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Complexes of Partial Differential Operators (*).

A. ANDREOTTI - M. NACINOVICH (**)

dedicated to Hans Lewy

Introduction.

This research can be considered as a sort of commentary to the work
of B. Malgrange on the theory of division of distributions. Our indebtness
to this work is deeper than it may be superficially appearent from the con-
text of the paper. It was from Seminars held by Malgrange in Pisa in 1962
through 1966 that we have been introduced to the theory of division of distri-
butions developed by Ehrenpreis, Lojasiewicz and Malgrange himself for its
general formulation.

Given an open set S in Rn and a matrix A () = poly-

nomials in n variables 1’...’ n, one considers the differential operator

(where is the space of C°° maps from ,~ to Cl) and the corresponding
system of equations

If the equation is solvable and if Q (~) = (Q, ($), ..., Q, ($)) is a vector

with polynomial components such that Q(~)A(~) = 0 then one must have
Q(D)f =0.

(*) During the preparation of this paper the authors were supported, in part,
by a N.S.F. grant and by an Italian C.N.R. fellowship.

(**) Istituto di Matematica dell’Universitk di Pisa.
Pervenuto alla Redazione il 25 Febbraio 1975 ed in forma definitiva il 29 Di-

cembre 1975.
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Also if is another vector with polynomial components

such that JL(~(f) =~ if u is a solution of (*) then u + Vv E 

is also a solution of (*).
The collection of the vectors Q (integrability conditions) and the collec-

tion of the vectors ~’ (cointegrability conditions) form finitely generated
modules over the ring T of polynomials in the variables ls.

To take these into account is to insert the operator A(D) into a complex

where the matrices B and C are obtained from a basis of the integrability,
resp. cointegrability, conditions for A(D).

Thus the study of a system of linear partial differential equations with
constant coefficients leads us to the study of complexes of differential oper-
ators with constant coefficients.

Up to now only the complexes associated to the gradient operator
(de Rham complex) and to the Cauchy-Riemann equations (Dolbeault com-
plex) have received extensive study, apart from the complex arising from a
single equation.

In section 1 to 5 we rehearse the fundamental theorems of the theory
of division of distributions bringing in some additional remarks that will
be used later.

The problem of extending the complex defined by the given operator A
to the right is then related to the theorem on syzygies of Hilbert (sections 5
to 9) of which we give here a direct proof, for which we are indebted for a
substantial help to E. Vesentini.

Section 9 is devoted to the problem of extending the complex to the left
as much as possible, as it is an experimental truth that  the longer the
complex is, the simpler is the initial operator ~. This leads to the proof of
a theorem that in a different form appears in Palamodov [22].

Section 10 and 11 are devoted to the study of the « generic » situation
and provides us with generalized Koszul complexes. These have been in-

troduced and studied by Auslander, Buchsbaum and Rim [2], [4], [5], [6].
The complexes we propose here are closely related to a resolution established
by Eagon and Northcott [8] for the ideal generated by the top minor deter-
minants of a matrix. The proof of the exactness of these Koszul complexes
is obtained by an argument of Macaulay that here is presented for the sake
of completeness.
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It is clear that the theory of division of distributions transforms theorems
on differential operators with constant coefficients into theorems of algebra
and therefore this first chapter is a chapter of some commutative algebra.
We will postpone the theory of convexity to a second chapter.
Part of the results of Chapter I have been the subject of the J. K. Whit-

temore lectures given by one of the authors at Yale University in

March 1974 [1].

CHAPTER I

COMPLEXES OF DIFFERENTIAL OPERATORS

WITH CONSTANT COEFFICIENTS

1. - Notations.

a) Let ,S2 be an open set in Bn. We denote by 6(Q) the space of all C°°
functions on S with the Fréchet-Schwartz topology. This has a Hausdorff

locally convex topology defined as follows. Let be an in-

creasing sequence of compact subsets of S~ with the properties

For every .Ki i and every integer 1~ ~ 0 we define

= SUP I VIE 
xeKi 

where

being the coordinates in Rn.
The Frechet-Schwartz topology on 6(Q) is the topology defined by the

set of seminorms I for i = 1, 2, ..., &#x3E; k = 0, 1,....
This topology is independent of the choice of the sequence and can

be defined by the sequence of seminorms
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which has the property that, for every f E 6(Q)

For every gi we set

With the induced topology this is also a Fr6chet space.
We denote by

D(Q) the space of 000 functions in S~ with compact support in ,S~

we have

and we consider on the inductive limit topology

We denote by

~’(S2) = the strong dual of the space D(Q) = the space of all distribu-

tions on S~ ;

8’ (Q) = the strong dual of the space 6(Q) = the distribution in D with

compact support.

If p is an in.teger p ~ 1 we denote by 6?(Q) the space

and similarly for ~(S~), ~’(S~), 8’(Q).

b) Let (T = C[xl , ... , be the space of all polynomials with complex
coefficients in the indeterminates Xl’ ..., Xn.

If P(x) = P (xl , ... , xn ) is a polynomial we denote by P(D) the differential
operator obtained from P(x) by the substitution
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For a E Rn we denote by the space of formal

power series centered at a, i. e. in the indeterminates 

Let 8. be the space of germs of 000 functions at a point a E we set

for every f E 8a

the Taylor expansion of f centered at a. We have thus defined a linear map

c) Given a function f which is absolutely integrable on with respect
to the Lebesgue measure, f C- dx), we define the Fourier transform
of f by

where x, 
We have

denote the space of rapidly decreasing functions.
This can be defined as the completion of the space D(Rn) under the

topology defined by the set of seminorms

Then Y defines a topological isomorphism

whose inverse (left and right) is the inverse Fourier transform

The strong dual of the space 8 is denoted by 8’ and is called the space
of tempered distributions.
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2. - Theorems of Lojasiewicz-Malgrange.

We recall four important theorems which one deduces from the theorem
of division of distributions.

Let A = be a matrix of type (p, q) with polynomial entries.

We denote by A(D) = the system of partial differential equations

defined We briefly write

THEOREM A. Let Q be an open convex subset of Rn. The necessary and

su f f icient condition for the system

to have a solution u E for a given f E is that for any point
a E Cn the equation

admits a sot2ction x E Oa’ (i. e. by formal power series centered at a).
Notice that, f having compact support, the Fourier transform f is de-

fined as en entire function on the whole space Cn.

Similarly we have a completely analogous statement for 8’(D) re-

THEOREM A’. Let Q be an open convex subset of Rn and let f c- 
The necessary and su f f icient condition f or the system

to have a solution u E ’’(S) is that, for any a E On the equation

admits a solution x E 0’.
The other couple of fundamental theorems is the following one.
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THEOREM B. Let S2 be an open convex subset of Rn and let f E 
The necessary and sufficient condition for the system

to have a solution u E is that for any vector v(x) = (v1(x), ... , v9(x) ) E S2’
such that

one should have

Replacing 8(Q) by 0’(,Q) one has the following

THEOREM B’. Let Q be an open convex subset of Rn and let f E :O’2’(Q).
If the equation

has a solution u E then for any vector v(x) E Tp such that v(x)A(x) = 0
we must have also v(D) f = 0.

Conversely, assuming that f E is given and that v(D) f = 0 for any
v(x) E TP such that v(x)A(x) = 0, then for any compact K c Q we can

f ind u E such that

The statements and proofs of these theorems are to be found in

Malgrange [15], [16], [20].

3. - Resolutions of a differential operator with constant coefficient.

be the ring of polynomials in n indeterminates
z1, ... , zn .

Let Ao(z), A1(z) be two matrices with polynomial entries of type (p, q)
and (q, r) respectively and let Ao(D), A1(D) the differential operator one
obtains by the substitution

PROPOSITION 1. Let Q be a convex open set in Rn. The necessary and

sufficient condition for the sequence of differential operators



560

to be exact is that the sequence of g-homomorphism

be an exact sequence.

PROOF. Let a E Cn and let Oa be the ring of formal power
series centered at a ; o=C{i2013iy...y2013}. We can consider T as a
subring of Then ( ~’, Oa) is a flat couple. Thus we get from (2) an exact
sequence 

’

First we remark that from (2) we derive

Setting

we get then for any 

thus by Fourier transform

and this implies that

i.e. (1) is a complex (which is a directly obvious consequence of (*) after all).
Let now g E Ðq(Q) be such that

Then

Taking the Taylor series at the point we get
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Because of (2’ ) we then get for some cpa E 0’ a

We can then apply theorem A and we then deduce that the equation

admits a solution Thus (1) is exact.

Necessity. We prove first the following

LEMMA 1. Let Q be any open convex subset of Rn. Consider the space

as a linear subspace of the space of all entire lunctions over Cn.

(a) Given a E On, and an integer k ~ 0 we can f ind g E Ð(Q)
such that

where 9Na denotes the maximal ideal of the ring 

(f3) We can f ind a f inite number gl, ..., gz of lunctions in 0(,Q) such
that the entire lunctions Û1 (y), ..., gt(y) have no common zeros in Cn.

PROOF. (a) Let g(x) E Ð(Q) be such that dx = 1.

Set Q

then ha(x) E 0(.Q) and we have

Let .P(y) be a polynomial of the form

Then P(- (112ni)D)h(x) E O(S2) and its Fourier transform is
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This shows that we can prescribe as we like the leading term in the Taylor
series ba(î) of a function 

By taking linear combinations with constant complex coefficients of

suitable functions in D(Q) we can prescribe ad libitum all terms of the

Taylor development up to the order k. This proves the statement (a).

First we remark that it is not restrictive to assume that the origin
0 e R" be contained in Q by making a translation.

Let us first prove the statement in the case of one variable and let us
assume S~ _ ~x E R~ - E C x C E~. Then f(y) is an

entire function on C.
Set

Then g(x) E 5)(D) and we have

Let be the set of zeros of f(y). Since 0 0 S, the set

is at most countable. Thus is also countable and
meJ

thus we can select o with 0  e  1 such that g(y) and f(y) have no
common zeros.

Let now n = 2. We may choose s &#x3E; 0 so small that the square

is contained in D.

Consider the functions in O(S2),

whose Fourier transforms are

these have no common zeros as f (y) and 9 ’(Y) have no common zeros.
The general argument is now clear.

LEMMA 2. The ring o f entire holomorphic lunctions on On is faith-
f ully flat over the ring T = C[zl, ..., zn] of polynomials in n variables.
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PROOF. We want to show that any linear system

with coefficients and second members in T,

has the following property. Any solution t is a
linear finite combination of the form

where and where

(wl, ... , wt) is a solution of (*) in ~’n

..., zt8~ ) is a solution of the corresponding homogeneous system (*)

(i.e. with h = 0) also in ~.

Indeed this property can be taken as a definition of faithful flatness.

Suppose first that t =1 and let k = ..., kt) I be a solution

of (*) by entire functions.
We will make use of the following theorem of M. Noether:
Let f , 9 f l, ... , f 8 be polynomials in n variables and assume that

where ... 7 p., s are formal power series centered at 0. Then there exist

polynomials g, gl , ... , 9 g., with g(o ) ~ 0 such that

(cf. Gr6bner [10], pg. 151).
By assumption we have

Thus by application of Noether’s theorem, for any point a E On we can
find polynomials g., p,., ..., pt, with ga(a) # 0 such that
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We can select a finite of points in en such that the
polynomials

have no common zeros in C". By the Hilbert’s « Nullstellensatz &#x3E;&#x3E; we can
find polynomials ra;(z) such that

Therefore from the relations (**) we obtain

Consequently

Consider the (T-homomorphism

given by

By Hilbert syzygies theorem we can find a (T-homomorphism fl: ’y - ’
such that the sequence

is an exact sequence (actually only the Noetherianity is needed here).
As the ring of covergent power series is flat over the ring of polynomials,

denoting by 0 a the local ring of germs of holomorphic functions at a we
deduce an exact sequence

. -

This shows that if ..., are the columns of the polynomial matrix fl
in a neighborhood U(a) of a we must have

with £ holomorphic in U(a).
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We may assume that U(a) is a Stein open set. Let be

a covering of C" by sets of the type U(a).
On U(ai) r1 we get

Thus {A" - represents a cocycle on the covering ’11 with value in
the sheaf of holomorphic relations among the ~8~a~, 

Let 9i,(~~1~, ... , ~~y~) denote this sheaf. As it is coherent, by theorem B
of H. Cartan and J. P. Serre we can (making use of Leray theorem which
states that 9i,) = 0) find .h( U(a2), ~i,(~3~1~, ... , such that

with

Thus setting ll. = Gat = ~,~’- Gal We obtain a vector ~1. = (AI, ..., 
with entire holomorphic components such that

This achieves the proof of the lemma in the case t =1.
We can now proceed to the general case with the inductive assumption

that the lemma is proved for systems (*) of at most I - 1 equations.
We consider the equations (*) and let k = (k1, ..., kt) t be a

solution.

We have in particular

and by what we have prooved we can find a polynomial solution

~=~W,...,pt)

Then k’ _ (kl - pl , ... , k t - p t) satisfies the system
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with h2 , ... , hi in J . Moreover

and such that

Substituting these expressions in the (Z -1 ) last equations we get a

system of l -1 linear equations of the form

By the inductive assumption we can find a polynomial solution b,. e s
such that

with

Going back to the original solution k we obtain for it the desired expression:

REMARK. The lemma ceases to be valid if we replace the ring of entire
functions by the ring of holomorphic functions on an open Stein set S~.

For instance take and consider the equation

This equation has no polynomial solution but it has the holomorphic
solution in S

We can now prove the necessity of the condition given in the proposition.
From

setting z = 27riy we deduce
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Using statement (a) of lemma 1 we deduce then that

Let h be such that

For every we thus get

But

Thus

By the hypothesis we can find E 5)"(D) such that

or, by Fourier transform,

By lemma 1 (fl) we can choose a finite number g1, ... , gz l of elements

in D(Q) such that the entire functions gl , ... , g i have no common zeros.
By the « Nullstellensatz » we can find entire functions ai E such that

Thus we can write

with 

By lemma 2 then the system h = admits also a polynomial solu-
tion. This shows that the sequence (2) is an exact sequence.

With the same argument (and actually with an almost trivial proof of
the analogue of lemma 1) we obtain the following

PROPOSITION I’. Let S2 be an open convex set in Rn. The necessary and

sullicient condition for the sequence of differential operators
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to be exact, is that the sequence of S-homomorph18m8

be an exact sequence.

4. - We denote by the transposed matrices of Ao (z), A1 (z)
respectively

PROPOSITION 2. Let Q be an open convex set in Rn. The necessary and

su f f icient condition for the sequence of differential operators

to be exact is that the sequence of T-homomorphigms

be an exact sequence.

PROOF. Sulliciency. We have

Let f c- 8p(Q) and let be a 000 partition of unity subordinate to an
open locally finite covering ’l1 = f Uil of Q by relatively compact open
subsets of Q. Set f $ _ e if; then with the usual notation we get

thus = 0 and therefore

Let now f EF 8q(Q) and let us assume that

We want to show that the equation
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can be solved 8p(Q). For this we apply the criterion of theorem B
of section 2; for any

such that

one should have also 

Now from (*) we deduce Ao (z) v (z) = 0 thus, by assumption we can find
= 

..., ~’r such that

Therefore

Necessity. The proof is based on the following facts that we state as
lemmas.

LEMMA 1 (Whitney’s theorem). Let M be a differentiable manifold with
countable topology and let be the space of 000 lunctions on M with the topology
of convergence of the lunctions and their partial derivatives (the Schwartz
topology). Let 3 c 8(M) be a closed ideal.

Then the following conditions are equivalent

i) f c- is an element of 3;

ii) for any a E M we have

iii) for any a E M and any distribution Ta with support in the point a,

(where 6(") = and OpEC) such that we also have 

From this one deduces the same type of statement for closed submodules
of 8V(M).

LEMMA 2 (division theorem for C°° functions). Let Q be an open set in Rn
and let A (x) be a p X q matrix with complex valued real analytic entries defined
on Q. Then the linear map

37 - Annati della Scuola Norm. Sup. di Pisa
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defined by

has a closed image.
After these premises we can begin the proof of the necessity of the stated

condition.

By assumption

is an exact sequence. Thus, for any

and by Fourier transform

This being true for any (using lemma 1 of the previous sec-
tion) we deduce that iAo(z) = 0 i. e.

Hence the sequence (2) is a complex.
Let now h be such that

We want to show that ~’r.

To this end we first show that

Indeed, by lemma 2, the image of the map

given by f -Ai(z) f is a closed submodule of 

Therefore we can apply the theorem of Whitney in the form of the third
condition, hEIm.A1 « for every point supported distribution Ta, a E Cn,
such that 0 we have Ta(h) = 0.
A distribution of type Ta is of the form

where r is a polynomial.
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Thus the inclusion (*) is verified if dac E Cn we have

whenever

As the Taylor expansion of f at z = a can be arbitrarily prescribed the
condition (**) is equivalent to

By Fourier transform this is then equivalent to the following statement.
For every exponential polynomial

satisfying

we should also have

Now by the assumption Ao(z) h(z) = 0 we get

As this implies that th (D ) vanishes on each
f E 8q(Q) with f E KertA1(D) and in particular for all f = r(x) exp E

E Ker 

This proves our contention.

We have thus proved that

with k(z) E We want to show that we can replace k(z) by a vector
k’ (z) e Jr.

This amounts to prove the following

LEMMA 3. The ring of 000 lunctions (complex valued) on Cn is faith-
lully flat over the ring of polynomials in n complex variables.

This is proved in the same way as lemma 2 of the previous section taking
into account the fact that the ring of germs of 000 functions at the origin in
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some RN is (faithfully) flat over the ring of convergent power series and of
formal power series (a fact which is a consequence of lemma 2) (1).

Replacing the use of theorem B with theorem B’ one obtains the following

PROPOSITION 2’. Let Q be an open relatively compact convex set in Rn
and consider the sequence of differential operators

The necessary and sufficient condition that this sequence be exact is that
the sequence

of be an exact sequence..
Here we have denoted by 0’(D) the space

where ~W~~ is a fundamental sequence of neighborhoods of SZ in Rn.

REMARK. In the previous statement one can replace D with the open
set ,SZ itself (cf. Palamodov [22], ch. 7, 8, th. 1 and also [23]).

5. - Given a matrix A (D) of type p X q of differential operators with
constant coefficients and given ,~ open convex in Rn one can consider the

(1) One word should be spent over the application of M. Noether lemma. Let

f, ..., f be polynomials in z1, ... , zn . Suppose that

with ki E At every point a E Cn the Taylor series of ki is a formal power
series in (.s’l2013~i,...~2013~ thus

Putting in this expression zl - djL = 0, ..., zn - an = 0 we obtain an expression

where p are formal power series in 1~~ only. Thus we are still in
the conditions required by M. Noether theorem.
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system of partial differential equations

or

One can then ask to construct, if possible, two other systems of differ-
ential operators with constant coefficients,

or (integrability conditions)

and

or (cointegrability conditions)

such that one has, on S2, an exact sequence

The previous propositions enable us to reduce this problem to a problem
of algebra. Precisely

The sequence (D) will be exact if and only if the sequence of

T-homomorphism

is an exact sequence.

(b) The sequence (~) will be exact if and only if the sequence of

T-homomorphism

is an exact sequence.
We are thus lead to the following problem:

given a (T-homomorphism between Mree modules
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to find -homomorphisms and (if possible) SP Sr so

that Im C(z) = KerA(z) and ImA(z) = KerB(z).
We will discuss these questions in the next sections.

6. - Backward resolutions of a s-homomorphism.

(a) We start with the following
REMARKS (a). Given two S-homomorphisms

necessary and su f f icient condition for S being factored through F (i. e. that

there exist A : ~’l - ~’r such that S = F -A) is that

(b) Given a diagram of if-homomorphisms

which is commutative with exact rows, then one can complete it in a commu-
tative diagram

(c) Let M be a finitely generated two exact sequences

of T-homomorphisms

can be factored each one through the other. (i. e. we can f ind S-honbonborphisms
~.;: id: .M -~ M, which complete into a commutative diagram).
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Any two factorizations Ai, --~ T’ll of the first sequence through the
second are homotopic (i. e. we can f ind S-homomorphisms -- such that

In particular if 0 is any covariant (or contravariant) functor from the
cathegory of T-modules to the cathegory of abelian groups the homology
(cohomology) groups of the complex

are independent from the choice of the « resolution » and give invariants of
the module alone.

Moreover given any finitely generated S-module M, by the fact that T
is a Noetherian ring, it follows that we can always construct exact sequences
of S-homomorphisms (free resolution of M)

In particular, given a (T-homomorphism Sl: - we can always find
a backward free resolution

The proof of these statements is straightforward and thus it is omitted.

7. - Hilbert’s theorem.

The following theorem is due to Hilbert :

THEOREM 1. Let ~’ = k[x1, ... , xn] be the ring o f polynomials in 
variables over acn in f inite field k. For any T-homomorphism

we can construct a f inite exact sequence

of lenght d c n + 1.
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Hilbert gave the proof of this theorem for the similar case of the graded
ring of homogeneous polynomials. The proof can be easily adapted to this
case and will be given below for the convenience of the reader.

PROOF. (a) We consider first the case n = 1. Then k[x1] is a

principal ideal ring. The homomorphism ~’1 is represented by an so X s1
matrix. One can find matrices U, V of type 80 X 80, 81 X 81 respectively with
det U = ~ 1, with elements in ~1 such that

This means that by rechoosing the basis in S. and T’o we can assume ~’1
in diagonal form. If S = diag h1, ..., h i ; 0, ..., 0) with h, ... hi =F 0 then
ger Sl is isomorphic to and we have the exact sequence (with
8~ = 8,, - 1)

(fl) The proof now proceeds by induction on the number n of variables.
Let jt = k(x1, ... , xn) be the quotient field =1~[xl, ... , xn].
For a matrix S we write

as the set of its columns or respectively of its rows.
Set

and let

and we can assume that has rank e. Therefore

and we shall have 0 only if e  81.

Set
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and let

It is not restrictive to assume that

(a) 

(b) r = degree of D in x,,, &#x3E;degree of det(S§, , ... , 8’,) in xn for every
choice of iI, ..., i(} in (1 , ..., 

(c) D = axn + polynomial of degree less than r in xn, and with 0.

To satisfy the last condition we make a « generic » linear change of
coordinates x and use the fact that the field k is infinite.

Now remark that all minors of of the matrix (for each

have a zero determinant. This provides us with a system of vectors in Ker Sl.
In particular those minors obtained by bordering the matrix of D by

one row and column, give us vectors in Ker S, - Assembling them
in the columns of a matrix C we get

where the elements in the part denoted by * are of degree c r in Xn.

Given any X E Ker 81 we can find a vector with such that

has the property that degree in xn of -~7, L + i  r for i =1 ~ ... , sl - ~.
Indeed it is enough to choose as the quotient of the division of X, Z

by D in Xn;
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We claim that then also 81, ... , ,~e have a degree in xn which is  r.

Indeed as 8 E Ker Sl we have thus

and, from Cramer’s rule,

where are the minors determinants of order e of the matrix 8’. The

degree in xA of the right hand side is thus  2r. From degree in xA of

DEs  2r we deduce, that degree in xA of r for 1  s  o.

Therefore,

every vector X E Ker S1 is the sum of a linear combination OA of vec-
tors of the matrix C and a vector whose components have all a degree in xn
which is  r.

(y) Set

then the condition = 0 is transformed into a system

that we will write in matrix notation

is of type (t -~- r) X r in the block matrices a3.
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Let ~...~~ be a basis of Kerq If we set

then we get for any X E Ker 81 an expression of the form

i. e. setting

we get the following commutative diagram with exact row:

(3) Now we investigate 
As xn,~ ~°‘~ E Ker 81 we must have

thus

If we set

then
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We have thus found a system of p vectors in Ker 82 that we write as the
columns of a matrix

and rank C(l) = ,u as~ det 1)"&#x3E; - 6,,,#x.) = ... * o.

We want to show that any vector y E Ker 82 can be written as a linear
combination C~1 ~1.~ of the column vectors of the matrix C(l) and a vector

Clearly one can choose 11. so that y - 0(1) A has the last /-l components in-

dependent of the variable Xn. Set then implies

and as we deduce

= polynomial in xn of degree  r - 1 (1  I  si - @) and therefore
= o.

(s) Now

so that the relation and implies

Or, setting

we get

If .M’1, ..., 7 M’(",) is a basis of Ker(p, over and if we set
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we get from the last remark of (b) that any y E Ker Sl has an expression
0f type

Therefore we conclude that we have a commutative diagram with exact row

where

and moreover the sequence

is an exact sequence.

(C) We are going to investigate We set where

= 1§"&#x3E; - 3«*zn&#x3E; and where ’P2 = M«i&#x3E;, ...~’~). Now recall that the vec-

tors in Ker 81 so that we must also have

By the conclusion of point (e) we must have therefore

In particular
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From Cramer’s rule we deduce then

polynomial in x~ of degree 

Therefore, for any 
In particular the vector

is a non zero element of Ker 83 for Let

We have det C21~ = + polinomial in xn of degree  

Given any vector y E Ker Sa we can f ind A E so that

Indeed once we have chosen 11. in such a way that the last III components
of Y - are independent of from the equations SaM = 0 we deduce
that the first Il components of ~l must be zero and therefore that

Let VI’1 , ..., be a basis of Ker T, and set

Then any Y E Ker Sa has an expression of the form

and therefore we have a commutative diagram with exact row:
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where

and moreover we have the exact sequence

(~ ) The general procedure is now clear:

1) given the homomorphism ~1 we choose first basis and coordinates
to satisfy conditions (a), (b), (c) of (~). We restrict ~S1 to the subspace of S§/
of those vectors whose components are polynomials of degree  r in Xn.
This can be considered as a free module of rank rsl . The image
of Sl then falls in the subspace of J n of vectors with components of degree
less than 1 + r in being the maximal degree in Xn of the elements
of Considering that subspace of T’, as a free module over T.- 1 of rank

we see that 8, determines a homomorphism

2) We then construct a finite free resolution of 99 over

which by the inductive hypothesis can be assumed to be of lenght 

3) We then determine by the previous resolution

the matrix S, = ( C, ~ ) by means of 99

the matrix. 82 = C1 ) by means of 99, and 99,992
the matrix. 83 = c(2) 0 by means of 992 and 9933 

"3 
y 2 3

and so on.

To show that the resolution thus obtained for ~’1 has lenght  n + 1 we
have only to remark that if ffJk is injective (thus ffJk+1 = 0) then also

S,+, = (C(k)) is injective. But this follows from the fact that rank
C(’) = number of columns of 

This completes the proof of the theorem.
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8. - Equivalence of finitely generated (T modules.

a) Let .M and N be finitely generated S-modules.
We say that If and N are equivalent if we can find two free S-modules

~8, 1 ~ ~ such that

i.e. M EB 8 and N (D Tt are isomorphic as T-modules.
A finitely generated T module M equivalent to a free module is called

projective.

PROPOSITION 3. A finitely generated P is projective if and only
if every diagram of finitely generated T-modules

with 1m rx c Imn can be completed into a commutative diagram

PROOF. First one remarks that if P is free or if P is a direct factor of a

finitely generated free module then the diagram (1) can always be com-

pleted into diagram (2).
Secondly one remarks that if (1) can be always completed in (2) then P

must be a direct factor of a finitely generated free module, as we can take
B = P, a = id and A any free module such that A ~ P is surjective.

Thirdly one makes use of a Hilbert resolution of P

If P is a direct factor of a free module then by the second remark, setting
i =1, 2, ... , No = the sequence



585

is exact and split. Thus Lo = P @ No and also No is a direct factor of a

free module. Hence

is also exact and split, so that .L1= N1 QQ No and also Ni is a direct factor
of a free module. Proceeding in this way we get

Hence

This shows that P is equivalent to a free module, finitely generated, thus P
is projective.

(b) Let M be any finitely generated S-module and let

be any free resolution of M. Applying to this resolution the functor

(A any finitely generated T-module)

we get a complex

Its cohomology groups are independent of the resolution we have chosen,
according to point (c) of 6. We set thus

and

One has the following properties:
If
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is a short exact sequence of finitely generated S-modUes, then for any
finitely generated S-module A we have an exact sequence

and an exact sequence

In particular one deduces the following characterization of projective
modules.

PROPOSITION 4. I f A is a tinitely generated projective then tor
each tinitely generated module M we have Ext(A, M) = 0, 

Conversely it tor every M we have Ext}(A, M) = 0 then A is projective.
It is worth noticing that the functors Exty(’ M) for i &#x3E; 1 take -the same

« value » on equivalent finitely generated modules so that they represent
invariants of the equivalence classes of finitely generated S-modules.

c) Given a finitely generated S-module A, any S-module B appearing
in a short exact sequence of the type

is called a modules of syzygies of the module A.
We have the following properties of easy verification

(a) equivalent finitely generated modules have equivalent modules of
syzygies; in particular the modules of syzygies of any given module are all
equivalent.

(fl) for every finitely generated S-module M we have 
’ 

d) We have the following

THEOREM 2. For any pair = 
... , A and B one has
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always

PROOF. If n =1 this follows from the fact that any module of syzygies
of A is free (see proof of theorem 1) i. e. we can always find a free resolu-
tion of A of type

The general case is then treated by induction on the number of variables.
A proof based on the properties of the Ext functors can be found in

Northcott [21], p. 182.

COROLLARY. Given a finitely generated M we can always find
a free resolution

of lenght dn.

Indeed any free resolution the module C = KerlXn-1 is such that

Thus C is projective and therefore C 
t for some 8 and t.

Modifying the considered resolution at the stage n as

where i : is the natural inclusion, we obtain a free resolution of

lenght n.

e) A matrix A (x) of type with polynomial entries can be considered
as a T-homomorphism T’ and thus we can associate to it the -module

One can define two matrices A and B with polynomial entries equivalent
if the corresponding S-modules a(A) and a(B) are equivalent.

PROPOSITION 5. Given two matrices with polynomial entries A, B the neces-
sary and sufficient condition for their equivalence is that we can enlarge A and B
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with sets of zeros rows such that or the enlarged matrices A B we can

find polynomial matrices C, di A, M such that 0 ’ 0

with

PROOF. In fact equivalence means that one can build up a commutative
diagramm of S-homomorphisms with exact rows

Note that this notion via Fourier transform leads to a notion of equivalence
for systems of differential operators with constant coefficients.

9. - Forward resolutions.

a ) Given a S-homomorphism

we can construct, by Hilbert’s theorem, a backward going finite free resolu-
tion of S~ .

The problem to find the integrability conditions of the differential operator
81(D» ~8~ (.~ ) suggests the following problem:

Can the Hilbert resolution of Si be continued forward with an exact
consequence of type
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If such is the case, and N = Coker 81, we do have a  forward resolution »
of N

b) Given a S-module N we define the torsion submodule

For a submodule of a free module the torsion module must be zero.
This necessary condition is also sufficient i. e.

if N is a finitely generated without torsion ( i(N) = 0) then
one can find an injective T-morphism of N into a free module.

Indeed if Jt = k(Xl’ ..., xn) is the quotient field of T, tensoring by N
the injection T Jt we get an exact sequence 0-&#x3E;T(jV)2013-(x)y.

If = 0 then N can be considered as a -submodule of the vector

space N 0y As N is finitely generated N can be considered as a sub-
module of a S-free module.

Let N* = Hon3,S(N, S) be the dual of the finitely generated module N.
It is a finitely generated S-module. Indeed if

is a presentation of N as Coker S1 we have

A dual module is always without torsion.
Let N** be the dual of N* i. e. the bidual of N. Every element of N

can be considered as a linear function on N* and therefore as an element

of N**. We thus have a natural map

having the following properties:

i) Every map ot: N - ’ lactors uniquely through 
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Indeed a can be considered as an element of N* and therefore defining a
linear map tl of (N* )* into S.

Indeed Ker jN = {n E = 0, Vl E Thus KerjN:) T(N).
But has no torsion and on it T-linear maps separate points;

therefore 

One may also remark the following property

iii) For every linear map a : N ~ get according to i) a factorization

I f a is injective (and thus 1(N) = 0) then 0153 is injective.
Indeed we first remark that N ~, ^~ N* * tJt as every finite dimen-

sional vector space is isomorphic to its bidual. Thus T = Coker jN is a
torsion module: -r(T) = T. If a is injective we thus have an exact sequence
0 ---* N --&#x3E; N** --&#x3E;- T --* 0. Let n** E N** be such that a(n** ) = 0. There ex-

ists g # 0, such that gn** E N.
Thus a (gn** ) = 0 and, as a is injective, gn** = 0. But then n** = 0

as N** has no torsion.

c) Let N be a finitely generated T-module without torsion and let
(/i?’"? f 1) = f be a basis of N*. Let us consider the (T-homomorphism

defined by n - ( f1(n), ..., 11(n)).
This map has the following universal property:
Every T-homomorphi-8m ,u : N - ’ can be factored through (1,:

This property follows from the fact that the t S-homomorphisms that con-
stitute the map p are linear conbinations of f 1, ... , I¡. In particular the map a,
is an injective map because i(N) = 0 implies the existence of an injective p.
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LEMMA. Let fl be injective and let N f = Cokeraf, N, = Cokerlz. yVe do

have then a commutative diagram with exact rows

W e claim that is injective.

PROOF. Assume =~ 0 and let 

Then we can find ga El1f(N). If = 0 then ,ut(a) E,u(N).
Now we remark that n Iml1, = 0 as = 0 implies ,u (n ) = 0,

thus n = 0. Hence J’lfIKer,uf is injective and therefore af (Kerpf) is a sub-
module of N f without torsion. If for some pf (a) =

i.e. 

thus is a torsion element. This implies,
by the previous remark, that a = (Jf(nO)’ which is a contradiction.

Given a finitely generated S-module N (without torsion) a S-linear map

given by a basis of N* will be called a stable map (1).

d) If N is a torsion free module and if

are two stable maps then Coker Gf and Coker af1 are equivalent.
Set f = ( fl, ..., f z), 9 = (91, ..., g,,). Let ’: N - ’+ with a’(n) = (fl(n),

.

..., gl(n) ). As gl = i b 1 f j we have a commutative diagram with exact
rows : 

1

(1) Note that a : N- Sl is stable if and only if Ext1(Coker (1,~) = 0.
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Now thus is an isomorphism. But 
Hence Coker Coker 0’ EB ~’.

Repeated application of this remark yields the above statement.
More generally one has the following statement (of almost immediate

proof).

1 f N and N’ are torsion free equivalent and N - 

0": N’-+ T" are stable maps then also Coker a~ and Coker 0" are equivalent.
An exact sequence

in which ao is a stable map and ai : is stable

will be called a stable forward resolution of N of lenght k.

e) THEOREM 3. Let N be a finitely generated T-module.

i) Necessary and su f f icient condition that N be included in an exact
sequence

is that i(N) = 0 i. e. N be torsion free.

ii) Necessary and sufficient condition that N be included in an exact
sequence

is that i(N) = 0 and N c!-, N** i. e. N be re f texive (this second condition im-
pties the first).

iii) Necessary and sufficient condition that N be included in a stable
exact sequence

of length k &#x3E; 3 is that N be re f lexive, N = N** ; and

Ext1(N*, ~’) = ... = Extk-2(N*, ~’) = 0 .

PROOF OF i). Follows from the first remark of point b).
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PROOF OF ii). Assume we do have an exact sequence (1) and let

N,. = Keroe, == Coker ao . By taking biduals we get a commutative diagramm

in which the first row is exact, the second is a complex and in it is

injective as ao is, (point b) iii)).
By the assumption, = 0 and therefore jNl is injective. Hence

This implies N = N** (and the bottom row of the diagram is exact).
Conversely if N = N** we can take a resolution of N*

and apply to it the functor Home(., S) . We then obtain an exact sequence

As N = N** we conclude the proof of point ii). 
’

PROOF oF iii). Assume we do have a stable exact sequence (1). We set
Ni = Ker oci. We then consider the commutative diagram

where ai = f-lioG i and where ori is surjective i injective.
Also o’~* is surjective for 1 c i c k - 2 and f-l:* is injective for 
Now we remark that the resolution being stable we do have exact sequences

and
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These provide an exact sequence

If we apply to (2) the functor S) we get the exact sequence (1)
(except the first step). Then we must have

Conversely let us assume that we have the nullity of the specified in-
variants and let (2) be a resolution of N*. By application of the functor

Hom~( ., ~) we obtain an exact stable sequence

As by assumption N = N** we get the desired conclusion.

REMARK 1. The statement of this theorem, without the assumption or
condition that the resolution be stable, can be found with a different proof
in Palamodov [22]. From Palamodov statement follows that if there is a

resolution of type (1) at all then there is a stable resolution also of the same
length.

REMARK 2. If a finitely generated $-module N is considered up to

equivalence and if v(N) = maximal length of a forward (stable) resolution,
3(N) = minimal length of a Hilbert resolution, we must have

10. - Koszul complexes.

a) Let S = C[Xl, ... , We denote by A) the space of exterior forms
of degree h, with coefficients in ~, in the indeterminates dt1, ..., dts:

We do have A~ ~~ and in particular
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Let

be a fixed 1-form and let p denote the ideal generated by ..., 

We set

and we consider the following augmented complex (as 99 AT = 0)

where s denotes the natural map (T -N via the identification A’ s L-- 5.
We will denote the complex (1) as the Koszul complex associated to the

sequence (g~l, ..., q~s). Note that 99 A As-’ = ~, so we do have exactness at A:
and E is surjective.

b) We will say that a sequence (a,,..., a,) c- 5’ is a principal sequence
(or an a-sequence in the sense of Serre) of length 1 if for every j = 2, 3, ..., I,
a, is not a zero divisor in ~’~ J (al , ... , a~_1 ) .

This means that whenever g satisfies a relation of the form

then we must also have

REMARK. Given a sequence (a,.,..., let us denote _ ~’ ( a1, ... , 
the ideal generated by al, ... , a; . We can consider in Cn the algebraic variety

of common zeros of the elements of p;. We do have
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One has the following geometric criterion:
the sequence (al, ..., is a principal sequence if and only if either

PROOF. If (a1, ..., ai) is a principal sequence then a; cannot be contained
in any prime component of the ideal ~~_1. Hence dim Vj  But,
if Yj ~ ~ Hence the conclusion.

Conversely assume that Vi-1 is either empty or of dimension n - j -E-1
and that V~. is either empty or of dimension n - j.

If Vj-, = 0 then the implication « number j » for a principal sequence
is satisfied as pj-, = ~ by virtue of the Nullstellensatz.

If 5~ 0 then by the assumption and the Ungemishtheitsatz
(Grobner [10], pg. 125) it follows that a j is not contained in any prime com-
ponent associated to p,-,, thus c~~ is not a zero divisor in ’J/~i-l. This com-

pletes the proof.
An ideal of 5’ admitting a basis which is a principal sequence is called

of principal class.

LEMMA. Let (aI, ..., az) be a principal sequence. If we have a relation

then we can f ind polynomials E J with I)ii = - such that

PROOF. If 1 = 1 the lemma is trivial. We can proceed by induction on 1.
We have

thus, by the assumption there exist polynomials ,u1, ... , such that

Then
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By the inductive assumption there such that

This is the statement we wanted to prove.

c) PROPOSITION 6. Let (qJ1, ..., be a sequence containing a principal
sequence of lenght Z c s. Then the corresponding Koszul complex is exact at AO,

.

PROOF. We may assume that (cpl, ..., is a principal sequence. If

1 = 1, cpl ~ 0 and thus is injective. We can thus proceed by in-
duction assuming the proposition proved for the integers 1-1.

Let a E AI-I. We write a as a polynomial in 7 ... dts

Similarly we set

where

We have to show that if = 0 then there exists ~3 e Ai-2 such that

The condition q A a = 0 gives

If from the first of these conditions

we deduce
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Thus by the assumption and the lemma proved above we deduce that we
must have

Set

Then

Substituting in the second relation (*) we get

thus, by the same argument, we can write (with fli e Ai-2 of degree 1 in

Substituting in the third of the relations (*) we get

Hence

Continuing in this way we get

COROLLARY 1. If (qJ1, ..., qJB) is a principal sequence then the Koszul

complex gives a free resolution of the 5-module Ns.

d) Consider now the isomorphism

defined by
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Then the operator transforms into the transposed operator e(gg) defined by

given by the formula

where J = ( jl, ..., jh) denotes a block of h indices and I = (il, ..., de-

notes a block of h -1 indices.

Let now S2 be an open set in R" and let &#x26;(’)(0) denote the space of C°°
differential forms on S2 of degree k in dtl, ..., dt 8. For any

we define the operator

by setting

From proposition 1 and 2 we deduce then the following corollaries.

COROLLARY 2. (0153) I f ..., qJs) is a principal sequence then on any convex
set we have an exact sequence of differential operators

(fl) if ..., Ps) contains a principal sequence of lenght 1 then the above
complex is exact on ~~g~ (S2 ), ~~8-1 ~ (SZ ), ... , Similarly setting

9)(k) (S2) = (m E compact in ,~}

we get the f olloWing

COROLLARY 3 (a). If (PI’ ..., Ps) is a principal sequence then on any open
convex set we have an exact sequence of differential operators
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If (qJ1, ..., 99.) contains a principal sequence of length 1 then the above
sequence is exact on

11. - A generalized Koszul complex.

a) Let = Homc(C8, C’) denote the space of r X s matrices with
elements in C.

We let the group operate on A,, x,(C) by

where a E GL(r, C), (JEGL(s, C) and We assume that r  s and

we denote by

for 

For every we can find a E GL(r, E GL(s, C) such that

Therefore the sets Je are nothing else but the orbits of GL(r, C) X GL(s, C)
on so that

We do have the following properties

so that Je is an algebraic irreducible variety.

- 

ii) Jo is a locally closed submanifold of and codimension

J~ _ ~O (s - r -~- ~ ) .
Indeed it is clear that U ... U J, are in the closure of J~.
Moreover
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is irreducible as the image under a holomorphic map of the irreducible
manif old GL(r, C) X GL(s, C).

Finally near the point every matrix can be written as

and the equations of Je are of the form

and this proves the contention about the codimension.

REMARK. A « generic » point of the manifold JQ is given by

where Thus we get para-
metric equations in terms of parameters.

In particular it follows that Je is a rational variety. (The correspondence
with the parameter space being generally one to one as det a # 0 in general).

b) Let us consider a matrix of type with 

with entries C[x1, ... , xn] . We introduce the 1-exterior forms

and we set

We want to investigate the set of points in C-
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If a, denotes the ideal in T generated by the subdeterminants of order r of A,
as these are nothing else but the coefficients of we have that VA is the
set of common zeros of the polynomials in a~ and therefore TTA is an algebraic
variety.

The algebraic variety VA can also be viewed in the following way.
The matrix A defines a map

by

then

We will make use of the following known fact
Let (a, 0), (fl, 0) be two irreducible germs of analytic subsets of Cn at the

origin 0 E Cn. I f dimo a = a, diIDo fJ = b then each irreducible component of the
germ has a dimension at the origin which is &#x3E; a + b - n.

PROPOSITION 7. For any choice of the matrix A we have that either VA = 0
or else each irreducible component of VA has a dimension ~ n - (s - r + 1).

PROOF. We first remark that J1 is an irreducible algebraic variety in
~r x $(C). Let us consider the graph of the map a

We do have a natural isomorphism n : Ga ~. Cn induced by the projection
on the first factor of the product Cn Also we have

As 7t is an isomorphism it is enough to show that the analytic set

(C" xJ1) has every irreducible component of 
is irreducible, thus each germ of has dimension n.

Also is irreducible and thus each one of its germs has dimen-

sion = n + (rs - (s - r -f-1)), (rs - (s - r ---1 ) = dimJi).
At a point wo E (C" x j,) we can apply the above remark, taking into

account that the dimension of the surrounding space Cn X is n + rs.
We do get for the dimension of each irreducible germ y at wo of
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the estimate

and this is what we wanted to prove.
We will say that is transversal to the stratification of if for

every point (with we do have

where T’1AM) denote, as usual, the tangent space at y to the complex
manifold M.

COROLLARY. I f Lxl is transversal to the stratification of then VA
is either empty or else each irreducible component W of V4 has dimension equal
to and Wna-1(J1) is dense in W.

PROOF. We have

and, by the transversality assumption for any ~, is a locally closed
submanifold of Cn of dimension 

For e &#x3E; 2 we have This implies that each non

empty irreducible component of V4 must contain a Zariski open subset all
made of points of From this we get the conclusion.

REMARK. In any case if VA ~ ~ or if then
is purely dimensional i. e. each irreducible component of YA has the same
dimension than VA itself.

DEFINITION. We say that the matrix .. = rs, is a Macaulay

matrix if for any choice of h c k c s, for the matrices Ahk = we

do have that either TTAhk = 0 or dim YAhk = n - (k - h + 1). 

PROPOSITION 8 (MACAULAY). I f A is a Macaulay matrix then

(a) the ideal aA is pure (ungemisht);

(fl) f or any exterior f orm E A:-r such that
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we can find exterior f orms E A:-r-l such that

PROOF. (f3) The theorem is true for s = r. The proof proceeds by a
double induction assuming the theorem proved for the matrices 

and If we writeIf we write

then condition (*) gives

Where DV1...’Pr are the minor determinants of A. made with the columns of
indices pi , ... , pr .

By the inductive assumption one of the determinants in aArB is prime to
the ideal aAr.s-l unless this last is trivial. We can thus assume that if

then also

Now relation (**) can be written as

Also if we denote by the sub determinant of obtained by deleting
the j-th row we do have 

Letting p = ~rol , ... , ~r_1, s and solving this system with respect to 
we get
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thus

Thus moltiplying (**) by we do get

Therefore, by the above specified assumption, we do also have

i.e.

Now

Therefore

Now the conclusion of statement (fl) can be expressed as saying that there
exists for the coefficients a an expression

where 771 are alternate in the lower indices.
By the inductive assumption for we thus get

thus the relation (***) for r = s.
From this it follows that replacing a with

we get for a’ a new form which satisfies o~A~==0 and in which the coeffi-
cients x~ ~=0.

Thus the relation (**) and the inductive assumption for give the
conclusion (fl).

(a) It remains to prove that a~ is unmixed. For this one applies the
following criterion. The ideal a~ is pure if and only if adding to the basis
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of aA generic linear polynomials, 
the ideal thus obtained should not have any 0-dimensional primary com-
ponent. If this is not the case, then we can find ~’ such that

but ..., xt-~ct).
Now as aI, ..., at t are generic the matrix obtained from A setting

i = n, is again a Macaulay matrix.
The above congruence gives

Setting xn = an we get by the result (~8)

Hence

But the ideal (zi - a, , ..., x t - at) is relatively prime to Xn - an so that

i.e.

COROLLARY 1. If A is a Macaulay matrix and i f ~~t~ E 1 C s; if

then there E A’,-’ such that

PROOF. (a) First we remark that if and if

We do also have
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Indeed let us introduce ((s - r) - 1) x s new variables zij, 1~~2013~2013~

1js and set

the extended matrix ^= A is again a Macaulay matrix.
Moreover we have zi~

thus

Setting zi, = 0 we get an expression

(fl) Now from and we deduce

Also = 0 and since I - I  s - 2 we do get

Hence

Hence

Proceeding in this way we get the conclusion.

COROLLARY 2. rSame assumption; i f and if t c s - r and if
moreover
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Then we can f ind that

PROOF. If r = 1 the theorem is true and was already proved with the
Koszul complex. We can proceed by induction on r. Set

then

Hence by Corollary 1 we get

therefore

By the inductive assumption

COROLLARY 3. assumption ; if Ui E ~8 and I ~ s - rand if moreover

then one can f ind hii E with hil = h~Z such that

PROOF. If r = 1 the statement has already been prooved. By induc-
tion on r : We have

Hence
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and therefore (Corollary 2)

Now

By the inductive hypothesis

with ~~~ _ ~~ i . The relations (**) and (*) are equivalent to the statement
of the corollary.

REMARK. Corollary 1, 2 and 3 are all consequences of the following
statement (that we have deduced from the theorem of Macaulay)

~$ and i f we have

then we do have

A matrix with will be called of the principal type if

setting 1-i-s

we have that qi verifies (Pi), verify (P2)’...’ f{Jl, ..., verify (Pr ).

c) Let us denote by 93h the space of forms of degree k in the indeter-
minates ... , yr and with coefficients in s . Thus f3 E is an expression
of the form

We consider fl as a polynomial in one, y,, of the variables:
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where # i are polynomials in yl , ... , yi , ... , yr . We define

where ... , 9 Tr are r 1-forms given once for all.

One verifies easily that

Therefore if we set

we define a map

with the property

LEMMA. Let h  s - r, k &#x3E; 1 and let CPl, ..., 99r be the 1- f orms associated
to a matrix of principal type.

with then if h = 0 we and, if h &#x3E; 0, we
can f ind with

PROOF. then

thus if h = 0 and Vf3 = 0 we have

Hence all ~8«1".«~+ ~...«, = 0. But this imples f3 = 0 as k &#x3E; 1.

Assume now h &#x3E; 0. If r =1 then the lemma says that 

then f3 = This has already been proved. Therefore we can proceed
by induction on r.

Set
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Denoting ~’ = V, + ... + V,-, the condition Vfl = 0 translates into the con-
ditions

From these, by the inductive assumption we derive

Set

we get

Hence the lemma is proved, as one verifies that the degrees of the in the

... , are the right ones.

d) Given a principal matrix A we can consider the (T-homomorphism

whose cokernel is denoted by
We identify

so that the above homomorphism can be described as follows:
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Combining the above lemma with Corollaries 1, 2, 3 which are valid for a
principal matrix we obtain the following

PROPOSITION 9. Given a principal matrix A = for the cokernel NA

of the S-homoJnorphi8nb defined by A one has the following exact sequence
which provides a free resolution of NA :

REMARK. 1) The length of the resolution is s - r + 1.

2) As rank A = r we have that NA is a torsion module

Exercise. Note that the image of the map

is the ideal aA . Denoting by Na its cokernel, we do get with the same ar-
gument the following resolution

of length s - r -f-1. Since the dimension of a is n - (s - r + 1) it follows
that a is a perfect ideal.

Applying proposition 1 and 2 we do get resolution for the matrix of dif-
ferential operators !A(D) (forward going on C°° functions) or for the matrix
A(D) (backward going on C’ functions with compact support).

REMARK. The resolution of the exercise can be found in Eagon and
Northcott [8].

e) As an example of a free resolution which (it seems to us) cannot be
derived from the Koszul complexes one can consider the following situation.

Let (acl, a2, aa, ~4), (b1, b2, b3, b,) be two principal sequences of length 4
in (T. We set

where dti and dO, are indeterminates.
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Let JC’,’ denote the space of exterior forms with coefficients in J of degree r
in the dti’s and of degree s in the 

One can then verify, by making use of the previous considerations, that
the following sequence is exact

This example can be generalized in many ways (cf. Bigolin [3]).

f ) By the theory of division of distributions we can transform the gener-
alized Koszul complex into a complex of differential operators.

We set for any open set 9 c Rn

~~k~(~) - space of exterior forms of degree k in the indeterminates dt1, ..., dt8
with C °° coefficients;

- space of homogeneous forms of degree h in ... , yr with coef-

ficients in 

~hk~ (,~ ) = of a compact in 92}.

Let A = with be a principal matrix. For

we set
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Then on any convex open set S~ c JR" we get the following exact sequences

where the first map is defined by ... , ur ) and

the last map being defined ..., 

g) If instead of the matrix A = we consider the transposed
matrix as a S-homomorphism ’-!--’

identifying T with ~° and T8 8 with A’ we get the map

given by

Setting

we then obtain the following

PROPOSITION t9. Given a principal matrix A = rs for the

T-homomorphism a defined by ’A one obtains the following exact sequence

where N is the cokernel of the last map D. The module N~A is a torsion module
T(N’A) = NA .

(Generalized coKoszul complex)
We can formulate similar remarks to those stated in point f ) of this section.

NOTE : this complex is obtained from the generalized Koszul complex
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applying the functor

thus 

Similarly = 0 for 

PROOF OF THE PROPOSITION t9. We first prove the exactness of the

sequence.

(a) On If ~ u;g~~ = 0 then Ui = 0 as the u;’s are of degree 0.

(fl) If A9?r = 0 uiggi and we have exactness on AI.

(y) If fl c DfJ = 0 = 0, di, thus there exists 2 E Al such
that # = and we have exactness at 

(3 ) Let us prove exactness at 93k, r -~-- 2 ~ h c s, Note

that D ~ D = 0.

Let P c- %hk and let us write

where flk will not contain any of the y’s.
1-1

Also set a0= We get from DfJ = 0
1

thus

Note that if r =1 the theorem has already been proved; thus we can pro-
ceed by induction on r, we get therefore

hence y. 92,.) oc. = 0 thus
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hence - = ~ thus

Proceeding in this way we get thus

But ~ik is indipendent from the y’s, thus we must have Yk = 0, i.e.

Therefore if

we must have, # = Dy. This achieves the proof.
It remains to prove that z(N) = N. We remark the following.
If r + 1 = s then over the field of rational functions every 8-form can be

written as

thus chasing denominators

with p # 0 and 
If s ~ r + 2 then $:-1-1 ~ space of homogeneous polynomials in ..., yr

of degree 8 - r -1 with coefficients AS.

Let ac = G~ai.,.~ ?,r,’i~ ... yrrE ~3$_r_ 1 C~=~2013~2013l) be a monomial.
Again over the field of rational functions

o

i.e.
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with p # 0 and bE AS-t. If, say (Xl&#x3E; 1, we can then write

Thus and therefore every element of N is a torsion element.

12. - Symbol sequences and elliptic complexes.

a ) Let us consider a complex of differential operators with constant
coefficients

where for some integer p, and where

where aa are matrices with elements in C. We assume that, 9 for

some a with = k~, aa’~ ~ 0, so that k, is the true order of the operator Di.
We define the total symbol of D’

and the

principal symbol of D’

For these give linear maps

where we can consider Cp’ as the vector space Exo obtained for every 
by tensoring 6" (R" ) with 8(Rn)jJfvxo where ~xo = ~(Rn) (x1- x°, ... , x~ - x°) :

As

40 - Annali delia Scuola Norm. Sup. di Pisa
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we must have for every ~

and therefore (replacing $ by 2$ and considering the coefficient of 

Therefore we obtain two complexes for 

the total and the principal symbol sequences.

b) If the complex (1) is obtained from a Hilbert resolution

with

then the total symbol sequence is obtained from the complex (3)
with the following operations

a) Consider the complex obtained from (3) by applying the functor

H°mr(*, S) :

~8) &#x3E; Setting = - ... , xn - ~~), tensoring (4) &#x3E; with C = 

c) DEFINITION. lYe say that the complex (1) at the place determined

in the direction if, at ~o the total symbol sequence is exact at 
elliptic in the direction ~o E Rn - ~0~ if at ~o the principal symbol sequence is
exact at 

A complex which is determined (elliptic) at every place and for every
direction is called determined (elliptic).

On each space C"j = we introduce a hermitian product



619

For every ~o E Rn - {0} we can then consider the hermitian forms

In matrix notations

and symilarly for L1;(~o) replacing Ai-1 and A; by the corresponding prin-
cipal parts.

LEMMA 1. The complex (1) is determined (elliptic) on Bi in the direction ~o
if and only if å(~o) (L1 (~o) ) is positive definite.

PROOF. If ~(~o)(v) = 0 then

Now note that for any linear map a : we have

therefore

Since the symbol sequence is a complex we have

If v # 0 and 0(~o)(v) = 0 then there exists

and thus the symbol sequence cannot be exact. Conversely if at ~o and E3
the symbol sequence is not exact there must exist v 0 0 verifying (*) and
thus such that ,~(~o)(v) = 0. For the ellipticity case the proof is the same.

LEMMA 2. A complex (1) coming f rom a Hilbert resolution (3) is deter-

mined at the place j &#x3E; 0 and in the direction i f and only if
Tor’(N, = 0.
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PROOF. the exacteness of

i. e. of

is equivalent to the exactness of the transposed sequence (as we are dealing
with finite dimensional vector spaces and linear maps)

The cohomology of this complex is, by definition, equal to

d) Let us assume that the given complex is finite

One can then consider the adjoint operators (formal adjoint)

with total symbol

and the adjoint complex:

If (1) is a determined (elliptic) complex so is (1)* and conversely, i. e.

If determinateness (ellipticity) if satisfied by a finite comptex then it is also
satisfied by the adjoint complex.
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