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Dirichlet Problem for Parabolic Equations
with Continuous Coefficients. 

JULIO E. BOUILLET (**)

Summary. - LP-boundary value problems for strongly parabolic operators such that the
coefficients of the highest order derivatives are only uniformly continuous have been
studied by V. A. Solonnikov [10]. In the case of a cylindre 03A9  (0, T), 03A9 a smooth

spatial domain, and initial data zero, Solonnikov assumes the Dirichlet data to
belong to a trace space. More precisely, if L 1~ $$ a03B1(P, t)D03B1p - Dt is the strongly

parabolic operator, wk, k = 0, 1, ... , b 20141, the Dirichlet data, then the problem
Lu = 0 in 03A9 (0,T), DkNu = wk at ~03A9 x (0, T), u=0 on 03A9 for t=0,
DN indicating normal derivative to ~03A9, admits a unique solution in the space of
functions whose spatial derivatives up to order 2b, and the time derivative, belong
in LP( D x (0, T)), p &#x3E; 1. Solonnikov observed that this implies that wk must have
spatial derivatives up to order 2b 201412014 k, and a « fractional» time derivative of
order (2b 2014 1 2014 k)/2k in Lp(~03A9 x (0, T)). Moreover, a spatial derivative of order
2b 201412014 k of wk will have a « fractional » derivative in the spatial direction of order
1 /p’ and in the time direction of order 1/2bp’. With this information let us denote,
for right now, the space of wk by $$(2b201412014k+1/p’),(2b201412014k+1/D’)/2b(~03A9 x (0, T)); in the
present work we find a class of existence and uniqueness to the problem above with
the assumption that wk ~$$(b-1-k+03B5),(b-1-k+03B5)/2b(~03A9 x (0, T)). Here ~  1 is an

arbitrary but fixed positive number. This means that we have reduced the smooth-
ness requirements on the data wk by at least b derivatives in the space airection, and
b/2b = 1/2 in the time direction. In a subsequent paper we shall discuss the non-zero
initial value case. Outline : the definitions and notation appear in I, §§ 1-5, for
the case of a half-space, and in VIII, § 24 for the bounded domain 03A9. The problem
in a half-space is treated in I-VI, using certain surface and volume potentials (III - IV).
Using the half-space results, we obtain an elliptic a priori estimate (VII) in the
half-space. The problem in a general domain is studied in VIII for the parabolic
case (a priori parabolic estimate: Theorem, § 25; existence and uniqueness theorems:
Theorem 1 and Theorem 2, § 27). In IX an a priori estimate, for the strongly
elliptic case is derived. This work is part of a modified version of our Dissertation,
under the direction of Professor Eugene B. Fabes. We wish to thank Professor
Fabes for many invaluable talks and advise.

(*) This work has been partially supported by grants NSF~ GP15832 and
AFOSR 883-67 at the University of Minnesota, U.S.A.

(**) Departamento de Ciencias Exactas, Universidad Nacional de Salta, Salta
(FGMB), Argentina.

Pervenuto alla Redazione il 4 Dicembre 1974 ed in forma definitiva il 5 Gen-
naio 1976.
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I. - Definitions and notations for the problem in the half-space.

§ 1. - Points in will be denoted by the letters x, z, w, while

y, v, 717 t, r, s will denote real numbers, the last three referring to time.

~+1 = oo) will be the spatial domain (half-space), with points
denoted by (x, y), (z, v). The differential operators will be defined for

functions in the « cylinder » R"+ + 1 x(O, T), whose points are (x, y, t), t denoting
boundary of this « cylinder » is ST = T).

The following notations are standard: f * g for the convolution of the
functions f and g, ~(/)(*)? occasionally also f(-)7 the Fourier transform

where (’ y’ ~ denotes scalar product of vectors. We will
write, e.g. to specify the transformation in the variable z.

With x = (x,, , ..., xn) and a = (al, ... , an), ai nonnegative integers, we set

when there is no confusion we will use this notation to include

and write This will only apply
to space variables.

We will denote by XD(.) the characteristic function of the set D.

§ 2. - DEFINITION. A parabolic singular integral operator is an operator
of the form (cf. [3], [4]) 

.

the limit in T)), where a(x, t) is a bounded measurable function on
T), and the variable kernel t; z, s) is defined for t E (0, T), s &#x3E; 0 as

where

space of rapidly decreasing functions.
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If in the above definition a(x, t) is a constant and k(x, t; z, 8) = k(z, 8)
is independent of (x, t), the operator will be said to be of convolution type.

We define the symbol of .K to be the function

.K is known to be a continuous mapping of Lp(.Rnx(o, T)) for 1  p 
Its properties (cf. [2], [3], [4]) will be assumed here.

Following [3], [5] we will denote by 1  p  00, I the class of

operators - LP(ST) satisfying for any a ~ 0

uniformly in

are defined the same way.

§ 3. - We introduce the fundamental solution of the operator
on 8T, defined by

DEFINITION. For # real &#x3E; 0,

For 0  ~ ~ 2b, is a tempered distribution on whose

Fourier transform is Also if D:A -fJ f E L1J(ST) for
integer c~, and We set and

proceed to define AP.

DEFINITION. For 0~~2&#x26;y
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is well defined on rapidly decreasing functions f, which vanish for t c 0.
As tempered distributions, For j8 integral,

can also be written [3] with Krx. a parabolic
singular integral operator with symbol 

defined by considering as a tem-

pered distribution on this decomposition is clear if we recall that

If f = f(z, r~, s; x, y, v, t), z, 779 8, y, and v being parameters, we introduce
the notation f (z, ii 8; x, y, v, t) to mean f (z, q, 8;., y, v,. ] (x, t).

§ 4. - For 6 &#x3E; 0, X (6, oo ) X (0, T)) is the space of functions

whose derivatives D:,1Ju, for and Dtu in the sense of distributions
are given by functions belonging to (6, 00) X (0, T)). L2-b,, is a

Banach space with the norm

For
denotes the space of functions

which are limits in of func-

§ 5. - A linear differential operator

is said to be parabolic in the sense of Petrovski if

for 1

n &#x3E; 0 independent of (x, y, t) in X (0, T). Each a,,,(x, y, t) is assumed

to be measurable, bounded, and for lal = 2b, uniformly continuous in

~+1 X (0, T).
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We will introduce a distance function: for given and

1  p  c&#x3E;o, let y~ be a number such that

We define t) = min (y, 
Throughout this work C will denote a constant, not necessarily the same

at each occurrence. The connection between C and other parameters (eg. para-
meter of parabolicity, dimension, etc.) will be made explicit when relevant.

We will also let y(r) denote any function of the form: constant

exp [- constant. r], the constants and r being real and positive. When
related to a solution of the operator L, these constants will depend only on
the parameter of parabolicity yr and on the max sup lacx(x, y, t) I.

II. - The parametrix.

§ 6. - We will construct a kernel for a generalized volume potential
following [5]. We consider first a differential operator with constant coef-
ficients

be the fundamental solu-

tion of Lo. We construct a function G(,(x, y, v, t), y, v &#x3E; 0, satisfying as a
function of (x, y, t),

the limit taken in Lp(ST).
It is known [3], that Go can be written
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where (Tk,i) is a b x b matrix of parabolic singular integral operators (of
convolution type).

Considered as a function of x, v, t for y &#x3E; 0, Go(x, y, v, t) is also a solu-

tion of the boundary value problem

Since for implies that for

We now introduce the function

and

§ 7. - The proof of the following theorem is long and technical in nature,
and will not be included here.

Clearly, y (iii) follows from (i) and (ii).
We shall consider the operator with constant coefficients Lozrs,
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solution Go(z, r, s; x, y, v, t), 
and K(z, r, s; x, y, v, t) denote

the fundamental solution F, and the functions Go and K (introduced in § 6)
which are associated with the operator Loxrs, and v being real

parameters. Clearly, these functions are solutions of the equation = 0.

III. - Estimates for some surface potentials.

introduce the following potentials

PROOF. By the estimates on P, § 7, and Young’s inequality in dx dt,
we have

When Joe C b -1 the expression in brackets is bounded by C - Ixl)/2b .
When the integral in ds is finite and bounded independently
of y. In both case (i) and case (iii), the constants C depend on the para-
meter of parabolicity c, and the max sup SUP ’a-(X’ Y’ t)

The discussion above hints that in the case (ii), for lcx = b -1 we will
find the singularity of a parabolic singular operator. In fact, (ii) is a con-

sequence of the theory of parabolic singular interals with variable kernel

(see [3]). (iv) is obtained by taking EP-norms in dy on both sides of the
estimate above.

The proof of the following Lemma is straightforward
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IV. - Estimates for the volume potential.

§ 9. - We shall study a volume potential whose kernel is the func-

tion .g(z, i7g 8; x, y, v, t) (cf. § 6).

DEFINITION. For

THEOREM. then

the constant depending on n, max sup and p, and y" &#x3E; 0 depending
on 7 b and a number 

d,(y7 t) = min (y, tYp/2b) is the distance function introduced in § 5.

PROOF, We recall that ntK(z, n7 s; x, 0, v, t) = 0 for t c b -1 (§ 6). We
may therefore write, for 0  1  b - 1

A similar remark applies to D,K.
Part (i) is a direct consequence of the techniques used below, applied to
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PROOF OF (ii). We prove this in three Lemmas. In Lemmas A and B

(§ 10) we prove the estimate for dp = y. In Lemma C (§ 11) we show the
estimate for d~ = For the general case we set

and apply to each potential V , Yfa the corresponding estimate.

PROOF. Clearly,

We estimate first the term It can be written

Applying the estimates for K (§ 7) and Young’s inequality, and observing
that we get

where we have introduced the factor 1, P -E- y’ c y -1 /p. Applying
vl2

now Holder inequality in dv we obtain the desired estimate for j, with
right-hand side 0
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A similar argument gives the estimate (ii) for the corresponding
j

For the term we observe that

Therefore,

Applying Holder inequality in we get

For the term in (ii) we have

1

For lal = 2b -1, the integral jdl will not be present.
o

Observe that setting we have an estimate independent
of The proof is complete.
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LEMMA B. For 

PROOF.

c b -1. The result follows from Lemma A and the fact that.

is an operator.

§ 11. - LEMMA

and for

PROOF. Case

We apply Holder’s inequality in dv and observe that

Hence

The power of (Tlt) is positive, provided (b +1- (P -r-1 /p)) J(b +12013~).
Now the power of (t - s) is clearly integrable, and (Yv/2b)(b -~-1- y) +

due to the choice of Yv. Hence by Hardy-Schur’s Lemma
(cf. [8], [9]), we obtain the desired inequality.
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CASE We proceed as in previous case, introducing now the factor
obtain

We show that the power of (Tlt) is positive by showing that the quantity
in brackets is  2b. The ratio is an

increasing function of therefore its minimum value is attained at = 0:

As the function (r-fJ-1jp)j(r-y) is decreasing,
the condition also implies 

(see Case It is clear that for 

and 0  y  1, a number y, satisfying

and

will suit to our requirements for all 
Returning to the estimate, we have yf( . ~ YI - ) II 

Lp-norm in t of the integral in the right hand side of (* ). The result fol-

lows now from Hardy’s Lemma.

V. - The operator J.

§ 12. - We shall study a commutator for the operator

Consider
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where we have set

We also set

T’ being the corresponding operators for the commutator

PROOF OF (i). We set as usual

To estimate the first term, we use the known properties of .g together with
Young’s inequality in the variables z and s, ~d the fact that v c y/2 to obtain

The desired inequality follows from this one, applying Hardy’s lemma ([8], [9])
and recalling that y &#x3E; 1/p.
For the second term, we apply the known estimate directly to .g to get
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We now apply Hardy’s lemma to obtain the desired inequality.

PROOF OF (ii). It is clear that

By applying Young’s inequality in the variables z, v to the known estimates
for K, and observing that (t - 8)1-(I0152II2b) : it is easy to see that

where

Due to the conditions on y~ and the integrability of the second factor k(t, s)
satisfies the hypotheses in Hardy’s lemma, from which part (ii) follows. This

completes the proof of the lemma.

with m(1) -0 as T ~ 0+, a~ depending on the moduli of continuity of
the Joel = 2b.

and support con-

tained in the set ~x ~2 -~- y2 -~- t2 C 1. For la = 2b, we extend a«(x, y, t) to

all ~+2, preserving uniform continuity and define, for 

Then maximum of moduli of

continuity of being any derivative,
and therefore
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According to the decomposition and the estimates in previous §, it will

be sufficient to consider the case lal = 2b, j = 0, 1. We have

The first two terms are in absolute value less than or equal to times

(bounds for in proof (i) and (ii) of lemma, § 12). For the third, we
set Vb+l-YI = Eo, It(Yp/2b)(b+l-Y) - S(Yp/2b)(b+l-y)I - E1 and ovserve that it
is in absolute value

The usual procedure applies to each term above. For the third, t - s  T,
so we set A = Tl/2b and obtain with a new that tends to zero as

1 - 0 +, the same type of bound for used in Lemma, § 12. The proofs
of § 12 apply again.

§ 14. - LEMMA. Let f E X (0, T)). Then the operator (Jf ) maps
X (0, T)) continuously into itself, and belongs to ’a(lr++ 1 X (0, T))

PROOF. Condition (i), § 2 is clear. To prove condition (ii), we set

J = J1 - J2, where

ii is known to belong in a (cf. [5]). Furthermore,

K0153 being a variable kernel, and the J, Ep-operators in 3. For J2, we see
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that it can be decomposed in two sums, setting

Consider first the case loci = 2b. Replacing f by X(a,a+e)(s) f(z, v, s) se see
that each term in the first sum above can be written as

where each term is in absolute value

if ~, - El~2b~ (We observe that for and and

By Young’s inequality in dx dt, the (a, a + s)) -norm of the above
expression is bounded by

(Here we have set the f being of ex-
ponential type (cf. § 5). The integral in ds is bounded independently of y, v~ .

We now apply Hardy’s lemma to obtain the inequality

For and ap-

plying the known estimates for Go and the remarks on X~o,E)(t - s), we
easily get
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C depending on max sup completing the proof of the lemma.lal I  2b

REMARK. We have essentially shown that

belongs to X (0, T)) provided f E -U (R’++ 1 X (0, T)), and its norm is

 We observe that the boundary term in the computation
of the Dt is zero, due to the estimates for (~o (§ 7); we also see that

Estimate for J. As a consequence of the results above, we have the following

~ 15. - The operator J having small norm as an operator on

X (a, a + s)) for s suitably small, it follows that I - J is inver-

tible over X (0, T)). In fact, choosing m large enough,

provided a + T. Let gl be a function with support in V,+1 X (0, T/m)
such that (I - = f on X (0, T/m), and in general let gk have support

and satisfy on

being a sum

of functions in that space, and (I - J) g = f .
With the construction above it is easy to prove the following

t) can be replaced by y or t(yp/2b).
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REMARK. If the function f and the coefficients of are differentiable,
so is the function (I - = g. In fact, the only possible points of discon-
tinuity of g or its derivatives with respect to time are those in the partition
kT/m, km. To see that g is smooth at those points, we only have to con-
struct with a different partition. The uniqueness of (1 - J)-l f
shows the differentiability of g at the points 

The differentiability of (I - J)-l = I Jk for small t can be seen from the
fact that DJ(f) = J-(f) + J(Df ), D denoting any derivative, and J- being
a a-operator that depends on the derivatives of the coefficients. From this
identity we derive the recursion inequality

which shows convergence in norm of the series for r sufficiently
small.

VI. - The main results in the half-space.

§ 16. - THEOREM. Let T)) for some p, 1  p  c)o. Set

where as T - 0+.

(A similar estimate holds with dp replaced by y, and with dp replaced by tYp/2b).
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PROOF (i). Recall that

and that where

We showed (cf. Remark to Lemma, § 14) that 
*

known [2] that hence

It is

Also

and by same Remark, L V2 = J2( (1 - J)-l f). Therefore

Part (ii) is an immediate consequence of Theorem § 9, (i), and the fact
that (1 - J)-lf belongs in Lv(.R’n+ 1 X (0, T)).

Part (iii) follows from the estimates for the volume potential (Theorem, § 9,
cf. lemmas A, B, C, §§ 10-11), and from estimate in Lemma, § 15.

§ 17. - For j = 0, ... , b -1, we introduce the functions

(cf. definitions in §6(J~)y §8(T~), and in § 9 (volume potential)).
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PROOF. Is included in §§ 17-19. We introduce the following notation.

For [a[ = 2b, let v, s) denote the regularization of the coefficient

We will denote by Fl(z, v, s ; x, y, t) the
by the surface potential

and by y, t) the corresponding functions (*).
0,(R’ x (0, oo)), it can be seen that ~c’ (~, y, T)),

and that Lu; = 0 for y &#x3E; 0. The second statement will follow from the

theorem in § 16; the first is a consequence of the same theorem in § 16 and
of the fact that (I - J)-l’ is a L2,-mapping, if we observe that 

When the coefficients !x! = 2b, are only bounded and uniformly con-
tinuous, oo)), we will show that the expression in (*),
~ 17, belongs in for every ð&#x3E;O. We first state
two lemmas. 

then

These lemmas are Ep versions of similar results in Pogorzelski [12], and
can be proved by similar arguments.

COROLLARY. For loci + 1  2b,

We now continue with the proof of the Theorem, § 17.
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§ 18. - We recall that for
belongs to (we have set

The product 8(y)(u; - vanishes near y = 0 and t = 0. It is known [4]
that

where the meaning of
Now

is clear.

(We have used the estimates for the volume potential (§ 9, and lemmas A
and B, § 10) with ~8 = 0, and the Lemma in § 15)

By Lemmas 1 and 2, § 17, we conclude that

This shows that ~u~~~ is a Cauchy sequence in x (a, oo) X (0, T)) for every
6&#x3E;C. Let for every (5&#x3E;0 be its limit. By
Lemmas 1 and 2, with T~~ replaced by Tp;, it follows that the potentials

and vtØ) converge to 
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Hence admits the representation

§ 19. - The same representation holds for 0 E To see this, select

00)), ~, ~ 0, and let iei be the func-

tion (*) above with f/JÄ in place of 16. Again let 6(y) E OeD (0, oo ), 0 (y) = 0
6(~) =1 We have

where V(Ø-Ø)A denotes the volume potential in ( * ) corresponding f/JÂ.
A slight modification of the arguments in § 18 shows that these terms are

majorized by Therefore u; - u in (a, oo ) X (0, T))
for every ð &#x3E; 0. Also, by Lemmas 1 and 2, § 8, both

tend to zero as 1 - 0. This shows that

and admits the representation ( * ) From this we see that

and for y &#x3E; 0.
This concludes the proof of Theorem, § 17.

§ 20. - It is known (cf. [3]) that
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converges in as y - 0+, to a limit of the form + J,;) 0, where
is a matrix of parabolic singular integral operators whose matrix of

symbols admits an inverse t)]-" = (a(5~,~)(z, s; x, t)) provided
(x, t) ~ (01 0), being a parabolic singular integral operator such that

( 8J§; ) = I + (J2i)’ with Jkj 0 E a (ST) (cf. [4]). Jk,i belongs to , and

is a limit as y -0 of a series of commutators in the variables (x, y, t)
which belong to uniformly in y [3].

From the estimates for the volume potential (lemma A, § 10) and the
estimates for yb+l-Y(I - J)-"( . ) and (§ 15 and Lemma 2, ~ 8),
it follows that for fl  p, with fl  y - ilp  p,

in as y - 0+.

Also, for f E X (0, T)) (Theorem 916, (ii)),

in as y - 0+.

We observe now that (S~) (the dot indicates matrix multiplication)
is a matrix of ’ð-operators, due to the fact that if J and S is a singular
integral operator on 

Therefore I + [ (Jk~ ) + (J~;) . (8§J~)] has an inverse.
Set

THEOREM. Let there be given f e X (0, T))y and for k = 0,..., b -1,
functions such that for some p, 

Then there exists a function for every

5 &#x3E; 0 such that 
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(d~ can be replaced with y or t’Yp/2b).

PROOF. We set

and define

The fact that T)) for every ð&#x3E; 0, and Part (i )
follow from the theorems, ~~ 16 and 17. To prove (ii), it is enough to con-

sider the terms and to recall the definition of g~i and the

fact that is an integrable function.

§ 21. - THEOREM. Suppose Then

u(x; y, t) admits the representation u = u2, where
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with

Furthermore, y for

where C(1) - 0 as T -+ 0, d’lJ can be replaced by y or and C, C(T)

depend only on the parameter of parabolicity n and on the max sup 1a .

PROOF. We assume first and let u’ _ ci -I- c2,
uf and u2 being the terms in the decomposition above, with

being the expressions corresponding to Fl(z, 0, s; x, y, t) (cf. §§ 13 and 20).
We observe that

vanishes near t = 0 and has all derivatives in X (0, T)).
By an argument similar to that in § 17, we see that

Hence

Theorem,
belongs to

Therefore and it is clear that

the other hand, and converge in being func-
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tions in Hence we must have

and we see that u- u¡ satisfies a homogeneous initial-boundary value

problem with homogeneous data. By [3] it follows that

(it would be enough to show that
~S~* -~ ~S*, J~’ -~ J as operators on X ... X I (b -1) times; we ob-
serve that

to in dependent of a and A, cf. definition of Jah in [3]).
Thus we have the representation u = u., + u, for oo ) ) .

Any function in T) ) being a limit of oo ) ) -f unc-
tions in the - sense, the general result follows by a density argument,
recalling the obvious convergence in L" of sequences like and Luv, to
their corresponding expressions for u E and the fact that

The estimate is an immediate consequence.

§ 22. - Using the representation above, we can prove the uniqueness
of the solution to the problem (cf. Theorem, § 20) : u E X (6, 00) X
X (o, T) for every ð&#x3E; 0,

THEOREM. If



431

and

Then u = 0.

PROOF. We observe that 

is a solution of

By the estimate of previous theorem, with f3 = 0, we have

Hence,

proving the theorem (we recall that the constants in the representation
theorem depend only on nand max sup laaD.1.1 2b

VII. - An elliptic estimate.

§ 23. - Let now

be an operator in strongly elliptic in the sense that

n &#x3E; 0 and independent of We assume each a«(x, y)
to be bounded and measurable, and for lal = 2b, uniformly continuous
in 

For we define d~(y) = min (y, T being a constant.
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For B any real number, we will denote by the Bessel potential,
defined by

where

and

THEOREM. If 6 is a strongly elliptic operator in 1~+ 1, and
then, with 0~/?~2013l/p~l,

PROOF. Consider first the following inequalities (see [5] for the first

two)
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where T = 01 T/2, and lal I can be replaced with b --f-1- y ;

(i)-(v) show that the right hand side of the parabolic estimate (*) is

majorized by the right hand side of the elliptic one. It is clear that the

proof will be completed by the following result, whose proof follows the
lines of [5]. Appendix

REMARK. If u is assumed to have support contained in {(~,~/): +

--~- y2 c r2, y ~ 0~, the term in the estimate may be replaced by
with a change in the constants.

VIII. - The main results in a general domain.

§ 24. - We now consider the Initial-Dirichlet boundary-value problem
with initial data zero, for a parabolic equation where the cylinder is defined
as the product of a domain in with the time interval (0, T). P shall
denote a point inside that domain, D°‘ = D’ a spatial derivative of order 
Q a point on the boundary. The differential operator, Z, is assumed to

satisfy Petrovski’s condition and the conditions on the coefficients stated

in § 5 with (x, y, t) replaced by (P, t).
From here on, ,~ will denote a bounded, smooth domain in By

this we mean

(i) There exists a finite number of functions f having continuous and
bounded derivatives up to order 2b + 2, and each mapping the disc

~(x, 0 ) : into 8Q in a 1-1 manner, such that every

point Q e 8Q can be written Q = fi(x, 0),  ri, for some i;

(ii) If NQ denotes the unit inner normal to 8Q at Q, and D,5 = 
dist(P, 8Q) &#x3E; ~, ~&#x3E;C}, then there is a number 60 &#x3E; 0 such that for each i
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the function

maps the set ~(x, y) : 0  y  46,,l into in a 1- 1 manner.

We assume further that every point P E ,~4ao can be uniquely written

We consider the finite covering of the set by the sets Ui,
image of

x a suitable numbers

under f;(r, y) = 0) + We let denote a fixed Co partition
of unity subordinate and we denote by a family of functions such
that and Ci =1 in a neighborhood of the support of 99,. We

point out here that when 0  6  for the domain Q,3 we can associate
the sets and the families ~~az~ obtained from the ones above by
the transformation P -~ P + 6N., where P = Q + yN~ E It follows that

the derivatives of 7 C6, can be bounded uniformly on 6, 0  6  6,.
If u(P) is a function defined in Q we will set, for simplicity, y) =

= y). For the functions q;i, Ci, we will set, e.g., (q;i) = cpz when there
is no confusion. We will also write t) for y), t). We observe
that y) = y).

The L?-norm of a function u(Q, t) defined on ôD X (0, T ) is equivalent
to or 111 which are computed as integrals over .R’ X (0, T ) = ST :

i ;

We introduce now the operators l on aS2.

DEFINITION.

where ~l-~[ ~ ] is the operator already defined on 8, -

DEFINITION. For functions u(Q, t) E X (0, T)) which are identically
zero for t near zero,

It can be shown that is not in general the identity on C°° func-
tions that vanish near t = 0, but it is extendible to an invertible operator
on x (0, T)), 1  p  00.

The Bessel potentials are defined in a similar way.
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DEFINITION.

where

In the next paragraphs we follow the method used in [5], article (4.1),
for the corresponding problem with initial data zero.

§ 25. - THEOREM. 
= 0 in 92 x (0, T), then

(Here and in the following, the expression is meant to be replaced
by 1 for 

PROOF. We shall sketch the proof of this result, which proceeds first
for small T (this §), and then in the general case (next §).

By applying the definition of (§ 24), dropping continuous functions
of compact support, and introducing a new constant we can see that

the left hand side Q)) of the estimate above is less than or equal to

We now

(i) Define a parabolic operator Li on R"+’ X (0, T), with coefficients
bounded and measurable, and those of the leading terms, uniformly con-
tinuous in Bn+l X [0, T], that satisfies
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(ii) Apply the estimates for (§ 20) to the first two terms above;

(iii) Omit somewhat lengthy considerations to obtain, with 0  6  60
and C(T) -* 0 as T -0+

(iv) Take 6 small enough so we can move the third term in (iii) over
to the left hand sides. We modify the constants (introducing Ci in front
of and fix this 6 from now on. And finally

(v) CLAIM. There exists a To &#x3E; 0 such that the estimate in the The-
orem holds for 

Clearly, the second term in (iii) (modified as in (iv)) can be bounded with

Also, the fourth term in (iii) can be shown to be bounded by

Therefore, if T is selected so that

then

i.e. there exists a To &#x3E; 0, depending on 6, 6,,, {3, a such that the theorem
is true for 8Q X (o, T), 7 T c To .

REMARK. For T c To, ( ~) is also true for all the domains Q6j , 0  61 0  60 ,
with the same constant (which, we recall, depends on the families
{Ui}, {~i}, cf. definitions in §24).
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§ 26. - To prove the theorem for any T, we rewrite the estimates in (iii)
with third term deleted, see (iv), as

where we have set

and observe that the desired result is a consequence of the following lemma,
whose proof is also omitted

LEMMA - Given E &#x3E; 0, there exists a constant Os such that for all

u E X (0, T)) that satisfy Lu = 0 we have

REMARK. The a priori estimate in Theorem, § 25, holds for all domains 
with 6) « bo. The constant in the theorem is independent of 6) (cf. also
Remark to §25).

§ 27. - We are now in a position to prove the main results.

THEOREM 1. Let Wk E L’P(ôQ X (0, T)), k = 0, ..., b - 1, be such that

T)) for some p, 0  ,u  1. Then there exists a

solution to the problem

for every subdomain S~* such that D* c S2,
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Now if then

This, together with the theorem, § 25, imply that if

Hence is a Cauchy sequence in x (0, T)), for every subdomain Q*
with D* c Q. Let u(P, t) denote the limit of ~u~}. Clearly u(P, t) satis-

fies (i) and (ii).
To prove (iii) we observe that

which implies

Now we observe that

and that

and we see that

THEOREM 2. Let u(P, t) be any function such that

(i) u(P, t) belongs in X (0, T)) for every subdomain S2* such
that D* c Q,
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and for some

Then, for

COROLLARY. The solution to problem (i)-(iii) in Theorem 1 is unique.

PROOF OF THEOREM 2. We recall that (’ = 1 for I(XI  b -1 (§ 25).
We consider any fixed y, 0 C y C ~o , we take and study

T) ; clearly u E X (0, T)) and Lu = fl. By the a priori esti-
mate in Theorem, §25 (cf. also the Remark to § 26), and with 0  @  p,

The theorem follows by taking lim on both sides and recalling that 
does not depend on 6’ 0 (cf. loc. cit.).

IX. - The elliptic estimate.

§ 28. - As in § 23, we let be a strongly elliptic oper-

ator on S~, that is, 6 - D, is parabolic in the sense of Petrovski. Again
n&#x3E; 0 will denote the parameter of parabolicity and the a-’s are

assumed to be bounded and measurable, and for Joe = 2b, uniformly con-
tinuous in S~. G -fJ shall denote the Bessel potentials defined in § 24.
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As done in §§ 25-27, the expression ( . is to be replaced by 1
for 

THEOREM. If and then for 0#p,

The proof of this result follows lines analogous to those in the parabolic
estimate of § 25. We shall only sketch them.

By application of the definitions of the Bessel potentials to the left hand
side of the inequality, a bound is obtained to whose terms the
estimates of § 23 and Remark, § 23 apply with elliptic operators 8~ defined by

Support considerations on the Co functions in the definition of
lead to the estimate

where we have set

Fixing 6 small enough, the third term in the estimate above can be
moved over to the left hand side. The last term can be shown to be

+ where q e == 1 on by using
a trace theorem [11], and an estimate in [1], already needed for Remark, § 23.

But II so choosing 8 small enough we even-
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tually get

The proof can be completed by proving the following

LEMMA. To every s’ &#x3E; 0 there is a constant C~. such that every ~
with 6u = 0 satisfies
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