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A Local Approach to Some Non-Linear Evolution Equations
of Hyperbolic Type 

C. PARENTI (**) - F. STROCCHI (***) - G. VELO (***)

dedicated to Jean Leray

Summary. - Existence, uniqueness and regularity theorems for a non-linear Cauchy
problem of hyperbolic type in a suitable Fréchet space are proved. These results are

used to treat a global in time initial value problem for systems of non-linear rela-
tivistic field equations. The initial data and the solution belong to the space of func-
tions having locally f inite kinetic energy.

0. - Introduction.

In this paper we will be concerned with the existence and basic properties
of solutions of non-linear hyperbolic partial differential equations of the form

where f is a possibly non-linear function of the variable g~.
The motivations for investigating this kind of equations are manifold.

Equations of the type (0.1) arise in relativistic field theory and seem to play
an important role in understanding the structure of elementary particles;
their quantized version is the basis of relativistic quantum mechanics ([15])
and is supposed to govern the high energy physics. Recently, there has been
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great interest in a class of stable solutions (solitons) of these equations as
starting points for constructing a theory of strongly interacting particles ([5]) :
a typical example is provided by the Sine-Gordon equation in two space-
time dimensions ([4], [6]). Equations (0.1 ) arise also in a number of other
areas of physics like non-linear optics and solid state ([14]).

The first proof of a global Cauchy problem for an interesting case of
eq. (0.1) ( f = - m2g~ - g~3, with m# 0, in three space dimensions) was

given by K. Jorgens [7]. Subsequently I. Segal ([10]) extended Jorgens’
result by using a more abstract and powerful approach (see also [2], [8],
[11], [3], [9]). In Segal’s treatment the existence and uniqueness theorems
are proved within the Hilbert space of initial data belonging to the Sobolev
spaces Hi(R8) 0 L2(Rs) (s = space dimensions), under suitable restrictions
on the function f. This means that one identifies some « kinetic energy

part » Ekin in the Hamiltonian (of the form 
and one considers only the solutions which have finite « kinetic energy ».

However there are physically interesting situations which are not covered
by the discussion of ref. [10]. The function f may fail to satisfy the require-
ments of ref. [10], as, for example, in the constant external field problem
( f = - m2cp + c, c constant) and, in general, when spontaneous symmetry
breaking solutions occur. Moreover there is a large class of solutions not
having finite kinetic energy, i.e. not belonging to Of this type are
the symmetry breaking solutions since they are of the form const + X,
with X E L2(Rs). Another important example is provided by the « soliton »
like solutions of the Sine-Gordon equation whose behaviour at infinity is

such that they do not belong to L2(R8).
In the approach presented in this paper we considerably enlarge the

previously proposed ([10]) functional spaces in which eq. (0.1) was solved.
This is obtained by looking for solutions for which the kinetic energy is

locally finite but not necessarily globally finite. More precisely, the func-
tional space we choose for discussing eq. (0.1) is

where the direct sum refers to the function 99 and to its time derivative §§,
respectively. In this way we are able to cover the cases discussed above

which were not included in Segal’s treatment. The main result of this paper
is in fact a uniqueness and existence proof for the Cauchy problem, for
suitable functions f and for initial data in X.

It is worthwhile to mention some reasons for choosing the space X as
a natural setting for our problem. From the physical point of view the local
properties of the solutions are of extreme interest since any experiment and
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observation are necessarily localized in space. It is therefore justified to
look for solutions for which the total energy is locally finite. A natural way
to implement this condition is to work with the space X. The conditions

we impose on the function f which guarantee the solvability of the initial
value problem imply that the total energy is locally finite. The quantum
field theory analog of locally finite kinetic energy is the condition of the

theory being locally Fock. This condition seems to be satisfied for physically
interesting interacting theories, whereas the globally Fock property does
not hold.

An important feature which allows one to solve eq. (0.1) in the space X
is an a priori estimate by which the function 99 at a fixed time t (t &#x3E; 0) in
a bounded region in space depends only on the value taken by the initial
data (t = 0) in another (larger) bounded region. As a consequence one may
estimate the local norm of a solution at time t in terms of another local norm

of the initial data. This phenomenon is essentially connected to the physical
content of Huygens principle.

Instead of studying directly eq. (0.1) we prefer to isolate its relevant

properties, and therefore discuss the problem in an abstract framework.
We consider the equation

where

a) u belongs to a Fréchet space X which is the projective limit of a family
of Banach spaces B(Q), Q being an arbitrary open bounded set of R8,

b) g is the generator of a continuous semigroup W(t) in X (t ~ 0) with
the property that

S~ and being concentric spheres of radius B and .R - t respectively
(o~tC 1~),

c) f (t, u) is a continuous mapping from [o, T [ X X -~ X, with
the property that for any sphere S2, any z E [0, T[ and any O &#x3E; 0,
there exists a positive constant C(Q, 7:, e) such that

Within this structure, with some extra technical assumptions, we are able
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to prove an existence and uniqueness theorem for the Cauchy problem locally
in time (Th. 1.3). By strengthening the assumptions a global theorem (Th. 1.6)
is proved in subsect. (1.5).

Here we will content ourselves with listing some simple concrete cases
of eq. (0.1) with a function f indipendent of space and time, to which the
global existence theorem can be applied:

satisfying both the following conditions

ii) there exists real constants a, for which

with

We mentioned explicitely the last example because it covers the case of Sine-
Gordon type equations.

Finally the regularity properties of the solutions are discussed in detail
both in the abstract setting and in the concrete cases.

Plan of the paper:

§ 1. - Abstract formulation. Existence and uniqueness.

1.1. Functional framework: the X space.
1.2. Statement of the problem: the integral equation.
1.3. A priori estimates and removal of the space cut-off.
1.4. Perturbative solution.
1.5. Global existence theorem.

§ 2. - Regularity in the abstract case.
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§ 3. - Applications.

3.1. Position of the problem and free theory.
3.2. Global existence and uniqueness.
3.3. Concrete cases.
3.4. Regularity.

Appendix A and B.

1. - Abstract formulation. Existence and uniqueness.

In this section we will discuss the integral equation corresponding to the

Cauchy problem for the differential equation (0.2) in a suitable space X.
The defining properties of X may be considered as an abstract version of
similar properties satisfied by the usual local Sobolev spaces.

1.1. Functional framework: the X space.

Let A be the family of all open bounded (not empty) subsets of R-9. To

every we associate a Banach space B(Q), with norm I in such

a way that the following conditions are satisfied:

i) For any with 12, c.Q., there is a continuous linear

operator

called the « restriction » operator (1), with the properties

rn1,n1 = identity and

ii) (Sub-additivity) For any Q,, 6 jt and for any finite collection

the following inequality holds

for 

(1) In the following such an operator will be simply denoted by r.
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DEFINITION 1.1. The space X is now defined as the projective limit of
the family ~B(S~)~~E~ with respect to the restriction operators.

An element is then identified with a family Un E B(Q),
such that unl = Q2 c- A with S21 c Q2. When equipped with
the locally convex topology generated by the family of seminorms

~ is a complete space. It is also a Fréchet space ([l]) as a consequence
of ii). Obviously we suppose X to be non trivial.

DEFINITION 1.2. ME-Z is said to vanish SZ E A, if = 0. The

support of u, supp u, is by definition the complement in R’ of the union of
all Q on which u vanishes.

Clearly if supp u is a compact set, then

The following notation will be largely used in the sequel: if ,~ is a sphere (2)
of radius Q(t) will denote the concentric sphere of radius R - t (0  t  R),
D’(t) the concentric sphere of radius R + t (&#x3E;0) and an interval of time

[0, T] is called admissible with respect to Q if (3).
We further require that X satisfies

CONDITION 1. For any sphere S~ of radius R and for any u E X, the
function [0, R[ E t ~ is continuous.

CONDITION 2. (Space cut-off) For any h E N there is a linear map (cut-
off map)

with the properties

3) for any sphere D there exists a constant S~) &#x3E; 0 such that

(2) In this paper sphere will be sinonymous of open sphere.
(3) This condition of admissibility is chosen to ensure that inf diam (s2(t))&#x3E; 0.

Any other upper bound on T yielding the same property would work as well.
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We further require sup Q(t)) to be finite if [0, T] is an admissible
~[0,T]

interval of time for S~.
A useful consequence of the subadditivity and of Condition 1 is that,

given a continuous function t - u(t) E X, t E [0, T], for any sphere Q with
radius &#x3E; T the function t - 11 u(t) is continuous on [0, T]. This can be

easily seen from the inequality

1.2. Statement of the problem: the integral equation.

This subsection is devoted to the precise statement of our problem,
namely the analysis of the integral equation

under suitable assumptions on the « propagator » W(t) and on the non-linear

function f. Equation (1.1) may be considered as the integral version of the
initial value problem for equation (0.2) if g is the  infinitesimal generator »
of W(t). We will look for a solution of eq. (1.1) in the space of continuous
X-valued functions t ~ ~c(t). For this purpose we assume that W(t) and

f(t, u) belong to some definite classes of functions defined below.

DEFINITION 1.3. By C(A, c~) (A ~ 1, cv &#x3E; 0) we will denote the class of
all maps

such that

i) is a strongly continuous semigroup ([13]) ;

ii) For any sphere S~, for all and for all t, 0 c t C radius of Q,
the following inequality

holds.

Inequality (1.2) implies
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for afl u E X, for any sphere V and for all t, 7: with 0  -r  t  radius of V,
as can be easily seen by putting ,S~ = Y(t - 7:) in eq. (1.2).

In the following, we will call .g the infinitesimal generator of a semi-
It is a densely defined closed operator.

DEFINITION 1.4. By L([O, T[; X) (0  T c 00) we denote the class of

all maps

with the following properties

iii) For any sphere Q, any ie [0, T[ and any (o &#x3E; 0, there exists a

positive constant z, e) such that

for all with We further require 
- sup (SZ(t), T, e) to be finite if [0, 1] is an admissible interval of time for Q.

DEFINITION 1.5. By T[; X) (0 C T -I- 00) we denote the subset
of Z ( [o, T[; X) for which condition iii) holds in the stronger form

iii’) For any sphere Q, for any i E [0, T[, there exists a positive
constant T) such that

for all u, v c X. We further require i) = sup 7:) to be finite if

[0, ~] is an admissible interval of time for S~.

REMARK. It is important to note and it will be used in the next sub-
section that the cut-off maps Th, defined in Condition 2 of subsection 1.1,
leave che classes .L( [o, T[ ; X) and Z’ ( [o, T[ ; X) invariant.

Inequality (1.2) is a sort of local energy estimate and implies that U(t)
propagate signals at finite velocity (hyperbolic character of U(t)). Proper-
ties iii) of Definitions 1.4 and 1.5 are a kind of local (in space) Lipschitz
conditions.
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In the following we will study eq. (1.1) under the assumptions that W
belongs to a class O(A, (0) and f may be written as a sum

and g E L([O, T[; X). To show that under these

hypotheses the right hand side of eq. (1.1) is well defined, provided
it is enough to prove that the function

is continuous if W E C(A, c~) and
from the inequality

This follows

where V E.ae and Q is a sphere such that V.

1.3. A priori estimates and removal of the space cut-off.

A fundamental role is played by

THEOREM 1.1. Let u, E C~°~([o, T[; X) (0  T c -~- oo), i = 1, 2, be solu-
tions of the integral equation

with Then, for any
1: E [0, T[ and f or any sphere D with radius greater than T the following a priori
estimate holds

f or all t E [0, z], with
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PROOF. From the relation

it follows

The hypotheses on g yield

and therefore by Gronwall’s lemma one obtains the estimate (1.7).

COROLLARY 1. Let W E C(A, w), j E 00&#x3E;([0, T[; X), g E L([o, T[; X),
and f = j + g. Then the integral equation (1.1) has at most one

solution C~°’( [o, T[; X).

PROOF. Trivial by Th. 1.1.

COROLLARY 2. Under the hypotheses of Cor. 1, if for a sphere Q

then any solution C°&#x3E;([0, T[; .X~ of eq. (1.1) satisfies

PROOF. Given e[0, T[, let V be any sphere with = 0. If Z

is the sphere such that = V, then obviously f1 S2(s) =0, Vg e [0, t].
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By applying Th 1.1 to the case
and to the sphere E one obtains

Our procedure to determine the solution of eq. (1.1 ) consists of two steps.
First we study the theory with a space cut-off (subsects 1.4, 1.5) and then
we discuss the removal of the cut-off. In the next Theorem (Th. 1.2) we
will show how this removal can be performed. We need the preliminary

DEFINITION 1. 6. T[; X), g E L ( [0, T[; X), and a

strictly increasing map t: N - N, for any cut-off map Th (see Condition 2)
we define jh = Th o j, 91(h) - uoh h E N. The system 91(h) 
will be called the system of order h corresponding to the system ( j, g, uo).

THEOREM 1.2. Let W E C(A, ro), j E 00&#x3E;([0, T[; X), g E -L([0, T[; X)
(0  T c + oo), uo E X, and let N:3 h --~ E N be a strictly increasing f unc-
tion. If, for every h E N, the integral equation

has a solution 00&#x3E;([0, T[; X), then the integral equation (1.1 ), with

f = j + g, has a solution u E C~°~ ( [0, T[; X). Moreover to every z E [0, T[
and every V we can associate an integer h(-r, V) E N such that

PROOF. The crucial point is to establish that to every 1: E [0, T[ and

every one can associate an integer h(z, V) such that

For this purpose we choose a sphere Q such that V and [0, 7:] is an

admissible interval of time for Q. The eq. (1.8) yields
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The properties of the cut-off maps imply that

provided that h’, h" are greater than a suitable h ( z, V) E N. Now for

any pair h’, V) there is a ~O = e(h’, h" ) &#x3E; 0 such that 

II (~) ~f ~(8) ~ e, V8 E [0, 7:]. Consequently

and therefore, by Gronwall’s Lemma, one obtains equality (1.10). The

completness of 0(0)([0, T[; .X) implies now the existence of a u E C~°~([0, T[; X)
satisfying eq. (1.9). To show that u is actually a solution of the integral
equation (1.1) it suffices to recognize that the quantity

vanishes for h large enough. This can be seen by the same arguments as
used above.

1.4. Perturbative solution.

In this subsection we first establish a local in time existence theorem

for eq. (1.1) by a perturbative technique. (The assumptions used are satis-
fied by the cut-off theory). Then, in Th. 1.5, sufficient conditions are given
to continue a solution defined in the time interval [0, T[ beyond the time T.

DEFINITION 1.7. Given and a family Y = of spheres,
with radii &#x3E; 1:, such that a locally finite covering of W, we
define the space
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equipped with the metric

It is easy to verify that the space E(Y; z, e) is complete.

THEOREM 1.3. Suppose we are given W E C(A, (0), j E T[; X),
g E 00&#x3E;([0, T[ X.X; X) with g(t, 0) = 0, Vt and uo E X. Let us assume the ex-

istence of a family Y = of spheres, with the property that 
is a locally finite covering of R-, f or a suitable r E ]0, T[, and such that there is
a e &#x3E; fl for which the following conditions hold

Then there is a -r,, E ] 0, -r [ for which the integral equation (1.1), with f = j + g,
has a unique solution u E e).

PROOF. One can show, by an argument analogous to the one at the end
of subsetc. 1.2, that the operator S defined by

maps 1:]; X) into itself. From eq. (1.11) it follows that
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provided u E E(Y; 1:, e). Since there exists a unique E ]0, -r] for which

C( 1:1) = e, the operator maps E(Y; a, e) into itself for all a E ]0, 1:1].
Moreover, from the obvious inequality

it is clear that we can choose a io E ]0, for which 8 is a contraction of

1:0’ e) into itself. The result is now a consequence of the Banach

theorem on contractions.

COROLLARY 3. Under the same hypotheses of Th. 1.3 there is a unique
solution of eq. (1.1) (f = j + g) belonging to the space e(O)([O, 1:0]; X).

PROOF. Obviously the solution found in Th. 1.3 belongs to 1:0]; X).
Its uniqueness (within this space) follows by the same kind of estimates used
in the proof of Th. 1.1.

THEOREM 1.4. T[; X), g E L([0, T[, X), Uo G X and 
be a strictly increasing map from N to N. Then, for every h E N the cor-

responding system of order h (see Def. 1.6) satisfies the assumptions
of Th. 1.3.

PROOF. Let i E ]0, T[ and let Y = be any family of spheres for
which [0, 1] is an admissible interval of time and is a locally
finite covering of Rl (the existence of such a family is obvious). For a

fixed value of h, the set

is finite and by Condition 2 it follows that

for all k 0 J,. It is then clear that

and

for a suitable e &#x3E; 0. Finally, y if k E Jh the properties of the cut-off maps
and of the function g yield
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for all and all with 11 u f or all k c- N.

Consequently, condition 3 of Th. 1.3 is satisfied with

THEOREM 1.5. Suppose we are given W E C(A, co), j E 00([0, T[; X),
g E C~°~ ( [0, T [ &#x3E;C X ; X), with g(t, 0) = 0, Vt and 2c E C~°~ ( [0, T’ll; .~’) , I
Tl  T, be a solution of eq. (1.1) with f = j + g. Let us assume the exist-

ence of a family ~’ = of spheres with the property that is

a locally finite covering of Rs for a suitable c, 0 C ~  T - Tl, and such that
there is a e &#x3E; 0 for which the following hypotheses are satisfied

1 ) There is a sequence tn T T,, such that

3 ) 3 C(,~ , e) &#x3E; 0 such that for any closed interval

the inequality

holds for every s E I, kEN and f or all, u, v E X with

Then the solution u(t) can be continued beyond Tl.

PROOF. For all n for which we define = T1-f- s),
k E N. It is then obvious that the family {2~ a locally finite covering
of R8. As an immediate consequence of the assumptions 1 ), 2 ), 3 ) one obtains

for all a E [0, e] and for all u, v E X with
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We can now apply Th. 1.3 and Cor. 3 to the integral equation

with respect to the family There exists a inde-

pendent of n, for which eq. (1.1T/) has a unique solution q;n e C°&#x3E;([0, 1:0]; X).
It is then easy to see that the function

defined for a t,, with tit + 1’0&#x3E; TI, belongs to + 1’0]; X). Finally,
by a change of variable in eq. (1.11’), one recognizes that v is a solution of
eq. (1.1) in the interval [0, which continues u beyond TI.

1.5. Global existence theorem.

Throughout the whole subsection we make the assumption that, for each
Q E A, is a Hilbert space with scalar product  ~ , ~ ~~ . Then we prove
a global existence and uniqueness theorem for the integral equation (1.1)
by using Th. 1.5, provided the following essential hypothesis is satisfied.

HYPOTHESIS A. Given WE C(l, (0), j E C~°~([0, T[; X), E L([0, T[; X),
g~2~ E.L’([0, T[; X), 0  Z’’c + oo, we say that (W, f = j -~- + f2» satis-

fies the Hypothesis A if for any sphere ,~ there exist two maps

with the following properties

b) For any Tl E ]0, Ip[ there exist two constants .
such that

for all t E [0, Ti] and for all u E X with supp n c o.
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c) For all systems of any order h corresponding to

(j, g = uo) and for any solution u/&#x26; of eq. (1.8) which is continuous
on the interval [0, T1[, Tl E ]0, TD[, and such that supp Uh(t) c D1(t) c Q(t),
for a suitable sphere Qi, the functions I

uh(t)) are continuous and moreover the equality

holds for all e[0, T1 [.
Hypothesis A is suggested by energy considerations. The quantity

VD(t, u) should be identified with the content of potential energy in the
sphere Q(t), corresponding to the function g~~~, whereas the function Wn(t, u)
may be identified with the variation in time of the potential energy density,
integrated over the sphere Q(t). This interpretation roughly explains the
meaning of eq. (1.14), which, however, (in condition c)), is required to be
satisfied only for a rather special class of functions. This is exactly what
we need to prove Th. 1.6. Moreover, in the applications we have in mind
(see Sect. 3), equality (1.14) can be directly checked to hold for a class of
functions much larger than the one considered in condition c). Concerning
conditions a) and b), inequality (1.12) essentially means that the potential
energy must be bounded from below, locally in space and time, and inequa-
lity (1.13) states that its rate of increase must be locally controlled by the
sum of the kinetic and potential energy.

LEMMA. Suppose we are given W E C( 1, (0), j E 0(0)([0, T[; X), g E
with g(t, 0) = 0, Vt, and Let C~([0, X)

Tl  T, be a solution of eq. (1.1) with f = j -f- g, such that

for a suitable sphere Qi. Then, for any sphere Q D QI for which [0, T1]
is an admissible interval of time, the following inequality holds

for all
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PROOF. To obtain inequality (1.15) it is convenient to reduce the integral
equation (1.1) to a differential equation. For this purpose, let us define the
bounded operator (mollifier)

It can be easily verified that has the following properties

where K is the infinitesimal generator of

Let .2 be any sphere containing lJ1 for which [0, Tl] is an admissible

interval of time. Then, as a consequence of Def. 1.3, there is an E &#x3E; 0 for
which supp( Meu(t)) c Q(t), t E [0, T1[, E c E. Application of the operator Me
to eq. (1.1) yields

By property c) we can differentiate eq. (1.16) and obtain

where From eq. (1.17) it follows

On the other hand the limit as h - 0 of the expression
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can be easily computed. In fact

and J3 = 0 for h sufficiently small, because for such an h supp

+ h) r1 S~(t). Then eq. (1.18) becomes

Now, from the obvious estimate

since for h sufficiently small (see Def. 1.2), it follows

and therefore

Substitution of inequality (1.20) in eq. (1.19) and integration from 0 to t,
(t C Tl), yields

Now we take the limit as 8 ~O+ in eq. (1.21) and obtain (1.15).

THEOREM 1.6. Let Hypothesis A be satisfied, then for any Uo E X eq. (1.1)
has a unique solutions 2c E 00&#x3E;([0, T[; X).

PROOF. Uniqueness is obvious by Cor. 1. Existence will be established if

we show that for any z, O1’T, eq. (1.1) has a solution 
Given such a 1:, let us define t: N -N, 1(h) = h + 3 + 2 ( [z~] + 1) and con-
sider the integral equation (see Def. 1.6)
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If we prove that, for any h, eq. (1.22) has a solution ’U", E 1[; X),
then by Th. 1.2 also eq. (1.1) has a continuous solution in the same interval.

It remains therefore to analyze eq. (1.22) corresponding to a fixed in-
teger h. As a consequence of Ths. 1.3 and 1.4 such an equation has always
a perturbative solution. The crucial step is now to recognize that any solu-
tion ’Uk defined on any interval [0, 1:1[’ 0  ~1  1’, can be continued beyond 1:1.
By Condition 2), supp u°h C supp j(s) C and therefore by Cor. 2,
supp uh(t) C 1 0  t  1:1. It is now clear that, if S~ is the sphere with
center the origin and radius ~+2+2([r]+l)y then Q(t):J I for all

t E [0, 1:1[. By the properties of the cut-off maps

so that

for all s E [0, 1:1[. By the preceding Lemma, applied to eq. (1.22) (it is clear
that there exists an S21 satisfying the hypotheses of the Lemma), we obtain
the inequality

Moreover, by Hypothesis A, after some trivial computations, the r.h.s. of
inequality (1.24) turns out to be smaller or equal than
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At this point application of Gronwall’s lemma, which is possible by con-
dition (1.12 ), yields the following a priori estimate

for all t E [0, 1:1[ and for suitable non-negative constants N2 . Obviously
this implies that

We can now verify that the hypotheses of Th. 1.5 are satisfied. Let

y = be a family of spheres with the property that is a

locally finite covering of R8 for a small enough 8 &#x3E; 0, such that [0, 8] is an
admissible interval of time for all Now, inequality (1.27) and Defs. 1.1
and 1.2 yield

This establishes the highly non trivial condition 1) in Th. 1.5. Conditions 2)
and 3) are easily obtained by arguing as in the proof of Th. 1.4.

2. - Regularity in the abstract case.

In this section we will establish some regularity properties of continuous
X-valued solutions of eq. (1.1), provided the initial data uo and the func-
tion f are suitably smooth. More precisely we want to investigate the condi-
tions under which a function u E 00&#x3E;([0, T[; X), solution of eq. (1.1), be-

n

longs to the space n = Oy ly 2y ... , where DK# is the
s=o

domain of the s-th power of the infinitesimal generator of the semigroup
yP(t) (equipped with the « graph topology))).

The hypotheses we are going to make here on the function f are of a dif-
ferent nature as compared to those used to prove Th. 1.6, and therefore the
content of this section is largely independent of the general treatment of
Sect. 1. As in subsect. 1.5 we suppose that, VQ E A, is a Hilbert space.
We propose to discuss first the case n =1 and then the general case by
using induction on n.
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DEFINITION 2.1. By T[; X), 0 C T c oo, we denote the class

of all functions f : [0, T[ X X - X for which there exist two maps

with the following properties

i) Dt f is continuous and Dul is strongly continuous;

ii) For any sphere Q, for any z E ]0, T[ and for any e &#x3E; 0, there is
a i, e) &#x3E; 0 such that

Moreover we require

to be finite if [0, 1] is an admissible interval of time for S~;

iii) If we put

then for any sphere S~1 there exists a sphere S~2 such that

REMARK 1. If T[; X) then, clearly, the function

is differentiable and

This yields the mean value theorem
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from which the estimate

follows.

REMARK 2. If T[; X) then the function

is continuous.

This is a consequence of the inequality

and of conditions i), ii) of Def. 2.1.

LEMMA 2.1. Given we define

Then the integral equation

where WE C(l, has a unique solution v E C°&#x3E;([0, T[; X) for any vo e ~.
PROOF. It is clear, by Remark 2, that E C~°~ ( [o, T[ X .X ; X). More-

over, by ii) of Def. 2.1, for any i E ]0, T[ and for any sphere S~ the following
inequality

holds Vv,, and for any positive e &#x3E; sup 11 u(t) 110. We can now apply
Th. 1.6 with the identifications
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THEOREM 2.1. Let be a solution of
eq. (1.1) with

Then

3) u is a solution of the Cauchy problem

4) u’ = du/dt is a solution of the integral equation

PROOF. Let VE 0(0)([0, T[ ; X) be the solution of eq. (2.1 ) obtained by
applying Lemma 2.1 in which v, = + f(0, uo) and u(t) is the solution

of eq. (1.1) considered here. The main point to be proved is that the function

tends to 0 in X - 0. Here we discuss only the case in which s &#x3E; 0

(the case E C 0 can be treated in a similar way). Obviously it suffices to
show that

for all compact subsets [0, z] c [0, T[ and any sphere S~ for which [0, z] is

an admissible interval of time.
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To prove eq. (2.4) let us consider the identity

which, by a change of variables, becomes

Now

and therefore the l.h.s. of inequality (2.5) tends to 0 as ~-~C+. In the
same way one obtains

Since the function (e, 8) ~ 8)1(8, u(8)) - 1(0, continuous for
and tends to 0 as e ~ 0 +, it follows that the l.h.s. of inequality (2.6)

tends to 0 as s -~ 0 +. Concerning the term application of Remark 1
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yields

Now

and therefore the l.h.s. of inequality (2.7) tends to 0 as s -- 0 +. By similar
arguments one concludes that

Finally

for a suitable e &#x3E; 0. Equation (2.4) is then a trivial consequence of Gron-
wall’s Lemma. Up to now we have established assertions 1) and 4). These

results imply that the function

is differentiable, which means that the following limit exists

Consequently
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and

This completes the proof of the Theorem.

COROLLARY 2.1. Let the assumptions of Th. 2.1 be satisfied. Then

0(1)([0, T[, X) n C(o)([O, T[; if DK is equipped with the graph topology.

PROOF. Trivial by assertion 3) of Th. 2.1.

REMARK 3. The graph topology on DK is, by definition, the weakest
topology for which the maps are continuous.

We may now proceed to analyze the general case with First it is

convenient to fix some notation. For any n E 1V we shall denote by the

class of all pairs a = (a lf ... ... f f f

such that

Moreover, if (a = = 
..., we shall denote by

(a’, fl’), (a", fl") the following pairs of A.+,
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We are now in a position to state
’ 

DEFINITION 2.2. By n &#x3E; 2, we de-
note the class of all functions /: [0, such that

ii) For any (a, f3) E lln there exists a map

satisfying the following properties

a) is continuous, if h =1 and Ifli = 0, and is strongly
continuous otherwise;

b) For any sphere S~, for any r E ]0, T[ and for any e &#x3E; 0 there is a

I, e) &#x3E; 0 such that

c) If, for any (a, fl) E lln_1, we put

then for any sphere S2~ there exists a sphere S~2 such that

as IT + --~ 0, for all t E [0, T[ and for all v1, ..., UEX.

For convenience, T[ ; X), n ~ 2, and (a, f3) E k  n, we

will use the notation for and for 

To establish the main result of this section (Th. 2.2) it is convenient to
start with some preparatory lemmas.

LEMMA 2.2. then, for any (a, f3) E An, 0,
the map

is continuous.

(4) == X and CIPI(X), with 0, is the space of all IPI-linear continuous
maps from to X.

W I
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PROOF. This is an immediate consequence of Def. 2.2 and of the identity

LEMMA 2.3. If then, for any and for

any u, ..., VlfJl E 0(1)([0, T[; X), the function

is continuously differentiable and

PROOF. This follows easily from Def. 2.2, the previous Lemma and the

identity

LEMMA 2.4. For any T[ ; X), n ~ 2, and for any u c-

C~ 1~ ( [0, T[; X) the map
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belongs to and

PROOF. The assertion follows from Def. 2.2 and the obvious identity

DEFINITION 2.3. Given and

n &#x3E; 1, we define, for k = 0, 1, ..., n, the maps

The next Lemma guarantees that Def. 2.3 makes sense and states some
useful properties of the maps (2.12).

LEMMA 2.5. The E(k) of formula (2.12) are well defined, 
for 0  k  n - 1 and 

PROOF. The Lemma is a consequence of Lemma 2.3 and of the following
representation formula

where F, is the set of all multiindices a, ~8, ~ such that -f- k ; 1  y~ C k,
j =1, ... , ; ix -~- = 1~ and the are suitable non negative constants.
Formula (2.13) is obviously verified for k = 1. To prove it for a general k
one proceeds by induction making again use of Lemma 2.3.
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DEFINITION 2.4. Given f E BC(n)([O, T[; X), we define the maps

Here the set Fk and the are the same as in formula (2.13).

We are now in a position to state the main result of this section.

THEOREM 2.2. Let UE C~([C~ T[; X), oo, be OJ solution of eq. (1.1)
with

Then

is a solutions of the Cauchy problem

is a sotution of the integral equation

PROOF. If n = 1 this is nothing else but Th. 2.1. To prove it for n &#x3E; 1
we proceed by induction. Let us suppose that it has been already proved
that u c- 01&#x3E;([0, T[; X), that 2) and 3) are satisfied and that 4)
holds for some r, Since by hypothesis and
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T[; X) by Lemma 2.4, we can apply Th. 2.1 to the integral
equation (2.15) with j = r.

COROLLARY 2.2. Let U E C~°~([~0, T[; X), 0  Tc oo, be a solution of

eq. (1.1 ) with

value of the function 8(l)(t, z) belongs to 
’ ’ ’

Then the hypotheses of Th. 2.2 are satisfied and, moreover,

PROOF. Concerning Th. 2.2 it remains only to check hypotheses iii).
Actually we are going to show more, i.e. that 

The first step of the usual induction argument is obviously true because
If we suppose that E DKn-r, r = 0, 1, ..., j, then, by our hy-

pothesis, + S(;)(O ( (0) ..., and therefore u(i + 1) c po esis, 0 , 0 ..., 0 E Kn-J-l an ere ore 0 E Kn-J-l .

Equation (2.16) is now easily proved by using part 3) of Th. 2.2 and the
same induction argument as above.

The next Corollary contains some useful results concerning the regularity
of solutions of eq. (1.1). To state it we need the following convenient

DEFINITION 2.5. If r =1, 2, ... is the domain of the r-th power
of the infinitesimal generator of a semigroup W E C(1, by the graph
topology on we denote the weakest topology for which all the maps
Dxr -3 u ~-* u, Ku, K2 u, ..., are continuous (5).

COROLLARY 2.3. Let the hypothesis of Corollary 2.2 be satisfied. Let us

suppose, moreover, that for all j, 0 j  n - 2, and for all e[0, T[ S~’~(t, ~ )
is a continuous map from (D DKn_J-l to DKn_J-l. Then

;+1

(b) These domains are dense in X.
(6) Here the domains Dgr are equipped with the graph topology.
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PROOF. Equation (2.17) is equivalent to prove that C~°~( [0, T[ ; 
0 j  n. This can be seen by arguing as in the proof of Corollary 2.2.

3. - Applications.

3.1. Position of the problem and free theory.

In this section we want to use the previously developed abstract theory
to treat a particularly interesting class of applications, namely the Cauchy
problem for the system

The system (3.1) can be more conveniently rewritten in the first order for-
malism as

or, more concisely, y

where
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and

What we are going to investigate is actually the corresponding integral
equation

where W(t) is the semigroup having g as infinitesimal generator.
To introduce the functional framework, in which eq. (3.3) will be studied

we recall the definition of a class of localized Sobolev spaces. For any open
bounded subset SZ of Rs we denote by H(S2), r = 0, 1, ..., the space of all
real functions j0y whose distributional derivatives 

are square integrable in Q. IT’(jQ) equipped with the norm

is a Hilbert space. By we denote the projective limit of the family
of spaces as S2 runs over the open bounded subsets of R8. Since we
are interested in vector valued functions, it is useful to define

with its natural topology: if 99 = ..., then

We propose to study eq. (3.3) in the space

In physical terms this means that we are looking for solutions of eq. (3.3)



477

having finite kinetic energy in all open bounded regions of the space Rs.
In this functional space it is possible to introduce a family of cut-off maps
Th, h E N, by

where yh is a real function such that 0  and = 1

if X,,(x) = 0 if ~x ~ ~ h -+-1. It is then immediate to verify that the
space X satisfies all properties listed in subsect. 1.1. We can now proceed
to give an exact meaning to the semi-group W(t) contained in eq. (3.3).
A useful intermediate notion is that of the group G(t) defined by

where q;, 1p E 8(Rs) and t E R (7). The properties of G(t) we list below are
well known; however, for the convenience of the reader, a proof of them is
given in Appendix A.

a ) For any sphere S~ and for any

energy estimate holds

the following

for all t such that 0 c ~t~  radius of Q.
Inequality (3.8) implies that G(t) defines a strongly continuous group

of linear operators in (D L,2.(R’).

b) The infinitesimal generator A of the group G(t) is the unbounded

linear operator

with domain
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In general

From eq. (3.11) it follows that the graph topology of D4, of Def. 2.5 is equi-
valent to the topology of E9 

Now we define

By property a), W (t) defines a group of linear continuous operators on X
of class C(l, 2 ) (see Def. 1.3), and by property b) its infinitesimal generator
is the operator

Obviously D., = X1+i Q+ = 0, 1, ..., and the graph topology of DK, (see
Def. 2.5) is equivalent to the topology of X,+, EÐ 

3.2. Global exigtence and uniqueness.

In this subsection we apply the general Th. 1.6 to establish the existence
and uniqueness, in 00&#x3E;([0, T[; X), of solutions of the integral eq. (3.3).
To satisfy the hypothesis of the theorem it is natural to introduce some

special class of functions.

DEFINITION 3.1. By P([O, T[; n), 0  we denote the class of all

real vector valued functions

with the properties

ii) T[xX1, dl~ =1, ... , n, the functions 
and are continuous in the t variable, I at 99 fixed, in the topology;
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iii) The functions bk have partial derivatives 

continuous in the z variables and for any sphere S~, for any i E ]0, T[
and for any e &#x3E; 0, there exists a positive constant C(S2, r, e) such that

We further require

to be finite if [0, 1] is an admissible interval of time for S~.

DEFINITION 3.2. By P’([0, T[; n) we denote the subset of P([O, T[; n)
for which the inequality (3.14) holds in the stronger form

, We further require C(Q, i) = sup to be finite if

[0, 1] is an admissible interval of time for Q.

THEOREM 3.1. If b E P ( [0, T[; T[; n) ) then the map

belongs to the class L([O, T[; X) (L’([O, T[; X)).

PROOF. It is clear, from ii) of Def. 3.1, that @ is well defined. Applica-
tion of the mean value theorem and of Minkowski integral inequality yields,
dk=1,...,n,
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if t c- [0, r] c [0, T[, Q is any sphere, and 11q&#x3E;(i); ~1(,~) II  e, i = 1, 2. There-

fore condition iii) of Def. 1.4 is satisfied. Moreover, V k =1, ... , n,

Now J2 -0, as by ii) of Def. 3.1, and JI -0, as 4q -0 in X,,
uniformly on compact intervals of time by inequality (3.16). This

establishes i) of Def. 1.4. Similarly one proves the corresponding statement
for P’ and L’.

DEFINITION 3.3. By J( [o, T[; n), 0  we denote the class of all

real vector valued functions

with the property that ek(x, t) E L;oc(R8) and that the map t r-+ ek(x, t) is

continuous in the topology, k =1, ... , n.

It is obvious that, if e E J([0, T[; n), the map

belongs to C(O)([O, T[ ; X).
In the following we will study eq. (3.3) under the assumption that

X and that

It is clear from Th. 3.1 and the discussion in subsect. 1.1 that the integral
equation (3.3) makes sense.
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with
. 

and f as in (3.18). Then the map

is X,,,-differentiable and dqfdt = 

PROOF. By applying the mollifier

to eq. (3.3) and differentiating, one obtains

Integration of eq. (3.19) yields

Since the operator E is bounded from X to X and .E.g =

L I 

the application of E to both sides of eq. (3.20) gives, in

the limit as E - 0 +, y

DEFINITION 3.4. By Q([O, T[; n) we denote the class of functions

b e P([0, T[; n) for which the following properties are satisfied

1) There exists a real function differentiable in the z variables

with G(x, t; fl) = 0, d (x, t), such that

’[ and for all compact subsets B c Rs.
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2) There exists a real function t ; z), (x, t ; z) E R8 X [0, T[ X Rn, such that

3) For any sphere S~, for any 7: E ]0, T[, there exist two non negative
constants M(Q, 1:), N(Q, 1:) such that

for all

REMARK 1. Condition 2) ii) of Def. 3.4 requires some explanation. More
precisely, it has to be checked that, the function t; 
for all t E [0, T[. In fact, from the identity

one can deduce that

LEMMA 3.2. Let bEQ([0, T[; n) and let

for some spheres Qi, Q, then the function
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is differentiable and

where y = clfldt.

PROOF. It is clear from Remark 1 that the function E(t) is well defined.
If is sufficiently small

as a consequence of the estimate (3.20’) and of the fact that

is empty.

Eq. (3.22) can be rewritten

while J2 can be conveniently

reexpressed as

The term R2 -+ 0, as L1t -+ 0. Application of the mean value theorem yields
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and therefore

By the continuity of the the r.h.s. tends to 0 as 

REMARK 2. The proof of Lemma 3.2 does not require properties 1) ii),
2) iii) and 3) of Def. 3.4.

REMARK 3. It follows from Lemma 3.1 that if (:) is any continuous
solution of eq. (3.3) (with f as in eq. (3.18)) with compact support, then
Lemma 3.2 can be applied to the function 99 with a suitable ~2.

DEFINITION 3.5. Given T[ ; n), for any sphere SZ we define

These functions are well defined as a consequence of Def. 3.4 and Remark 1.

LEMMA 3.3 Let and let g~ E C~°~ ( [0, z [ ; X~~ , 1: E ]0, T[.
Then, for any sphere SZ with radius greater than T, the functions

are continuous.

PROOF. By property 2) iii) of Def. 3.4 it follows that t i-* O(x, t; 99(t))
is Ltoc(R8) continuous. By the same kind of argument as in Remark 1,
the function t ~ G(x, t; 99(t)) is continuous. The continuity of 9n
and lltn is now immediate.

REMARK 4. The proof of Lemma 3.3 does not require properties 1) ii),
2) i) and 3) of Def. 3.4.

At this point we can prove the main result of this section.
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THEOREM 3.2. Let

Then the integral equation (3.3), with

has a unique solution.

PROOF. The proof consists in showing that hypothesis .A of Th. 1.6 is

satisfied, with the identifications

The only non trivial point that remains to be checked is condition c). By
Lemma 3.1 it will be enough to verify condition c) for functions

with

and

for some spheres Q. The required continuity of

and

is a consequence of Lemma 3.3. On the other hand, eq. (3.21), integrated
from 0 to t (t  1:), becomes

which is exactly eq. (1.14).
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Theorem 3.2 covers the case of the forward Cauchy problem. However
is a group and the local energy estimate (3.8) holds also in the back-

ward direction. For this reason Th. 3.2 can be used also to prove existence
and uniqueness for the backward Cauchy problem, once the obvious modi-
fications are performed on the classes of functions defined in subsect. 3.2.

3.3. Concrete cases.

We propose to list some concrete and interesting examples of functions
belonging to the classes defined in subsect. 3.2.

1) Functions belonging to the space J ([0, T[; n). If ck (x, t), k = 17 ..., n,
are n real-valued continuous functions defined in Rs X [0, T[y it is clear

that the vector valued function

belongs to J([Cy T[ ; n).

2 ) Functions belonging to the space P’([O, T[; n). Let t ; z),
k = 17 ... , n, be n real-valued continuous functions defined in R8 X [0, T[ X R"
and such that

ii) The partial derivatives (k, j = 1, ..., n) exist, are continuous
and satisfy the estimate

for all [0, 1] c [0, T[ and for all compact subsets B c Rs. Then, by direct
inspection, one checks that the vector valued function

belongs to
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An explicit case which falls in the class P’([O, T[; 1) is given by

with a, f3, y continuous functions of (x, t). We mention this example because
a semplified form of it (a, constants) has been recently used in elementary
particle physics ([4], [5]).

3) Functions belonging to the space Q([O, T[; n). Here we restrict our-

selves to the cases in which the number of space dimensions s is equal to 1, 2, 3.
Apart from the physical case (s = 3) which is important for obvious reasons,
the cases s =1, 2 are usefully studied as interesting prototypes, y simulating
some aspects of the actual physical theories.

In what follows an important role is played by some well-known Sobolev
inequalities ([12]) that we are reporting here, but whose discussion is de-
ferred to Appendix B. Precisely, given any sphere QR c R8 of radius 
these inequalities can be written as

with and OJ(R) = OAR) = cjlr if 

It is convenient to give a different treatment of the three cases s = 1, 2, 3.

with the properties

i) are real-valued functions belonging to .

for any compact B c R’ and

iii) There exists a real function G(x, z) continuously differentiable in
for which

for all compact B c R.I.
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Then the vector valued function

belongs to Q([0y + 
The only non trivial facts to be verified are properties ii) and iii) of

Def. 3.1. Given cp E .Xl and a sphere QR of radius 1~, one has

This proves property ii). Moreover the estimates

yield inequality (3.14), with

cause the series is convergent for all a &#x3E; 0. Taking

into account the structure of it is easily recognized that sup

is finite if [0, 1] c [0, T[ is an admissible interval of time for 

Case s = 2.

with the properties

i) akrx are real valued functions belonging to

for any compact B c R2

and for all a&#x3E; 0;
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iii) There exists a real function G(x; z) continuously differentiable in
for which

Then the vector valued function

belongs to Q ( [o, + oo[; n).
As in the case s =1, the only non trivial facts to be verified are proper-

ties ii) and iii) of Def. 3.1. Given E X1 and a sphere QR of radius .R, one has

This proves property ii). Property iii) may be verified by arguing as in
the case s =1.

For example, the function b (x ; z) = ez -1 belongs to Q([0~-{-oo[;l)
while the function b(x; z) = ezl- 1 does not verify condition ii).

Case s = 3.

with the properties

i) aka are real functions belonging to

ii) There exists a real function G(x; z) continuously differentiable in
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for which

for all compact B c R3.

Then the vector valued function

belongs to Q([O, + oo [; n). This can be easily proved by using inequal-
ity (3.24) (for s = 3) and the same kind of arguments as in the cases 8 = 1, 2.

Finally we want to discuss some examples of functions b(x, t; z) belonging
to the class Q([0y T[; n) and depending explicitely on t.

Let us be given a function

with the properties

ii) h is a continuous non-negative function in H’;

iii) The functions a; are real-valued and continuously differentiable

Then the function

belongs to Q([O, T[; 1) if we define
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Since the proof that b E P([O, T[; 1) goes as in the preceding cases, the
only non trivial facts that remain to be checked are properties 1) ii) and
3) of Def. 3.4. Let Q be any sphere and z E ]0, T[. It is clear that for

any 8 E ]0, mien t)[ there exists a constant 0, such that
xES1

teio,«1

Thus property 1) ii) follows from inequality (3.25). On the other hand

for some suitable non negative constants A, B. Combination of in-

equalities (3.25) and (3.26) then yields property 3) of Def. 3.4.

Another example is worth mentioning explicitely because it covers the
case of adiabatic switching. Suppose we are given n real valued functions

=1, ... , n, (x; z) E R8 x Rn, with the property that the corresponding
vector valued function belongs to Q([0y + is a

continuously differentiable real valued function on [0, + we ask for

conditions ensuring that t; z) still belongs to Q([O, + 00[; n). If we

denote by H(x; z) the function satisfying condition 1) of Def. 3.4 with respect
to b, then we have only to check properties 1) ii) and 3) of Def. 3.4, with
the identifications These are obviously satisfied if

for all spheres S2. In case inequality (3.27) does not hold, it is not dif-

ficult to show that the following are necessary and sufficient conditions

for Ab to belong to Q([O, + cxJ[; n)

fl) Yi &#x3E; 0 there exists a constant X(-r) &#x3E; 0 such that

Clearly a) and fl) are verified if l(t) &#x3E; 0, Vt.
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3.4. Regularity.

In this subsection we will apply the abstract results of Sect. 2 to study
the regularity of the solutions of eq. (3.3). For this purpose it is convenient
to define some classes of functions satisfying conditions which guarantee
the applicability of Th. 2.2 and Cor. 2.3. These conditions are certainly
not the best ones, they are however sufficient to cover a large number of
interesting applications.

DEFINITION 3.6. By ¥(r)([O, T[; n), 0 C we denote the class of

all real vector valued functions

with the properties
i) For almost all is (r continuously differen-

tiable in the variables t and z and the partial derivatives are meas-

urable functions of x, for all t and z;

ii) For any sphere SZ, for any E ]0, T[, for any e &#x3E; 0 and for any
multiindices with there exists a positive constant

C«,~(S2, z, e) such that 
-

for all for all with We fur-

ther require sup to be finite if [0, 1] is an ad-

missible interval of time for S~.

DEFINITION 3.7. By Y~r~ ( [o, T [; n), we denote the class of

all real vector valued functions
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with the properties

i) The derivatives exist for all ot, fl, y with oc + ~~8 ~ c r -~- 1,
ly I  r - 1, 1~ =1, ... , n, and are continuous;

ii) For any sphere S~, for any 1: E ]0, T[, for any e &#x3E; 0 and for any
multiindices a, ~8, ~y as above, there exists a positive constant 1:, e)
such that

for all ~1’ for all with 11q;; X1(Q) II  e. We fur-
ther require 1:, e) = sup i, e) to be finite if [0, 1] is an

’ ’

101=1

admissible interval of time for S~.

LEMMA 3.4. If a E Y~~~([0, T[; n), the vector valued map

belongs to BC(")([O, T[; X) (see Defs. 2.1, 2.2).

PROOF. For all (see notations before Def. 2.2), let

It is clear, by ii) of Def. 3.6, that
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The strong continuity of relies on the following estimate

because the r.h.s. of inequality (3.30) tends to 0 as L1t -+ 0, 4q - 0 in X,
by ii) of Def. 3.6.

Since condition b) of Def. 2.2 is obviously satisfied, what remains to be
checked is condition c). It will be enough to show that, for im -(- 
the quantities

satisfy the following condition: for any sphere Sz1 there exists a sphere SZ2
such that

tends to zero as

the estimate

This is an easy consequence of

LEMMA 3.5. Let au E Y§~~( [0, T[; n) and let us define the vector valued map
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Then, for any j, 0 j  r - 2, and for all e[0y T[ the maps S~’~ (t, ~ ) (see
Def 2.4) are continuous from @ to in the graph topology

J+l

(see Def. 2.5), with .g given by eq. (3.13).

PROOF. As remarked at the end of subsect. 3.1 the graph topology of
is equivalent to the topology of QQ Therefore, from the

structure of the (see eq. (2.14)), it will be enough to estimate in

expressions of the type

If y is a multiindex with Iy c r - j -1 we have

where the c’s and the d’s are constants, the P,,,, are finite linear combina-
tions of 1/-zl-linear forms in the derivatives of the up to order and

Since by inequality (3.29)

for all and k =1, ..., n, if 1199; .Xl(,S2) II  e, it follows that

S~’~(t, ~ ) maps (9 DK.,-,-,, into D,-,-,, for all j, 0 ~ j c r - 2. To establish the
;+1

required continuity one has to evaluate in the differences
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By arguing as in the proof of Lemma 3.4 and by using the estimate (3.31),
the L2(Q) norm of the r.h.s. of eq. (3.32) tends to 0 as 4q tends to 0 in Xr_’
and the tend to 0 in Hr;i(R8).

As a consequence of the two preceeding Lemmas one can apply Th. 2.2
and Cor. 2.3 to eq. (3.3). In particular we want to mention explicitely the
following

THEOREM 3.3. Let be a solutions of the

integral eq. (3.3). If

then

PROOF. The result follows immediately from Lemmas 3.4, 3.5 and Cor. 2.3.

REMARK 6. If the hypothesis of Th. 3.3 are verified for all r then,
as a consequence of a well known embedding Sobolev theorem, t) E
E X [0, T[).

Finally we want to list here some interesting cases of vector

valued functions for which it is easy to recognize that they belong to
°

r

A first example of this kind is given by any real vector valued function
a whose components ak do not depend on z and are C°° in + oo[.

Examples which are more significant from the point of view of the non-

linearity are given by any real vector valued function a whose components ak
are of the form

and satisfy the following properties

i) akex are real C°° functions on R8, a;
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for any multiindex y, for any compact B c K and for any a &#x3E; 0,

The proof goes along the same lines as in subsect. 3.3.

Appendix A.

It is convenient to put

where 99, V and t E R. It is clear that a, e and that

they satisfy the following identity

Integration of eq. (A.1) on the volume U Q(T), where is a sphere and

0  t  radius of SZ, application of Gauss theorem and of Gronwall’s lemma
yields eq. (3.8) for 99, 1jJ E and t ~ 0. Obviously the same argument
can be used to show inequality (3.8) for t  0. Therefore G(t) defines a
group of linear continuous operators in (D It is easy to

recognize directly that

tends to 0 as t ~ 0 when This, coupled with a density ar-

gument and inequality (3.8), gives the strong continuity of the group t t-~(~).

Let B be the infinitesimal generator of G(t). By definition (9’) E DBiff the limit 1p
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exists in Hloc(R8) 0 0 is continuously embedded
in D’(R~) © D’(R~), so the above limit must exist also in ~’ 0+ ~’. On

the other hand

for any It is easy to recognize by direct inspec-
B

tion that

(D D as t ~ 0 -~-, and therefore that

in 5)(D ~’, as t - 0 +. Consequently

in D’@ D’ and, by well known properties of elliptic operators ([13]), we

have that This proves that B is a restriction of

the operator A of eq. (3.9). Since 5) (D 5) is dense in EÐ 
and it is contained in DB, from the fact that B is closed, it follows

that A = B.

Appendix B.

Inequalities (3.24) are well known if QR = R8 (they hold with the con-
stants el independent of .R) ([12]). To obtain them in the local case we pro-
ceed as follows. By translation invariance we can suppose that is a

sphere of radius R centered in the origin. Suppose now n is a continuous
linear operator
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such that Let us define

One immediately verifies that nR == is a linear continuous extension

operator from into H1(R8) and that the following inequality holds

with

The constant C is the norm of the map ~.
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