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Maximal Submanifolds and Submanifolds with Constant Mean
Extrinsic Curvature of a Lorentzian Manifold.

Y. CHOQUET-BRUHAT (*)

dedicated to Jean Leray

1. - Introduction.

The existence of a maximal submanifold (with respect to area) is an

important property for a space time, hyperbolic riemannian manifold

satisfying Einstein equations.
On such an initial submanifold the system of constraints can be split

into a linear system and a non linear equation, following conformal techniques
initiated by Lichnerowicz [5] and developped in [8] and also [12]. The

solution of the initial value problem, fundamental in General Relativity,
then rests on the global solution of this non linear elliptic equation on the
initial 3-manifold. Theorems of existence, uniqueness, or non existence in
the presence of inadequate sources, can be proved for this equation (cf. [9] ),
using a method given in [3], essentially based on Leray-Schauder degree
theory [1], [2].

The existence of a maximal submanifold is also essential in the proof
of the positivity conjecture for the gravitational mass of an asymptotically
flat space time (cf. [13], [14]).

We prove in this paper some theorems concerning the existence, unique-
ness, or non existence, of maximal submanifolds, and more generally of

submanifolds with given mean extrinsic curvature.

(*) Institut de M6canique Th6orique et Appliqu6e, University Paris VI, 4 Place
Jussieu, 75005 Paris.

Pervenuto alla Redazione il 2 Febbraio 1976.



362

2. - Definitions.

We consider a differentiable (C°°) manifold Vt of dimension 1 endowed with
a lorentzian metric g, pseudo-riemannian metric of signature (-t-y 20132013, ’ ’ *)y
which we suppose time-orientable.

Let S be a (C°°), I - 1- submanifold of We suppose S space-like and
we denote by ns its unitary time oriented normal. We denote by gs the
(negative definite) riemannian metric induced by g on S and by .~s the
second fundamental form (extrinsic curvature) of ~S as a submanifold of

(Y~ , g) ; .Ks is a symmetric 2-tensor field on S given by:

where C is the Lie derivative operator, n a differentiable vector field in a

neighborhood of S, identical with ns on S, n the canonical projection (with
respect to g) from the space of covariant 2-tensors on 7~ onto the space
of covariant 2-tensors on S, Ks does not depend on the choice of n.

The mean extrinsic curvature of S in (Vn, g) is a function on S:

where the divergence is relative to the metric g.
Another equivalent expression for PS is:

where z = 3f* is the vector field of tensions on S relative to its pseudo-
riemannian immersion f in (cf. E ells and Sampson [15], Lichne-

rowicz [6]).
The sub manifold S is said to be maximal, the immersion f is an harmonic

mapping from (S, gs) into (Vn, g), if on S :

3. - Local coordinates.

If the equation of ~S in local coordinates is
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we set

then

4. - Mean extrinsic curvature as a function of g and S.

Let V, be given, with a lorentzian metric ’ time orientable. Let ~’o be
an l-l submanifold of Y~, spatial for g. We identify a neighborhood U
of ~o in Yl with an open set SZ of So X R, through the trajectories of a vector
field n, identical with nso on ~So. We define a family of l- 1 submanifolds
s 9) c Ul called t-homotopic to ~So, as the submanifolds of Vi with the equa-
tion, in the above identification

Let now g be another lorentzian metric on V, ; the mean extrinsic cur-
vature of Sq; as a submanifold of g) is a function Ps 91 ; of g and cp, with
values in the space of functions on So.

If (xz) are local coordinates on S°, and (3/~) = (XO, xi), XO = t the cor-
responding local coordinates in TI, we have, still denoting by T the expres-
sion of in local coordinates:

with Christoffel symbols of g,

in particular y~ are the contravariant components of the metric induced
on S yO and yz are respectively a scalar and a vector field on 

If we set:
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then

If q is the constant map ~ T, a constant, then y°° = 0,
.

5. - Existence theorems.

DEFINITION. Let F and G be Banach spaces of scalar functions on ~So
and jE7 be a Banach space of 2-tensor fields on D. The triple (E, F, G) is said
to be g regular if there exists a neighborhood X X Y c E X I’ of (0, 0) such
that (g - g, cp) is a C’ mapping from X x Y into G, whose partial
derivative P’(’, 0) at g - g = 0, cp = 0 is the operator of formal linearization.

The formal linearization (with respect to q) of P(g, cp) is a linear partial
differential operator which, for g = g, g~ = 0, has the following expression
in the chosen coordinates (where 0, = y-2) :

But

11-11,

If Ricc is the Ricci tensor of #, we have the identity (cf. [1], [6]),

where do is the Laplace operator of the metric go induced by g on So.
On the other hand, because y~O and y£ depend only on 8;q through

quadratic terms if ~==0y we have:
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finally the formal linearization is (1) :

6. - Case o So compact space like section for g.

If So is a compact submanifold of V,, everywhere spatial with or

without boundary, the following triple of Banach spaces is g regular, for
any ’ which is itself in ~7:

I) .E = 2 tensors fields in the Holder classes ~’2’"(SZ) ;
.F scalar functions in the Holder classes C2,,(SO) (vanishing on the

boundary &#x26;So if OSO is not empty);

G scalar functions in the Holder classes C°~"(~So).
Another interesting ’ regular triple, is in the physical case n = 4.

II) E : 2 tensor fields in the Sobolev space H3(92);
0

F : scalar functions in the Sobolev spaces (which is identical
with a~o = o ) ;

G : scalar functions in 
Note. The hypothesis on g and # are made after the identification of a

neighborhood U of So in Vi with through the trajectories of a
vector field normal to So with respect to g.

In the cases I and II the following lemma is valid (recall that go is negative
definite).

ISOMORPHISM LEMMA. The linear is an iso-

morphism between F and G under one of the following hypothesis:

1) aso is not empty and, on So :

2) ~’o has empty boundary and on 

and

(1) Such an expression with Y= 1 (identification through geodesics) has been
obtained, by a different method, in the properly riemannian case by Duschek [16].
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Except when Kso == 0 (i.e. So is a totally geodesic submanifold of V,) we
have:

On the other hand if # satisfies on Vi the Einstein equations (physical case:
n = 4)

where T is a given 2-tensor (stress energy tensor) we have in all realistic
physical situations

for every time like vector u

with

only in regions devoid of energy sources.

DEFINITION. A lorentzian manifold (Vz, g), time orientable and with a
Ricci tensor satisfying (2) is called a space-time. A space-time (VI, 9 ’) is

source free if Ricc « 0.

When the mapping P~(g, 0) is an isomorphism between 1~’ and G we can
apply to the C 1 mapping ( g, ~ ) ~ P ( g, g~ ) the implicit function theorem.
Thus we have proved.

THEOREM 1. Let (Vz, g) be a space-time, and So be a compact space like
submanifold of Y with mean extrinsic curvature C in the metric g. Let

(E, F, G) be a g regular triple of Banach spaces, C E G. If So is not a totally
geodesic submanifold without boundary of a source free space time g),
then there exists a neighborhood X of 0 in E such that for every g with
g- g E X the lorentzian manifold (Vz, g) admits a space like submanifold SqJ,

with mean curvature C.

The case C = 0 gives the following corollary, valid in the same func-
tion spaces:

COROLLARY. If a space-time (Vz, g) admits a compact space like maximal
submanifold, which is not a totally geodesic submanifold without boundary
for a source-free space-time, all neighbouring lorentzian manifolds have the
same property.
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When a source-free space time admits a closed spatial submanifold which
is totally geodesic it is not always true that all neighbouring space-times
admit a maximal submanifold. We shall prove that they admit a submanifold
of constant mean curvature, but the constant cannot be given a priori.

THEOREM. Let (Vi, g) be a source-free space-time, admitting a totally
geodesic space like submanifold, compact without boundary So, let E, F, G
be a g regular triple of Banach spaces. There exists a neighborhood .X of
zero in E such that if then (V,, g) admits a space like submani-
folds, SqJ, 1 with constant mean curvature.

PROOF. Denote by .F [resp. 0] the subspace of F [resp. G] of functions
with vanishing integral on So. Consider the C’ mapping P from X X Y
to 2 (with I, 2 open sets of .F’, G) defined by:

(", and Võl So, volume form, and total volume of So in the metric induced by g)
P is a C’ mapping, with derivative jP~ at the point g - g = 0, g~ = 0 the

Laplace operator ~o, therefore an isomorphism from -P onto G. The im-

plicit function theorem applied to the equation

gives the result.

7. - Case of a non compact ~So .

The general case of a non compact So in a general lorentzian manifold
(VI, g) is difficult to handdle, due to the lack of sufficient knowledge of the
invertibility of the corresponding Laplace operator. However a case of

particular physical interest is the case where So is diffeomorphic to R3 and
the metrics gs’ induced on So by g are « asymptotically euclidean ». We
then have (cf. [20]).

LEMMA. The following triple of Banach spaces is q-regular (q Minkowski
metric on R3 X R ) .

and
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2) 99 is in F if 99 E 02,OC(R3) and

3 ) f~ is the Banach space of functions f E such that

The norm in C~ is

with

the norms in E’ and F are defined analogously.

PROOF. is a C1 mapping from a neighborhood of
zero in (E’ X .F’) into G. Its partial derivative with respect to cp, at = 0,
99 = 0, spatial hyperplane of the Minkovski space time, is the flat space

Laplace operator, isomorphism from F onto G. Therefore:

THEOREM. Every lorentzian manifold (R4, g) in an E-neighborhood of
the Minkovski space time (R4, r~ ) admits a maximal space like submanifold.

Indications for an alternate proof of this theorem, in weighted Sobolev
spaces, has been given (cf. [21]).

8. - Non existence theorem.

DEFINITION. A lorentzian manifold (V,, g) is said to admit a slicing if
there exists a diffeomorphism ~. between V, and a product So X R

such that the submanifolds S, = l1.-1 ( f t = z~ ) are space like for g. The sub-
manifolds S,, are the slices defining the slicing, the space like submanifolds Sq,
(equation t = in the image by l1.( with q; non constant are also called slices.

THEOREM. If a lorentzian manifold (Vz, g) admits a slicing by slices
compact without boundary of mean extrinsic curvature (m.e.c.) uniformly
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bounded below [resp. above] by k, it admits no slice with m.e.c. less than k
[resp. greater than k].

PROOF. The function 99 defining a slice S , by t = attains on So its
maximum and its minimum. At an extremum point x of cp, t = 

the m. e. c. of SqJ is:

but

Thus if P(g, g~) (x)  k [resp. &#x3E; k] we have, at an extremum point of q :

which is impossible in a maximum [resp. minimum], since yii is negative
definite.

EXAMPLE. The metric product T z_1 xR, with flat torus, admits no
slice with every where positive, or everywhere negative, mean extrinsic
curvature.

9. - Uniqueness theorems.

DEFINITION. A space-time (Vz, g) is said to be nowhere source-free if

Ricc (g) (u, u) &#x3E; 0 for every time like vector u.

Given a space like submanifold ~o of a lorentzian manifold (Vz, g) there
exists always a neighborhood U of ,So in which the geodesics normal to So
define a diffeomorphism between U and Q c ~’o X R. Such a neighborhood U
is called a gaussian neighborhood. The submanifolds Sg,, t = are defined

through this identification.

THEOREM. If a nowhere source free space time of class C2 admits a space
like submanifold So compact without boundary, with mean extrinsic curva-
ture a constant k, it admits no other space like submanifold S with

m.e.c. k in a gaussian neighborhood of So.

Note. If So is compact with boundary, the same theorem is valid, if

(P = 0 on aso.
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PROOF. The mean curvature P(g, (p) of SqJ is given by (1). If So is com-

pact 99 takes on So its maximum and its minimum. If q; =1= 0 either its
maximum is positive, either its minimum is negative.

Let x = x be an extremum for (p. Set 1 = For x = x, Gig; = 0,
thus, if P(g, cp) = k :

with, in gaussian coordinates (goo =1, 902 = ~ )

if g is C2 whe have:

with, if So has curvature k,

but, as we have recalled before

thus, under the hypothesis we have made

and, at a positive maximum (t &#x3E; 0) [resp. negative minimum t C 0]

which is incompatible with x a maximum, [resp. a minimum] since gii is

negative definite.
The same theorem is true (same proof) when ~o is compact with boundary

and 99 (x) = 0 for 0153 E aSo.
If So is not compact we say that 99: ~So - R tens to zero at infinity if,

given any there exists a compact such that
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If 99 is not identically zero it takes on So a positive value a [or a negative
value]. We choose .g such that Sup 199 (x) I  a, and we conclude that

a;eCE’

attains a maximum at an interior point of g - the same reasoning than
in the above theorem proves the contradiction when qJ =t: 0 defines like 99 = 0
a submanifold of m.e. curvature k.

We remark on the other hand that the requirement for the validity
of the proof is

This inequality will be certainly satisfied if Ricc(g)(u, ~c) ~ 0 for every time
like vector u, and .gsh’gsh &#x3E; 0 on the family of submanifolds Sh. A case
of physical interest is the following uniqueness theorem.

THEOREM. The mass hyperboloid (x°)2 -~(xi)2 = m2, 0153O&#x3E; 0, is the only
slice in the quadrant (~)~201327(~’)~&#x3E;0y 0153O&#x3E; 0 of Minkovski space time with

constant mean curvature -1/3m, such that tends to m2 at

infinity on this slice.

PROOF. Take polar coordinates in the open set
of Minkovski space, by setting first

and denoting by u three angular coordinates.
The mean curvature of Se ( o = cte) is easily computed to be

We then define a Cauchy surface in (x°)2 -~(xi)2 &#x3E; p, x° &#x3E; 0 by f! = 

We apply the preceding reasoning, but here we can compute directly

10. - Robertson Walker manifolds.

A Robertson Walker manifold is a product Vl-1 X R, with a lorentzian
metric of the form
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where f is a positive C1 function on R and d82 a (positive) 01 riemannian
metric g on VZ-1 = So -
A simple computation shows that the mean curvature of SqJ: t = cp(x) is:

For the submanifold t = c [constant], the equation P, = 0 reduces to

But, if f’(c) = 0, the submanifold t = c is totally geodesic = 0]. More

generally we shall prove:

THEOREM. If V, = So x R is a Robertson Walker manifold, with So com-
pact without boundary, then Vl admits a maximal space like section S if
and only if it admits a totally geodesic submanifold.

PROOF. If So is compact without boundary 99 attains on So its magimum t2
at a point X2’ and its minimum tl at a point Xl: But, at an extremum of cp
and if S is a maximal submanifold:

Therefore we must have:

and f ’ must vanish at least at one point t = c. The manifold t = c is
. 

totally geodesic.

REMARK. This theorem is valid without any assumption on Rice(g).
The theorem does not say that a maximal submanifold is necessarily the
manifold t = c, with /~(c) = 0. However by the uniqueness theorem proven
before this conclusion follows if ~ is a nowhere source free space time.

We remark here that the inequality Ricc(g)(u, u) &#x3E; 0, for all time like u,

implies

But (i) implies

and t1 = t2 if f" does not vanish on an interval of R, thus

~ = constant, y uniquely determined.
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If f"  0 and f " vanishes on an interval of R we may have tl  t~ , but then
= f ’ ( t2 ) = 0 implies f ’ (t ) = 0 for t E (tl , thus f ( t ) is a constant on this

interval, and the metric is static. But it is known (Lichnerowicz [4]) that
there does not exist non flat static space times with closed space like sections.

We have proved:

THEOREM. A non flat Robertson Walker space time with V,-,
closed admits at most one maximal slice, which is totally geodesic.

The flat case will be included it the study of the next paragraph.

11. - Lorentzian manifolds with constant curvature.

The second fundamental form K of a maximal submanifold S of a

lorentzian manifold (Vz, g) with constant curvature c is a solution of the
equation (cf. for the properly riemannian case J. Simons [17], S. S. Chern [18])

(V covariant derivation in the metric g induced on S by g, g is negative
definite if S is space like)

Thus, if we set 

The right hand side is  0 if H 2 &#x3E; c. We deduce immediately by integra-
tion on ~S, the following theorem:

THEOREM. Let S be a closed, space-like, maximal submanifold of a

lorentzian manifold (V,, g) with constant curvature c then

1) if c&#x3E;0 and then H2 « c and = o.

2) if c 0 then H2 = 0, i. e. ~S is a totally geodesic submanifold.

In the case of V, = R4 and c = 0 (Minkovski space the same theorem
(Bernstein theorem) has been proved, differently, by Calabi [19]).

12. - Maximization of area.

Let as before (VZ-1 X R, g) be a smooth lorentzian manifold. Denote by
A(99) the area (volume) of a smooth slice Sw, in the positive metric - yg,
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induced on $,, by g:

(~ volume element of g, volume element of 2013~) then (cf. Lichnerowicz [5],
Avez [7]) the derivative of the mapping A is the linear mapping

The critical points of A (extrema of g~ ~ ~(~) ~ are the maximal slices
(slices of zero mean extrinsic curvature).

The second derivative of jt is given by the quadratic form:

thus ( 2 ), at 99 = 0, if So is compact without boundary, y or if 99 satisfies ap-
propriate boundary [resp. asymptotic] conditions on 8So [resp. at infinity]

Where yo is the negative definite metric of So. Therefore:

THEOREM. A maximal slice of a space time (V,, g), V, = VZ-1 is a

strict local (3) maximum for the area if it is not a totally geodesic submani-
fold of a source free space-time.

On the other hand if (Vz, g), V, = VZ-1 -~-R, is a lorentzian manifold

and So a totally geodesic slice such that

then can be deformed to a slice of greater area.

(2) The following expression is valid for g-orthogonal to 80.
(3) Among all slices if it is closed, among slices with given boundary [resp.

asymptotic] conditions otherwise.
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EXAMPLE. Consider the lorentzian manifold with g given
by the De Sitter metric:

The metric g has constant curvature and The instant

of time symmetry t = 0 is a totally geodesic slice So such that Ricc(g) ~
. nso ) = -3cx-2. The area of ~So is:

whereas the area of a slice t = E9 e &#x3E; 0 is:

Aknowledgement. Some of the theorems of this paper concerning the
uniqueness of maximal submanifolds, and maximization of area, have also
been obtained simultaneously and independently, y by different methods

by D. Brill and O’Flaherty. For their proofs and related results, and for
a discussion of the physical implications see [22], [23], and references therein.

The theorems of this paper, with a sketch of the proofs have been
announced in [11].
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