).
The necessary and sufficient condition for the system

A(D)u=f

to have a solution u e 8(82) is that for any vector v(x) = (vy(®), ..., v,(x)) € I?
such that

v(x)A(x) =0
one should have

v(D)f=0.

Replacing §(£2) by D'(£2) one has the following

THEOREM B'. Let Q2 be an open convex subset of R* and let f € D'?(2).
If the equation
AWD)u=f

has a solution ue€ D'Y(L2) then for any vector v(x)€ F? such that v(x)A(x) =0
we must have also v(D)f=0.

Conversely, assuming that f e D'?(2) is given and that v(D)f =0 for any
v(w) € I? such that v(x)A(x) = 0, then for any compact subset K C 2 we can
find weD'Y(Q) such that

ADw=f on K.

The statements and proofs of these theorems are to be found in
Malgrange [15], [16], [20].

3. — Resolutions of a differential operator with constant coefficients.

Let § = C[2,,...,2,] be the ring of polynomials in n indeterminates
Z1yeeey Bn.

Let A,y(2), 4,(2) be two matrices with polynomial entries of type (p, q)
and (g, r) respectively and let A4,(D), 4,(D) the differential operator one
obtains by the substitution

i —> .

ox;

ProrosiTioN 1. Let 2 be a convex open set in R". The necessary and
sufficient condition for the sequence of differential operators

) D1(Q) AP, Do(Q) 4D, Do(0)
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to be exact is that the sequence of T-homomorphism
2) g7 4D, go_ 40, g5
be an exact sequence.
Proor. Sufficiency. Let ac C® and let ¢, be the ring of formal power
series centered at a; ¢, = C{e,—ay, ..., 2,—a,}. We can consider T as a

subring of ¢,: Then (7, ¢,) is a flat couple. Thus we get from (2) an exact
sequence :

@) ¢, 40, g7 203, g2,
First we remark that from (2) we derive

(%) Ay(2) As(2) = 0.
Setting
2, =2miy;, 1l<j<n

we get then for any ge D'(2)
Ao(2niy) A, (2miy)(y) = 0
thus by Fourier transform
Ay(D)A,(D)g(x) =0, VgeD(2)

and this implies that
Ay(D)A,(D)=0
i.e. (1) is a complex (which is a directly obvious consequence of (%) after all).
Let now ge D) be such that
Ay(D)g(x)=0.
Then
Ao(27iy)G(y) = 0 .

Taking the Taylor series at the point ae C” we get

Ao(2miy) Tu(d) = 0.
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Because of (2') we then get for some ¢,c@]

Ta() = 4:(27iy) @ .
We can then apply theorem 4 and we then deduce that the equation
A,(D)u=g
admits a solution we D"(L2). Thus (1) is exact.
Necessity. We prove first the following

LEMMA 1. Let 2 be any open conver subset of R". Consider the space

—
D) = {§(y)lg e D)}

as a linear subspace of the space J(C*) of all entire functions over C*.

(a) Given ac O, ped, and an integer k>0 we can find ge D(RQ)
such that

B.(f) = ¢ mod M~

where M, denotes the mawimal ideal of the ring ¢,:

(B) We can find a finite number g,, ..., g, of functions in D(Q) such
that the entire functions §,(y), ..., §:(y) have no common zeros in C».

ProOF. (x) Let g(x)e D(R) be such that fg(m)dm:l.
Set “

ha(@) = exp [27i <z, a)]g(x)

then h,(z)e D(£2) and we have

ho(a) =1.
Let P(y) be a polynomial of the form
(r—a) ... (Yn—an)™ o =Do;<k.
Then P(— (1/2n4)D)h(z) € D(R2) and its Fourier transform is

Py)h(y) = 1 — @)™ ... (¥a—an)+ O(J| + 1) .
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This shows that we can prescribe as we like the leading term in the Taylor
series B,(%) of a function yeD(£2).

By taking linear combinations with constant complex coefficients of
suitable functions in D(L2) we can prescribe ad libitum all terms of the
Taylor development G,(%) up to the order k. This proves the statement («x).

(B) First we remark that it is not restrictive to assume that the origin
0€ R" be contained in 2 by making a translation.

Let us first prove the statement in the case of one variable and let us
assume Q = {zeR|—e<x<e}. Let fe D), ffdw;é 0. Then f(y) is an
entire function on C.

Set

g(x) = o7 f (x/p) for 0 <p<1.
Then g(x)€ D(£2) and we have
§(y) =F(ey) -

Let 8= {3},; be the set of zeros of f(y). Since 0¢9, the set
A, = {0le3, €8} is at most countable. Thus U 4,, is also countable and

meJ

thus we can select ¢ with 0<p<1 such that §(y) and f(y) have no
common zeros.
Let now n =2. We may choose ¢ >0 so small that the square

Q= {(, )R —e<uw;<eg 1<i<2}

is contained in £.
Consider the functions in D(£2),

f@)f(@), f@)g(@), [@)g(@), g(@)g(®)
whose Fourier transforms are

fodfws), Foodws), dw)fwe), 9@)d.)

these have no common zeros as f(y) and §(y) have no common zeros.
The general argument is now clear.

LEMMA 2. The ring JE(C*) of entire holomorphic functions on C* is faith-
fully flat over the ring § = C[zy, ..., 2,] of polynomials in n variables.
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ProoF. We want to show that any linear system

t
(%) day@) X;=h), 1<i<l

i=1
with coefficients and second members in ¢,
a;€¥, hed

has the following property. Any solution X = (X,,..., X,)e¥(0")¢ is a
linear finite combination of the form
X, = zbazga)_l_ w;
where b, € J(C") and where
(wyy ..., w,) is a solution of (k) in J»
(29, ..., 29) is a solution of the corresponding homogeneous system ()
(i.e. with h=0) also in 7.
Indeed this property can be taken as a definition of faithful flatness.
Suppose first that I=1 and let k= (k,,..., k,)€3(C")* be a solution
of (%) by entire functions.

We will make use of the following theorem of M. Noether:
Let f, fi,...,f, be polynomials in n variables and assume that

f=plf1+ ""'l_pafa

where p,,...,p, are formal power series centered at 0. Then there exist
polynomials g, ¢, ..., 9, wWith g(0)5=0 such that

gf =g:fr+ ...+ 9.1,

(cf. Grobner [10], pg. 151).
By assumption we have

t
D a;(2)k; = h(2).
i=1

Thus by application of Noether’s theorem, for any point a € C* we can
find polynomials g,y Piay..., Pss With g,(a)= 0 such that

(k) > Pia(2)a5(2) = ga(2)h(2) .
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We can select a finite number a,, ..., a, of points in O* such that the
polynomials
ga,(z)9 ceey ga,(z)
have no common zeros in C*. By the Hilbert’s « Nullstellensatz » we can

find polynomials 7, (2) such that

1 - z z)gas(z

i=1
Therefore from the relations (sxx) we obtain
= > a,(2)gs(2) with ¢,(2)e T

(Where g(2) = Z P;.,.(z))

Consequently

¢
g:la'd(z)(kf —¢;)=0.

Consider the J-homomorphism
gt 2. ¢
given by
t
oUPry ey Do) = zafpi .
i=1

By Hilbert syzygies theorem we can find a F-homomorphism g: §* — F¢
such that the sequence

g L, gt =,

is an exact sequence (actually only the Noetherianity of ¢ is needed here).

As the ring of covergent power series is flat over the ring of polynomials,
denoting by O, the local ring of germs of holomorphic functions at a we
deduce an exact sequence

0’ %050,

This shows that if 8, ..., B*) are the columns of the polynomial matrix 8
in a neighborhood U(a) of a we must have

k—g= 222" with A% holomorphic in U(a).

a=1
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We may assume that U(a) is a Stein open set. Let W = {U(a,)}|;; be
a covering of C* by sets of the type U(a).
On U(a,) N U(a;) we get

3 (= ap9=0.
a=1

Thus {A* — A%} represents a cocycle on the covering U, with value in
the sheaf of holomorphic relations among the 8@, 1<a<».

Let R(BY, ..., B?) denote this sheaf. As it is coherent, by theorem B
of H. Cartan and J. P. Serre we can (making use of Leray theorem which
states that H'(W, R) =0) find o*e I'(U(a,), R(BY, ..., f*))) such that

lac_la;_: o.ag__o,a,
with
Yok =0, Vi.

Thus setting 4 = A*— ¢* = 1*’— ¢" we obtain a vector A = (4,,...,4,)
with entire holomorphic components such that

k—q—_— 2/1«5(“)-

This achieves the proof of the lemma in the case I =1.

We can now proceed to the general case with the inductive assumption
that the lemma is proved for systems (%) of at most ! —1 equations.

We consider the equations (%) and let k= (k,,..., k;)€J(C")t be a
solution.

‘We have in particular

i ==
Za'l kj=h,

and by what we have prooved we can find a polynomial solution
P=(P1y...,Ps)

Z ayp;=hy.
Then k'= (ky— P4, ..., k;—p;) satisfies the system

2%-7%'- =0

......
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with kg, ..., h, in §. Moreover
k=>4, with A4,e¥(C") and e ¢
i
and such that
Z a,n-ﬂg“) =0.
J

Substituting these expressions in the (I—1) last equations we get a
gystem of I —1 linear equations of the form

aE(;aﬁﬂﬁ“’)Aﬁ B, 2<i<l.

By the inductive assumption we can find a polynomial solution b, T
such that

Aa = bﬂ + z QI'AIV

z( Za,.jﬂg”) Ay=0 and 4,e7 2<i<l.
a )
Going back to the original solution k we obtain for it the desired expression:
k= (pj + z b, ;ﬂ)) + z Qa(z lawﬂg“)) ,  I<j<t.

REMARK. The lemma ceases to be valid if we replace the ring of entire
functions by the ring of holomorphic functions on an open Stein set (2.
For instance take Q = {ze C “z] <1} and consider the equation

(1—2)or=1.

This equation has no polynomial solution but it has the holomorphic
golution in Q

z=2".

0

‘We can now prove the necessity of the condition given in the proposition.
From
4,(D)4;(D)g=0, VYgeD(Q)
setting z = 2niy we deduce

Ao(2)4,(2)§ = 0.



COMPLEXES OF PARTIAL DIFFERENTIAL OPERATORS 567
Using statement («) of lemma 1 we deduce then that

Ay(2)A4(2) = 0.
Let he 3¢ be such that
Ay()h=0.

For every ge D(2) we thus get

Ay(2)h§ = 0.
But
N
hf = h(D)g .
Thus

A(D)h(D)g=0, VYgeDR).
By the hypothesis we can find k,e D'(£2) such that

h(D)g = A,(D) k,

or, by Fourier transform,

hj = A, (2)k, .
By lemma 1 (§) we can choose a finite number g¢,,..., g, of elements
in D(Q) such that the entire functions §,, ..., J, have no common zeros.

By the « Nullstellensatz » we can find entire functions «; € J6(C") such that

1
z “,‘é" == 1 .
i=1
Thus we can write
h=A,(2)k
with &= (&, ..., k,) e Je(C™)r.
By lemma 2 then the system h = A,(z)2 admits also a polynomial solu-
tion. This shows that the sequence (2) is an exact sequence.

With the same argument (and actually with an almost trivial proof of
the analogue of lemma 1) we obtain the following

PRrOPOSITION 1'. Let 2 be an open convex set in R*. The necessary and
sufficient condition for the sequence of differential operators

(1/) 8"(9) A.(D)r 8”(9) A,(D)% 8ID(Q)
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to be exact, is that the sequence of T-homomorphisms

(2!) ﬁ‘r Ax(z)E g‘q Ao(")E g’p

be an exact sequence.

4. — We denote by !4,(2), !A,(z) the transposed matrices of A,(2), 4,(z)
respectively

ProPOSITION 2. Let £ be an open convexr set in R". The necessary and
sufficient condition for the sequence of differential operators

(3) 8r(2) A2, go(Q) D), gr(0)

to be exact is that the sequence of T-homomorphisms
(2) :T' Ay(2) ﬂ"q Ao(ﬁ)i g‘l’
be an exact sequence.

Proor. Sufficiency. We have
Ay (2)A,(2) =0  thus also *4,(z)!4,(2)=0.

Let fe &(2) and let {p;} be a C” partition of unity subordinate to an
open locally finite covering W = {U,} of 2 by relatively compact open
subsets of 2. Set f;= p;f; then with the usual notation z = 2niy we get

F(t4,(D) Ao(D)f.) = H,(2) Ao(e)fi= 0

thus *4,(D)*A,(D)f;= 0 and therefore

‘4,(D)Ay(D) f = 3 4,(D)4o(D)f: =0, Vfe&(Q).
i

Let now fe 8§¢(£) and let us assume that
4,(D)f=0.
We want to show that the equation

‘A D)u=f
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can be solved with u e &7(£2). For this we apply the criterion of theorem B
of section 2; for any
w(2) = (v:(2) ... v°(2)) € T
such that
() t(2) tAe(2) = 0

one should have also w(D)f = 0.
Now from (%) we deduce A,(z)v(2) = 0 thus, by assumption we can find
7(2) = 47(2), ..., 7.(2)) € 7 such that

v(2) = 4,(2)n(2) .
Therefore
w(D)f = (D)'4,(D)f=0 as A(D)f=0.

Necessity. The proof is based on the following facts that we state as
lemmas.

LeMMA 1 (Whitney’s theorem). Let M be a differentiable manifold with
countable topology and let (M) be the space of CF functions on M with the topology
of convergence of the functions and their partial derivatives (the Schwartz
topology). Let Jc & M) be a closed ideal.

Then the following conditions are equivalent

i) fe & M) is an element of J;
ii) for any ae€ M we have
Ba(f) € Ca(J)

iii) for any a€ M and any distribution T, with support in the point a,

7,= 3 078

InI<k

(where 6@ = D?8, and C,€ C) such that T,(3)=0 we also have T,(f)=0.
From this one deduces the same type of statement for closed submodules
of &2(M).

LEMMA 2 (division theorem for C* functions). Let Q2 be an open set in R*
and let A(x) be a p X q matric with complex valued real analytic entries defined
on Q. Then the linear map

A: §(Q) > &(Q)

37 - Annali della Scuola Norm. Sup. di Pisa
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defined by
(@) > A(x)f(2)
has a closed image.
After these premises we can begin the proof of the necessity of the stated
condition.
By assumption

gﬂ(g) A4y(D) 8“(.9) A(D) gr(Q)

is an exact sequence. Thus, for any ge D?(2) we have

'‘4,(D)44(D)g =0
and by Fourier transform

t4,(2) Ay(2)§ =0 .

This being true for any ge D?(Q2) (using lemma 1 of the previous sec-
tion) we deduce that *4,(z)!4,(z) =0 i.e.

Ay(2)4;() = 0.

Hence the sequence (2) is a complex.
Let now he 97 be such that

Ay(2)h=0.

We want to show that he 4,(z)9".
To this end we first show that

(%) he A,(z)&(C).
Indeed, by lemma 2, the image of the map
A, &(C™) — §(C")

given by f — 4,(2)f is a closed submodule of &/(Cn").

Therefore we can apply the theorem of Whitney in the form of the third
condition, heIm A, << for every point supported distribution 7,, a € C*,
such that T,(Im A,) =0 we have T,(k)=0.

A distribution of type T, is of the form

r(D)é,

where r is a polynomial.
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Thus the inclusion (%) is verified if Yae C* we have

r(D)h(z)|,_, =0
whenever

(skk) r(D)Ay(@) fl,a =0, Vfe8(C).

As the Taylor expansion of f at 2 = a can be arbitrarily prescribed the
condition (#%) is equivalent to

(kskesk) r(D)A,(z) =0 or r(D)A,(2)|,.,=0 Yae C.

By Fourier transform this is then equivalent to the following statement.
For every exponential polynomial

r(x) exp [2nila, 2]
satisfying
tA,(D)r(x)exp [2nila, x)] =0

we should also have

th(D)r(x) exp [2nila, )] = 0.
Now by the assumption A4,(z)h(z) =0 we get
th(D)'4,(D)g=0, Vgeb&(Q).

As tA,(D)&(R2) = Ker ‘A,(D), this implies that th(D) vanishes on each
fe 8(Q) with feKer?4,(D) and in particular for all f = r(x) exp [27i{ax)] €
e Ker*4,(D).

This proves our contention.

We have thus proved that

h(z) = A,(2)k(z)

with k(2) € 67(C*). We want to show that we can replace k(2) by a vector
k'(z) € Jr.
This amounts to prove the following

LEMMA 3. The ring &(C") of C° functions (complex valued) on C* is faith-
fully flat over the ring of polynomials in n complex variables.

This is proved in the same way as lemma 2 of the previous section taking
into aceount the fact that the ring of germs of C* functions at the origin in
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some RY is (faithfully) flat over the ring of convergent power series and of
formal power series (a fact which is a consequence of lemma 2) (),
Replacing the use of theorem B with theorem B’ one obtains the following

PROPOSITION 2. Let 2 be an open relatively compact convex set in R
and consider the sequence of differential operators

@) D'*(@2) LD, D) 4D, D).

The necessary and sufficient condition that this sequence be exact is that
the sequence

@) gr 4B ¢ 4@y go

of F-homomorphisms be an exact sequence.
Here we have denoted by D’'(2) the space

D'(2) = lim D'(W,)

where {W,} is a fundamental sequence of neighborhoods of 2 in Rr.

REMARK. In the previous statement one can replace {2 with the open
set Q itself (cf. Palamodov [22], ch. 7, 8, th. 1 and also [23]).

5. — Given a matrix A(D) of type p xXq of differential operators with
constant coefficients and given £ open convex in R” one can congider the

(*) One word should be spent over the application of M. Noether lemma. Let
f fis ..y fs Do polynomials in #,,...,2,. Suppose that

j= klf1+ "'+ ks.fs

with k,€ §(C"). At every point a € C» the Taylor series of %, is a formal power
series in (#;— @y, ooy 8y— Gpy 29— g, ..., 2y — Gy,) thus

f = ?ga(kl)fl"i" et ‘Ga(ks)fs .
Putting in this expression z,—@d,=0,...,Z,—d, = 0 we obtain an expression

f=phi+ ...+ 2sfs

where p, are formal power series in (¢; — a;), 1<i<n, only. Thus we are still in
the conditions required by M. Noether theorem.
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system of partial differential equations

DY(Q) 4D, Dr(2)
or
§1(02) AD), &v(Q) .

One can then ask to construct, if possible, two other systems of differ-
ential operators with constant coefficients,

B(D): D?(R2) - D7(2)

or (integrability conditions)
B(D): 7(R2) — &(£Q)

and
C(D): D*(Q) - DYD)

or (cointegrability conditions)
O(D): &(2) — &(£)

such that one has, on £, an exact sequence

(D) D(R2) 225 DYQ) LB, Do(Q) 2D, Dr(Q)
(®) 8(Q) L2, 8e(Q) 4D, £r(Q) 4D, §(Q).

The previous propositions enable us to reduce this problem to a problem
of algebra. Precisely

(@) The sequence (D) will be exact if and only if the sequence of
J-homomorphisms
Fs _O@) C(2) Fa _4G) A(7) gp _BH) B(z) gr

is an exact sequence.

(b) The sequence (&) will be exact if and only if the sequence of
J-homomorphisms
g7 'B(z); gr ‘A2 qga_‘*oa) s

is an exact sequence.
We are thus lead to the following problem:
given a §-homomorphism between $-free modules

Pa _A) A g
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to find F-homomorphisms F* 2, §¢ and (if possible) Fz 2%, Jr g0
that Im O(z) = Ker A(2) and Im A(z) = Ker B(z).
We will discuss these questions in the next sections.

6. — Backward resolutions of a J-homomorphism.

(a) We start with the following
REMARKS (a). Given two F-homomorphisms

gtli_)_ﬂ\s’ {]"Lﬂ”

necessary and sufficient condition for S being factored through F (i.e. that
there ewist A: T — " such that S = F-A) is that

ImScImF.

(b) Given a diagram of T-homomorphisms

RN LN L SN R N £
lAl lA.
RN L o WG | A W

which is commutative with exact rows, then one can complete it in a commu-
tative diagram

R e T i N
14! lAl-l lAl le
s sge B o .. g0 B g0

(¢) Let M be a finitely generated T-module. Any two exact sequences
of T-homomorphisms

RN ¢ UL 2 SN NN L I 7 A |
Cosgu g . s gu B guby Yo

can be factored each one through the other. (i.e. we can find T-homomorphisms
A I — 0% id: M — M, which complete into a commutative diagram).
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Any two factorizations A, B;: 7 — 3% of the first sequence through the
second are homotopic (i.e. we can find F-homomorphisms k,: I7 — F%* such that

Ay—By=Fiky; A;—B;=F, ,k;+k._,8; i>1).

In particular if @ is any covariant (or contravariant) functor from the
cathegory of ¥-modules to the cathegory of abelian groups the homology
(cohomology) groups of the complex

- =T D(81) D(F7) - -0 > D(T™) D(8,) D ()

(@(g'm) 28Ny H(FP) — - — P(F7) (81 D7) — )

are independent from the choice of the « resolution » and give invariants of
the module M alone.

Moreover given any finitely generated 9-module M, by the fact that ¢
is a Noetherian ring, it follows that we can always construct exact sequences
of F-homomorphisms (free resolution of M)

C oGS P e L gn S g I 50,

In particular, given a J-homomorphism §,: J%* — §%, we can always find
a backward free resolution

N S

The proof of these statements is straightforward and thus it is omitted.

7. — Hilbert’s theorem.

The following theorem is due to Hilbert:

THEOREM 1. Let § = k[x,,...,2,] be the ring of polynomials in n>1
variables over an infinite field k. For any F-homomorphism

Fo B, g
we can construct a finite exact sequence
0—> G Sa, g oo >G5 gu S g

of lenght d<n -+ 1.
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Hilbert gave the proof of this theorem for the similar case of the graded
ring of homogeneous polynomials. The proof can be easily adapted to this
case and will be given below for the convenience of the reader.

PrOOF. (x) We consider first the case n=1. Then T, =k[x,] is a
principal ideal ring. The homomorphism §; is represented by an s,Xxs,
matrix. One can find matrices U, V of type s, X s,, 8; X8, respectively with
det U = +1, det V = 4+ 1, with elements in J, such that

USIV= S'= dia:g(hl’ h27 ceey h” 0, ceey 0> .

This means that by rechoosing the basis in §* and §* we can assume 8,
in diagonal form. If § = diag<{h,,...,h;;0,...,0> with h,... ;540 then
Ker8, is isomorphic to %! and we have the exact sequence (with
8 =8,—1)

0—>J8 > gn 5 g,

(B) The proof now proceeds by induction on the number % of variables.
Let R = k(xy,...,2,) be the quotient field of T, = k[, ..., %]
For a matrix § we write

o B,
8= (81, 8..)= R,

as the set of its columns or respectively of itis rows.

Set
8, =(8,, ---;Ss,) =1:
R,
and let
o =rankgS;; then p<inf(sy,s,)
Rl
and we can assume that | : ]| has rank p. Therefore
RQ
Ker8, = {Xe TR, X =... = RB,X =0}
and we shall have KerS;0 only if o <s,.
Set
‘Rl
S;=\: =0, 8)

R

e



COMPLEXES OF PARTIAL DIFFERENTIAL OPERATORS 5717

and let

D =det (S, ...,S,).

e
It is not restrictive to assume that
(a) D#0;

(b) r = degree of D in x,>degree of det(S;, ..., 8;) in w, for every
choice of i,,...,¢, in {1,...,8};

(¢) D = az],+ polynomial of degree less than » in x,, and with a+0.

To satisfy the last condition we make a « generic» linear change of
coordinates # and use the fact that the field % is infinite.
Now remark that all minors of order o+ 1 of the matrix (for each
t=1,...,0)
R;
R,
'RQ
have a zero determinant. This provides us with a system of vectors in Ker §,.
In particular those minors obtained by bordering the matrix of D by
one row and column, give us s,—p¢ vectors in KerS,. Assembling them
in the columns of a matrix ¢ we get

%
D o
C= . (rank € = s,—p)
0 D
8—e
where the elements in the part denoted by % are of degree <r in z,.
Aq+1
Given any X € Ker S; we can find a vector | : with A4, F, such that
A

8

8%}

oy

E=X—-C0A4=

[I] ces

8
has the property that degree in @, of Z,, ,<r for i=1,...,s,—0.
Indeed it is enough to choose Ae +; 8 the quotient of the division of X,
by D in x,;

Xopi=DAy i+ 8,y t=1,...,8,—0.
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We claim that then also &), ..., 5, have a degree in z, which is <.
Indeed as ZeXKer8, we have S§,5 =0, thus

ford
=
=1

(81, s 8| 1 ) =—(8ppir--» 8y)

e 8

-

e+1

v Iy

()
[x)

and, from Cramer’s rule,
D5 =& 4 T Al
E, =Byt T 5, s:)’ 1<s<o

where A{ are the minors determinants of order o of the matrix ;. The
degree in x, of the right hand side is thus <2r. From degree in z, of
DE, < 2r we deduce, that degree in x, of 5, <r for 1<s<p.

Therefore,

every vector X € Ker 8, is the sum of a linear combination CA of vec-
tors of the matriz C and a vector = whose components have all a degree in x,
which is <r.

(y) Set

E=¢&a 4.+ & with e,

8, =02 +..+0,, o;a matrix s;xs, with entries in F,_,
then the condition S,5 =0 is transformed into a system

0,6, =0
026140, =0

in §,_, that we will write in matrix notation
oy 0
(41
pf=0, where ¢ =
G141
0 o

is of type (I+4 r)Xxr in the block matrices o;.
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Let £ ..., & be a basis of Kergp over §,_,. If we set

EO =gty L ED I<a<
1 % r? #

& = (EW,..,EW
then we get for any X € KerS, an expression of the form

ﬁ‘l
X=0A+ D). where Ai=|: |)eT:_,
y)

17
i.e. setting
8= (O’ ¢)

we get the following commutative diagram with exact row:

gomotu Sy gu Sy g

e

neet,

(6) Now we investigate KerS,.
As 1, E®eKerS, we must have

w"E(“) = C0A® + 1@  with A®¥e Jh_, 1<a<u
thus
e
CAY+ | 29 —p, | =0.
P
If we set
A
2
(@) __ :
Y= Aga)_ xn
2@
then
8,y =0, and y“£0 as AP —w,#0.
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We have thus found a system of u vectors in KerS, that we write as the

columns of a matrix

AL AW
(1) — (D By —
CV= (" ..., y") ((Agz)_ 51'9””))

and rank 00 =y as det (AP — d,42,) = (—1) ki + ...5£0.
We want to show that any vector yeXKerS, can be written as a linear
combination CVA of the column vectors of the matriz CV and a vector

0 M,
M= with M'={ : Jef:_,,
M M,
y=0YA+ M.

Clearly one can choose A so that y — CA has the last 4 components in-

"

o ), then S; M = 0 implies

dependent of the variable z,. Set M = ( w

CM"4+dM'=0
®
0

and as C = D_ we deduce
0 D
DM;' = polynomial in x, of degree <r—1 (1<i¢<s,— ) and therefore
M =0.
(¢) Now

@ = >l HEY, ..., EM)
i=1

so that the relation ®M'=0 and M’'e J/_, implies

(ED, . L EMM =0 for 1<i<r.
Or, setting
@, = (5(1), ey E(M)),
we get
o, M'=0.

If MO, ..., M'™ is a basis of Kerg, over §,_, and if we set

P = (Ml(l)y cevy M'(m))
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we get from the last remark of (6) that any yeXKerS, has an expression
of type

0<1>A+( )/1 with Ae $¥ .

Therefore we conclude that we have a commutative diagram with exact row

S
mt+m 3 g-a. etu ! ﬂm ! 3 gwa

t/‘t/

Hy 810
g'n—l ﬂ' @ n—1

where

0
Ss———(O’(l) (p)’ Sz=(0’ D),
2

and moreover the sequence

e
is an exact sequence.

where
(1)

Ol 9.

(1)
() We are going to investigate KerS,. We set §; = (C
O = (A9 — 8,,w,) and where ¢, = (M'®, ... M'®)). Now recall that the vec-

tors ( J];’(“)) are in KerS; so that we must also have

0
S2wﬂ (M/(az)) =0.

By the conclusion of point (¢) we must have therefore

0 Al 0\ /2@
=09 : |+ ), APed,, X0ed, ;.
@, M'® AP @) \A®

In particular
A(loz) A(la)
CR| || i |=m M.
A@ 2@
14 Py
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From Cramer’s rule we deduce then

det 0 A$ = polynomial in =, of degree <u.

Therefore, for any «, 8, APed,_,
In particular the vector

YO =HAD, .., AP, KD, L, 2 — )

R U

is a non zero element of KerS; for 1<a<y,. Let

AD . Ale c®
@) — (D () — —{"¥u
C (:’/ g eeey Yy ) ((l;—w,,) ) (Cgi) .

We have det C& = (—1)"z" 4 polinomial in x, of degree < u,.

Given any vector yeXerS; we can find Ae Th so that

0 M,
y=094+ M with M= , M= : Jegm,
M M,

by

Indeed once we have chosen A in such a way that the last u, components
of Y — (0®A are independent of x,, from the equations S, M = 0 we deduce
that the first 4 components of M must be zero and therefore that

e M'=0.
Let M'™W, ..., M'® be a basis of Kergp, over ¥, , and set
Pg = (M’(l), ey M/(I‘z))
Then any Y eXKerS, has an expression of the form
Y=09A4+ (;33) A with AeJh, le b,
and therefore we have a commutative diagram with exact row:

n#1+uz f‘l‘+l‘1 pa, o+u ____,_ T

t/t/t/

My @ @:2 g‘ll @ 5‘.“1 ("1_9 @g’”
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where

S4 = (0(2) ((;3), Ss = (Gm :)’ Sz = (C; D)
2

and moreover we have the exact sequence
Thty B Ty 2o 01y 20 030, 25 G

(n) The general procedure is now clear:

1) given the homomorphism S, we choose first basis and coordinates
to satisfy conditions (a), (b), (¢) of (8). We restrict 8, to the subspace of T
of those vectors whose components are polynomials of degree <r in z,.
This can be considered as a free module over ¥,_; of rank rs,. The image
of S, then falls in the subspace of J}° of vectors with components of degree
less than !+ r in x,, ! being the maximal degree in xz, of the elements
of 8,. Considering that subspace of I} as a free module over ¥,_, of rank
(I+ r)s,, we see that S, determines a §,_, homomorphism

@: gw,rl _>gw(1+lr)so

el 1

2) We then construct a finite free resolution of ¢ over §,_,
TG BT, S B0 2 G

which by the inductive hypothesis can be assumed to be of lenght <mn.

3) We then determine by the previous resolution

the matrix 8, = (C, @) by means of ¢

0

the matrix §,={0®
P2

) by means of ¢, and ¢,

the matrix 8, = (0(2) q?) by means of ¢, and ¢,
38

and so on.

To show that the resolution thus obtained for S, has lenght <n 41 we
have only to remark that if ¢, is injective (thus ¢, =0) then also
Sepa= (0W) is injective. But this follows from the fact that rank
0™ — number of columns of (.

This completes the proof of the theorem.
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8. — Equivalence of finitely generated §-modules.

a) Let M and N be finitely generated J-modules.
We say that M and N are equivalent if we can find two free F-modules
7%, ¢! such that
MOF ~NDT

ie. M ®F* and N @J' are isomorphic as F-modules.
A finitely generated § module M equivalent to a free module is called
projective.

ProPOSITION 3. A finitely generated F-module P is projective if and only
if every diagram of finitely generated T-modules

@)

P 3

with ImocImaz can be completed into a commutative diagram

A

@) / l
B

P—

Proor. First one remarks that if P is free or if P is a direct factor of a
finitely generated free module then the diagram (1) can always be com-
pleted into diagram (2).

Secondly one remarks that if (1) can be always completed in (2) then P
must be a direct factor of a finitely generated free module, as we can take
B=P, x=1d and A any free module such that 4 2> P is surjective.

Thirdly one makes use of a Hilbert resolution of P

0—-L;—~L; ,—~...>Ly—>P—0.

If P is a direct factor of a free module then by the second remark, setting
N,=ZXKer(L,—~L,,), 1=1,2,..., N,= Ker(L, - P), the sequence

0—>N,—>L,—>P—0
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is exact and split. Thus L,= P @ N, and also N, is a direct factor of a
free module. Hence

0—>N,—>L,—->N;,—>0

is also exact and split, so that L, = N, ® N, and also N, is a direct factor
of a free module. Proceeding in this way we get

Li=N,®N,_, i=12,... Ng=1IL; Ng,=0).
Hence
PPN, ON,®.. PN, ®N; ,=PRL, PL;D...=L,PL,D....

This shows that P is equivalent to a free module, finitely generated, thus P
is projective.

(b) Let M be any finitely generated §-module and let

. —)Ld gy Ld—l -y "'Ll %o LO——>M-—->O
be any free resolution of M. Applying to this resolution the functor

Homg(:, A) (A any finitely generated J-module)
we get a complex
Homg(L,, A) = Homg(L,, A) % --- —Homg(L;, 4) — ---

Its cohomology groups are independent of the resolution we have chosen,
aceording to point (¢) of 6. We set thus

Kero;,

Eth’(.M, A) = m—: for k>1

and

Ext$(M, A) = Homg(M, 4).

One has the following properties:
If

O->M—->M-—->M'—->0

38 - Annali della Scuola Norm. Sup. di Pisa



586 A. ANDREOTTI - M. NACINOVICH

is a short exact sequence of finitely generated J-modules, then for any
finitely generated J-module 4 we have an exact sequence

0 — Homg(4, M') — Homg(A, M) -> Homg(4, M") >
> Exti(4, M') —Exti(4, M) —Exth(4, M") —
—Ext{(4, M') —...

and an exact sequence
0 -Homg(M", A) - Homg(M, A) —Homg(M', A) —
—Exty(M", A) —Exty(M, A) —>Exti(M',A) —
—Ext§(M", A) —....

In particular one deduces the following characterization of projective
modules.

PrOPOSITION 4. If A is a finitely generated projective F-module then for
each finitely generated module M we have Exti(4, M) =0, Vi>1.

Conversely if for every M we have Exty(A4, M)=0 then A is projective.

It is worth noticing that the functors Extj(-, M) for i>1 take the same
«value» on equivalent finitely generated modules so that they represent
invariants of the equivalence classes of finitely generated J-modules.

¢) Given a finitely generated §-module 4, any T-module B appearing
in a short exact sequence of the type

0>B—>9t—>A4—-0
is called a module of syzygies of the module A.
We have the following properties of easy verification

() equivalent finitely generated modules have equivalent modules of
8yzygies; in particular the modules of syzygies of any given module are all
equivalent.

(B) for every finitely generated §-module M we have
Ext'(B, M) = Exti*}(4, M) for i>1
d) We have the following

THEOREM 2. For any pair of §, = k[z,, ..., ,]-modules A and B one has
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always
Exti*'(4,B)=0.

Proor. If n =1 this follows from the fact that any module of syzygies
of A is free (see proof of theorem 1) i.e. we can always find a free resolu-
tion of A of type

0—>I1—>L,—~>A—0.

The general case is then treated by induction on the number of variables.
A proof based on the properties of the Ext functors can be found in
Northeott [21], p. 182.

COROLLARY. Given a finitely generated T,-module M we can always find
a free resolution

0—>Fla_2a  glas dany oo Hgh @ Fh % L M0
of lenght d<m.
Indeed any free resolution the module C = Kera,_ , is such that
Extj(C, A) = Ext§(Kera, ,, 4)=...= BExt"(Kereo,, 4)
= Ext§t}(M, 4)=0.

Thus C is projective and therefore ¢ @ *= ¢* for some s and ¢.
Modifying the considered resolution at the stage n as

0—>C ) gs (iDid), Gl &) G8 (@1 @0) Gln-z _y
where i: ¢ — ' is the natural inclusion, we obtain a free resolution of
lenght n.

e) A matrix A(x) of type r Xs with polynomial entries can be considered

as a F-homomorphism 9* 4@, 97 and thus we can associate to it the F-module

a(A) = Coker A(x) = §'/AT*.

One can define two matrices A and B with polynomial entries equivalent
if the corresponding J-modules a(4) and «(B) are equivalent.

PROPOSITION 5. Given two matrices with polynomial entries A, B the neces-
sary and sufficient condition for their equivalence is that we can enlarge A and B
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) A\ [B
with sets of zeros rows such that for the enlarged matrices ( 0), ( 0) we can
find polynomial matrices ¢, d, A, M such that

(o) = (o)
o (o) (o)

cd = id mod Im (f}l)

with

de = id mod Im (1;)

Proor. In fact equivalence means that one can build up a commutative
diagramm of §-homomorphisms with exact rows

(@) oy«
= F¥ S5 N >0

Note that this notion via Fourier transform leads to a notion of equivalence
for systems of differential operators with constant coefficients.

9, — Forward resolutions.
a) Given a T-homomorphism
G4 Sy g%

we can construct, by Hilbert’s theorem, a backward going finite free resolu-
tion of S;.

The problem to find the integrability conditions of the differential operator
D%(Q) D)y D*(Q) suggests the following problem:

Can the Hilbert resolution of 8, be continued forward with an exact
consequence of type

Pa S o5 GFE1_y Py o PR
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If such is the case, and N = Coker §,, we do have a « forward resolution »
of N

(o] 0 >N ->F > o0 > F0r,
b) Given a J-module N we define the torsion submodule
1(N)={neN|gn=0 for some ge ¥, g0}.

For a submodule of a free module the torsion module must be zero.

This necessary condition is also sufficient i.e.

if N is a finitely generated F-module without torsion (t(N)=0) then

one can find an injective T-morphism of N into a free module.

Indeed if R = k(xy,...,%,) is the quotient field of &, tensoring by N
the injection § — R we get an exact sequence 0 — 7(N) >N —N ®q R.

If 7(N)=0 then N can be considered as a J-submodule of the vector
space N @q R. As N is finitely generated N can be considered as a sub-
module of a J-free module.

Let N* = Homg(N, T) be the dual of the finitely generated module N.
It is a finitely generated §-module. Indeed if

Jh 5, g% > N -0
is a presentation of N as Coker 8, we have
N* o~ Ker (7% 5 %)

A dual module is always without torsion.

Let N** be the dual of N* i.e. the bidual of N. Every element of N
can be considered as a linear function on N* and therefore as an element
of N**, We thus have a natural map

N du, Nws
having the following properties:

i) Bvery F-linear map a: N — T factors uniquely through jy:

N—<*>9

WA a=oi.

Nk*
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Indeed « can be considered as an element of N* and therefore defining a
linear map o of (N*)* into 7.

ii) Kerj, = 7(N).

Indeed Kerjy = {neN|l(n) =0, Vie N*}. Thus Kerj, > 7(N).

But N/7(N) has no torsion and on it J-linear maps separate points;
therefore Kerj, c 7(N).

One may also remark the following property

iii) For every linear map o: N — F* we get according to i) a factorization

If a is injective (and thus ©(N)=0) then d is injective.

Indeed we first remark that N ®5 R ~ N** @4 R as every finite dimen-
sional vector space is isomorphic to its bidual. Thus 7 = Cokerj, is a
torsion module: 7(T)= 7. If « is injective we thus have an exact sequence
0—>N—>N**—>T—>0. Let n**e N** be such that a(n**) = 0. There ex-
ists g€, g0, such that gn**e N.

Thus & (gn**) =0 and, as o« is injective, gn** = 0. But then n** =0
as N** has no torsion.

¢) Let N be a finitely generated §-module without torsion and let
(f1y.--3f1) = f be a basis of N*. Let us consider the F-homomorphism

o, N> g

defined by n — (fy(n), ..., fr(n)).
This map has the following universal property:
Every F-homomorphism u: N — J* can be factored through o,:

N L 5 g

N A
AN S
g

This property follows from the fact that the ¢ F-homomorphisms that con-
stitute the map u are linear conbinations of f,, ..., f;. In particular the map o,
is an injective map because 7(N) = 0 implies the existence of an injective u.
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LeEMMA. Let u be injective and let N,= Cokero,, N,= Cokeru. We do
have then a commutative diagram with exact rows

0—>N 2§t %Ny >0
Pl
0—> N 2,9t 24 _N -0

We claim that A|T(N,) is injective.

ProOF. Assume 7(N,)# 0 and let o« N,— {0}, g« =0 some ge ¥, g~0.

Then we can find a€ %, a ¢ o,(N), ga€oy(N). If A(e) =0 then u,(a) € u(N).

Now we remark that Keru, NImo, =0 as u,0,(n) =0 implies u(n) =0,
thus » = 0. Hence z;|Keru, is injective and therefore z,(Kery,) is a sub-
module of N, without torsion. If u,(a)= u(n,) for some n,e N, u, a)=
= p1,04(no), thus p,(a—0s(n,)) =0 i.e. a — o4(n,) € Kerpu,. But g(a—a,(n,)) =
= ga— a,(gn,) € 0,(N) thus m,(a — o,(n,)) is a torsion element. This implies,
by the previous remark, that a = o4(n,), which is a contradiction.

Given a finitely generated J-module N (without torsion) a J-linear map

o;: N —> G
given by a basis of N* will be called a stable map ().
d) If N is a torsion free module and if
6, N—>T, o, N>

are two stable maps then Cokero, and Cokero, are equivalent.
Set f = (f1y ...y [1), g— (G1y ++vy gn). Let o' N—>8“+1 with ¢'(n) = (fu(n)

s fum)y gu(m)). As g, = zb f; we have a commutative diagram with exact
TOWS:

0 >N % #1125 Qokerg’'— 0

| ﬂ |t

0—~>N % 2> Cokero — 0
where A(a,, ..., a;.,) = (a, ..., a) and
1
AUy onny ) = (al, vy Oy Zb,a,) .

() Note that o: N— ¢ is stable if and only if Ext!(Coker o, J) = 0.
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Now Ker ANImg’'=0; thus =, [KerA is an isomorphism. But Keri ~ ¢.
Hence Coker o'~ Cokerc @ .

Repeated application of this remark yields the above statement.

More generally one has the following statement (of almost immediate

proof).

If N and N' are torsion free equivalent F-modules and if o: N — g,
o': N'— TV are stable maps then also Coker ¢ and Coker o' are equivalent.
An exact sequence

0 >N _% > 5‘3—1 % > ﬂ"—s %2 DIIRRNEN (L 28 “10—1; g‘s-k

in which «, is a stable map and Vi>1, «;: Cokera, , — J*+* is stable
will be called a stable forward resolution of N of lenght k.

¢) THEOREM 3. Let N be a finitely generated T-module.

i) Necessary and sufficient condition that N be included in an exact
sequence

1) 0 >N %, g5

is that ©(N)=0 i.e. N be torsion free.

ii) Necessary and sufficient condition that N be included in an exact
sequence

1) 0 —>N %o, §% &, §os
is that T(N)=0 and N ~ N** i.e. N be reflexive (this second condition im-
plies the first).

iii) Necessary and sufficient condition that N be included in a stable
exact sequence

(1) 0 >N _% > Ge1__ % o2 % N [ 2% > qs-x

of length k>3 is that N be reflexive, N = N**; and
Ext'(N*, §) = ... = Ext*"3(N*, §) =0.

Proor oF i). Follows from the first remark of point b).
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ProOF oF ii). Assume we do have an exact sequence (1) and let
N, = Kera, = Cokera,. By taking biduals we get a commutative diagramm

0>N = gsi.N >0

I

0 —> N+ s gs s Ny

in

in which the first row is exact, the second is a complex and in it of* is
injective as o is, (point b) iii)).
By the assumption, 7(N,) =0 and therefore j, is injective. Hence

N** c Kerp** = Kerjy f = Kerf = N .

This implies N = N** (and the bottom row of the diagram is exact).
Conversely if N = N** we can take a resolution of N*

§r > P > N* >0
and apply to it the functor Homg(-, ). We then obtain an exact sequence
0 - N*¥*  Js1 5§

As N = N** we conclude the proof of point ii).

Proovr oF iii). Assume we do have a stable exact sequence (1). We set
N,=XKera,. We then consider the commutative diagram

0N o G010 N, M -0 N, M s .. %3 N, Hes gos

1 1 Y O

*%k o, . Kk - * - — - —
0> N** %, §oa0 NI*A Goacs NI Goo s, .. T N¥* Moo

where o; = u;o0; and where o, is surjective and u, injective.
Also o}* is surjective for 1 <i<k—2 and u;* is injective for 1<i<k—1.
Now we remark that the resolution being stable we do have exact sequences
0 -—>N1* >J= SN* >0

0>N; =0 —>N; —0

...........



594 A. ANDREOTTI - M. NACINOVICH
These provide an exact sequence
(2) POk Po-le-1) . PI-(k-1) 5 oo 5 815 Nk 5 (),

If we apply to (2) the functor Homg(-, F) we get the exact sequence (1)
(except the first step). Then we must have

Kera®*
T 0 if l<i<k—2.

i N = —
Exti(N*, T)= Tm o,

Conversely let us assume that we have the nullity of the specified in-
variants and let (2) be a resolution of N*. By application of the functor
Homyg(-, F) we obtain an exact stable sequence

0 —> N#¥ 5 P15 P81 5 00 _y Gk

As by assumption N = N** we get the desired conclusion.

REMARK 1. The statement of this theorem, without the assumption or
condition that the resolution be stable, can be found with a different proof
in Palamodov [22]. From Palamodov statement follows that if there is a
resolution of type (1) at all then there is a stable resolution also of the same
length.

REMARK 2. If a finitely generated §-module N is considered up to
equivalence and if »(N) = maximal length of a forward (stable) resolution,
0(N) = minimal length of a Hilbert resolution, we must have

O(N)+ »(N)<n.

10. — Koszul complexes.

a) Let § = C[X,,..., X,]. We denote by A" the space of exterior forms
of degree h, with coefficients in J, in the indeterminates dt,, ..., dt,:

Ay = > @ .t ...dt,

8 Byentn iyt in )
1<4;<i3 <... <in<8

“il...ine ﬂ‘} *

8
We do have A"~ g% and in particular

A= T ATI=g0.

8
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Let

8
9 =290
=1
be a fixed 1-form and let p denote the ideal generated by ¢,, ..., @,;

p="F(p,..., ).
We set
Ng=7/p

and we consider the following augmented complex (as pAp = 0)

(1) 0 — AING ALAD oo N ASTING AP S Ng—0

where ¢ denotes the natural map § — N via the identification A~ .
We will denote the complex (1) as the Koszul complex associated to the

sequence (¢, ..., @,). Note that pA A~ = p, so we do have exactness at #A;

and ¢ is surjective.

b) We will say that a sequence (a,,...,a;)€ T is a principal sequence
(or an a-sequence in the sense of Serre) of length 1 if for every j=2,3,...,1,
a; is not a zero divisor in F/F(ay,..., a; ).

This means that whenever g € § satisfies a relation of the form
90, = o+ ...+ ;0,5 ued, 1<i<j—1
then we must also have
g=na,+..+v, 4, ,, »e¥ 1<igj—1.

REMARK. Given a sequence (a,...,a;)€ T let us denote by p, = 3(a,, ..., a;),
the ideal generated by a,, ..., a,. We can consider in C* the algebraic variety

V,={zeCa,(z) = ... = a,(2) = 0}
of common zeros of the elements of p,. We do have

VioV,2...0V,.
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One has the following geometric criterion:
the sequence (@, ..., a;) s a principal sequence if and only if either

dimcV,=n—j orV,=0(j=2,...,1).

Proor. If (a,, ..., a;) is a principal sequence then a; cannot be contained
in any prime component of the ideal p, ;. Hence dimV;<dimV, ,. But,
if V;5=0 dimV,>n—j. Hence the conclusion.

Conversely assume that V,_, is either empty or of dimension » —j41
and that V; is either empty or of dimension n—j.

If V,_, =0 then the implication « number j» for a principal sequence
is satisfied as p, , = by virtue of the Nullstellensatz.

If V;,%0 then by the assumption and the Ungemishtheitsatz
(Grébner [10], pg. 125) it follows that a, is not contained in any prime com-
ponent associated to p;_,, thus a, is not a zero divisor in J/p,_,. This com-
pletes the proof.

An ideal of § admitting a basis which is a principal sequence is called
of principal class.

LeEMMA. Let (ay,...,a,) be a principal sequence. If we have a relation

>X,0,=0 with X;e¥, 1<i<l,

Proor. If [ =1 the lemma is trivial. We can proceed by induction on I.
‘We have

—Xjo, =+ X0, + ...+ X 10,4
thus, by the assumption there exist polynomials u,...,u, , such that

X, = 2N S o PR T
Then

X1+ ma)a+ ...+ (X + paa)a, =0
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By the inductive assumption there exist §),;€ § with §,;; = —¥,; such that

X, =Y+ ...+ hua0, 1 —ma,

..............

X =Y nt+ ..+ Y20 o —p a0
X, =ma+ ..+ g0, .

This is the statement we wanted to prove.

¢) PROPOSITION 6. Let (¢y,...,p,) be a sequence containing a principal
sequence of lenght 1<s. Then the corresponding Koszul complex is exact at A°,
AL, ., AL

Proor. We may assume that (¢,,..., ;) is a principal sequence. If
=1, ¢, 0 and thus A° — A is injective. We can thus proceed by in-
duction assuming the proposition proved for the integers <I—1.

Let ae A"'. We write « as a polynomial in df, ,, ..., dt,

8 8
a=o,+ > adt,+ > opdi\dt+ ..
i=l+1 Jk=1+1
=gt ot ot ...
Similarly we set
@ =@+ ¢
i ]
where @, = > @;dt;, o, = > @,di,.
j=1

i=l+1
We have to show that if p A\ = 0 then there exists f € A'-2 such that

ox=g@A\f.
The condition pAe =0 gives
PNt =0
@oA\oty + @10ty =0
@oNotg + g1 Aoty =0

......

If ay= (—1)a;dt,A...AdE,A...\dt;, from the first of these conditions
we deduce

1
S>op;=0.
1
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Thus by the assumption and the lemma proved above we deduce that we
must have

l
(xj..-—_‘ zf)jk(pk With f)]-ke ﬂ‘, f)jk='—f)lcj, 1<j<l'
k=1

Set
Bo=— Yudts Ao AGEA.ATEA.. AdL,
i>k
Then
oy = ¢Po/\/30 .

Substituting in the second relation (%) we get

o\ (02— @1ABo) = 0

thus, by the same argument, we can write (with §, € A2 of degree 1 in
Atyyyy..nydty)

o = (Pl/\ﬂo + 9’70/\131 .
Substituting in the third of the relations (%) we get

(Po/\ (“2_?91/\/31) =0.

Hence
% = @1 AP+ @B .
Continuing in this way we get

05:90/\(.30+ﬂ1+/32+ ).

COROLLARY 1. If (g1,...,9,) is a principal sequence then the Koszul
complex gives a free resolution of the T-module Ng.

d) Consider now the isomorphism
% AN > AP

defined by

a=o ;di\. N\dt, —>%xa= D SEN0(6y eun by Gy ey Jon) % an @l A Ay

1eeein
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Then the operator ¢ A transforms into the transposed operator ¢(p) defined by

a—>e(p)a

given by the formula
o= odt; >3 (2; %“ﬂ) diy

where J = (j,, ..., j,) denotes a block of » indices and I = (i, ...,%,_,) de-
notes a block of »—1 indices.

Let now 2 be an open set in R* and let §¥(2) denote the space of C
differential forms on 2 of degree k in dt,,...,dt,. For any

0= o, (@ dtA\.. .\t eEPQ)

’t‘ ke
we define the operator

9,: 8M(Q) - g*+)(Q)

by setting
alpw= 2 (E (_ (Pu 1,, Jnee w)dt A /\dt

o> >k
From proposition 1 and 2 we deduce then the following corollaries.

COROLLARY 2. () If (¢4, ..., @,) is a principal sequence then on any convexr
set we have an exact sequence of differential operators

EN(Q) %, §0(Q) % -+ % §0-1(0) I §I(2) >0

B) If (puy--., @s) contains a principal sequence of lenght 1 then the above
complex is exact on §9(Q), §¢~V(Q),..., 8¢ H)(Q). Similarly setting

DB(Q) = {w e §M(Q)|suppw compact in 2}
we get the following

COROLLARY 3 (). If (®1,...,,) 98 a principal sequence then on any open
convex set we have an exact sequence of differential operators

0 —>DQ) % DYQ) % ... %% DEV(Q) %2 DI(Q).
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(B) If (@1y ..., @s) contains a principal sequence of length 1 then the above
sequence is exact on

DOR), DY), ..., DV(Q).

11. — A generalized Koszul complex.

a) Let G, ,(C) = Homg(C?% C") denote the space of rxs matrices with
elements in C.
We let the group GL(r, C) X GL(s, C) operate on A, (C) by

(@ xB) M = aMB

where € GL(r, C), f € GL(s, C) and M € M, ,(C). We assume that r<s and
we denote by

J, = {M € M,,,(C)|rank M = r— o}

for p=0,1,...,r.
For every MedJ, we can find ae GL(r, C), f€ GL(s, C) such that

o« MB — (I;)—Q g) .

Therefore the sets J, are nothing else but the orbits of GL(r, C) x GL(s, C)
on AG,,,(C), so that

Mo o(C) = J U J,UJ,U .. U,
We do have the following properties

i) J,={Med,, (C)rank M <r— o}

=dJ,Ud,,,U...UJ,

so that je is an algebraic irreducible variety.

ii) J, is a locally closed submanifold of A(,,,(C) and codimension

JQ = Q(S—T—l— Q)'
Indeed it is clear that J,,,U...UJ, are in the closure of J,.
Moreover

Jo= {a (v o) @peare Oxa, C)}
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is irreducible as the image under a holomorphic map of the irreducible
manifold GL(r, C) X GL(s, C).

Finally near the point (1’69 g) every matrix can be written as

Ir_g 0
(5" oh ez
and the equations of J, are of the form
a;+0@)=0 r—o<i<r, s—r—o<j<s

and this proves the contention about the codimension.

REMARK. A «generic» point of the manifold J, is given by

o oy
2 . —
ez =(5 )
where € M,y -0y Y€ Mop—gyxe—rie) BEMoxp_g+ Thus we get para-
metric equations in terms of rs— (s —r -+ o) parameters.

In particular it follows that J o 18 a rational variety. (The correspondence
with the parameter space being generally one to one as detx=0 in general).

b) Let us consider a matrix of type rxs with r<s

A= ((plla vy (pls)
Pr1y eeey Prs

with entries ¢,;€ § = C[#,, ...,2,]. We introduce the 1-exterior forms

8
¢1= E‘Pudti

i=1

Q= Z%dti
i=1
and we set
w0y =@;\...\@,.

We want to investigate the set of points in C»
V,={ze C*|w,(2) = 0} .

39 - Annali della Scuola Norm. Sup. di Pisa
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If a, denotes the ideal in J generated by the subdeterminants of orderr of 4,
as these are nothing else but the coefficients of w,, we have that V, is the
set of common zeros of the polynomials in a, and therefore ¥V, is an algebraic
variety.
The algebraic variety V, can also be viewed in the following way.
The matrix A defines a map

oy G = Mo, (C)
by
@ > (@i (@)
then
V= “Zl(jﬂ .

We will make use of the following known fact

Let (,0), (B,0) be two irreducible germs of analytic subsets of C* at the
origin 0 € C*. If dimgoc = a, dim,8 = b then each irreducible component of the
germ (aNf, 0) has a dimension at the origin which is > a4+ b—mn.

PROPOSITION 7. For any choice of the matriz A we have that either V, =0
or else each irreducible component of V, has a dimension >mn—(s—r-1).

ProoF. We first remark that J, is an irreducible algebraic variety in

A, ,(C). Let us consider the graph of the map «

rxs{
Q, = {(z, m)€ C" XM, (C)|m = a(2)} .

We do have a natural isomorphism x: G, = C" induced by the projection
on the first factor of the product C* XA, (C). Also we have

V,=a(G, N (C*xJy)).

As m is an isomorphism it is enough to show that the analytic set
G, N (C* x J,) has every irreducible component; of dimension >n— (s—7r-+1).

Now @, is irreducible, thus each germ of @, has dimension =.

Also CrxJ, is irreducible and thus each one of its germs has dimen-
sion=n+ (rs—(s—r-+1)), (rs—(s—r+1) = dimJ,).

At a point w,e G,N (C" X J,) we can apply the above remark, taking into
account that the dimension of the surrounding space C* X M, ,(C) is n-+ rs.

We do get for the dimension of each irreducible germ y at w, of
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G,N (C*xJ,) the estimate

dim,, (y)>{rs + [n— (s —r+ 1)} + n— (rs 4 n)
>n—(s—r-+1)

and this is what we wanted to prove.
We will say that a, is transversal to the stratification of A, ,(C) if for
every point x,€ C* (with o,(a,)€J,) we do have

Ta(mo)(‘M"r x s(C) ) = ddA(xo)( T%(Cﬂ) ) + Ta(z,)(Jg)

where T, (M) denote, as usual, the tangent space at y to the complex
manifold M.

COROLLARY. If o, 18 transversal to the stratification of M, ,(C) then V,
is either empty or else each irreducible component W of V, has dimension equal
to n—(s—r+1), and WnNal(J,) is dense in W.

Proor. We have

V,=oaz}J,) = ez () Vad,)V...ua(J,)

and, by the transversality assumption o (J )y for any o, is a locally closed
submanifold of C» of dimension n— g(s—7 - p).

For p>2 we have o(s—r+ ) >s—r-+1. This implies that each non
empty irreducible component of V, must contain a Zarigski open subset all
made of points of «;'(J,). From this we get the conclusion.

REMARK. In any case if V,7#0 or if dimgV,=n—(s—r-1) then V,
is purely dimensional i.e. each irreducible component of V, has the same
dimension than V, itself.

DEFINITION. We say that the matrix 4 = (¢;),<i<,) <8, i8 a Macaulay
1<i<s

matric if for any choice of h<k<s, for the matrices 4,, = (¢;);<ic, W€
do have that either V,, =0 or dimV,, =n—(k—h-+1). 1<isk

PROPOSITION 8 (MACAULAY). If A is a Macaulay matrix then
() the ideal a, is pure (ungemisht);

(B) for any exterior form «®~"e A" such that

(%) aAw, =0
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we can find exterior forms 7" Ve A" such that
(s Ty __ zn(s T—l)/\(P .
k]

Proor. (B) The theorem is true for s =r. The proof proceeds by a
double induction assuming the theorem proved for the matrices 4,, ,
and 4, ,, ;.

If we write

a= 3 SEO(G) e Ggr Prsoos PGy g By A A,

Q1> >0r-s
D1>...>Dr

then condition (x) gives
(**) Z “ﬂ;.--PrD PreeBr 0.

Where D, , are the minor determinants of A4 made with the columns of

indices p,, ..., P,.
By the inductive assumption one of the determinants in a, is prime to
the ideal a, _ unless this last is trivial. We can thus assume that if

D, ,_19€0,,,
then also

geay, .

Now relation (x%) can be written as

(**) Z “1’1 Pr D1 ?r—l— z Pr—;S'DPl Z’r—13: 0 °

P1<00 . <Pr<8 1<, <11r_1<8

Also if we denote by DY’ _, the subdeterminant of 4,,_, obtained by deleting
the j-th row we do have

le r—-l(pw Dl...r—-lp'

Letting p = py, ..., P,_1, s and solving this system with respect to D, ,
we get
Dm...pr-lsD:(l,) 7—1 :!: Dl...r——lmpf)? Dr—18 :I: b
:l: ‘Dl...r— D(') Dr-g8

19r7 D1..

()
:}: Dl...r—l st:
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thus
D" D + _D(r)

1.r—1""D4..0r-18 «Dr=y

D, ., 1,=0moda, .
Thus moltiplying (%%) by D, ., we do get
1 r—1s z (T) = 0 mOd aAr.l-l *

«oDr-18 P; Dr-1

Therefore, by the above specified assumption, we do also have

(r) —
z “Dl..mr—mDPx...Dr—: =0 mOd aAr,s—;
i.e.
() —
Z ‘xm...m-,aD P:...Dr—x - 2 ﬂm...prD Dy Dr*
P1<e.. <Pr<s
Now
(r) D" (r)
DP:,-- q)fprDP': Dr-y - (p")r-x D1 Dr—2Pr :l: :I: (pﬂh Dr *

Therefore

z ( «Dra8 zﬂm m‘Pr 17,) (f) cDpy =0.

Now the conclusion of statement () can be expressed as saying that there
exists for the coefficients « an expression

(sokok) %o e = 2y 50 Pim

where 7' are alternate in the lower indices.
By the inductive assumption for a,_ ,_ we thus get

_ i
“ﬂl...rr-,s - Z yih...’ﬂr—ls p‘l’w

thus the relation (k%) for r =s.
From this it follows that replacing « with

o =a—2 v:\g;

we get for o' a new form which satisfies a'Aw, =0 and in which the coeffi-
cients «, ,  =0.
Thus the relation (k) and the inductive assumption for a,, , give the

conclusion (f).

(e) It remains to prove that a, is unmixed. For this one applies the
following criterion. The ideal a, is pure if and only if adding to the basis
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of a, t<n—(s—r-+1)—1 generic linear polynomials, #,—a,, ..., x;—a,,
the ideal thus obtained should not have any 0-dimensional primary com-
ponent. If this is not the case, then we can find F € § such that

(@n—a,)F=0 mod(a,,z,—ay,..,T,—a;)

but Fe(a,x,—ay, ..., L;— ;).

Now as a,,...,a; are generic the matrix obtained from A setting
r,=a;, 1<i<t, i =mn, is again a Macaulay matrix.

The above congruence gives

@n—0n)F =, D, . MA@ — ..., B— ).
Setting «, = a, we get by the result (j)

“171...1)! = z y;....pm(pw + (60” - an)ypl...n, mod (wl_ Ay ooy Ty a't)

Hence

@n— ) (F—2 4y, D) =0 mod(@,—ay,...,5,—a,).

But the ideal (z,—a,, ..., x;—a;) is relatively prime to x,—a, so that

F— Z%,...p,Dpl...p,E 0 mod(w,—ay,...,z,—a,)
ie.
Fe(a, o —ay, ..., 5—a)

CoROLLARY 1. If A4 is a Macaulay matriz and if ¥V € A withl < s; if
N, =0 for 1<i<r
then there exist fe A" such that
9D = BAQA... A, .
Proor. (a) First we remark that if I<s—r and if
r—1
0/\(’)7' = zﬂi(p:i :
1

‘We do also have
8
¥= goc,.tp, .
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Indeed let us introduce ((s—7)—1)Xs new variables z;;, I<ig<s—r—l,
1<j<s and set

8
= ?zm dt

the extended matrix 4 = (A) is again a Macaulay matrix.
Moreover we have Fis

PAQNAAPAD A =0 (e =8—r—1)
thus
%= ZW‘P;"F Zfﬂh-

Setting z;,, =0 we get an expression
19 = Z “quj .
(B) Now from dAg, =0 and I<s—1 we deduce

9 =0""VAgp,.
Also 6" YA, A, =0 and since I—1<s—2 we do get

o.(l—l) — “(l_l)/\fh + ﬁ(l—2)/\¢2 .
Hence

%= AP\ -
Also B P Ap, Ago Ay =0 and since (I—2)<s—3 we get

B2 = ey Ay + aoApy + ¥V Ay
Hence
# =y Az AQ2 APy -
Proceeding in this way we get the conclusion.

COROLLARY 2. QSame assumption; if ue Al and if l<s—r and if
moreover

UAPy ... AN, = 0.
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Then we can find B,€ £ such that
r

u =2 BiAg;.
1

Proor. If r =1 the theorem is true and was already proved with the
Koszul complex. We can proceed by induction on r. Set

v =UAPN...A@Pr_y
then
vAp; =0 for 1<igr.

Hence by Corollary 1 we get

v=BA@:A...A@»
therefore

(£BAQ: + wWA@IA...A@r_y = 0.
By the inductive assumption

r—1
% =T BAg,+ Zﬂj/\% .
1

COROLLARY 3. Same assumption; if u,€ A, and 1<s—r and if moreover

r
?“i/\% =0
then one can find h;e A with h; = h; such that
w = hyp;  1<i<r.
i

Proor. If r =1 the statement has already been prooved. By indue-
tion on r: We have

r—1
— U A\p, = D UAP;
i=1
Hence
U APe APr_a N\ . Ay =0
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and therefore (Corollary 2)

-

(%) u, = 2 LiAg;.
i=1

1

I

Now

0 =2 wAg;= (U — Abg)Apy+ .+ (Up_y— A _1@)A\Gy_y = 0.
By the inductive hypothesis
(sksk) wy— iy = D ouhg; 1<i<r—1

with ¢;; = 0;;. The relations (%) and (%) are equivalent to the statement
of the corollary.

REMARK. Corollary 1, 2 and 3 are all consequences of the following
statement (that we have deduced from the theorem of Macaulay)
(P,) If de AL and if we have

r—1
INp, = D B;¢; for some B;e A, degd =1<s—r
i=1

then we do have

r
d=YuAp; for some a;€ A",
1

A matrix 4 = (¢;);<i<, With r<s will be called of the principal type if
setting 1<i<s

E
@ = Z%dtj
i=1

we have that ¢, verifies (P,), ¢, ¢, verify (P,),..., @1, ..., ¢, verify (P,).

¢) Let us denote by $BF the space of forms of degree k in the indeter-
minates ¥, ..., ¥, and with coefficients in A*. Thus f € $BF is an expression
of the form

B=2Pu Byt yrr  wWith B, ...5, € A".

lel=k

We consider § as a polynomial in one, ¥,, of the variables:

5=ﬁo+51%+“'+ﬁt?/:
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where f; are polynomials in ¢y, ..., %, ...,%-. We define
t
Vi =g\ Byi
1

where ¢, ..., ¢, are r 1-forms given once for all.
One verifies easily that

V.V, =—V,V, ifi#j
VZ=0.
Therefore if we set

T
V=3V,
i=1
we define a map

V: BB+l
with the property
VoV =0.

LEMMA. Let h<<s—r, k>1 and let ¢, ..., @, be the 1-forms associated
to a matriz of principal type.
Let Be Bt with VB = 0; then if h =0 we have f =0 and, if h>0, we
can find ye Brtt with
f=Vy.

Proor. If =3 p, .47...y;y then

VB = Zﬂal...a‘ﬂ...a,%y:‘ Y Yy

thus if A =0 and VS =0 we have

zﬁal...aﬁ-l...ar (i 0.
Hence all g

iy +1..0, = 0. But this imples =0 as k>1.

Assume now £ >0. If r=1 then the lemma says that if fAp, =0
then f = @, Ay. This has already been proved. Therefore we can proceed
by induction on 7.

Set

B=B8y Yy +B1Ys Y)Yt + Bi¥y - yr—l)y: .
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Denoting V'=V,+ ...4 V,_, the condition VB = 0 translates into the con-
ditions

V'gy +@b=0

VB +pba=0

Vg 1+ ep=0
Vig=0.

From these, by the inductive assumption we derive

Bi=Vg
V_,—eNoy) =0 thus _, =g A0, + Vo,
VB_s—o,N0;_) =0 thus B_,=p,A0;_;+ Vo,

..........

VB —¢,Noy) =0 thus f,=¢@,Ao,+ V'o,.
Set
Y =0yt 01y, + ...+ oy,
we get
Vy = (Vo,+ ¢,A0) + (Vo + ¢, A05)y, + ... + Vo).
Hence the lemma is proved, as one verifies that the degrees of the o, in the
Y1y ...y Yr_y are the right ones.

d) Given a principal matrix A we can consider the $-homomorphism
A F >N, >0

whose cokernel is denoted by N,.
We identify
o~ AT

97 = (4
so that the above homomorphism can be described as follows:

Aoy
£ 5% (yr
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Combining the above lemma with Corollaries 1, 2,3 which are valid for a
principal matrix we obtain the following

PROPOSITION 9. Given a principal matric A = (p;)<i<, for the cokernel N,
1<i<s

of the F-homomorphism defined by A one has the following exvact sequence
which provides o free resolution of N ,:

{\‘Pl
0B, V> oo Yo B3V, BIrEY, AT NRAG g5 INT (A5 N, 0.

REMARK. 1) The length of the resolution is s —7r -+ 1.

2) As rank 4 =r we have that N, is a torsion module
©(N,)=DN,.
Egxercise. Note that the image of the map
ﬁs—r/\%.../\w A

is the ideal a,. Denoting by N, its cokernel, we do get with the same ar-
gument the following resolution

0 —>B, Toorr T Byr? T, Gl T, g aihnAg g0, N 50

of length s —» 4 1. Since the dimension of a is n— (s—r+1) it follows
that a is a perfect ideal.

Applying proposition 1 and 2 we do get resolution for the matrix of dif-
ferential operators ‘4 (D) (forward going on C® functions) or for the matrix
A(D) (backward going on C® functions with compact support).

REMARK. The resolution of the exercise can be found in Eagon and
Northeott [8].

e) As an example of a free resolution which (it seems to us) cannot be
derived from the Koszul complexes one can consider the following situation.

Let (ay, a,, a5, a,), (b1, bs, bs, by) be two principal sequences of length 4
in §. We set

o= a,dt; + a,dt, + a,dt; + a,di,
f=b,d0,+ b,d0,+ b,db,+ b,db,

where dt; and df;, are indeterminates.
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Let J&"* denote the space of exterior forms with coefficients in & of degree r
in the d¢,’s and of degree s in the df’s.
One can then verify, by making use of the previous considerations, that

the following sequence is exact
3642
e
/ \ y / \

/R A /%\ /\(0(
3601 5623 @
N
"}624

This example can be generalized in many ways (cf. Bigolin [3]).

f) By the theory of division of distributions we can transform the gener-
alized Koszul complex into a complex of differential operators.
We set for any open set Qc R»

&®(Q) = space of exterior forms of degree k in the indeterminates dt,, ..., d,
with C® coefficients;

&M(Q) = space of homogeneous forms of degree % in ¥, ...,y, with coef-
ficients in §®(Q)

DI(Q) = {xe §¥(Q)|support of « compact in Q}.

Let A = (@;(%));<i<, With r<s be a principal matrix. For
1<i<s

E w’h ’ik dt /\ /\dt
1> >0k
we seb

Q=2 (Z(— )'pin(D)e z,....'ih...i.,‘)dti../\m/\dtik

t9<eee<ir “h=0

V=23y29, and D= 32d[y0,.
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Then on any convex open set £ cR" we get the following exact sequences

(8(0)(9))7 X 0p4 8(1)(9)«%,,...6.; 8(1+1)(Q) v 8({+2)(Q) Vg

e 8(8_1)2(-9) V. 8.?21—1(52) -0

3—r—
where the first map is defined by (u,, ..., %) —20,u;, and

0 — DO

3—7—1(9) -——D-—> ﬂ)gl_),_z(_Q) ,L) e .

R D ‘;Dgs—r—-z)(g) D ﬂ)(s—r-—l)(g) 0y, ...Gws ﬂ)(s—l)(g) O, (g)(s)(g))r
the last map being defined by u — ‘9, u, ..., 9, u).

g) If instead of the matrix A = (¢;);<;<,s 7 <8, We consider the transposed
matrix ‘4 as a F-homomorphism I<<*

identifying § with A° and ¢* with A' we get the map
()" 25> AT
given by
(Uay vovy Ur) = D Ui, .
Setting
Do = (D y.pi)o
we then obtain the following

PROPOSITION 9. @iven a principal matriz A = (p,)i<ic,y T<$ for the
1<i<s

F-homomorphism o defined by ‘A one obtains the following exact sequence

0 — (.fEO)' 4 .-/%1 1A Apr jer+1 D 35;+2 D 352::—2 D $:—r—1 >N —>0
where N is the cokernel of the last map D. The module N., is a torsion module
T(.N ¢ A) =N tg.

(Generalized coKoszul complex)

We can formulate similar remarks to those stated in point f) of this section.

NoTe: this complex is obtained from the generalized Koszul complex
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applying the functor
Homg(-, §), thus Ext/(N,, F)=0 for 1<i<s—r.

Similarly Ext{(N,, §)=0 for 1<i<s—r.
PROOF OF THE PROPOSITION ‘9. We first prove the exactness of the
sequence.
() On (A°)". If > u,p,=0 then w,=0 as the u’s are of degree 0.
(B) If BA@iA...Ap, = 0 then f = > u,p, and we have exactness on A!.

(v) It Be £, DB =0 <PAp, =0, Vi, thus there exists A € A* such
that = AA@A...A@, and we have exactness at A"+,

(0) Let us prove exactness at B, r+ 2<h<s, 1<k<s—r—1. Note
that D-D = 0.

Let fe Bt and let us write

B =Bo+ By, + ...+ Byl

where £, will not contain any of the y’s.
—1

Also set oy = quq% We get from DS =0

(Bo+ By, + ...+ ﬂk(‘/lrc)(ao‘l' Y,) =0

thus
Boxo =0
Bopr + Brog =0
ﬂl% + ,52050 =0

ﬂk_lqor + ﬁkao =0
Brpr=0.

Note that if » =1 the theorem has already been proved; thus we can pro-
ceed by induection on r, we get therefore
Bo = vo%
hence (8, — y,pr)o, = 0 thus
/5'1 = Yo@r + V1%
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hence (f;— y.1¢r)op = 0 thus

ﬂz = Y1@r + Yol .

Proceeding in this way we get thus

Bo =Yoo
Br =P T 1%
B: =1 4+ 2%

Br_1 = Vi_2®r + Y10
131: = Yr-1Pr + Vo -

But f§, is indipendent from the y’s, thus we must have y, =0, ie.

ng = Ve-1Pr .

Therefore if
Y=o+ ¥t o F V1%

we must have § = Dy. This achieves the proof.

It remains to prove that 7(N)= N. We remark the following.

If r+1 = s then over the field of rational funections every s-form can be
written as

a=BAPiA\... A\@r
thus chasing denominators

P = bA@IA...A@r

with pe ¥, p%0 and be A

If s>r4 2 then B;_,_, ~ space of homogeneous polynomials in y,, ..., ¥,
of degree s—r—1 with coefficients in § ~ A°.

Let a =a, ,97..y7eBi_,_, (2 o;=s—r—1) be a monomial.

Again over the field of rational functions

Ty, = BPLN - N\,

i.e.

Py o, =bAQ;A... AP,
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with pe T = A, p£0 and be A", If, say «,>1, we can then write

P, Y5 Yy = £ (Y @)ANOAGA . AR YT Y5 Y

Thus paeIm.D and therefore every element of N is a torsion element.

12. — Symbol sequences and elliptic complexes.

a) Let us consider a complex of differential operators with constant
coefficients

(1) &(R) 23 §(Rr) 25 &(R~) 25 ...
where &(R") ~ §R")” for some integer p; and where

D=3ad"D"

]¢|<k4

where a) are matrices p,,, X p; with elements in C. We assume that, for
some o with |a| = k;, a? £ 0, so that k; is the true order of the operator I’.

o

We define the total symbol of D’
Z(D) = 3 ad()~e
lal<kj
and the
principal symbol of D’

O'E(Dj) — (Z)k’ z a“’&“,

loel=F;y
For every £ R*— {0} these give linear maps
Z(D': C” — G
oi(D): C" — C"

where we can consider C* as the vector space Ei, obtained for every 2°c R"
by tensoring &(R") with §(R")/M, where A, = ER")(w,—a?, ..., @, —x0):

C" ~ El, = &(R") ® §R™)[ Moy
&(R™)

As
D:i+1°D:i =0

40 - Annali della Scuola Norm. Sup. di Pisa
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we must have for every &
2Dt X (D) =0

and therefore (replacing £ by A£ and considering the coefficient of A%+%m)
o(D*)og (D)) =0.

Therefore we obtain two complexes for every &ecR*—{0}.

0 Z¢(D° 1 Zg(D* 2 Zg(D*
(2) 0-—>E% & )rEx., §(D) E:c., N

(2), 0 — Egﬂ 9«D°) E:.. oiDY) Er%o o¢(D?)

the total and the principal symbol sequences.

b) If the complex (1) is obtained from a Hilbert resolution

(3) 0 —> GPedas@) ..., g0 M@ go M@ g N 50
with
D;=A,(z)= 3 a,i)¥a*

lel<ks

then the total symbol sequence for & = &, is obtained from the complex (3)
with the following operations

o) Consider the complex obtained from (3) by applying the functor
Homg(x, T):

“) 0 —> N* —> §Po_4@)  gv. 4@ ... de@) gva_, (),
) Setting M, = F(v, — &}, ..., x,— &), tensoring (4) with €= T/A,

¢) DEFINITION. We say that the complex (1) at the place & is determined
in the direction &, R*— {0} if, at &, the total symbol sequence is exact at E,
elliptic in the direction & € R*— {0} if at &, the principal symbol sequence is
evact at B .

A complex which is determined (elliptic) at every place and for every
direction is called determined (elliptic).

On each space C? = Ef,o we introduce a hermitian product

{uy w) = ww .
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For every foeR"—{O} we can then consider the hermitian forms

B(&)(v) = < Z (D' Yo, L (D)) + (2 (D)o, Z (D))
A(E)(v) = o (D), ‘o (D*" )0 + {og (D)0, 0 (D)0 .

In matrix notations

Aj(fo) = Al—l(fo) tAi—l(&o) + ‘AJ(Eo)Ai(Eo)

and symilarly for 4,(&,) replacing A°~* and A; by the corresponding prin-
cipal parts.

LEMMA 1. The complex (1) is determined (elliptic) on B’ in the direction &,
if and only if A(&) (A(&)) is positive definite.

Proor. If A(&)(v) =0 then
t25°(Dj+l)v - 0 alnd 250(1),')” = 0 .
Now note that for any linear map «: C" — C* we have

oty WHee = (U, 'awder, YueC', Ywe C*

therefore
Ker ‘o = (Ima)*.

Since the symbol sequence is a complex we have
ImZ, (D'~')c Ker X, (D).

If v5£0 and A(&)(v) = 0 then there exists

(%) 0~ veKerZ, (D')N (ImXZ, (D'~1))*

and thus the symbol sequence cannot be exact. Conversely if at & and E’
the symbol sequence is not exact there must exist » < 0 verifying (%) and
thus such that A(&)(v) = 0. For the ellipticity case the proof is the same.

LEMMA 2. A complex (1) coming from a Hilbert resolution (3) is deter-
mined at the place j>0 and in the direction & € R*— {0} if and only if
Tor’(N, §/A,) = 0.
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Proor. For j>1 the exacteness of

CP ZulDT) oo 275.(1)’)E P+
ie. of
§791 R T/ Mog, 220 F71 @ T Mog, 2§21 ®) F M,
g g g

is equivalent to the exactness of the transposed sequence (as we are dealing
with finite dimensional vector spaces and linear maps)

I @ T Mg, 1C0, F71F] R, LEQ §71+ @ T/, .
The cohomology of this complex is, by definition, equal to
Tory(N, T/, -
d) Let us assume that the given complex is finite
1) 8(R") 2o, EY(R™) 2 -+ - 2 BHR™) 0.
One can then consider the adjoint operators (formal adjoint)

*DP: YR — §(R")
with total symbol

2:(* D) = 'Zy(D?)

and the adjoint complex:
(1)* S(RM) 2, gIYR) 2, . D0 L (R 0.

If (1) is a determined (elliptic) complex so is (1)* and conversely, i.e.
If determinateness (ellipticity) if satisfied by a finite complex then it is also
satisfied by the adjoint complex.
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