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Some Basic Facts in Algebraic Geometry
on a non Algebraically Closed Field. (*)

LUCIA BERETTA - ALBERTO TOGNOLI (**)

Introduction.

Some aspects of algebraic geometry on R are studied in [1]. One of the
most useful tools to study algebraic (and analytic) geometry on B is the
concept of complexification. In this work we introduce a generalization
of the complexification which is called completion and is well defined for
any field K. One of the diseagreable facts in algebraic geometry on .I~ is

that theorem B is false.

In [5] Lucia Beretta proves the following theorem: the functor .1~ of the
global sections is exact in the category of 0~ A-coherent (***) modules if (V, 0~)
is an affine variety on .1~.

Clearly this theorem gives the good condition that replaces the the-
orem B and makes it possible to work using sheaf theory.

In this work we prove that the functor .1~ is exact on the category of 0v
A-coherent modules where (V, Ov) is an affine variety on .K and g is any field.

1. - Regular functions on an affine reduced variety.

Let .K be a field, subfield of the field K; in the following Kn is considered
embedded in Kn.

The algebraic closure of K shall be noted by K.

DEFINITION 1. Let V be an affine variety of Kn, we shall call closure
(or completion) of V in .K the intersection 9 of all closed sets of l~n that
contain V.

(*) Lavoro eseguito nell’ambito del G.N.S.A.G.A. del C.N.R.
(**) Università della Calabria.

(***) An 0, module is called A-coherent if there exists an exact sequence

on 0,, 0.
Pervenuto alla Redazione il 27 Gennaio 1975.
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REMARK 1. The completion f of V depends on the embedding and if K = R,
.k = is the usual complexification of v.

PROOF. If n =1 the result is clear.

Suppose the lemma is proved for n -1 and let:

For any (x1, ..., zn_i) E and xn E .K we have: P(x1, ..., xn) = 0 then,
by induction ..., 

= 0 and the lemma is proved.
Let .K be a subfield of k and let be a basis of -~ as .g module.

We shall suppose 1k = OCi, E I

(we use the multiindex) we have:

where

DEFINITION 2. Let, as before, P ..., Xn] and be a basis

of k on .g then the Pj(x) of (1) are called the components of P in the
basis 

Pi1(X) is called the .g-component of P.

In particular we have and .

LEMMA 2. Let K be a field and K a subfield, V c .gn an affine variety
and V’ the completion in it..

Let Iv, I I p be the ideals of the elements of ..., X n], -k I-x., - - ., X n]
which are zero on V, ~’.

We have: I v is generated as fl module by Iv Kn = V.
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PROOF. Let P1, ... , ~n] be generators of Any Pi de-
fines an element P; of and contains v

hence Pi E Iv.
So we have proved: (ideal generated by Pi).
Let now REI v and .R = .2 be a decomposition of .R associated to

i

a basis By remark 2 any l~i is an element of I p hence : I v = (ideal
generated by Pa).

REMARK 3. Lemma 2 is equivalent to the following relation : 
and shows that .~n induces on X" its own topology. ~

a

LEMMA 3. Let K be a field and K a subfield. Let V = an affine
{=1
s

variety of Kn and Vi the irreducible components. = U the com-

_ 
2=1

pletion of V in K are the irreducible components we have : q = s
and Vi is the completion of Vi.

_ a
PROOF. If Vi is the completion of Vi clearly U Vi is the completion

i=l

of V. We must prove that Vi is irreducible on ft. and ..., q.

If Ya = is reducible we may suppose (Vi is

irreducible) and this is impossible because of the minimality of 9,.
We have proved that the V a are irreducible on ft..
If then there exists "1 such that (Vi is irreducible)

9~Z

in this case but this is impossible. The lemma is proved.

DEFINITION 3. Let f c Kn be an affine variety, we shall say that
is defined on the subfield K if the ideal ..., Xn] is generated by

LEMMA 4. Let V c Kn be acn affine variety and f the completion in K.
The variety is the intersection o f a finite number of hypersurfaces defined on K.

PROOF. Let PI =... = Ps = 0 be a system of generators of Ip and 
a basis of .IK on .K.

In this hypothesis the components P~ of the Pi generate I, and we have :

The lemma is proved.
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DEFINITION 4. Let Y c gn be an affine variety, U c V an open set and
f : K a function. f is called regular in zo E TI iff there exists an open
set U’3Xo such that = 

... , Xn], 0, if x E lT’. f is
called regular if it is regular at any point.

PROPOSITION 1. Let V c Kn be an affine variety .Kn the com-
pletion of V in .~, K.

Any regular f unction f : V --* K is the restriction of a regular function
f : ( ~ - ~S’ ) - k, where 8 is an affine subvariety of ~’ defined on K, such that :
8 n V = ø.

Two extensions f and f ’ of f coincide where both are defined and the extension f
is defined on K (i. d. locally f is the restriction of a regular element of
l1 (.tl 1, ..., X")).

PROOF. For any xo E V there exists a neighbourhood in V and P,
..., X n] such that f i Uxo = Q (x) ~ o, x E -. Let P, Q...

be the elements of ..., defined by P, Q ....
We can construct a covering of V using open sets Ûx( =

= 2013 = 01 of V’ such that on any Uxs an extension !5ilQi of f is defined.
Now we prove the proposition in the case: V is irreducible.
We have PiQk - 0, di, k then 0 and the ra-

tional functions define a regular function f : ( - ) - .K, where
_ 

fJ. o

==n{==0}. In the general case let V= U Vi2 be the de-
i=l i=i

composition of into irreducible components (see lemma 3).
We remark that if U is open in f’ and then 

_ ~ - E7 is closed, hence if oO contains Vi, contains also If ÛX( and Cl.,;
intersect ~~ then they intersect V, hence and are

extensions of 1,,, and hence coincide. So we have proved the first part of
the proposition.

The unicity of f is proved in the first part of the proposition.

REMARK 4. Proposition 1 is true (same proof), if V is an open set of an
affine variety a neighbourhood of V in the completion.

LEMMA 5. Let k be a field algebraic on the subfield K and suppose K.

Let P1, Pl(x) _ ... = Ps(x) = 0~ . There

exists ... 2 X,,] such that and 

P(x) = 00.

PROOF. Let where any element of .gi is separable on K
and any element of is purely inseparable on .gi : -. Let 
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we have

Let Pl2 = rj a(Pl + roP2) where G is the Galois group of the exten-
ocey

sion K(a)). We have that Pl2 is G-invariant, hence Pl2 E K[Xl, ..., Xn] and
clearly :

and

Starting from Pl2 + wP3 in a similar way we define P123 E ..., 

and so on. Clearly P = PI2...S s satisfies the conditions of the lemma. If

gi = K, then there exists WE .~i and (JJ satisfies an equation = 0,
where p = characteristic of K. Let now P12 = (PL + clearly P12 sat-
isfies (1) and (2). Starting from P12 and P3 we may construct P123 and so
on .... The lemma is now proved.

PROPOSITION 2. Let K be a field, V c .g~ an affine variety and f : V --&#x3E; K

a regular function.
There exists .R, P E .K [X 1, ..., Xn] such that:

PROOF. If .K is algebraically closed the result is well known ([2]). Let .K
be the algebraic closure of .g and V the completion of V. By proposition 1
there exists a regular function f : (Tl -~S) ~.K that extends f, S closed set
such that 8 n Kn = 0.

We may suppose that the equations QI = 0, Q2 = 0, ... , Q8 = 0 of 8 are
in ..., Xn] (see proposition 1).

By the lemma 5 we know that there exists P E .K[Xl, ... , Xn] such that

~P = 0) DS and P(x) =F 0 if x E .Kn.

The function / is defined in the affine (see [2]), closed subset V j --- {P = 0}
of Kn - {jp = 0) , y hence it is the restriction of a regular function f ’ defined
on Kn - (P = 0) (see [2]). It is known (see [2]) that f’ is of the form

Let now be the K-component of R’ with respect to a basis
of .K on K, clearly and the proposition is proved.
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COROLLARY 1. Let K be a non algebraically closed field then for any n E N
there exists a homogeneous polynomial P E ..., X n] such that P(X) = 0
i f and only i f X = (0, ..., 0).

PROOF. We apply the construction of the lemma 5 to the polynomials
X ..., X".

is homogeneous, say of degree q, let

and so on.

A similar construction is possible if .K is purely inseparable on K.
In the following proposition we use the euclidean topology of Rn.

PROPOSITION 3. Let Vc Rn be an affine, quasi-regular, coherent (*) com-

pact affine variety. UDV an open set of Rn and f : R a C°° f unction such
that f I v is the restriction of a regular function.

For any compact set H c tT, E &#x3E; 0, q E N there exist 
such that :

PROOF. By proposition 2 there exist such that

Q’l~) ~ ~f Yz e Rn.
By theorem 1 of [3] there exist ...y~]y such that

if P/Q = (P"Q’+ P’)/Q’ i), ii) and iii) are satisfied.

2. - Properties of coherence.

Let .g be a field and 0xn the sheaf of the germs of the regular functions
on gn.

A (non reduced) affine variety on K is a ringed space (V, °Kn¡Jv)
where Jv is a coherent ideal subsheaf of Og~ and: V = support Op.

(V, 0v) is called reduced iff 3 = sheaf of all germs zero on V.

(*) V is quasi regular in x if the ideal of analytic functions zero is

generated by 1,, V is quasi regular if it is so at any point. V is coherent iff the
associated analytic space is coherent.
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Following [2] we call algebraic prevariety on K a ringed space (X, Ox)
locally isomorphic to an affine variety defined on K.

Finally an algebraic prevariety (X, Ox) is called a variety iff the diag-
onal 11x of is closed in 

Let (X, Ox) be an algebraic prevariety on K and 3 a coherent ideal sub-
sheaf of Og, the ringed space (V =support OXIJ, OXIJ) is called an al-

gebraic subprevariety of X.
As usual we can define the locally closed subprevariety of (X, Ox) and

it is easy to verify that any locally closed subprevariety of (X, Ox) has a
natural structure of algebraic prevariety on K.

It is easy to verify that any subprevariety of an algebraic variety on K
is an algebraic variety on K.

In particular we shall call projective variety any closed subvariety of
P n(K) = projective space on .K of dimension n.

Let ~K be an algebraically closed field, and an affine variety.
An 0. module Y is coherent if, and only if, there exists an exact sequence:

For any g we give the following definition : an 0 ~ module Y is called
A-coherent if, and only if, there exists a resolution of type (1).

We have the following

THEOREM 1. Let an affine reduced variety on the

then 0xn , 0v , Jv are A-coherent modules and 0,, is an A-coherent
0v module..

PROOF. Using the arguments of [2] we prove all the coherence condi-
tions (the arguments do not depend on the fact that K is algebraically closed).

We have the exact sequence

hence to prove that 0, is A-coherent we must verify that there is a sur-

jection 0~-~~-~C and this is proved in [2].
To prove that 3, is A-coherent we must verify that there is a surjec-

tion 0 £n -* Ker 0.

Let ~~ = (0, ... 1, ... 0), i =1, ..., p be the generators of and let

be the images in 
Let now suppose K be infinite, otherwise Kn is discrete and the theorem

is trivial.
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Let be a local relation. The
i=l 1n .

function y is zero on an open non empty set, hence is
p B=i 

identically zero gives a global relation that generates
the local one. So we have proved that there exists an exact sequence

and 3, is A-coherent.
The fact that 0-~ is an A-coherent 0v module is proved by the following.

LEMMA 2. In the hypothesis of theorem 1, a sheaf Y of 0~ modules is
A-coherent as 0, module if, and only if, it is A-coherent as module.

PROOF. Using the arguments of [2] we prove the conditions of coherence.
Let us suppose we have the exact sequence

then we can construct the commutative diagram.

where n’ and n" are defined using the canonical projection and or is defined
in the following way : ( 0, ..., 1, ..., 0 ), i =1, ..., p be the generators
of r(O~) and 

We remark that the maps n" :T(0£n) -T(0$) are

surjective (see proposition 2 of § 1).
Let then a is defined by 
The exact sequence proves the A -coherence of

as 0xn module.
Let now be defined the exact sequence

We deduce the commutative diagram:

where J is defined using the above arguments and j can be defined because
is an 0, module and hence if we have = 0. From the dia-

gram we deduce the exact sequence Ov X -’~ ,~ -~ 0 that ends the proof.
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REMARK 1. There exist locally free sheaves on R that are not A-coherent.
Let is irreducible (see [1]) and
= 0} = (0, 0, 0) u (1, 0, 0).
Let .F’ -~ R3 be the line bundle defined by the cocycle 1/rp given in the

covering R3 - (0, o, 0), U2 = R3 - (1, 0, 0).
Let T be the sheaf of the germs of algebraic sections of F.
It’s easy to see that any section on ~i that can be extended to a global

section can be divided by cp and hence it is zero on (0, 0, 0). From this fact
it follows that Y does’nt satisfy theorem A, and hence it is not A-coherent.
We remark that there exist coherent subsheaves of ORn that do not satisfy
theorem A.

Let Y be the sheaf above constructed and y the section that coincides

with 99 on R3 - (0, 0, 0) and 1 on the second chart.
Let Y’ be the subsheaf of Y generated by y, we have clearly ORa .

Y’ contains the subsheaf 99. and hence Y" does’nt satisfy
theorem A.

PROPOSITION 1. Let K be a field, (V, Ov) an affine subvariety of Kn and
In this hypothesis (Vp = {x E V: 0}, is an

affine variety. If K is not algebraically closed any open set of V is an affine
variety.

PROOF. It is not difficult to verify (see [2]), that (Y, is isomorphic
to the affine subvariety of defined by = 0, 1- P 0

where g, = ... = gq = 0 are generators of 
If ..K is not algebraically closed the lemma 5 of § 1 proves that any closed

set of V is just the locus of zero of some ..., Xn] intersected

with V and the proposition is proved.

PROPOSITION 2. Let K be a non algebraically closed field then the projective
space Pn(K) is isomorphic to an affine variety.

PROOF. Let ..., Xn] be an homogeneous polynomial of degree q
such that R(X) = 0 « X = (0,..., 0) (see corollary 1 of § 1). Let 

the Veronese map of degree q and w = va xR: 
the map obtained adding .R to the set of all monomial functions of degree q.

Clearly w(Pn(K)) ~1 {R = 0) = # hence w(Pn(K») is an affine variety
of isomorphic to Pn(K).

3. - The completion of a prevariety.

In this paragraph we shall define the completion of an affine variety
(non necessarly reduced), and of an algebraic prevariety.
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DEFINITION 1. Let g be a field, subfield of the field k, and 
an A-coherent module. A sheaf f -+ U, defined on a neighbourhood U
of in li n is called a completions of T (in 8 ) if there exist two exact sequences

such that a is an extension of a. A completion # - IJ is called a strong
completion iff for any x E .gn we have: 

In the following, we shall consider Y canonically embedded in and

it is easy to verify that, from the fact that OlKn is a subsheaf of it fol-

lows that Y is a subsheaf of ’PlKn.
REMARK 1. If l~ is algebraic on K, then Okn is a strong completion of 

If If. is not algebraic on K, in general 

PROOF. Let be a basis of K on K, and ail = 1K. We need the
following

LEMMA 1. If .K ig algebraic on K, and ... , X n] such
that there exist Pi, Qi E g[Xl, ..., .Xn] such that

Using lemma 1, we shall prove remark 1.
For any x E gn, let

where AB = ring of fractions with respect to B.
We have a natural isomorphism .~[Xl, ... , X,,] -- .K[Xl, ..., .X~.] 

and we define an 

We wish to prove that j is bijective.
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we have:

But the last term is zero iff the coefficients of the are zeros and in this case

i,9 1ct i

hence j is injective.

Lemma 1 proves that j is surjective.
Let now K = Q = field of rational numbers, g = Q (~) ; we wish to

prove xQQ ~ Q (~) 
In fact but any element of is a

well defined function on a hence 

PROOF OF LEMMA 1. We remark that 8 is integer on K, hence Oin x is
integer on °Kn,x. We have a natural injection j : so we

’ 

_ 

’ 

K 
’

can deduce that A def (D .K is integer on °Kn,x. Let flz be the maxi-
’ 

K 
_ 

’

mal ideal of clearly It K is maximal in A and A is a local ring’ 

K

(in general .A has finite numbers I1, ..., h of maximal ideals over but

any Ii contains flz hence A is local). It is now clear that the maximal
K 

_

ideal of is isomorphic to Q Ê, hence j is an isomorphism.
’ 

K

REMARK 2. Let K be a field, subfield of the field E. For any A-coherent
sheaf Y -* .Kn there exists a completion U and, i f .K is algebraic on K,
then there exists a strong completion. In any case we have : ,~ x ~ 9

Vx E .Kn and hence, i f Ê. is algebraic on K; Oxn

PROOF. There exists a resolution:

Let YI, ..., rjl, be the generators (0, ..., 1, ... , 0) ....

To fix oc is equivalent to the definition of such that

where oc*: is induced by a.
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There exists (see proposition 1 of § 1) an open set U of 8n such that
U :) Kn and the au are the restrictions of regular functions âij defined on U
(moreover the 1i;; are defined on .g and U = 8n - S where ~S is closed and

defined on K).
The matrix (âii) defines 0y 3+ 0g and the sheaf coker ~ _ ~’ is a

completion of T.
If K is algebraic on K, then, by remark 1, we have for any 

From (1) it and the first part of the remark is proved.
K

In the general case we have and the sequence:

may be written:

and the remark is proved.

REMARK 3. Let K be a field, subfield of .K, (V, 0v) an affine variety on K,
and ,~ -~ V an A-coherent 0. module. Let ~’ ~ U be a completion of ~’ and
y E then there exists y U’ open in ~’, V, such that y ex-
tends y.

Let a : be a homomorphism of coherent Ov modules, and i’, g two
completions, then there exists an extension &#x26; : T^lu Olu of a where U is a

neighbourhood of V in f.

PROOF. Using the trivial extension of Y to Kn, it is enough to prove
the remark when V= gn.

We have an exact sequence

that can be extended to:

(see remark 2).
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Let then there exists a family ~T~’~}a-1...,s of open sets (of U)
and sections such that : U is an affine open set of Kn
containing Kn and ’

The cocycle is defined on the covering {Ui} and it has

values in Ker f¡, hence (by theorem B) is trivial. From this it follows that
there exists such extends y and

the first part of the remark is proved.
To prove the second part we construct the commutative diagram:

To define y’ and y" we make the following remark: all sheaves and

vertical morphism can be extended to Spec (see lemma 2 of § 4) ;
hence the functor of the global section is exact on the vertical sequences

(we use the first part of lemma 3, § 4). Let ði = (0, ..., 1, ..., 0) 
be the canonical generators and 

As we have just remarked there exists Oi E F(O’n) such that = 

y’ is defined by y’(~i) = 8i.
In a similar way we define y".
The morphism y’, y" can be extended (see remark 2) and hence also y

has an extension to the completions and the remark is proved.

DEFINITION 2. Let K be a field, subfield of K, and an affine

variety defined by the ideal subsheaf Jv of °Kn. A (strong) completion of
( Y, 0 p ) in k, is any affine variety such that the sheaf 0r is a
(strong) completion of 0.-

REMARK 4. Let be an affine variety and suppose Pl , ... , Pq E
E K[XI, ..., Xn] generate Jv in any point of V. (By the remark contained in
theorem 1 of § 2 3v is generated by a finite number of polynomials).

let Pi be the elements of k[Xi, ... , Xn] defined by Pi, the

sheaf of ideals generated by P,, ..., Pa . If K is algebraic on K, we have :

23 - Annali della Scuola Norm. Sup. di Pisa
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hence the completion defined in § 1 coincides with the completion o f de f inition 2.
Moreover if V c .Kn then there exists a completion f closed in l~n.

PROOF. By definitions and remark 1 we have the exact sequences :

Clearly then from (2) we deduce the exact sequence:

and (3) proves that °Kn¡3y) is a strong completion of 

REMARK 5. Let (V, Ov) be an affine variety on K and

an exact sequence of A-coherent Ov modules.
I f Ov) is a completion of V in the field I~ there exists an open set U’

of ~’ such that : V and the homomorphisms oc, P extend to an exact sequence :

where ~’, i, ~" are completions of Y’, Y, ~’" de f ined on U’ and &#x26;, ~8 extend a, fl.

PROOF. The existence of (2) is proved in remark 3. For any x E V

we have :

The sheaves and Kerp are coherent hence (3) is true in a neigh-
bourhood of x and the remark is proved.

DEFINITION 3. Let K be a field, subfield of .K and (X, Ox) a prevariety
defined on K.

We shall say that the prevariety (X, Oi) defined on JE’ is a completion
of (X, Og) iff X and for any E X there exist two affine neighbour-
hoods Ux in X and in X such that is a completion of ( l~x, 

We have the following:
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THEOREM 1. Let K be a subfield of the field .K and (X, 0.) a prevariety
de f ined on K.

Then there exists a completion (.~, Oi) of (X, Ox) and if (X, is a variety,
Oi) can be chosen to be a variety.

Let 99: (V, °v) ~ (X, Ox) be a morphism of K-prevariety and 
{.X, Og ) two completions ; then there exists an extension ’ of (p defined on a
neighbourhood of V (hence the completion is unique near V).

We need the following:

LEMMA 2. Let K be a subfield of .K, (V, Ov) be a prevariety on K and
a completion of V.

Let (X, 0.) be a prevariety on K, (X, Oi) a completion on .8 and 99: (V, Ov) -
(X, Ox) be a morphism, then there exists an extension cp: (f’, ~ (X, Oi)
of qg defined on a neighbourhood 1" of V and two such extensions coincide

on a neighbourhood of V in f.

PROOF. For any x E V there exists, in V, an open set x such that:

is contained in an affine open set W of ~’ and -W~, has a completion lil,
that is an affine open set of 1.

We may suppose moreover that V,, is contained in an open set of P’
such that is a completion of V., and for E we have

Using proposition 1 of § 1 we may construct an open (in ~’) covering
F,, ... , 9, f of F and some extensions aei : fa: -8 of 1 J 99 1

Let x E V, using the argument of proposition 1 of § 1 we deduce that
there exists an open set of *P such that all the tPilB: coincide (where
defined). (If f3,, = is the decomposition of D., into irreducible com-
ponents we require that P, m V = Bi has Pi as completion).

So gluing together the ’i we define the extension of lp, the unicity of the
extension is proved by the same argument.

We remark that the lemma 2 implies that if 99 is an isomorphism we
may extend 99 to an isomorphism 0’: ( ~’, --&#x3E; (±’, Ox’) (it is enough to
extend 99 and and to verify that id ~ id).

PROOF OF THEOREM 1. Let ‘li, _ ~ ~h~2=1,...,a be an open affine covering
of X and ZTz c Kn, some realisation of 

We shall denote by ZI$ the completions of 17~ in .Kn; and by Z7~ ~ Ui s
the natural isomorphisms.

Let U2) and = · U~2 ~ U2’
Using the lemma 2 we may extend e12 to a morphism defined on an

open set (Jla of Cill and we may suppose ê12: Ûla is an iso-

morphism.
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Using ê12 we may glue together Ui with U2 and construct a completion
of UI U U2. After q constructions we have the completion of X. We wish
to prove that if X is a variety then 8 can be constructed to be a variety.

It is enough to prove that if X = XI U ~2 is the decomposition of X
into open sets, and Xi are two varieties, completions of Xi, then we may
glue together two open sets i of X Z and obtain a variety comple-
tion of X.

Let and the identity map. Let

an extension of (where x ~’ y ~
y = êI2(X)), be the quotient and n: be the natural projection.
The diagonal .312 of Xï2 X ~ 12 is the image (under n X n) of 4 22 U d~11 U 112 U d 2i
where L1 ii = diagonal of and graph of êik. It is easy to see

that X 12 is a variety iff the 3 ik are closed subsets of Then i’12 is
a variety iff J ik, i ~ k, are closed in 
X = Xi U ~2 is a variety then 1112 and 1121 are closed in Xl X X2 and ~2 X Xl.
Let L1;k be a closed completion of in For any XEXI2, 1112 is

the graph of the map hence in a neighbourhood 0 of x in Xl, Ji2 is
the graph of a map ~12 that extends ~12. Then there exists an open neigh-
bourhood ~’i2 of .Zi2 in i#i such that ~i2 is the graph of a map ~i2 : X12 -~ ~2’

Using the same argument for Ll21 we find two open sets 8] 
such that 11ik defines an extension of on 8§ and clearly Llik is closed

in..Xi X .Xk .
The theorem is now proved.

4. - The exactness of the functor r.

We wish to prove the following

THEOREM 1. Let an variety on the field K.
T hen the o f the global sections is exact on the cactegory of
the A-coherent Oy modules.

We begin with a definition.

DEFINITION 1. Let (V, 0v) be a (reduced) affine variety defined on the
field K, we shall call associated scheme the afline scheme 

where Osv is the usual structural sheaf associated to Specry and ry = 

LEMMA 1. Let (V, 0~) be acn affine variety and asso-

ciated scheme, then there exists a natural injection j : such that

of the closed points of 



357

PROOF. Let V be realized in Kn, I then to any point x = (OCI, ..., 9 ’Xn) E V
we associate the maximal ideal j(x) generated by the classes ~X ~ - a2~
19 ..., n.

Now we wish to prove that any y E defines an element Yun;(V)
of 

We may suppose for a fixed and by de-
finition we have that any element of is of the form P/f’P, 

If then f w z « f(j-i(z)) # 0 and clearly is a regular func-
tion on 

Let now x E U, then locally y is the image of a rational func-
tion hence it is the restriction of a section of defined on an open set of

Spec-Vv containing j(x). So we have proved °SYI;(y) = j*(Ov).
We wish now to of the closed points of Spec (7~.)} y

(the other inclusion is clear).
Let a be a maximal ideal of ry and V c Kn be the completion of V into

the algebraic closure K of K.
Let oc be the ideal of rv generated by a and S the locus of zeros of a,

let us suppose ~S = 0.

Any ..., Xn] such that P Is = 0 is, by the maximality of a, in a.
By lemma 5 of § 1 there exists P c K[XL ..., Xn] such that P(x) =1= 0

if hence and this is impossible. So we must

suppose hence, again by maximality: and the lemma

is proved.

REMARK. In the following we shall often identify V and j(V), Ov
acnd ....

DEFINITION 2. Let be an affine variety defined on .g and

a coherent sheaf of 0. module; a coherent sheaf #-Spec 
of Osp module is called an extension of ~’ iff there exist two exact sequences:

where a is an extension of a.

LEMMA 2. Any A-coherent sheaf ,~ --~ V defined on the affine variety V has
an 

PROOF. We have an exact sequence
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and a is given by where ti = (0, ..., 1, ..., 0) E 
k

Yk = (0, ... , 1, ..., 0 ) and Let a ix be the extension of aax to

Spec(ry) and Osp the morphism defined by (aik)i,k. ·
Clearly coker a is a coherent sheaf and is an extension of Y.

LEMMA 3. Let ( TT, Op) be an affine variety de f ined on the field K and
~’ -~ V an A-coherent sheaf of D ~ module. Let $ ~ Spec (1’Y) be an extension
of Y and y E then there E such that j*(y) = 

If Y, 9 are two coherent sheaves on V and Y, g two extensions, any mor-
phism ae: Y can be extended to a morphism a: j --~ ~.

PROOF. Is the same as the proof of the remark 3 of § 3.

COROLLARY 1. Let ( TT, OY) be an affine variety defined on the field K
and ~’ -~ V an A-coherent sheaf. Any two extensions i = 1, 2,
of Y are canonically isomorphic.

PROOF. The identity section of Hom ($1’ can be extended to

a global section ii; ii: $1 -+ is an isomorphism for any x E j (V) hence, by
the argument used in lemma 3, j7 is an isomorphism.

LEMMA 4. Let ( V, 0 p ) be an affine variety defined on the field K and
0 --~ ~’’ -~ ~’ -~ ~" --~ 0 an exact sequence of A-coherent Ov modules. The sequence
of extended morphisms :

is still exact.

PROOF. The relation Ker Pa; is true for any x E j ( Y) hence for
any xESpecry (see the argument of lemma 3).

REMARK. It is possible to associate to any algebraic prevariety (V, Ov)
on the field K a prescheme in the following way : if K 18 the algebraic closure
of .K, to (V, Ov) we may associate one completion (V, 0j), (see § 3), and to

(V, Op;) we may associate in a unique way a prescheme (see D. Munford, « An
introduction to algebraic geometry »).

PROOF OF THEOREM 1. First we remark that it is enough to prove that
if the sequence

, ,

is exact, then the sequence
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In general we know that if (1) is exact, then:

is exact.

It is enough to prove that if

is exact, then

is exact.

Let 9 -i* Y’--* 0 be an extension of ot; the coherent sheaves Y-, 5i"" are

defined on hence we have:

is surjective (by theorem B) .

Let now y E r(:F"); by lemma 3 there exists an extension ji E T(§") of y,
by (4) there exists if such that a*(~) = y hence y = and

the theorem is proved.

REMARK. Theorem 1 can be proved also using the completion of V instead
of the extension (see [5] for the proof in the real case).

As a consequence of theorem 1 we have :

THEOBEM 2. Let K be a field and (V, Ov) an affine variety on K. In this
hypothesis the category of A-coherent Ov modules is isomorphic to the category of
finitely generated 1’’(OY) modules.

PROOF. The same as in [2] and [5].
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