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A Local Approach to Some Non-Linear Evolution Equations
of Hyperbolic Type. (*)

C. PARENTI (**) - F. STROCCHI (***) - G. VELO (*,*)

dedicated to Jean Leray

Summary. — Ewistence, uniqueness and regularity theorems for a non-linear Cauchy
problem of hyperbolic type in a suitable Fréchet space are proved. These resulls are
used to treat a global in time initial value problem for systems of mon-linear rela-
tivistic field equations. The initial data and the solution belong to the space of func-
tions having locally finite kinetic energy.

0. — Introduction.

In this paper we will be concerned with the existence and basic properties
of solutions of non-linear hyperbolic partial differential equations of the form

(0.1) Oe(z, t) — f(, t; @, 1)) =0

where f is a possibly non-linear function of the variable ¢.

The motivations for investigating this kind of equations are manifold.
Equations of the type (0.1) arise in relativistic field theory and seem to play
an important role in understanding the structure of elementary particles;
their quantized version is the basis of relativistic quantum mechanics ([15])
and is supposed to govern the high energy physics. Recently, there has been
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great interest in a class of stable solutions (solitons) of these equations as
starting points for constructing a theory of strongly interacting particles ([5]) :
a typical example is provided by the Sine-Gordon equation in two space-
time dimensions ([4], [6]). Equations (0.1) arise also in a number of other
areas of physics like non-linear optics and solid state ([14]).

The first proof of a global Cauchy problem for an interesting case of
eq. (0.1) (f=—m2p—¢? with m+%0, in three space dimensions) was
given by K. Jorgens [7]. Subsequently I. Segal ([10]) extended Joérgens’
result by using a more abstract and powerful approach (see also [2], [8],
[11], [3], [9]). In Segal’s treatment the existence and uniqueness theorems
are proved within the Hilbert space of initial data belonging to the Sobolev
spaces H(R*) @ L2(R*) (s = space dimensions), under suitable restrictions
on the function f. This means that one identifies some «kinetic energy
part» B, in the Hamiltonian (of the form E, =}[[(Ve)? + ¢ + ¢*]da)
and one considers only the solutions which have finite « kinetic energy ».

However there are physically interesting situations which are not covered
by the discussion of ref. [10]. The function f may fail to satisfy the require-
ments of ref. [10], as, for example, in the constant external field problem
(f = — m2p + ¢, ¢ constant) and, in general, when spontaneous symmetry
breaking solutions occur. Moreover there is a large class of solutions not
having finite kinetic energy, i.e. not belonging to H'(R¢). Of this type are
the symmetry breaking solutions since they are of the form const 4 g,
with ye€ L*(R*). Another important example is provided by the «soliton »
like solutions of the Sine-Gordon equation whose behaviour at infinity is
such that they do not belong to L2(R?).

In the approach presented in this paper we considerably enlarge the
previously proposed ([10]) functional spaces in which eq. (0.1) was solved.
This is obtained by looking for solutions for which the kinetic energy is
locally finite but not necessarily globally finite. More precisely, the func-
tional space we choose for discussing eq. (0.1) is

HL(R') ® L3 (R) =X

where the direct sum refers to the function ¢ and to its time derivative ¢,
respectively. In this way we are able to cover the cases discussed above
which were not included in Segal’s treatment. The main result of this paper
is in fact a uniqueness and existence proof for the Cauchy problem, for
suitable functions f and for initial data in X.

It is worthwhile to mention some reasons for choosing the space X as
a natural setting for our problem. From the physical point of view the local
properties of the solutions are of extreme interest since any experiment and



A LOCAL APPROACH TO SOME NON-LINEAR EVOLUTION EQUATIONS ETC. 445

observation are necessarily localized in space. It is therefore justified to
look for solutions for which the total energy is locally finite. A natural way
to implement this condition is to work with the space X. The conditions
we impose on the function f which guarantee the solvability of the initial
value problem imply that the total energy is locally finite. The quantum
field theory analog of locally finite kinetic energy is the condition of the
theory being locally Fock. This condition seems to be satisfied for physically
interesting interacting theories, whereas the globally Fock property does
not hold.

An important feature which allows one to solve eq. (0.1) in the space X
is an a priori estimate by which the function ¢ at a fixed time ¢ (¢>0) in
a bounded region in space depends only on the value taken by the initial
data (¢ = 0) in another (larger) bounded region. As a consequence one may
estimate the local norm of a solution at time ¢ in terms of another local norm
of the initial data. This phenomenon is essentially connected to the physical
content of Huygens principle.

Instead of studying directly eq. (0.1) we prefer to isolate its relevant
properties, and therefore discuss the problem in an abstract framework.
We consider the equation
0.2) W — Kutf(t, 0
where

a) u belongs to a Fréchet space X which is the projective limit of a family
of Banach spaces B(£), £2 being an arbitrary open bounded set of R,

b) K is the generator of a continuous semigroup W(¢) in X ({>0) with
the property that

(0.3) | W (t) u| g < const || u| g,

2 and £Q(t) being concentric spheres of radius B and R — ¢ respectively
(0<t< R),

¢) f(t u) is a continuous mapping from [0, T[XX — X, 0 << T < oo, with
the property that for any sphere 2, any z€[0, T[ and any ¢> 0,
there exists a positive constant C(£, 7, ) such that

os<1}£z”f(t’ ) _f(ty /U)”!)< C(‘Q7 7, @)”“—v”!)

for all w,ve X with |u|o<e, |v]o<e.

Within this structure, with some extra technical assumptions, we are able
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to prove an existence and uniqueness theorem for the Cauchy problem locally
in time (Th. 1.3). By strengthening the assumptions a global theorem (Th. 1.6)
is proved in subsect. (1.5).

Here we will content ourselves with listing some simple concrete cases
of eq. (0.1) with a function f indipendent of space and time, to which the
global existence theorem can be applied:

1) flo) =— zoantp”

satisfying both the following conditions

M

@, o™ < oo for all o, in the case s =1

S
I
-

M3

|@,|n"26" < o for all o, in the case s =2

n=1

R
3

I
o

for n>4, in the case s =3

ii) there exists real constants «, f, y for which
2 an_l% >a+fe+yp*  VpeR

2) f(p) = & + bp + c(¢® + de?®) + esinfp, with ¢<0, for s=1,2,3.

‘We mentioned explicitely the last example because it covers the case of Sine-
Gordon type equations.

Finally the regularity properties of the solutions are discussed in detail
both in the abstract setting and in the concrete cases.

Plan of the paper:

§ 1. — Abstract formulation. Existence and uniqueness.

1.1. Functional framework: the X space.

1.2. Statement of the problem: the integral equation.
1.3. A priori estimates and removal of the space cut-off.
1.4. Perturbative solution.

1.5. Global existence theorem.

§ 2. — Regularity in the abstract case.
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§ 3. — Applications.
3.1. Position of the problem and free theory.

3.2. Global existence and uniqueness.
3.3. Concrete cases.

3.4. Regularity.

Appendix A and B.

1. — Abstract formulation. Existence and uniqueness.

In this section we will discuss the integral equation corresponding to the
Cauchy problem for the differential equation (0.2) in a suitable space X.
The defining properties of X may be considered as an abstract version of
similar properties satisfied by the usual local Sobolev spaces.

1.1. Functional framework: the X space.

Let # be the family of all open bounded (not empty) subsets of R°. To
every Qe A we associate a Banach space B(), with norm | -|pq,, in such
a way that the following conditions are satisfied:

i) For any Q,, 2,e £, with Q,cQ,, there is a continuous linear
operator

7a,0,: B($2:) > B(2,),
called the «restriction » operator (*), with the properties
I7e,0,@ 2@ < |Plz@y, VoeB(&),
rq 0, = identity and rg o.7g o =7 o (2:C2,C Q).

ii) (Sub-additivity) For any £,€ A and for any finite collection
{2}, C £, with QIC-EJ £, = 2,, the following inequality holds
3

”"m,m(‘l’) I B@) < 5% I 79,0,(®) "B(a,)
€,

for all g € B(£2,).

(*) In the following such an operator will be simply denoted by .
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DEriNITION 1.1. The space X is now defined as the projective limit of
the family {B(£2)}o.4 With respect to the restriction operators.

An element we X is then identified with a family {ug}o.4, %q€ B(Q),
such that ug = rg g (ug), V£, € £ with Q,c,. When equipped with
the locally convex topology generated by the family of seminorms

Xour>|ulg=|ualza, %= {¥a}ocs>

X is a complete space. It is also a Fréchet space ([1]) as a consequence
of ii). Obviously we suppose X to be non trivial.

DEFINITION 1.2. u€ X is said to vanish on Q, Q€ A, if ||u]o=0. The
support of u, supp u, is by definition the complement in R*® of the union of
all Q€ A on which % vanishes.

Clearly if supp » is a compact set, then
[ullg, = llu]a, Vi, 2:€#, suppuc,NQ,.

The following notation will be largely used in the sequel: if £ is a sphere (?)
of radius R, 2(t) will denote the concentric sphere of radius R—t (0 <t< R),
Q'(t) the concentric sphere of radius R+ ¢ (t>0) and an interval of time
[0, T'] is called admissible with respect to Q2 if T<R/2 (%).

We further require that X satisfies

ConDITION 1. For any sphere 2 of radius R and for any u € X, the
function [0, R[€t > |u|q, is continuous.

ConpITION 2. (Space cut-off) For any ke N there is a linear map (cut-
off map)
T.:X—->X
with the properties

1) supp T,¢C 84y = {we R'| 2| <P +1}, Vpe X;
2) llo— Th‘P”{xeRq wi<ny = 0, Vpe X;
3) for any sphere £ there exists a constant a(h, 2)> 0 such that

| Thola<alh, Q)|ple VpeX.

(2) In this paper sphere will be sinonymous of open sphere.
(®) This condition of admissibility is chosen to ensure that inf diam (Q(t))> 0.
0OSEST

Any other upper bound on 7T yielding the same property would work as well.
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We further require sup a(k, 2(¢)) to be finite if [0, 7] is an admissible
t€[0,T]
interval of time for Q.

A useful consequence of the subadditivity and of Condition 1 is that,
given a continuous function ¢ —u(t)e X, te[0, T'], for any sphere Q with
radius > T' the function #+> ||lu(t)| g is continuous on [0, T]. This can be
easily seen from the inequality

[u(8") | oy — l1u(8) || a| < llu(s’) — u(8) ]| oy + | () || ey — () | cery| -

1.2. Statement of the problem: the integral equation.

This subsection is devoted to the precise statement of our problem,
namely the analysis of the integral equation

t
(1.1) u(t) = W(t)u, —i—fW(t —9)f(s, u(s)) ds, weX
0

under suitable assumptions on the « propagator » W(¢) and on the non-linear
function f. Equation (1.1) may be considered as the integral version of the
initial value problem for equation (0.2) if K is the «infinitesimal generator »
of W(t). We will look for a solution of eq. (1.1) in the space of continuous
X-valued functions ¢+ u(f). For this purpose we assume that W(¢) and
f(¢, ) belong to some definite classes of functions defined below.

DEeFINITION 1.3. By C(4, w) (4>1, w>0) we will denote the class of
all maps

U: [0, + oo = £(X, X)
such that

i) (U)o is a strongly continuous semigroup ([13]);

ii) For any sphere £, for all v € X and for all ¢, 0<t < radius of £,
the following inequality

1.2) 1 U@ ] oy < A6 | ] aq)

holds.
Inequality (1.2) implies

(1.2') U@ ]y <46 |ulye-s
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for all 4 € X, for any sphere V and for all ¢, T with 0 <7<t < radius of V,
as can be easily seen by putting Q= V(t— 7) in eq. (1.2).

In the following, we will call K the infinitesimal generator of a semi-
group Ue C(4, w). It is a densely defined closed operator.

DErFINITION 1.4. By I([0, T[; X) (0<T<oo) we denote the class of
all maps

b: [0, T[xX - X
with the following properties
i) be CO([0, T[x X; X);
ii) b(t, 0) =0, Vie[o0, T';

iii) For any sphere 2, any 7e€[0, T[ and any >0, there exists a
positive constant C(Q, 7, p) such that

(1.3) sup [[b(¢, ) —b(t, v) |« < C(2, 7, o) [u — [0

o<i<rt

for all w,ve X with |u|g, [v|o<e. We further require C(Q,7,0)=
= sup C(R(t), 7, o) to be finite if [0, 7] is an admissible interval of time for Q.

o<i<r

DeFINITION 1.5. By L'([0, T[; X) (0<T< + o) we denote the subset
of L([0, T[; X) for which condition iii) holds in the stronger form

iii’) For any sphere £, for any 7€ [0, T[, there exists a positive
constant C(L, 7) such that

sup [b(¢, u) —b(t, v) [a< C(2, 7)[u—v]a

0<i<t

for all u,ve X. We further require C(£, 7) = sup C(£(¢), ) to be finite if

o<t
[0, v] is an admissible interval of time for Q.

REMARK. It is important to note and it will be used in the next sub-
section that the cut-off maps T, defined in Condition 2 of subsection 1.1,
leave che classes L([0, T[; X) and L'([0, T[; X) invariant.

Inequality (1.2) is a sort of local energy estimate and implies that U(?)
propagate signals at finite velocity (hyperbolic character of U(f)). Proper-
ties iii) of Definitions 1.4 and 1.5 are a kind of local (in space) Lipschitz
conditions.
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In the following we will study eq. (1.1) under the assumptions that W
belongs to a class C(4, w) and f may be written as a sum

(1.5) f=i+g
where je C9([0, T[; X) and ge L([0, T[; X). To show that under these
hypotheses the right hand side of eq. (1.1) is well defined, provided
ue C9([0, T[; X), it is enough to prove that the function

[0,1]5s > W(t—s)f(s,u(s) eX  (0<t<T)

is continuous if W e C(4, w) and fe 09([0, T[X X; X) ([1]). This follows
from the inequality

[W(E— ) f(s, u(s)) — W(E—s)f(s', ul(s) |r<
<|[(W(t—s)— Wt —s) f(s, w(s)) |y +
+ A exp [o(t— s")1]|7(s, w(s)) — F(s'y w(8") |

where Ve A and Q is a sphere such that Q@)> V.

1.3. A priori estimates and removal of the space cut-off.
A fundamental role is played by

THEOREM 1.1. Let u;€ C9([0, T[; X) (0<T< + o), i=1,2, be solu-
tions of the integral equation

t
(1.6) wilt) = Wt tos + [ Wit —9)Ljss) + 9(s, w(s))]ds
0

with W e C(4, 0), up:€ X, j,€ CO([0, T[; X), g L([0, T[; X). Then, for any
v [0, T[ and for any sphere Q2 with radius greater than T the following a priors
estimate holds

@7 [uy(®) — us(®)| ey <4 exp [(w + AC(R, 7, 0))t] -
t
{” Ugy — “oz"a(o) +f||j1(8) —J2(8) ".Q(a) ds}
0

for all te[0, 7], with o = sup |u«(s)| g
8€(0,7]
i=1,2
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Proor. From the relation
11
ta(t) — () = W(E) (b — ton) + [ Wit — 8)[j(5) — jals)1ds
0

11
+[W(t— 9)g(s, w(s) — g5, wa(s))] s
0
it follows

¢
[| 20y (2) — u5(2) ".Q(t) <Aemt{ [0 — %oz ”9(0) +fe‘m"j1(3) — Ja(8) ".Q(s) ds} +
H

t
+ Aewtfe_mllg(sy “1(3)) - 9(87 '“2(3)) ||9(s)d8 .
[
The hypotheses on g yield

"9(87 ul(s)) - 9(3’ “2(3)) ".Q(s)<é(9’ (2) 9)““1(3) - '“’2(3)"9(3) Vse [0, 7]
and therefore by Gronwall’s lemma one obtains the estimate (1.7).

COoROLLARY 1. Let We 0(4,0), je 0%(0, T[; X), ge L([0, T[; X),
u€X and f=j -+ g. Then the integral equation (1.1) has at most one
solution we C9([0, T[; X).

Proor. Trivial by Th. 1.1.
CoROLLARY 2. Under the hypotheses of Cor. 1, if for a sphere 2

supp u, C 2
suppj(s)cL'(s), O0<s<T,

then any solution we C®([0, T[; X) of eq. (1.1) satisfies

suppu(t)cQ'(t), Oo<i<T.

Proor. Given te[0, T[, let V be any sphere with VN Q'(t) =0. If X

is the sphere such that X(t) = V, then obviously X(s) N Q'(s) = 9, Vs€[0, t].

V= X(t) Q'(1)
/ \\ | /)
z Q
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By applying Th 1.1 to the case Uy == U =10, j1 =17, Upp=Up, Uy =1U
and to the sphere X one obtains

[u@ ]y = [#(®)]|ze<O-

Our procedure to determine the solution of eq. (1.1) consists of two steps.
First we study the theory with a space cut-off (subsects 1.4, 1.5) and then
we discuss the removal of the cut-off. In the next Theorem (Th. 1.2) we
will show how this removal can be performed. We need the preliminary

DEFINITION 1.6. Given je 09([0, T[; X), ge L([0, T[; X), uoc X and a
strictly increasing map ¢: N — N, for any cut-off map T, (see Condition 2)
we define j, = T},05, gy = Tyn)°9) %on = Tpotty, h€ N. The system (j,, gy, %on)
will be called the £-cut-off system of order h corresponding to the system (j, g, %,).

THEOREM 1.2. Let We C(4,w), jeC9(0,T[; X), ge L([0, T[; X)
0<T< + ), upe X, and let N>h —£(h)e N be a strictly increasing func-
tion. If, for every he N, the integral equation

t
(18) w(6) = W(t) gy + [ W(E— 9)[50(6) + (55 10(5))] ds
0

has a solution u,e C9([0, T[; X), then the integral equation (1.1), with
f=3j+g, has a solution wue CV([0, IT[; X). Moreover to every 7 e [0, T[
and every V € £ we can associate an integer h(t, V)€ N such that

1.9) up [[u(t) —us(t)|]y =0, VYh>h(r,V).
<<

8
o<i<r

ProoF. The crucial point is to establish that to every = e [0, T[ and
every V €A one can associate an integer h(z, V) such that

(1.10) sup |un(t) —uw(@)|r=0, VR, B">h(z,7V).
o0<t<z

For this purpose we choose a sphere £2 such that 2(z) > V and [0, 7] is an
admissible interval of time for 2. The eq. (1.8) yields

[ 9 (2) — e (B) | < 9 (8) — 20 () [ ey <
t
<A exp [wt]{” Uow — Uoe [0 + f 7:(8) — dnr(8) | sy A8 +
0
¢
—I—fexp [— @8] [[| 9y (8) % (5)) — Gecur (8 e (9)) las +
0

+ [y (85 1 (8)) — Gy (85 ne(8)) [| ey ] ds} .
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The properties of the cut-off maps imply that

| wow — sowrla=0,  sup [juw(s)—jr(s)]aw =0
0<s<t

sup || g8, un(8)) — granry(8; un(8)) | = 0

<IKT

provided that h’', A" are greater than a suitable h(z, V)€ N. Now for
any pair ', b">h(z, V) there is a ¢ = g(h', h")>0 such that |u,(s)|q,
4 (8) oy < @) ¥8€[0, 7). Consequently

Ige (85 un (8)) — geaes(8, un()) | aw <
< sup x(t(h"), 2(s))C(2, 7, 0) | un(s) — wre(8) | ate)
8€[0,7’
and therefore, by Gronwall’s Lemma, one obtains equality (1.10). The
completness of ([0, T[; X) implies now the existence of a € C®([0, T; X)
satisfying eq. (1.9). To show that u is actually a solution of the integral
equation (1.1) it suffices to recognize that the quantity

sup | W(t)(ton— wo) + [ W (t—)(in(s) — i(s)) ds +
0

o<i<rt

it
+ [ W(t—9)[gum(s, un(s)) — g(s, w(s))] dslly
0

vanishes for h large enough. This can be seen by the same arguments as
used above.

1.4. Perturbative solution.

In this subsection we first establish a local in time existence theorem
for eq. (1.1) by a perturbative technique. (The assumptions used are satis-
fied by the cut-off theory). Then, in Th. 1.5, sufficient conditions are given
to continue a solution defined in the time interval [0, 7| beyond the time 7.

DEFINITION 1.7. Given 7, 9> 0 and a family ¥ = {Q},.y of spheres,
with radii > 7, such that {Q,(7)};n i8 a locally finite covering of R’, we
define the space

EF; 7,0 = {<P€ [0, 7J; X)l @l = sup lo®) lown<e, VkeN}
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equipped with the metric

g y) = 327" lp— s
It is easy to verify that the space E(F; 7, o) is complete.

THEOREM 1.3. Suppose we are given W e C(4, ), je€ 09([0, T[; X),
g€ CO([0, T[x X ; X) with g(¢,0) =0, V¢ and u,c X. Let us assume the ex-
istence of a family F = {Q}yen of spheres, with the property that {Q(v)}ien
8 a locally finite covering of R* for a suitable v € 10, T[, and such that there is
a 9> 0 for which the following conditions hold

1) sup [uo]a.<0/24;
keN
2) sup |j(t) ] oy = 6 < + o0;
tefo,7]
keN
3) 3C(F, t,0)>0:
l9(s, ) — g(8, V) | @y < O(F, 7, 0) |4 — ] 00y
VkeN, Vse[0, 7] and VYu,ve X, with
sup  [[ufaum, sup |v]om<e-
keN keN
8€[0,7] 8€(0,7]

Then there is a to€ 10, T[ for which the integral equation (1.1), with f =3 -+ g,
has a unique solution wuec E(F ; 1y, p).

PRrOOF. One can show, by an argument analogous to the one at the end
of subsete. 1.2, that the operator § defined by

t
(1.11) (Su)(t) = W(O)uo + [ Wit—5) [§(5) + g5, u(s))]ds
0
maps C9([0, 7]; X) into itself. From eq. (1.11) it follows that

t 1
16500 oy < Ae{ [, + [ 156 oo + [ 196 86 a5} <
0 0

<Ae®{o/24 + 6t + C(F, 7, 00} =L(t), 0<i<7, kEN
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provided e E(F; 7, ). Since there exists a unique 7, € ]0, v] for which
{(7,) = o, the operator S maps E(F;o,p) into itself for all o€]0, 7,].
Moreover, from the obvious inequality

|Su — 8v|, , < AC(TF, 7, 0)€’olu—|,, 0<o0<7, keN,

it is clear that we can choose a 7, € 10, 7,] for which § is a contraction of
E(F; v, o) into itself. The result is now a consequence of the Banach
theorem on contractions.

CorOLLARY 3. Under the same hypotheses of Th. 1.3 there is a unique
solution of eq. (1.1) (f =j + g) belonging to the space C([0, 7,]; X).

PROOF. Obviously the solution found in Th. 1.3 belongs to C([0, 7,]; X).
Its uniqueness (within this space) follows by the same kind of estimates used
in the proof of Th. 1.1.

THEOREM 1.4. Let je CO([0, T[; X), g€ L([0, T[, X), uo€ X and h —£(h)
be a strictly imcreasing map from N to N. Then, for every he N the cor-
responding £-cut-off system of order h (see Def. 1.6) satisfies the assumptions
of Th. 1.3.

ProoF. Let 7€]0, T[ and let & = {Q,},.y be any family of spheres for
which [0, 7] is an admissible interval of time and {Q,(7)};ev is a locally
finite covering of R* (the existence of such a family is obvious). For a
fixed value of h, the set

Jy = {ke N2, N Sy, 7 0}
is finite and by Condition 2 it follows that
",M’Oh”!?k = S’up "jh(s)"f)k = 8’up ”g((h)(s’ u)“glc =0
sef0,7] sel0,7]
for all k¢J,. It is then clear that

sup [ju(s)[e, <+ oo and  sup [unle.<e/24
s€l0,7] keN
keN

for a suitable o> 0. Finally, if ke J, the properties of the cut-off maps

and of the function g yield

(| gea (8, %) — gewy(sy ©) [ @usr < ( sup a(£(h), Qk(S))) C( 2, 7, 0)|u—v] 2y
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for all s€[0,7] and all w,veX with |u|gy, [v]ew<e for all keN.
Consequently, condition 3 of Th. 1.3 is satisfied with

C(F, 7, 0) = sup [G(Qk’ 7, @) Sup “({(h)y 'Qlc(s))] .
keJn s€f0,7]

THEOREM 1.5. Suppose we are given W e C(4, w), je C°([0, T[; X),
g€ 0O([0, T[ X X ; X), with g(t, 0) =0, V¢ and u,e X. Let ue CO([0, T,[; X),
T,<T, be a solution of eq. (1.1) with f =j - g. Let us assume the exist-
ence of a family F = {Q}rcn 0f spheres with the property that {2,(2¢)}en 8
a locally finite covering of R* for a suitable e, 0 <e<<T — T,, and such that
there is @ 0> 0 for which the following hypotheses are satisfied

1) There is a sequence t,tT, such that

sup [u(ts)|a, <e/24

n,ke

2)  sup ] 17(8) | auts—1y+6) = 0 < + 003

selTy—¢&, Ty +&
keN

3) 3C(F, 0) >0 such that for any closed interval Ic[T,—e¢, T, + €]
the inequality

"9(3, u) — (8, v) "Qx(s—T1+a)< 0(F, o) ||'“ - ”"a,;(a—nﬂ)

holds for every seI, ke N and for all, u,ve X with

sup %[ aws—1i+e);  SUP [V]ae-ri+0<O-
sel sel
keN keN

Then the solution u(t) can be continued beyond T,.

Proor. For all n for which ¢,> T, — ¢ we define ZM = Q,(t, — T, + &),
keN. It is then obvious that the family {X' ™ (£)},en is a locally finite covering
of Re. As an immediate consequence of the assumptions 1), 2), 3) one obtains

sup [u(ts) |z <e0/24 ,
keN

sup [j(t. + 0) [z = sup |j(tn+ 0)|oo+ta-1+0 <0,
o€l0,¢e] o€l0,¢e)
keN keN

lg(Ea =+ 0, ) — g(ta + 0, V) [ 2(°) = |9(tn 4 0, w) — g(tn 4 0, V)| Quo+t,— Ty +0) <
<C(F, o) |u—2| =M

for all 0€[0, ¢] and for all u,ve X with

sup [ =", sup [v] Mo <e.
o€l0,¢] o¢el0,¢]
keN keN

30 - Adnnali della Scuola Norm. Sup. di Pisa
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We can now apply Th. 1.3 and Cor. 3 to the integral equation
(1.11') @a(0) = W(0) ultn) - f W(o— 8)f(t + 8, pals)) ds
0

with respect to the family F,= {Z™}, y. There exists a 7, ]0, €], inde-
pendent of n, for which eq. (1.11’) has a unique solution ¢, € C9([0, 7,]; X).
It is then easy to see that the function

[ u(t), 0<t<t;
o(t) =

plt—t), t<i<t 4T,
defined for a t, with #;+ 7,> T,, belongs to C®([0, ¢, + 7,]; X). Finally,

by a change of variable in eq. (1.11'), one recognizes that v is a solution of
eq. (1.1) in the interval [0, ;. 4+ 7,] which continues «» beyond T,.

1.5. Global existence theorem.

Throughout the whole subsection we make the assumption that, for each
Q e A, B(R) is a Hilbert space with scalar product {-,->,. Then we prove
a global existence and uniqueness theorem for the integral equation (1.1)
by using Th. 1.5, provided the following essential hypothesis is satisfied.

HyrotHEsis A. Given W € C(1, w), j € C9([0, T[; X), ¢ € L([0, T[; X),
g2 e L'([0, T[; X), 0 < T< + oo, we say that (W,f=j+ g + ¢®) satis-
fies the Hypothesis 4 if for any sphere £ there exist two maps

Vo, Wo: [0, To[ XX R, To=min{T, radius of O},

with the following properties
a) For any T,€]0, Tof

(1.12) inf  Vo(t,u)>—co.
ueX, supp uc
tel0,T,]

b) For any T,€]0, To there exist two constants M(Q, T,), N(2, T,)>0
such that

(1.13) Wolt, u) < M(Q2, T))[Va(t, w) + |u|3] + N (2, T,)

for all t€[0, T,] and for all we X with supp uc Q.
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¢) For all ¢—cut-off systems of any order h corresponding to
(G, 9 = g0 + g9, w,) and for any solution u, of eq. (1.8) which is continuous
on the interval [0, T,[, T,€ 10, To[, and such that supp u.(f) c ,(f)c (),
for a suitable sphere £2,, 0<t<T,, the functions ¢ Vo(t, us(t)),
Woal(t, ua(t)) are continuous and moreover the equality

¢
(1.14)  Re|<uy(s), §(s, 1(8)) e ds = — Valt, m(?)) +
0

¢
+ Va(0, uyy) +fW0(3’ ;(8)) ds

holds for all ¢e [0, T,[.

Hypothesis A is suggested by energy considerations. The quantity
Va(t, w) should be identified with the content of potential energy in the
sphere Q(¢), corresponding to the function gV, whereas the function Wa(t, u)
may be identified with the variation in time of the potential energy density,
integrated over the sphere £2(f). This interpretation roughly explains the
meaning of eq. (1.14), which, however, (in condition c)), is required to be
satisfied only for a rather special class of functions. This is exactly what
we need to prove Th. 1.6. Moreover, in the applications we have in mind
(see Sect. 3), equality (1.14) can be directly checked to hold for a class of
functions much larger than the one considered in condition ¢). Concerning
conditions a) and b), inequality (1.12) essentially means that the potential
energy must be bounded from below, locally in space and time, and inequa-
lity (1.13) states that its rate of increase must be locally controlled by the
sum of the kinetic and potential energy.

LEMMA. Suppose we are given We O(1, w), je 09([0, T[; X), g€
Co([0, T[x X; X) with g(t,0) =0, Vt, and w,c X. Let ue C9([0, Ty[; X),
T, < T, be a solution of eq. (1.1) with f =j + g, such that

supp #(f)c82,(t), O<i<T,,

for a suitable sphere £,. Then, for any sphere 2> 2, for which [0, T,]
is an admissible interval of time, the following inequality holds

t t
(1.15)  [lu(®) B < [luollB0y + 20)]”“(3) |5 48 + 2 Re | <u(s), 1(8, u(s)) dag ds
0 0

for all te[0, Ty[.
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Proor. To obtain inequality (1.15) it is convenient to reduce the integral
equation (1.1) to a differential equation. For this purpose, let us define the
bounded operator (mollifier)

1
M X —>X, MguE;fW(t)udt, e>0.
0

It can be easily verified that M. has the following properties
a) Meu——7>u in X, YueX;
b) M:W(t) = W(t) Me, Vi>0, Ve>0;

¢) Mc.KcKM.,, Ve>0, where K is the infinitesimal generator of
(W)

Let Q2 be any sphere containing Q, for which [0, T,] is an admissible
interval of time. Then, as a consequence of Def. 1.3, there is an >0 for
which supp(Meu(t)) c Q(t), te[0, Ti[, e<é& Application of the operator M,
to eq. (1.1) yields

2
(1.16) Mou(t) = W(E) Meu, + f W(t— s) Mef(s, u(s)) ds.
0

By property ¢) we can differentiate eq. (1.16) and obtain
. d
(1.17) Ds(t) = ave(t) = Kve(t) + Mef(t, u(t))
where ve(t) = M u(t), t€[0, T,[, e<é From eq. (1.17) it follows

(1.18)  <B,(1), v5(t)Daq) + <0(8), De(t) D0y =
= 2 Re<o,(t), Kv,(t))aq + 2 Re (0,(t), M f(t w(t))ag) -

On the other hand the limit as A — 0 of the expression

Lo+ ), 0ut+ B)agin — 0ul)y 0lt)>a]

_ <m<t+ h)— vt

i ’ ’Ue(t-l- h)) ’l)e(t—}— h)——'lh:(t)) +
Q+h)

+ <'l)5(t), h

Q(t+h)

- £ L€, mel) a4 — <0l 2elt)dar] = T+ Ta T
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can be easily computed. In fact
J1 5507 Ot) V() Dagys 2 w507 {0e(B)y D) Dagy

and J; =0 for h sufficiently small, because for such an h supp(ve(?)) C
c Q@ + k)N Q2(t). Then eq. (1.18) becomes

(1.19) % loe(2) [y = 2 Ree Cve(t), Kve(t) a0+ 2 Re <ve(t), Mef(t, u(?)) a0

Now, from the obvious estimate

[<e(2), e " W(h) ”e(t)>9(t)l< ””e(t) ng) “ et W(h)v(t) ”9(¢)< “’Us(t) "9(5) "”e(t) ".Q(t—h) ’
sinee |9,(8)|ae_n = [%:(t)|aq for h sufficiently small (see Def. 1.2), it follows
Re <v,(t), (6" W(h) — 1) 0,()>a@ <0

and therefore

(1.20) Re (0,(t), K0,() o < ]| 2,(t) [ -

Substitution of inequality (1.20) in eq. (1.19) and integration from 0 to ¢,
(t< T,), yields

t
121)  [r®lo< 10.0) o + 20] [o.6) 50 s +
0

11
+ 2 Re [ <v,(s), M, 1(8, u() as ds -

0

Now we take the limit as ¢ —0* in eq. (1.21) and obtain (1.15).

THEOREM 1.6. Let Hypothesis A be satisfied, then for any u, € X eq. (1.1)
has a unique solution ue CO([0, T[; X).

Proor. Uniqueness is obvious by Cor. 1. Existence will be established if
we show that for any 7, 0<7<T, eq. (1.1) has a solution we C®([0, z[; X).
Given such a 7, let us define ¢£: N — N, #(h) = h + 3 + 2([z] + 1) and con-
sider the integral equation (see Def. 1.6)

4
(1:22)  wy(t) = WOty + [ Wit — 9)[a(5) + gy (5, 1a(6) + (s, w(6)] ds .
0



462 C. PARENTI - F. STROCCHI - G. VELO

If we prove that, for any h, eq. (1.22) has a solution w,e C([0, 7[; X),
then by Th. 1.2 also eq. (1.1) has a continuous solution in the same interval.

It remains therefore to analyze eq. (1.22) corresponding to a fixed in-
teger h. As a consequence of Ths. 1.3 and 1.4 such an equation has always
a perturbative solution. The crucial step is now to recognize that any solu-
tion u, defined on any interval [0, 7,[, 0 < 7, < 7, can be continued beyond 7,.
By Condition 2), supp %o C Siy1, SUpP ja(8) C Suya and therefore by Cor. 2,
Supp ua(t) C Spyapey 0<t<7,. It is now clear that, if Q is the sphere with
center the origin and radius & + 2 + 2([t] + 1), then Q(f)> 84 1., for all
te[0, 7,[. By the properties of the cut-off maps

[Cuz(s), gl(h)(s) Uy (8)) — 9(s, “h(s))>9(a)l<

< [lun(s) "-Q(s) Ilgzo.)(s, “h(s)) - 9(3’ “h(s)) ”s)(s) =0
so that

(1.23) <un(8)y Gony (85 Un(8)) Dy = <n(8), 9(8, %4(8)) dage)

for all se[0, 7,[. By the preceding Lemma, applied to eq. (1.22) (it is clear
that there exists an £, satisfying the hypotheses of the Lemma), we obtain
the inequality

X24)  [lunl®) 2 < l%onll oy + 2wj|| ,(8) [ 45 +
+2Re of < (8, 30(8) ey 48 +
+ 2 Re t<uh<s), 9V(8, un(8)) Doy ds +
b
+2Re f ), 49, (5)) Day 85

Moreover, by Hypothesis A, after some trivial computations, the r.h.s. of
inequality (1.24) turns out to be smaller or equal than

t
(125) (1420 +20(2, 7) + 2M(2, 7)) [ |ua(6) [ s + [ ey +
0
13
[ 130(6) 0 @5 — 2 Valt, 04(8) -+ 2Va(0, ) +
0

[2
+2M(2, 7) f Va(s, m(s) ds + 2N (R, 7)7.
0
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At this point application of Gronwall’s lemma, which is possible by con-
dition (1.12), yields the following a priori estimate

(1.26)  [ua ()] + 2Va(ts %a () < ([%on o0y + 2V 0, %gn) +
+ NI(Q, (2) h)) exp [Nz(Qy 7, h)t]

for all te[0, 7,[ and for suitable non-negative constants N,, N,. Obviously
this implies that
(1.27) sup [ua(t)]ap < oo.

tef0,7,[
We can now verify that the hypotheses of Th. 1.5 are satisfied. Let
F = {Q3ren be a family of spheres with the property that {€2,(2e)},.n is 2
locally finite covering of R® for a small enough ¢ > 0, such that [0, €] is an
admissible interval of time for all Q,. Now, inequality (1.27) and Defs. 1.1
and 1.2 yield

sup [lua(?) o, < sup |ua(t) | 2coam < Sup [ua(?)|an < oo.
keN keN

€[0,7,|
tel0,7,[ telo,7,[

This establishes the highly non trivial condition 1) in Th. 1.5. Conditions 2)
and 3) are easily obtained by arguing as in the proof of Th. 1.4.

2. — Regularity in the abstract case.

In this section we will establish some regularity properties of continuous
X-valued solutions of eq. (1.1), provided the initial data u, and the fune-
tion f are suitably smooth. More precisely we want to investigate the condi-
tions under which a function e C®([0, T[; X), solution of eq. (1.1), be-

n
longs to the space ) € ([0, T[; Dg:), n=0,1,2, ..., where Dy, is the
8=0

domain of the s-th power of the infinitesimal generator K of the semigroup
W(t) (equipped with the « graph topology »).

The hypotheses we are going to make here on the function f are of a dif-
ferent nature as compared to those used to prove Th. 1.6, and therefore the
content of this section is largely independent of the general treatment of
Sect. 1. As in subsect. 1.5 we suppose that, V2 € £, B(Q) is a Hilbert space.
‘We propose to discuss first the case n =1 and then the general case by
using induction on .
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DEFINITION 2.1. By BCOW([0, T[; X), 0 < T<oo, we denote the class
of all functions f: [0, T[ X X — X for which there exist two maps

D.f: [0, T[XxX > X
D.f: [0, T[X X —£(X, X)

with the following properties
i) D.f is continuous and D,f is strongly continuous;

ii) For any sphere £, for any z€]0, T[ and for any ¢> 0, there is
a 0(Q, 7, o) >0 such that

sup | Duf(t, )v[a< 0%, 7, 0)|v]a
o<t<r
Yu,ve X, |ulo<eo. Moreover we require
C(2, 7, 0) = sup 0((), 7, 0)

0<i<r

to be finite if [0, 7] is an admissible interval of time for Q;

iii) If we put
o(t, u; 7, v) = f(t + 7, u + v) — f({, u) — D,f(t, w)T — D, f(t, u)v,
then for any sphere £, there exists a sphere £, such that
lot, w5 7, 0)a/(17] + v]lq,) >0
as |t| + |o[g, >0, for all t€[0, T[ and for all ue X.
REMARK 1. If fe BOW([0, T[; X) then, clearly, the function
[0,1]20 = p(0) = f(t, + o(fa— 1), v, + (v, — 1)) (4, L. € [0, T[, v,, v, € X)
is differentiable and

Y'(0) =D f(ts + o(ta— 4), 1 + 0(v2 — 1)) (B — t) +
+ Duf(t1 4+ o(ta— 1), v + o(v,— "’1))(”2—" vy) .

This yields the mean value theorem

1
fltay ) — 1, v) =¥/ (0) do
0



A LOCAL APPROACH TO SOME NON-LINEAR EVOLUTION EQUATIONS ETC. 465

from which the estimate

sup [f(t, vo) —f(t, v;)| o< sup [ Dyf(t, 01+ 0(v:— 1)) (0 —v1) [2<

o<i<7 o<i<r
0<<o<1

<0, 7,0)vs—vila, Vrel0, T, Vo, 0,€ X, |ni]o<e, |v.]o<e
follows.
REMARK 2. If fe BOW([0, T[; X) then the function
[0, T[xX XX > (t, u, v) = D,f(t, u)ve X

is continuous.
This is a consequence of the inequality

[Duf(t + Aty w4 Au)(v + 4v) — D.f(t w)v[a<
<|[D.f(t + At, u + Au)— D,f(t, w)]o|g + | Duf(t + Aty w + Au) dv|q
and of conditions i), ii) of Def. 2.1.
LeMMA 2.1. Given fe BC™([0, T[; X) and ue CO([0, T[; X) we define
EN(t, v) = D, f(t, u(t)) + D.f(t, u@®)v, veX.

Then the integral equation
¢
2.1) o(t) = W(t)0, + f W(t— s)BO(s, v(s)) ds
0

where W € O(1, w), has a unique solution v e C®([0, TT[; X) for any v,e X.
ProoF. It is clear, by Remark 2, that E®e C®([0, T[ X X; X). More-
over, by ii) of Def. 2.1, for any 7€ ]0, T[ and for any sphere £2 the following
inequality
sup BN, v1) — BED(, v,)[a< C(L2, 7, 0)[ 02— .0

o<i<t

holds VYv,,v,€X and for any positive g> sup |u(t)|o. We can now apply
o<t<r

Th. 1.6 with the identifications

ity = D.f(tu®), ¢g°=0, g2 v) = D.f(t, u(t))v.
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THEOREM 2.1. Let we CO([0, T[; X), 0<T<oo, be a solution of
eq. (1.1) with

i) We (1, w);
ii) fe BCY([0, T[; X);
iii) wu,€ Dg-
Then
1) we CY([0, T[; X);
2) wu(t) e Dy, Vie[0, T[;

3) wu is a solution of the Cauchy problem

B )= Ku)+ f(t,uv),  0<t<T,

u(0) = u,

4) ' = du/dt is a solution of the integral equation

3
2.2) w'(t) = W(t)u'(0) - f Wt — 5) BO(s, w'(s)) ds .

0

Proor. Let ve CO([0, T[; X) be the solution of eq. (2.1) obtained by
applying Lemma 2.1 in which v, = Ku, -+ f(0, 4,) and %(f) is the solution
of eq. (1.1) considered here. The main point to be proved is that the function

(2.3) @e(t) = %[u(t—i— ) —u(t)]—o(t); e#0, 0<i+e<T,

tends to 0 in X as ¢ —0. Here we discuss only the case in which ¢>0
(the case e <0 can be treated in a similar way). Obviously it suffices to
show that

(2.4) SIIE lee®)low =0, &e—>0+,

IS

for all compact subsets [0, z]c [0, T[ and any sphere £ for which [0, 7] is
an admissible interval of time.
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To prove eq. (2.4) let us consider the identity

W(t+e)— W(t)

&

gelt) = ( W(t)K) o -+

+ %f[W(t+ e —5)f(s, u(s)) — W(£) {(0, u,) ] ds +
0

t+e t

+ EfW(t—{— e—38)f(s, u(s))ds——%jW(t——s)f(s, u(s)) ds —
& 0

1
—fW(t——s)E(l)(s, v(s))ds
0
which, by a change of variables, becomes

oty (W(t‘+ &) — Wt

&€

— W(t)K) U+

+3 f [W(t+ e—8)1(s, u(s) — WD) 1(0, )] ds +

€

0
-I-fW(t-—s) [f(s+ &, u(s + ¢€)) —f(s, u(s)) — B(s, Q,(s))] ds =

= J14(8) + Joe(t) + Jse(t)

Now

W()—1
(2.5) sup 10 <exp 7] | (2 — k) uy
o<t<v & Q(0)

and therefore the L.h.s. of inequality (2.5) tends to 0 as ¢ >0 4. In the
same way one obtaing

€

(2.6) S‘:gr”Jze(t)"Q(t)<eXP [wT]% W (e —s)f(s, u(s)) — (0, o) | a0y s -

0

Since the function (g, ) — | W (e — s)f(s, u(s)) — f(0, ,)| g, is continuous for
0<s<e and tends to 0 as ¢ — 0 4, it follows that the Lh.s. of inequality (2.6)
tends to 0 as ¢ =0 4. Concerning the term Jy,(t), application of Remark 1
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yields
3 1
Tlt) = [Wit— ) [{[Dus(s + o2, u(s) + o{uls + &) — u(s) — Dy (s, u(s)] +
) 1]

+ [Dut(s + o2, u(s) + o(uls -+ &) — w(s))) — D, f(s, u(s))] v(s) +
+ [D,,f(s + og, u(s) + o(u(s + &) — u(s))) <pg(s)]}dads =
= 1e(t) + ZZe(t) + Zse(t) .

Now

(2.7) sup [ Z1(®)an <

o<i<r

<exp[wr] sup |Duf(s + oe, u(s) + o(u(s + &) —u(s))) — Dif(s, u(s)) oo

0<o<1

and therefore the 1.h.s. of inequality (2.7) tends to 0 as ¢ -0 4. By similar
arguments one concludes that

(2.8) Sllp 1Z2(t) |0y = O as e—>0-4.
Finally
¢
(2.9) | Zs.(2) HQ(t) < emc_’(g’ 7y Q)f"%(s) "9(3) ds, O<i<r,
0

for a suitable ¢ > 0. Equation (2.4) is then a trivial consequence of Gron-
wall’s Lemma. Up to now we have established assertions 1) and 4). These
results imply that the function

t
[0, T[3¢ - f W(t— s)1(s, u(s)) ds
0

is differentiable, which means that the following limit exists

lim W(t + e—38)f(s, u(s))ds + ——— W(g W(t—s)f(s, u(s))ds
)

e—>0+

Consequently

t
f W(— s)f(s, u(s)) dse Dg, Vte[o, T[,
0
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and
d t t
‘%J‘W(t—s)f(s, u(s))ds = f(¢, u(t)) + KfW(t-—s)f(s, u(s))ds .
0 0

This completes the proof of the Theorem.

COROLLARY 2.1. Let the assumptions of Th. 2.1 be satisfied. Then
ue 0W([0, T[, X) N 0©([0, T[; Dx), it Dy is equipped with the graph topology.

Proor. Trivial by assertion 3) of Th. 2.1.

REMARK 3. The graph topology on Dy is, by definition, the weakest
topology for which the maps Dx3u —u, Ku are continuous.

We may now proceed to analyze the general case with n>1. First it is
convenient to fix some notation. For any n € IN we shall denote by A, the
class of all pairs a = (ay, ..., &), B = (B1) -y Bs), With h, ke N, |h—k|<1,
such that

i) oy, {0, 1,...,m}, a;, fi€ {1, ..., 0}, 2<i<k, 2<i<h;
k h

i) x|+ Bl=2 o+ X Bi=m;
i=1 i=1

iii) a1+ﬂl¢0’ a1ﬂ1=0; “1=0 = h>k; ﬂ1=0 = k}h.

Moreover, if (a= (a1, ..., &), B=(B1y .., Bs)) €A, We shall denote by
(«'y 8)y (&"y B") the following pairs of A,

{ (+ 1,0y oy ) if ay5£ 0

1, ogy oeey 0z) if ;=0

if %0
- (07 ﬂl, eeey ﬂh) if a1=0

(0’ “1’ seny “k) if ﬂ1=0

Il

o if By~ 0

ﬂ/
al/
g { (1, Bay ey Ba) if f;=0
Br+1,Bey .y Ba) i fi520.
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We are now in a position to state

DEFINITION 2.2. By BO®([0, T[; X), 0<T<oo, neN, n>2, we de-
note the class of all functions f: [0, T[ X X — X such that

i) fe BO™2([0, T[; X);
ii) For any (a, B)€ 4, there exists a map
DePf: [0, T[x X —£P(X) (¢)
satisfying the following properties

a) D*Pf is continuous, if h=1 and || =0, and D*?f iz strongly
continuous otherwise;

b) For any sphere Q, for any r€]0, T[ and for any o> 0 there is a
Cio.5.(£2, T, 0) > 0 such that

181
sup | D@Pf(t, u)(vy, Vey ..., Vi) |2 < Crap)(£2, T, 0) ]:l; lvila,
i

o<t<r
Voi, .. v, u€X, |ula<e;
¢) If, for any («, B)eA,_,, We put

D, (b Uy Dy weey Vg3 Ty w) = DEPf(E 7, 0w + w) (04 ey V) —
—_ D(“’ﬁ)f(t, U)(Vyy ovvy Vjg)) — D P2, U)(V1y weey V) —
—D‘“"ﬁ')f(t’ U)(V1y «ony Vigyy W)

then for any sphere £, there exists a sphere £, such that

oy (Ey thy 1y ovy Vg5 Ty ) |0 /(1] + "w"x).) -0

as |t| + |w|g, >0, for all t€[0, T[ and for all vy, ..., vy, ueX.
For convenience, if f € BC®([0, T[; X), n>2, and (a, )€ Ay, k<n, We
will use the notation D,D“Pf for D*#)f and D,D“Pf for D“F)f.

To establish the main result of this section (Th. 2.2) it is convenient to
start with some preparatory lemmas.

Lemma 2.2. If fe BC™([0, T[; X) then, for any («, )€ 4., |8]>0,
the map
[0, T[ XX X (X X...XX)3(t, %, Vyy..., Vi) = D@Af(E, u)(vy, ..., v5)€X
181
is continuous.

(%) £O(X) =X and LX), with |8|> 0, is the space of all |§|-linear continuous
maps from X Xx...x X to X.
181
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ProoF. This is an immediate consequence of Def. 2.2 and of the identity
DPf(t + Aty w + Au)(v, + Avy, ..., v+ Av) — DSPf(t, u)(vy, ...y v5) =
= [D®Pf(t + At, u + Au) — D*Vf(t, w)](vs, ..., V) +
181
+ S DPf(t + Aty u + Au) (v, + Avy, ooy 0,4 + AV;_yy AV;y Vi4ay ey V) -
i=1

Lemma 2.3. If fe BO™([0, T[; X) then, for any («,f)€ A, and for
any U, vy, ..., v5 € CO([0, T[; X), the function

D(t) = D“Pf(t, u(t)) (vu(t), ..., v (1), t€[0, T[,

is continuously differentiable and

ifeg
2.10) @)= D, D=Pf(t, u(t))(vs(t), ..., vai(®)) +

+ DuD(“’ﬁ)f(t, “(t))('vl(t)y eeey v!ﬂl(t)y u’(t)) +

181
‘I—;lD(“’B’f(t; u(?))(01(2), ..., Vi—1(2), 0;(2), V;41(2), ..., Vig(F)) -

ProoF. This follows easily from Def. 2.2, the previous Lemma and the
identity

Qﬂj—_‘g;‘p(_t) = Dy DO f(t, u(t))(v1(2), ..., vip(t)) +

+ D DEA(t, u()) (vl(t), o), w_ir_ﬂ;“@) N

T
1
"I’ ‘_tw(a,ﬁ)(ti u(t)’ vl(t), (XS] vlﬂl(t)§ 7, u(t+ T) ‘“(t)) +
18]
—!—gll)‘“’ﬁ’f(t—l- 7, u(t+ 7))(01(+ )y .oy 1+ T)y 05(2)y 41 (D)y -5 VBI(E)) +
+ S Deas(i+ 7, uit+ )

(oat 2y st 2, D=, 0, 1)

LEMMA 2.4. For any fe BC®([0, T[; X), n>2, and for any we
CW([0, T[; X) the map

Y. [0, T[x X — X, P(t, w) = D,f(t, u(t)) w
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belongs to BC™([0, T[; X) and

o1t D,¥(t, w) = D, D, f(t, u(t)) w + Dyf(t, u(t)) (w, ' (2))
(211) D, ¥(t, w)v = D, f(t, u(t)) v = P(t, v).

ProOF. The assertion follows from Def. 2.2 and the obvious identity

Y(t+ At, w+ Aw)—P(¢, w) = D, D,f(t, u(t))(dtw) +

+ Df(t, w(®))(w, Atu'(2)) 4 D:f(t, u(t))(w, At (W—u’(t)))

~+ wy(t, u(t), w; At, u(t+ At)—u(t)) + D.f(t, u(t)) dw +
+ D, Duf(t, u(t))(At Aw) -+ D2f(t, u(t))(dw, u(t+ At)—u(t)) +
+ (8, u(t), Aw; At, u(t+ At)—u(t)).

DEFINITION 2.3. Given fe BO™([0, T[; X) and we C2([0, T[; X),
n>1, we define, for k=0, 1, ..., n, the maps

E®: [0, T[xX - X

fG,wy, if k=0
(2.12) E®(@, w) = ‘%E(k—l)(t’ ) + D, f(t, u(t))w, if k=1,...,n

o =u(®-1)(¢)

The next Lemma guarantees that Def. 2.3 makes sense and states some
useful properties of the maps (2.12).

LEMMA 2.5. The E® of formula (2.12) are well defined, E®e
BOW([0, T[; X) for 0<k<n—1 and E™e ([0, T[ x X; X).

ProOF. The Lemma is a consequence of Lemma 2.3 and of the following
representation formula

2.13) E®¢w)= 3 0%, DD, u@)(w@), ..., u®s@) +
«,B,0elx

+ Duf(t, wt))w, k=1,

where I is the set of all multiindices o, 8, o such that |x| 4+ |B|<k; 1<0;<F,
i=1,...,|Bl; ||+ |o| = k and the C%}, are suitable non negative constants.
Formula (2.13) is obviously verified for k=1. To prove it for a general k
one proceeds by induction making again use of Lemma 2.3.
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DEFINITION 2.4. Given fe BO®™([0, T[; X), we define the maps

fit,2) if k=0, 2 ¢e[0, T[xXX

@.14) 8O 2= | 2 O D1t 20) (0 s 2) + Duflty 22,
a,B,0€ Ik
it k=1,..,m, (t,z=1(2,..,2) <0, T[XXX..xXX.

k+1
Here the set I} and the CY}, are the same as in formula (2.13).

-4

We are now in a position to state the main result of this section.

THEOREM 2.2. Let ue C([0, T[; X), 0<T < oo, be a solution of eq. (1.1)
with

i) Wec(,w);
ii) e BC™([0, T[; X);
u® =wu,eDy
ul’ = Kul® 4 890, ) e Dy
iii) { @ = EKu + 8M(0, (u, ul’)) € Dy

uV = Kuf=? + 80=3(0, (u, ..., uy?)) e Dy

1) we C™([0, T[; X);
2) u9(t) = (d]df)u(t)e Dy, 0<j<n—1, te[0, T[;

3) u9(t), 0<j<n—1, is a solution of the Cauchy problem
d
() = Ku®(t) + EO(t, w9 (t))
W (H)|mo = u?

4) uP@), 0<j<n, is a solution of the integral equation
t
(2.15) w9(t) = W(t)u(0) + f Wit — s) B9 (s, u%(s)) ds .

0

Proor. If n =1 this is nothing else but Th. 2.1. To prove it for n>1
we proceed by induection. Let us suppose that it has been already proved
that »e C®([0, T[; X), that 2) and 3) are satisfied for j<r—1 and that 4)
holds for j<r, for some r, 1<r<m. Since e Dp by hypothesis and

31 - Annali della Scuola Norm. Sup. di Pisa
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E(')EBO’“)([O, T[; X) by Lemma 2.4, we can apply Th. 2.1 to the integral
equation (2.15) with j =r.

COROLLARY 2.2. Let we C©([0, T[; X), 0< T<oo, be a solution of
eq. (1.1) with
i) We C(1, w);
ii) fe BO™([0, T[; X);
iii) uy€ Dgn;
iv) For all j, 0<j<n—2, if (2= (2,...,%))€[0, T[X @ Dgnys. the

i+1
value of the function 8“(t,2) belongs to Dgn_s-..

Then the hypotheses of Th. 2.2 are satisfied and, moreover,
(2.16) uD(t)e Dgasy, t€[0, T[, O<j<n (Dg=X).

ProoF. Concerning Th. 2.2 it remains only to check hypotheses iii).
Actually we are going to show more, i.e. that u{’ € Dgnys, 0<j<n—1.
The first step of the usual induction argument is obviously true because
u® e Dga. If we suppose that ul’e Dgar, r=0,1, ..., j, then, by our hy-
pothesis, Kul -+ 89(0, (4, ..., u?)) € Dgos, and therefore wi*De Dgny..
Equation (2.16) is now easily proved by using part 3) of Th. 2.2 and the
same induction argument as above.

The next Corollary contains some useful results concerning the regularity
of solutions of eq. (1.1). To state it we need the following convenient

DEFINITION 2.5. If Dgr, r=1,2,... is the domain of the r-th power
of the infinitesimal generator of a semigroup W e C(1, w), by the graph
topology on D.- we denote the weakest topology for which all the maps
Dg>u+>u, Ku, K2u, ..., K'u are continuous (°).

CorOLLARY 2.3. Let the hypothesis of Corollary 2.2 be satisfied. Let us
suppose, moreover, that for all j, 0<j<n—2, and for all te [0, T[ 89, -)

is a continuous map from @ Dgns, t0 Dgns,. Then
i+1

(2.17) ue ﬁ ™[0, T[; Dg.) (*).

r=0

(°)) These domains are dense in X.
(6) Here the domains Dy are equipped with the graph topology.
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ProoF. Equation (2.17) is equivalent to prove that u®” e C9([0, T[; Dg»-s),
0<j<mn. This can be seen by arguing as in the proof of Corollary 2.2.

3. — Applications.

3.1. Position of the problem and free theory.

In this section we want to use the previously developed abstract theory
to treat a particularly interesting class of applications, namely the Cauchy
problem for the system

02 8 02
(3.1) Wfk (=, t)__glaTq;k (, t)_fk(£y L @@, 1)y ..oy @ul@, t)) =0

k=1,..,n; (z,t)e R x[0, TT.

The system (3.1) can be more conveniently rewritten in the first order for-
malism as

[0, ] [0 1 AT | [07]
Y 4 0 Y1 h
i 0 1 . 0
G2 o= 40 ||
(pn 0 1 ¢,‘ 0
._'p"_ | A 0__ _'Pn_ | f n

or, more concisely,

(3.2) a(y) =% () + (t’ ('i))

where
_(pl..
Y1
Py | . _
('I)) = : sy @ ={(Pry.ers Pn), Y= (P1y-.es ¥n),
Pn
| ¥n_|
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and

| fa(ty @) _|

What we are going to investigate is actually the corresponding integral
equation

o ()ommog)«frears ()

where W(t) is the semigroup having K as infinitesimal generator.

To introduce the functional framework, in which eq. (3.3) will be studied
we recall the definition of a class of localized Sobolev spaces. For any open
bounded subset 2 of R* we denote by H'(Q), r =0, 1, ..., the space of all
real functions ¢(z), €2, whose distributional derivatives (0/0xz)*p(x),
lx]<r, are square integrable in 2. H'(Q) equipped with the norm

3.4) lo; H(2)]| = (o<m<, f ( a% )«q:(w) 2(13,;)&
Q

is a Hilbert space. By H} (R’) we denote the projective limit of the family
of spaces H'(2) as £ runs over the open bounded subsets of R’. Since we
are interested in vector valued functions, it is useful to define

X, =@ H(R)=H,(R) @ ... ® H(R)

n

with its natural topology: if ¢ = (¢, ..., p,) € X, then

los X)) = (glll%; T @)

We propose to study eq. (3.3) in the space
(3.5) X=X, X,.

In physical terms this means that we are looking for solutions of eq. (3.3)
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having finite kinetic energy in all open bounded regions of the space R:.
In this funectional space it is possible to introduce a family of cut-off maps
T,, heN, by

n()- () ()ex

where yx, is a real Cp°(R’) function such that 0< y(r)<1 and y(@) =1
if |z|<h, yu(®) =0 if |¢|>h +1. It is then immediate to verify that the
space X satisfies all properties listed in subsect. 1.1. We can now proceed
to give an exact meaning to the semi-group W(¢) contained in eq. (3.3).
A useful intermediate notion is that of the group G(f) defined by

fexp [i<®, &)] [(f)(f) cos ||t + (&) Sillléllflt] i

(3.7 &) (9”) = (27)~*
v feXP [i<®, D] [— |E|@(&) sin |E]t 4 P(&) cos |£]¢] dE

where ¢, e §(R*) and te R (). The properties of G(t) we list below are
well known ; however, for the convenience of the reader, a proof of them is
given in Appendix A.

a) For any sphere Q and for any (g) € S(R*) ® S(R¢) the following

energy estimate holds

@) e (7)s 2@ o z@qa)i<ess a2l (7) s 0@ @B(Q)Il

for all ¢ such that 0< Jt|<<radius of Q.
Inequality (3.8) implies that G(¢) defines a strongly continuous group
of linear operators in Hj (R°) ® L2 (R®).

b) The infinitesimal generator A of the group G(t) is the unbounded
linear operator

0 1
(3.9) A= [A O]
with domain
(3.10) D, =H} (R) @ H\,,(R%) .

(7) 2(8) zfexp [— <&, z)]{(x)dx, if £€ S(R*).
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In general
(811) D, =H(R)® Hj(R°), j=0,1,..., (4° = identity).

From eq. (3.11) it follows that the graph topology of D,; of Def. 2.5 is equi-
valent to the topology of H}}:'(R’) ® Hj(R").
Now we define

(3.12) W(t) = G(t) ® Icn .

By property a), W(t) defines a group of linear continuous operators on X
of class CO(1, 1) (see Def. 1.3), and by property b) its infinitesimal generator
is the operator

(3.13) E=AQI.

Obviously Dgy =X, ; ® X;, §=0,1, ..., and the graph topology of Dg; (see
Def. 2.5) is equivalent to the topology of X, ; ® X;.

3.2. Global existence and uniqueness.

In this subsection we apply the general Th. 1.6 to establish the existence
and uniqueness, in C©([0, T[; X), of solutions of the integral eq. (3.3).
To satisfy the hypothesis of the theorem it is natural to introduce some
special class of functions.

DErFINITION 3.1. By P([0, T[; n), 0 < T< oo, we denote the class of all
real vector valued functions

-, -
by (x, t; 2)
0
bz, t; 2) = bz(””;)t;z) . (@1;2)eR*x[0, T[XR",

0
_bn(w’ t;2)_|

with the properties
i) (2, t;0) =0, Y(z, t) e R* X [0, T[, k=1,...,n;

ii) Y, @) €[0, T[ X X,, Yk =1, ..., n, the functions b,(z, t; ¢) € L, (R?)
and are continuous in the ¢ variable, at ¢ fixed, in the L2 (R®) topology;
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iii) The functions b, have partial derivatives 0b,/0z;, j =1, ..., 1,
continuous in the 2z variables and for any sphere £, for any 7€ ]0, I
and for any o> 0, there exists a positive constant C(, v, ¢) such that

», 0b
(3.14)  sup || > = (@, 8 gM) g5 LHQ)| <C(Q, 7, ) |9=); Xa(@)]
o<i<t || i=1 0%;
k=1,....,n

Vo, e X, [¢W; X,(2)| <o. We further require
6(9’ T, 0) = Sup C(Q(t)7 Ty 9)

o<i<rt

to be finite if [0, 7] is an admissible interval of time for Q.

DeFINITION 3.2. By P'([0, T[;n) we denote the subset of P([0, T[;n)
for which the inequality (3.14) holds in the stronger form

(3.14')  sup i e = (@, 15 9 D)@ Lz(Q)“<C(Q, 7)[p®; X,(Q)]
o<i<rt||i=1 az
=1,...,0

Vo, @ e X,. We further require C(2, v) = sup C(2(t), v) to be finite if
o<i<rt
[0, 7] is an admissible interval of time for Q.
THEOREM 3.1. If be P([0, I[; n)(be P'([0, T[; n)) then the map

B:10, T[xX X
3.15
( ) ﬂ(t, (¢)) =b(w, t; @)
\4
belongs to the class L([0, T[; X) (L'([0, T[; X)).
Proor. It is clear, from ii) of Def. 3.1, that 8 is well defined. Applica-
tion of the mean value theorem and of Minkowski integral inequality yields,

Vk=1,...,n,

s
(3.16) (flbk(w, t; 9) —bi(z, t; ¢“’)Pdw) =
\J ,

- {f U az;k (2,8 ¢ 4 olp™ — ™)) (¢ —¢f) do
i=

H
0

il

Q

2 S
dw} <

]
T 0.9+ ol — g — )| ] do<

W Ms

N
ck—‘h-

<0(Q, 7, 0) |l —o; (D),
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if ¢t [0, ][0, T[, 2 is any sphere, and |¢; X,(Q)| <o, ¢ =1,2. There-
fore condition iii) of Def. 1.4 is satisfied. Moreover, V k=1,..., 7,

[oa(o, ¢ + At; @ + Ap) — bi(w, t; @); LAR)| <
<||balm, t + At; @ + Ap) — bi(w, t + At; 9); LAQ)|| +
+ [|bi@, t + At; @) — bu(w, 85 9); LARQ)| =J, + J,.

Now J, =0, as At -0, by ii) of Def. 3.1, and J, >0, as dp -0 in X,,
uniformly on compact intervals of time by inequality (3.16). This
establishes i) of Def. 1.4. Similarly one proves the corresponding statement
for P’ and L'.

DEFINITION 3.3. By J([0, T[; n), 0 < T'<oo, we denote the class of all
real vector valued functions

0
o (@, 1)
0
omn=| 0, @ neRrxp, I,
0
| Ca(®, 1) |

with the property that ¢,(,t) € L (R®) and that the map fr> ¢ w, 1) is
continuous in the L (R®) topology, k=1, ..., n.

It is obvious that, if ceJ([0, T[; n), the map
(3.17) y:[0, Tl >X, y@)=c(x1),
belongs to CO([0, T[; X).
In the following we will study eq. (3.3) under the assumption that

(%) € X and that
Yo

(3.18) f(t,(z))=y(w,t;¢)+j(w,t); g€ P([0, T[; n), je ([0, T[; n).

It is clear from Th. 3.1 and the discussion in subsect. 1.1 that the integral
equation (3.3) makes sense.

LeEMMA 3.1. Let (5) € CO([0, TT; X), 0< T'< oo, be a solution of eq. (3.3)
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with (%)EX and f as in (3.18). Then the map

Yo

[0, T[5>t > g(t)
is X,-differentiable and dg/dt = .

ProoF. By applying the mollifier
1 &
M.= ng(t)-dt
0

to eq. (3.3) and differentiating, one obtains

oan S (00) <o (70) e (£9))

Integration of eq. (3.19) yields

oo (1) a0 (1) o (1) 4 0 ()

Since the operator F = (1) g ® I¢n is bounded from X to X and EK =
= g (1) ® Icn, the application of F to both sides of eq. (3.20) gives, in

the limit as ¢ -0 +,
t

(¢(()t)) B (‘go) +of (w(()S)) o

DEeFINITION 3.4. By Q([0, T[;n) we denote the class of functions
be P([0, T[; n) for which the following properties are satisfied

1) There exists a real function G(z,?;2) differentiable in the z variables
with G(z,t;0) =0, Y(,t), such that

oG

02’

ii) inf GQ(x,t;2)>— oo, YT €]0, T[ and for all compact subsets Bc Re.
o
2eR™

i) by = k=1,..,n;
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2) There exists a real function G(x,t;2), (z,¢;2)e R*x [0, T[ x R*, such that
1) VpeX,, G(z,t; ¢)€ LinR?), te[0, T([;
. 1
i) 6@ t+ 4t 9)— G, 1; 9)] > 6@, 85 9),
as At —0, in Li(R’%), Ype X;;

iii) If pe ([0, 7[; X), v<T, then G(=,t; ¢(t))e 0O([0, T[; Lin(R")).

3) For any sphere £, for any te]0, T[, there exist two non negative
constants M(Q, t), N(£2, 7) such that

G(m’y t;2) < M(2, 7)G(, t;2) + N(Q, 7)
for all (z,t;2)e Q2 x[0, 7] xR~
REMARK 1. Condition 2)ii) of Def. 3.4 requires some explanation. More
precisely, it has to be checked that, Ype X, the function G(z,t;¢)e Li (R

for all £€[0, T[. In fact, from the identity

1
G, t;2) = — 21 b;(z, t; 02)2;do
i<
0

one can deduce that

‘i)' 1g; 1) <

(3.20") fIG(w, t; p(@))| do< él (ﬂflbj(w, t; op(@))|do
U U o

1
3 n
< sup (fllbf(w,t;otp(w));P(U)Ilzdo) ;gl los; LAU)| < oo.

i=1,..,0
(1]

Lemma 3.2. Let beQ([0, T[; n) and let pe CO([0, 7[; X;) N C([0, <[; X,),
relo, T[. If

supp ¢(t) c (1) c 2(t), 0<i<rw,
for some spheres £2,, Q, then the function

[0, 7[ 3t > B(l) = J' G(a, t; (1)) dw
)
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is differentiable and

d n
(3.21) dif (t) = f G(x, t; p(t)) do— 3 |by(=, t; p()) pi(t) do
20 )

where y = dg/dt.

ProoF. It is clear from Remark 1 that the funetion E(#) is well defined.
If |At] is sufficiently small

(3.22) E(HAZ_E“) :fG(w, t+ At; g(t +Aét1t)) —G(2,t; 9(t) 4,

(1)

as a consequence of the estimate (3.20') and of the fact that
supp g(t + 4t) N [(2(t 4+ A)\Q(t)) U (L@)\R(¢t + At))] is empty.

Eq. (3.22) can be rewritten

B+ At fG @y b+ At 9t) — G2, 5 9®) |
- At

)
Gz, t+ At; @t + At)) — G(w, t -+ At; ¢(t))
At

o
Q)

By Def. 3.4 J, —>J.G’(w, t; @(t)) dz, as At — 0, while J, can be conveniently
Q)

=dJ,+ J,.

reexpressed as

J= (Jz + % [o(o,15000) ["”'“Jr D _"”'(t)] dw) ~
Q(t)

At

n At) —

=& Jute s 90) |2 D=y )] 2o
(¢

- i J.bi(wy t; o(f) yi(t)do = B, — R, —

’=lg(t)

The term R, -0, as At —0. Application of the mean value theorem yields

R, =J'(J-,§ [bi(z, t; 0(1)) —by(2, t+ At; p() + o(p(t+ At)— (p(t)))].

Qi) o

¢1(t+ At)—%(t)d )
At
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and therefore

|B,| < i (

i=1

@it + A)—@,t) . ., .
At D=0, ()|

by(@, 1 9(1)) — by(w, 1 + At; 9(t) + olp(t+ A1) — p(1)); Lz(Q(t))H) .

- sup
0<ox<1

By the continuity of the b;, the r.h.s. tends to 0 as At —0.

REMARK 2. The proof of Lemma 3.2 does not require properties 1) ii),
2)iii) and 3) of Def. 3.4.

REMARK 3. It follows from Lemma 3.1 that if (i) is any continuous
solution of eq. (3.3) (with f as in eq. (3.18)) with compact support, then
Lemma 3.2 can be applied to the function ¢ with a suitable Q.

DEFINITION 3.5. Given be@([0, T[; n), for any sphere 2 we define

Valt; 93 9) =[ Ga, t; p) do,
Q)
(3.23) peX,, te[0, To[, To= min {T,radius £} .

Walt; @; b) EfG(w, t; @) da.

Q(t)

These functions are well defined as a consequence of Def. 3.4 and Remark 1.

LeMmMa 3.3 Let beQ([0, T[;n) and let e C9([0, ¢[; X,), v€]0, T[.
Then, for any sphere £ with radius greater than 7, the functions

[0, 7[3t > Volt; @(t); 8) ,  Wal(t; ¢(t); b)
are continuous.

ProoF. By property 2)iii) of Def. 3.4 it follows that tl—->G(w, t; o(t))
is L. (R°) continuous. By the same kind of argument as in Remark 1,
the function t > G(a, ¢; p(t)) is L}, (R’) continuous. The continuity of Vo
and Wo is now immediate.

REMARK 4. The proof of Lemma 3.3 does not require properties 1) ii),
2)i) and 3) of Def. 3.4.
At this point we can prove the main result of this section.
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THEOREM 3.2. Let

jed([0, T[; n), ¢gWeQ([0,T[;n), g*eP([0,T[;n), (‘Po) cX.

0

Then the integral equation (3.3), with
f(t, (:'Z)) =j(@, 1)+ gV(@, t; ) + g% (2, 15 )
has a unique solution (z)e ([0, I[; X).

ProoF. The proof consists in showing that hypothesis A of Th. 1.6 is
satisfied, with the identifications

Va (t, (:;)) =TValt; p;9m), Wao (t, (3)) = Walt; ; gM).

The only non trivial point that remains to be checked is condition ¢). B
Lemma 3.1 it will be enough to verify condition ¢) for functions

(o)

d
peCO([0, 7[; X,) N CN([0, 1[; X,), = d_‘;’,

with

and

supp p(f) c (1)) c L), 0<i<T,

for some spheres £2,, £. The required continuity of
<P(t)) ((P(t))

Valt and Walt
Q( ’ ('w(t) 2" v

is a consequence of Lemma 3.3. On the other hand, eq. (3.21), integrated
from 0 to ¢ (¢ << t), becomes

t
if f D(a, s; (p(s))y),(s)dwds—fWg (8, (zg;)) ds +

=1
0 £(s)

which is exactly eq. (1.14).
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Theorem 3.2 covers the case of the forward Cauchy problem. However
W(t) is a group and the local energy estimate (3.8) holds also in the back-
ward direction. For this reason Th. 3.2 can be used also to prove exigtence
and uniqueness for the backward Cauchy problem, once the obvious modi-
fications are performed on the classes of functions defined in subsect. 3.2.

3.3. Concrete cases.

‘We propose to list some concrete and interesting examples of funetions
belonging to the classes defined in subsect. 3.2.

1) Functions belonging to the space J ([0, T[; n). If ez, ), k=1, ..., n,
are n real-valued continuous functions defined in R*Xx[0, T[, it is clear
that the vector valued function

o
e (@, 1)
c(w, t) = 0

0
| ca(, 1) |

belongs to J([0, TT[; n).

2) Functions belonging to the space P'([0, T[; n). Let bz, t;2),
k=1, ...,n, be n real-valued continuous functions defined in R*x [0, T[ X R*
and such that

1) bu(w, 15 0) =0, V(=,1), VEk;

ii) The partial derivatives 0b,/02; (k,j =1, ..., n) exist, are continuous
and satisfy the estimate

ob
SUp | (,1;2)| = L(B, 1) < oo
ik=1,..n | 0%;
z€B
tef0,7]
2eR™

for all [0, v]c [0, T[ and for all compact subsets B c Re. Then, by direct
inspection, one checks that the vector valued function

0
by (=, t; 2)
bz, t;2) = 0
0
__bﬂ(wi t; z)_

belongs to P’'([0, T[; n).
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An explicit case which falls in the class P'([0, T[; 1) is given by
b(x, t; 2) = a(x, t) sin f(z, t)z + p(z, t)2

with «, 8, ¥ continuous functions of (x, ). We mention this example because
a semplified form of it («, §, ¥ constants) has been recently used in elementary
particle physies ([4], [5]).

3) Functions belonging to the space Q([0, T[; n). Here we restrict our-
selves to the cases in which the number of space dimensions s is equal to 1, 2, 3.
Apart from the physical case (s = 3) which is important for obvious reasons,
the cases s =1,2 are usefully studied as interesting prototypes, simulating
some aspects of the actual physical theories.

In what follows an important role is played by some well-known Sobolev
inequalities ([12]) that we are reporting here, but whose discussion is de-
ferred to Appendix B. Precisely, given any sphere Qrc R¢ of radius B> 0,
these inequalities can be written as

{ s=1: |o; Qx| < OCuB)|o; H{(Ra)], 2<p<eo
(3.24) s=2: |p; D28 <VP OB |o; HYQn)|, 2<p<oo
§=3: |g; L7(2x)|< Ci(B)|g; H(LA)]|, 2<p<86

with pe HY(Q2g) and C,R) =¢;R it R>1, C,R) =¢;/R if R<1.

It is convenient to give a different treatment of the three cases s =1, 2, 3.
Case s =1.

Let by(w;2) = D @,(2)2% k=1,...,n, with the properties

lal>1

i) @, are real-valued functions belonging to L (R'), Vk, «;

i) Y sup |, (@)™ < oo, E=1,...,n, for any compact Bc R' and
la|=>1 x€B

for all o> 0;

iii) There exists a real function G(x,2) continuously differentiable in
R1x R" for which

G(z;0)=0, zecR*
oG
be(x; z):——a—;(w;z), (; 2)e R* X R", E=1,...,n
k

inf G(x; 2) >-— o0, for all compact BcR!.
z€B
2¢R"
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Then the vector valued function

b(z,t52) =

belongs to Q([0, + oo[; n).
The only non trivial facts to be verified are properties ii) and iii) of
Def. 3.1. Given g€ X, and a sphere Q; of radius R, one has

| 2t @)eies ... o L(Qp) < 3 sup |a.() IHII%,IF‘“' (La)[%<

lel=>1 lal=>1 2€Qr

< X sup |t ()| Cy (R)™ o5 X, (L2g) "M< .

lxl>1 xelr

This proves property ii). Moreover the estimates

I3 S o ocjl'Itp“’“’ P L2y <

i= llal>1
<3 3 s faa)ls TT Iof3 @)l “Iofs T2 | s (20| <
1 |xI=>1 xeQr
<( 3 sup [a,,(0)|C,(B) o5 Xy @)] ) [ Xy(2p)]
lel=>1 2eQr

yield inequality (3.14), with C(2z,7,0) = D sup |a,(x)|Cy(R)*|x|o™?, be-

211 2€Qr
cause the series > sup |a()||x|o"™ " is convergent for all 0> 0. Taking
lxl>1 2eQr
into account the structure of Cy(R), it is easily recognized that sup C(Qg(?),

O<i<rt

7, 0) is finite if [0, 7]c [0, T[ is an admissible interval of time for Q.

Case s = 2.

Let by(x;2) = > a4,(x)2", k=1,...,n, with the properties
lel=>1
i) a,, are real valued functions belonging to L (R?), Vk, «;
ii) 3 sup |a,@)||«|"?¢"™ < oo; k=1,...,n, for any compact Bc R®
lal>1 weB

and for all o> 0;
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iii) There exists a real function G(x;z2) continuously differentiable in
R%x R" for which

G(x;0)=0, xzcR?

oG
bk(w;z)z——a—é—’;(m; 2), (z;2)e R2X R", E=1,...,n

inf G(x; 2) > — oo, for all compact BCR?.
zEB
zeR™

Then the vector valued function

b(x, t;2) =

belongs to Q([0, + oo[; n).
As in the case s =1, the only non trivial facts to be verified are proper-
ties ii) and iii) of Def. 3.1. Given ¢ € X, and a sphere 2 of radius R, one has

| 2 oo(@)@Pes ... gn"; LA(2g)| <

lelZ>1

< 2 s lag (@) IT o *(2a) 7 <

lax|=>1 2€Qr
< 2 sup |ag,(@)|(2]x]) 2 Cy(B)* | @; Xy (R5)] <oo.

x| =1 2€Qr

This proves property ii). Property iii) may be verified by arguing as in
the case s =1.

For example, the function b(x;2)=¢"—1 belongs to Q([0, + oo[;1)
while the function b(z;2) = ¢*'— 1 does not verify condition ii).

Case s = 3.

Let by(x;2) = D @(x)2% k=1,...,n, with the properties
1<lel<3
i) a,, are real functions belonging to L (R?), VEk, a;

ii) There exists a real function G(x;2) continuously differentiable in

32 - Annali della Scuola Norm. Sup. di Pisa
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R3x R» for which
G(r;0)=0, zeRs
oq
bk(w;z)=—5z—(w; 2), (z;2)eR*XR*, Ek=1,..,n
k

inf G(x; 2) >— o0, for all compact BcR3.

x€B
zeR™

Then the vector valued function

b(z,t;2) =

| ba(a; 2)_|

belongs to Q([0, + oo[; ). This can be easily proved by using inequal-
ity (3.24) (for s =3) and the same kind of arguments as in the cases s =1, 2.
Finally we want to discuss some examples of functions b(z, ¢; 2) belonging
to the class @([0, T[; n) and depending explicitely on t.
Let us be given a funection

29
G(z, t;2) = h(z) X as(z, 1)2', (@,¢;2)eR*x[0, T[XR?,

i=2
with the properties
i) peN if s=1,2; p<2 if s=3;
ii) & is a continuous non-negative function in R*;

iii) The functions a; are real-valued and continuously differentiable
in R*x[0, T[. Moreover, a,(z,t) >0, Y(z,t) e R*x[0, TI[.

Then the function

G
b(«’v,t;z)=——3;(w,t;z)

belongs to Q([0, T[;1) if we define

G(z, t; 2) = h(z) § aal’ (x,t)2° .
j=2 O
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Since the proof that be P([0, T[;1) goes as in the preceding cases, the
only non trivial facts that remain to be checked are properties 1)ii) and
3) of Def. 3.4. Let 2 be any sphere and 7€]0, T[. It is clear that for
any e € 10, min a,,(x, t)[ there exists a constant O, such that

xR
telo,7]
(3.25) inf 3 ay@, t)21> ( Min ay,(@, 1) — e) 27— (.
r€R j=2 eQ
tel0,] te[O 7]

Thus property 1)ii) follows from inequality (3.25). On the other hand

(3.26) sup z (@, t)2¢ < A(Q, T)222 + B(L, 7)
2€R j=
tef0,7]

for some suitable non negative constants 4, B. Combination of in-
equalities (3.25) and (3.26) then yields property 3) of Def. 3.4.

Another example is worth mentioning explicitely because it covers the
cagse of adiabatic switching. Suppose we are given » real valued functions
bi(x; 2), k =1,...,n, (x;2) e R* X R", with the property that the corresponding
vector valued function b(x, t; 2) belongs to Q([0, + oo[;n). If t+>A(t) is a
continuously differentiable real valued function on [0, 4 co[, we ask for
conditions ensuring that A(t)b(z, t; 2) still belongs to @([0, + oo[; n). If we
denote by H(x; 2) the function satisfying condition 1) of Def. 3.4 with respect
to b, then we have only to check properties 1)ii) and 3) of Def. 3.4, with
the identifications ¢ = AH, G = (dA/dt)H. These are obviously satisfied if

(3.27) sup [H(x; 2)| < oo
xeQ
2eR"

for all spheres 2. In case inequality (3.27) does not hold, it is not dif-
ficult to show that the following are necessary and sufficient conditions
for Ab to belong to Q([0, + oo[; n)

o) A(t)>0, Vi;
B) Yz > 0 there exists a constant M(7)> 0 such that

da

7 O<M@AQ), tefo, 7.

Clearly «) and f) are verified if A(t) >0, Vi.
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3.4. Regularity.

In this subsection we will apply the abstract results of Sect. 2 to study
the regularity of the solutions of eq. (3.3). For this purpose it is convenient
to define some classes of functions satisfying conditions which guarantee
the applicability of Th. 2.2 and Cor. 2.3. These conditions are certainly
not the best ones, they are however sufficient to cover a large number of
interesting applications.

DEFINITION 3.6. By Y,([0, T[; n), 0 < T<oo, we denote the class of
all real vector valued functions

0
ay(w, 15 2)
0
a(w, t;2) =| ay(w,t52) |, (w,1;2)€ R x[0, T[XR",

0
| a.(2, t52)

with the properties

i) For almost all xe R¢, Yk, a, is (r + 1)-times continuously differen-
tiable in the variables ¢ and # and the partial derivatives 070°a, are meas-
urable functions of «, for all ¢ and z;

ii) For any sphere 2, for any z€]0, T[, for any p> 0 and for any
multiindices «, f# with « + |3]<r + 1, there exists a positive constant
C.5(£2, 7, o) such that

181
(3-28) sup | 05 0w, 85 9) &, &, €y T(Q) | < Ol @, 7, 0) l-Il 1&; HHQ)
s

0<i<7T
k=1,...,n

for all &, ..., £z HY(Q), for all peX,(Q) with [¢; X,(2)]|<e. We fur-
ther require C(, 7, 0) = sup Cy4(2(t), 7, ¢) to be finite if [0, 7] is an ad-
[}]

<i<t
1Bl=1

missible interval of time for Q.
DEFINITION 3.7. By Y(,([0, T[;n), 0 < T<oco, we denote the class of
all real vector valued functions

0
ay (@, t; 2)
0
a(w,t;2) =| as(,t;2) |, (2,¢;2)eR %[0, T[XR",

0
_@a(®, 85 2)_|
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with the properties

i) The derivatives 9?070%a, exist for all a, 8,y with a+ |B]<r +1,
lyl<r—1, k=1,...,n, and are continuous;

ii) For any sphere £, for any te]0, T[, for any o> 0 and for any
multiindices «, 8, y, as above, there exists a positive constant C,, 5(£2, 7, )
such that

(3.29)  sup [|010; L ar(, t; @), &, .. 3 LHRQ)| <
o<i<rt
k=1,...,n 181

< Ov,a,ﬁ(g’ 7, 0) 1__11- “55; HY(Q) ”

for all &, ..., &€ H (), for all pe X (2) with [p; X (2)|<e. We fur-
ther require C(2, 7, 0) = sup C,o4(2(), 7, 0) to be finite if [0, 7] is an

0<<t<t
1Bl=1

admissible interval of time for Q.
REMARK 5. Clearly Y(,([0, I[; n) C ¥,,([0, T, n).

LeEMMA 3.4. If a€ Y,([0, I[; n), the vector valued map

f:10, T[xX - X

f(t, (z)) =a(z,t; @)

belongs to BCW([0, T[; X) (see Defs. 2.1, 2.2).

Proor. For all (a, B)eA;, j<r (see notations before Def. 2.2), let

0 0ka

2

D) f(t, (5)) =| 9"ela,

0
| oo a, (e, t; 9)_]

z,t; @)

o=~ o

—

x,t; @)

It is clear, by ii) of Def. 3.6, that

D10, T[x X - LP(X).



494 C. PARENTI - F. STROCCHI - G. VELO
The strong continuity of D*Pf relies on the following estimate

(3.30)  |[Eay(t + At; @ + Ap) — 01" ey (t; @)1+

181
za'“'aﬂ+~a,c(t+m,<p+mq) (4g), TT &o); @)+

lﬁl
+ [ ay(t + ot ) T &u(o); )|t
h=1

181
Hé(w ); LA(Q)|< sup {

0<o<1

because the r.h.s. of inequality (3.30) tends to 0 as At -0, dp -0 in X,
by ii) of Def. 3.6.

Since condition b) of Def. 2.2 is obviously satisfied, what remains to be
checked is condition ¢). It will be enough to show that, for |¢| 4 |8|<r—1,
the quantities

ol = [a;“' Ryt + At; @ + Ap) — 80 ay(t; @) —
181
Atalal+1 aﬁak(t’ @) — z alalaﬁ+eyak(t’ ®) (A(p)] H &, k=1,...,n

i=1
satisfy the following condition: for any sphere £, there exists a sphere £,
such that
lo@; L2(2y) |
(4] + [dg; Xi(2)]

tends to zero as |At] + |Ap; X,(£2,)| —0. This is an easy consequence of
the estimate

|w®; Z22))] <

181
< sup [[OF 1 ay(t + odt; ¢ + odp) — O B a(t; @)] H &; LA(2,)] 14t +

0<<o<1

+ sup llza'“'a‘””’“‘a (t + ondt; @ + onde)(Ae)(de); Héh,ﬁ(mu

0<o,n<l 4,j=1

LeMMA 3.5. Let ac Y(',)([O, T[; n) and let us define the vector valued map

f:10, T[xX—~> X

0
a,(z, t; @)
RN
(IS .

0
an(y 5 @)_|
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Then, for any j, 0<j<r—2, and for all te [0, T[ the maps 8(, -) (see

Def 2.4) are continuous from @ Dgr: to Dgrs. in the graph topology
i+1

(see Def. 2.5), with K given by eq. (3.13).

ProoF. As remarked at the end of subsect. 3.1 the graph topology of
Dygr s, is equivalent to the topology of X, ;@ X,_;_,. Therefore, from the

structure of the S“ (see eq. (2.14)), it W111 be enough to estimate in
L
H;.."~Y(R®) expressions of the type 0;'0%a,(x, t; p(x)) TI &) with |a|+|8]| <],

h=1
0<j<r—2, pe X, ;, &, ..., &p€ H'"’(R")
If y is a multiindex with |y|<r—j—1 we have

181
2 [o 2o, ; gto) TT 0] =
181

= 2 ~ %pye.. y[,]azo[alal aﬁ“k(x’ ;@ )]Hawf
Yot t¥|p]=V "

= > dy,,,...,y[ﬁ],a,y (aoalalaﬂ+nak(w t; (P(m))) a/z(‘:vl(x) vy Pal)) I_]l: 0y &;()

Yot..+V[p]=7?
lo]+ |ﬂf<h’n|
where the ¢’s and the d’s are constants, the P,, are finite linear combina-
tions of |u|-linear forms in the derivatives of the ¢’s up to order |y,| and
le| + 18] + |¢|l<j+ (r—j—1) =r—1. Since by inequality (3.29)

181
(3.31) |00/ 05 a(®@, t; @) Pyl@y, -y @) TT 0055 LA Q)| <
j=1

181
< Ca,a,ﬁ+u(97 (2) 9)“‘77; XT_’.(Q)"““ ,:!_[ “Eh; Hr—j('g) “ ’
=1

for all t€[0,7]c[0, T[ and k=1,..,n, if |p; X,(2)]|<p, it follows that
89(t,+) maps @ Dgr-s-r into Dyrss, for all j, 0<j<r—2. To establish the

i+1
required continuity one has to evaluate in L2 (R®) the differences

(3.32) aaalul aﬂ-‘—#ak(m’ ;@ -+ A(p) au(‘Pl (A‘P)u vy @+ (A‘P)n) :
181
: H OP(&, + (AE),) — O O ay(ay 15 @) Py -ony @) H o0pé, =
=1

= [0 00  ay(ax, 15 @ + Ag) — 070110 ay(w, 5 @) ] P, <P17--,%)‘

181
H e, + 0500 a1 @ + Aqv)[Pa,,(% + (49)ys -y @, + (do),) -
181 181

- TLO2(E + (46)) — Poylg, oy ) TT 206 -
h=1 h=1
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By arguing as in the proof of Lemma 3.4 and by using the estimate (3.31),
the L*(2) norm of the r.h.s. of eq. (3.32) tends to 0 as Ap tends to 0 in X,_,
and the (4&,)’s tend to 0 in Hj./(R°).

As a consequence of the two preceeding Lemmas one can apply Th. 2.2
and Cor. 2.3 to eq. (3.3). In particular we want to mention explicitely the
following

THEOREM 3.3. Let (Z;)e 0"([0, T[; X), 0< T<oo, be a solution of the
integral eq. (3.3). If

i) (‘p") €eX,,®X,;
Yo

0
a,(z, t; @)
ii) ;f(t, (3)) = 0 =a(x,t;p) with ac Y(',)([O, T[; n),
0
|_a,(z, t; ¢)_|

then
r
(3.33) (7)eno-nae0, 70 2rn @ 1),
h=0
Proor. Theresult follows immediately from Lemmas 3.4, 3.5 and Cor.2.3.

REMARK 6. If the hypothesis of Th. 3.3 are verified for all » then,
as a consequence of a well known embedding Sobolev theorem, g@(x,?)c
e 0°(R* x [0, T[).

Finally we want to list here some interesting cases of vector
valued functions for which it is easy to recognize that they belong to

n Y(Ir)([oy + oo[; n).

A first example of this kind is given by any real vector valued function
a whose components a, do not depend on z and are C* in R*Xx[0, + oo[.
Examples which are more significant from the point of view of the non-
linearity are given by any real vector valued function ¢ whose components a,
are of the form
@@, 1;2) = 3 au(@)e®, k=1,..,n,

lel=1
and satisfy the following properties

i) a,, are real C® functions on R’, Vi, a;
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ii) Y sup |La, (@)™ < oo if s=1, r=1,..,n;
lz|=1 2eB
> sup |0Lag(@)| x| 20" < o0 if $=2, k=1,...,n
|lx|>=1 xeB
for any multiindex y, for any compact Bc R’ and for any o> 0,
(@) =0, Vo, || >3 if s=3, k=1,..,n.

The proof goes along the same lines as in subsect. 3.3.

Appendix A.

It is convenient to put

o) -

= (27),

f exp [iz, &] [¢(5) cos [E]¢+ P(&) Si‘llf'f 't] P o, 1

feXP [i<@, &1 [— 1&¢(€) sin [E]t + $(£) cos |&]¢] d& B, 1)

where ¢, y € S(R*) and te R. It is clear that «, € C°(R; 8(R*)) and that
they satisfy the following identity

 [ebps Fur

(A-1) dt 2

] —V(pVa)=af .

Integration of eq. (A.1) on the volume U £(z), where Q is a sphere and
o<t
0 <t <radius of Q, application of Gauss theorem and of Gronwall’s lemma

yields eq. (3.8) for ¢, we S(R°) and ¢>0. Obviously the same argument
can be used to show inequality (3.8) for ¢< 0. Therefore G(tf) defines a
group of linear continuous operators in Hy (R®) @ L; (R®). It is easy to
recognize directly that

(A.2) “(G(t)—l) (ﬁ) H(Q) @L%Q)”

tends to 0 as ¢ -0 when ¢, ye S(R®). This, coupled with a density ar-
gument and inequality (3.8), gives the strong continuity of the group ¢+ G(2).
Let B be the infinitesimal generator of G(¢). By definition (z) € Dy

iff the limit
Jim F®)—1 (‘p)
>0+ t ()
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exists in Hy, (R*) ® L (R°). Now H} (R°) ® L} (R®) is continuously embedded
in D'(R*) @ D'(R*), so the above limit must exist also in D'@D’. On
the other hand

o MR ) M (4 i ) N

for any (f})eﬂ)(R’) @ D(R*). It is easy to recognize by direct inspec-

()2

in DD as t -0+, and therefore that

(i@t——l (:i) ” (A'/:p)

in D@D, as t >0 4. Consequently

5 =12 oC)

in D'@ D’ and, by well known properties of elliptic operators ([13]), we
?

tion that

have that (:;)erm(R‘) @ HL,(R®). This proves that B is a restriction of

the operator 4 of eq. (3.9). Since D @ D is dense in H (R') ® Hy,(R)
and it is contained in Dy, from the fact that B is closed, it follows
that A = B.

Appendix B.

Inequalities (3.24) are well known if £, = R¢ (they hold with the con-
stants ¢; independent of R) ([12]). To obtain them in the local case we pro-
ceed as follows. By translation invariance we can suppose that Q5 is a
sphere of radius R centered in the origin. Suppose now 7z is a continuous
linear operator

n: H(Q,) > HY(R?)
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such that n(p)lg = ¢, pe HY(2,). Let us define

T: HY(Q,) — H(Q,)
(To)(x) = ¢p(Bz)
S: HY(R*) - HY(R®)
x
Sy)@) =y (E) .

One immediately verifies that nz = S»T is a linear continuous extension
operator from H!(2;) into H'(R®) and that the following inequality holds

with

[7alp); H*(R)|| < L(R) | @; HY24)|

CR, R>1

L(R):{
C/JR, 0<R<1.

The constant C is the norm of the map .
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