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Some Basic Facts in Algebraic Geometry
on a non Algebraically Closed Field. (*)

LUCIA BERETTA - ALBERTO TOGNOLI (**)

Introduction.

Some aspects of algebraic geometry on R are studied in [1]. One of the
most useful tools to study algebraic (and analytic) geometry on R is the
concept of complexification. In this work we introduce a generalization
of the complexification which is called completion and is well defined for
any field K. One of the diseagreable facts in algebraic geometry on R is
that theorem B is false.

In [5] Lucia Beretta proves the following theorem: the functor I" of the
global sections is exact in the category of 0, A-coherent (***) modules if (V, 0,)
is an affine variety on R.

Clearly this theorem gives the good condition that replaces the the-
orem B and makes it possible to work using sheaf theory.

In this work we prove that the functor I' is exact on the category of O,
A-coherent modules where (V, Oy) is an affine variety on K and K is any field.

1. — Regular functions on an affine reduced variety.

Let K be a field, subfield of the field R ; in the following K is considered
embedded in K~
The algebraic closure of K shall be noted by K.

DEFINITION 1. Let V be an affine variety of K=, we shall call closure
(or completion) of V in R the intersection ¥ of all closed sets of K» that
contain V.

(*) Lavoro eseguito nell’ambito del G.N.8.A.G.A. del C.N.R.
(**) Universitd della Calabria.
(***) An O, module is called A-coherent if there exists an exact sequence
Oy~ 03—~ F —0.
Pervenuto alla Redazione il 27 Gennaio 1975.
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REMARK 1. The completion V of V depends on the embedding and if K = R,
R =C, V is the usual complexification of V.

LEMMA 1. Let K be an infinite field and Pe K[X,, .., X,]. If
P(zy,y ..., ) = 0 for any (v, ..., ¢,)€ K" then P =0.

Proor. If n =1 the result is clear.
Suppose the lemma is proved for n —1 and let:

P(X,, oy X,) = XXy ey X)) + oo F Xy, oy X, ).

For any (2, ..., #,_,) € K ' and x, € K we have: P(x,, ..., #,) = 0 then,
by induction «,(X,, ..., X,_;) =0 and the lemma is proved.

Let K be a subfield of B and let {x};; be a basis of R as K module.
We shall suppose 1, = a; € {e;};c;-

If P=Yax'cR[X,, .., X,] (we use the multiindex) we have:

ai=2b§a,-, bje K
3

1) P@@)=Saa'=3 (52 b;.'oc,) o' = 3o, 3biat= ;ajp,(w)
where

Py(2) = 3 bat e K[X,, ., X,].

DEFINITION 2. Let, as before, Pe R[X,, ..., X,] and {a};; be a basis
of R on K then the P,x) of (1) are called the components of P in the
basis {a;}.

P, () is called the K-component of P.

REMARK 2. Let PeR[X,, ..., X,] and xc K" then if P(x)e K we have
P(z) = P, (x).
By definition it results that P(w)=P,(x)+ > Pi(x)a; but Py zr)eK

and {o;} is a basis hence > «,P(x)=0. i#h
iy
In particular we have € K" and P(x) =0 = Py x)=0, Viel.

LeEMMA 2. Let K be a field and K a subfield, Vc K an affine variety
and V the completion in K.

Let I,, I be the ideals of the elements of K[X,, ..., X,], Rix,, ..., X,]
which are zero on V, V.

We have: Iy is generated as K module by I, hence VN E"=7V.
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Proor. Let P, ..., P, e K[X,, ..., X,] be generators of I,,. Any P, de-
fines an element P; of K[X,,..., X,] and {wel?"lp,-(m)=0} containg V
hence P.eI;.

So we have proved: I;D (ideal generated by P,).

Let now ReI; and R = D a;R; be a decomposition of R associated to

i
a basis {«};;: By remark 2 any R, is an element of I, hence: Ij; = (ideal
generated by P,).

REMARK 3. Lemma 2 is equivalent to the following relation: Ip~1I, ®R
and shows that B~ induces on K~ its own topology.

]
LeMMA 3. Let R be a field and K a subfield. Let V= UV, be an affine
i=1

]
variety of K» and V; the irreducible components. If V=UPV,; is the com-
i=1
pletion of V in R and V; are the irreducible components of V we have: ¢ =s
and V,; is the completion of V,.

Proor. If V, is the completion of V; clearly U V. is the completion
of V. We must prove that ¥, is irreducible on R and V. ¢ U Vi, i=1,...,4q.
If V,= VUV is reducible we may suppose V7, 3V¢, V,' 2V (V. is

1
irreducible) and this is impossible because of the minimality of V.
We have proved that the V, are irreducible on R.

If V,cUV, then there exists j such that ¥;oV, (V. is irreducible)
i
in this case V; oV, but this is impossible. The lemma is proved.

DEFINITION 3. Let P c K" be an affine variety, we shall say that ¥
is defined on the subfield K if the ideal Iy c R[X,, ..., X,] is generated by
P, .., P,e K[X,, .., X,]

LeMMA 4. Let Vc K» be an affine variety and V the completion in K.
The variety V is the intersection of a finite number of hypersurfaces defined on K.

Proor. Let P, =..=P,=0 be a system of generators of Iy and {«};;

a basis of K on K.
In this hypothesis the components P! of the P, generate I; and we have:

7 =N {Pi=) =0}

The lemma is proved.
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DEFINITION 4. Let V c K™ be an affine variety, U c V an open set and
f: U—K a function. f is called regular in x,€ U iff there exists an open
set U'sx, such that f,;,, = P/Q, P,Qe K[X,, ..., X,], Q(x)# 0,if € U'. fis
called regular if it is regular at any point.

PROPOSITION 1. Let V c K" be an affine variety and V c K» the com-
pletion of V in R, RoK.

Any regular function f: V —K is the restriction of a regular function
f: (V—8) > R, where S is an affine subvariety of V defined on K, such that:
SNnv=g¢.

Two extensions f and f " of f cotneide where both are defined and the extension f
is defined on K (i.d. locally f is the restriction of a regular element of
K(X,, ..., X,)).

ProOF. For any z,€ V there exists a neighbourhood U, in V and P,
Qe K[X,, ..., X,] such that f; = (P/Q),, Q@)#0, € U,: Let P, Q...
be the elements of K[X,, ..., X,] defined by P,Q ....

We can construct a covering {U,};_, , of V using open sets U, =
=V —{Q.= 0} of ¥ such that on any U,, an extension P,/Q; of f is defined.

Now we prove the proposition in the case: V is irreducible.

We have PQ,—P,Q, =0, Vi, k then PQ,— P,Q,; =0 and the ra-

tional functions P/, define a regular function f: ) —->ﬁ, where
a a
S=nNn{Q.=0}. In the general case let V=UV,, P=UV; be the de-

i=1 i=1
composition of V, ¥ into irreducible components (see lemma 3).

We remark that if U is open in ¥ and UNV,5 0 then UNV,% 6
(8 = ¥ — U is closed, hence if S contains V;, contains also P;). If ﬁm and ﬁx,‘
intersect ¥, then they intersect V, hence (P./Q,) l, and (P/@) |7, are
extensions of f,, and hence coincide. So we have proved the first part of
the proposition.

The unicity of f is proved in the first part of the proposition.

REMARK 4. Proposition 1 is true (same proof), if V is an open set of an
affine variety and V a neighbourhood of V in the completion.

LEMMA 5. Let R be a field algebraic on the subfield K and suppose R+EK.
Let Py, ...,P,e K[X,,...,X,] and S = {we K»: P,(x) = ... = P,(x) = 0}. There
ewists Pe K[ X, ..., X,] such that {xeK*: P(x) =0} =8N K» and {we R~/
P(z) =0} >8.

PrROOF. Let Kc K,cK where any element of K, is separable on K
and any element of K — K, is purely inseparable on K,. Let we K,— K,
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we have
{we B*|(P, + wP,)(®) = 0} N K» = {P,= 0} N {P, = 0} N K~.

Let Py, =] «(P,+ wP,) where G is the Galois group of the exten-

ae@

sion K(w). We have that P,, iy G-invariant, hence P,, € K[X,, ..., X,] and
clearly:

(1) {Po=0NKr={P,=0N{P,=0}NEK"
and
(2) {we Rn|Pyuy(@) = 0} > {P, =0} N {P,=0}.

Starting from P,, + wP, in a similar way we define Py, € K[X,, ..., X,]
and so on. Clearly P = P, , satisfies the conditions of the lemma. If
K,;= K, then there exists w e K — K, and o satisfies an equation 2™ — g =0,
where p = characteristic of K. Let now Py, = (P, + wP,)*"; clearly P, sat-
isfies (1) and (2). Starting from P,, and P; we may construet P,,; and so
on .... The lemma is now proved.

PROPOSITION 2. Let K be a field, Vc K" an affine variety and f: V - K
a regular function.
There exists R, Pe K[X,, ..., X,] such that:

Px)#0, VYweK", (R/P)|,=f.

Proor. If K is algebraically closed the result is well known ([2]). Let K
be the algebraic closure of K and V the completion of V. By proposition 1
there exists a regular function f: (V —8) —K that extends f, S closed set
such that 8N K»= 0.

We may suppose that the equations @, =0, @, =0,...,Q, =0 of S are
in K[X,, ..., X,] (see proposition 1).

By the lemma 5 we know that there exists Pe K[X,, ..., X,] such that
{P=0}>8 and P(z)# 0 if zc K.

The function f is defined in the affine (see [2]), closed subset V,— {P = 0}
of K»— {P = 0}, hence it is the restriction of a regular function f' defined
on Kn—{P =0} (see [2]). It is known (see [2]) that f is of the form
f'= R'|P". Let now R be the K-component of R’ with respect to a basis
of K on K, clearly (R/P")|, =/ and the proposition is proved.
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CoROLLARY 1. Let K be a non algebraically closed field then for any ne N
there exists a homogeneous polynomial P e K[X,, ..., X,] such that P(X)=0
if and only iof X = (0, ..., 0).

Proor. We apply the construction of the lemma 5 to the polynomials
Xy ooy X

Py, =] (X, + wX,) is homogeneous, say of degree g, let
ac@

Py =] a(Py; + wX?) and so on.
ac@
A gimilar construction is possible if ks purely inseparable on K.
In the following proposition we use the euclidean topology of R».

PROPOSITION 3. Let Vc R* be an affine, quasi-regular, coherent (*) com-
pact affine variety. UdV an open set of R* and f: U -~ R a C® function such
that f|,, is the restriction of a regular function.

For any compact set Hc U, ¢ >0, ge N there exist P,Qc R[X,, ..., X,]
such that:

i) Q(x) #0, Yze R";
ii) P/Qw = fir;
o(f — P/Q)(x)

w <eg, Ver, a<(q.

iii)

ProoF. By proposition 2 there exist P’, Q'€ R[X,, ..., X,] such that
[—PQ'l, =0, Q)+ 0, Voe R

By theorem 1 of [3] there exist P’e R[X,, ..., X,], P,",,EO such that
if P/Q = (P"Q'+ P')/Q' i), ii) and iii) are satisfied.

2. — Properties of coherence.

Let K be a field and Og- the sheaf of the germs of the regular functions
on K~

A (non reduced) affine variety on K is a ringed space (V, Oy = Ogny,)
where J, is a coherent ideal subsheaf of Og. and: V = support O,.

(V, 0y) is called reduced iff J, = sheaf of all germs zero on V.

(*) V is quasi regular in « if the ideal of analytic functions zero on V, is
generated by I,, V is quasi regular if it is so at any point. ¥V is coherent iff the
associated analytic space is coherent.
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Following [2] we call algebraic prevariety on K a ringed space (X, Ox)
locally isomorphic to an affine variety defined on K.

Finally an algebraic prevariety (X, Ox) is called a variety iff the diag-
onal 4y of X XX is closed in X x X.

Let (X, Ox) be an algebraic prevariety on K and J a coherent ideal sub-
sheaf of Oy, the ringed space (V = support Ox/J, Ox/J) is called an al-
gebraic subprevariety of X.

As usual we can define the locally closed subprevariety of (X, O;) and
it is easy to verify that any locally closed subprevariety of (X, Ox) has a
natural structure of algebraic prevariety on K.

It is easy to verify that any subprevariety of an algebraic variety on K
is an algebraic variety on K.

In particular we shall call projective variety any closed subvariety of
P,(K) = projective space on K of dimension =.

Let K be an algebraically closed field, and (V, O,) an affine variety.
An 0, module F is coherent if, and only if, there exists an exact sequence:

1) 03, —>0%—F —>0.

For any K we give the following definition: an O, module F is called
A-coherent if, and only if, there exists a resolution of type (1).
‘We have the following

THEOREM 1. Let (V, Oy = Ow/y,) be an affine reduced variety on the
field K, then Ogs, Oy, Iy are A-coherent Og. modules and Oy is an A-coherent
Oy module.

Proor. Using the arguments of [2] we prove all the coherence condi-
tions (the arguments do not depend on the fact that K is algebraically closed).
‘We have the exact sequence

0—)3;7901(»’-)0?—')0

hence to prove that O, is A-coherent we must verify that there is a sur-
jection 0% % Jy—0 and this is proved in [2].

To prove that J, is A-coherent we must verify that there is a surjec-
tion 0% — Ker a — 0.

Let 6,=(0,..1,...0), t=1,...,p be the generators of I'(0%.) and let
«(6;) = B; be the images in I'(Jy).

Let now suppose K be infinite, otherwise K" is discrete and the theorem
is trivial.
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D
Let y = (a:/b;):=0, a;, b;c K[X,, ..., X,] be a local relation. The
i=1 »
function y is zero on an open non empty set, hence (] b,)( Z(ai/b,-)ﬂ,.) is

D i=1
identically zero and > (TTb.:)(a:/b:)p: gives a global relation that generates
the local one. So we have proved that there exists an exact sequence
0% —Ker oo—0 and J, is A-coherent.

The fact that O, is an A-coherent O, module is proved by the following.

LEMMA 2. In the hypothesis of theorem 1, a sheaf F of O, modules is
A-coherent as Oy module if, and only if, it is A-coherent as Og. module.

Proor. Using the arguments of [2] we prove the conditions of coherence.
Let us suppose we have the exact sequence

0% -0%—->F >0

then we can construct the commutative diagram.
7 2051 F >0

(A

2a %5 0%

where n' and n” are defined using the canonical projection and o is defined
in the following way: let ,=(0,...,1,...,0), 4=1, ..., p be the generators
of I'(0%») and f;=aon'(d;) € I'(0%).

We remark that the maps n':I'(0%)—~I1(0%), =" .I['(0%)—I'(0%) are
surjective (see proposition 2 of § 1).

Let #"(0;) = B;, then ¢ is defined by o(d;) =0;.

The exact sequence 0% %> 0%"% F —0 proves the A-coherence of ¥
as Ogs module.

Let now be defined the exact sequence

O%n = 0% —>F —0.
We deduce the commutative diagram:

0% > 0% 15 F -0

g:;, _"jgg,/ 4

where ¢ is defined using the above arguments and j can be defined because F
is an Oy module and hence if 6 I'(J) we have 7(0) =0. From the dia-
gram we deduce the exact sequence 0% %> 0% %> § —0 that ends the proof.
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REMARK 1. There exist locally free sheaves on R that are not 4-coherent.

Let o =a*(x— 1)+ y*+2°cR[x,y,2]; ¢ is irreducible (see [1]) and
{p=10}=1(0,0,0)u (1,0, 0).

Let F'—R3 be the line bundle defined by the cocycle 1/¢ given in the
covering U, =R3*— (0,0,0), U,=R3— (1,0, 0).

Let 5 be the sheaf of the germs of algebraic sections of F.

It’s easy to see that any section on U, that can be extended to a global
section can be divided by ¢ and hence it is zero on (0, 0, 0). From this fact
it follows that & does’nt satisfy theorem A, and hence it is not A-coherent.
We remark that there exist coherent subsheaves of Og. that do not satisfy
theorem 4.

Let & be the sheaf above constructed and y the section that coincides
with ¢ on R*— (0, 0,0) and 1 on the second chart.

Let ' be the subsheaf of & generated by y, we have clearly F'~ Og,.
F' contains the subsheaf . F=F" and F'=~ §F; hence F" does’nt satisfy
theorem A4.

ProposITION 1. Let K be a field, (V, 0,) an affine subvariety of K* and
PeK[X,, ..., X,). In this hypothesis (V, = {xeV: P(x)# 0}, Oy,) is an
affine variety. If K is not algebraically closed any open set of V is an affine
variety.

PrOOF. It is not difficult to verify (see [2]), that (V, Oy;,) is isomorphic

to the affine subvariety of K~+* defined by g=...=9¢,=0,1—P X, ;=0
where g, =... =g, = 0 are generators of I'(J;).

If K is not algebraically closed the lemma 5 of § 1 proves that any closed
set of V is just the locus of zero of some Pe K[X,, ..., X,] intersected

with V and the proposition is proved.

PROPOSITION 2. Let K be a non algebraically closed field then the projective
space P,(K) is isomorphic to an affine variety.

Proor. Let Re K[X,, ..., X,] be an homogeneous polynomial of degree ¢
such that B(X) = 0<> X =(0,..., 0) (see corollary 1 of § 1). Let v,: P, (K)—
— Py(K) the Veronese map of degree q and w = v, X E: P,(K) = Py ,(K)
the map obtained adding R to the set of all monomial functions of degree q.

Clearly w(P.(K)) N{R =0} =0 hence w(P,(K)) is an affine variety
of K¥*! isomorphic to P,(K).

3. — The completion of a prevariety.

In this paragraph we shall define the completion of an affine variety
(non necessarly reduced), and of an algebraic prevariety.
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DEFINITION 1. Let K be a field, subfield of the field K, and ¥ — K»
an A-coherent O, module. A sheaf § — U, defined on a neighbourhood U
of K»in K~ is called a completion of F (in R) if there exist two exact sequences

%n L)O"Kn -5 -0

0%y 2> 0%nyy > F >0

such that & is an extension of «. A completion & — U is called a strong
completion iff for any xc K we have: &, ~F, ®g K.

In the following, we shall consider & canonically embedded in § &~ and
it is easy to verify that, from tPe fact that O g is a subsheaf of Oz it fol-
lows that & is a subsheaf of ¥ g.

REMARK 1. If K is algebraic on K, then Oz is a strong completion of O [
If R is not algebraic on K, in general O fne 7 Ogn, O R.

PROOF. Let {x},; be a basis of K on K, and a, =1g. We need the
following

LemmA 1. If R is algebraic on K, xoe K™ and P,Qeﬁ[Xl, ey Xu] such
that Q(x,)+ 0, there exist P;, Q. K[X,, ..., X,] such that

P a P,
6 = iglai@—i y Q@) #0 .

Using lemma 1, we shall prove remark 1.
For any xe K, let

N,={PeK[X,,.., X, ]|P@)# 0} and N,={PeK[X,,...,X,]|P@)0};
we have:

Ogn, = (K[Xy, ..., X,,])Nz,

Ozny = (BIXy, vy Xal)z,
where A, =ring of fractions with respect to B.

We have a natural isomorphism K[X,, ..., X,]~ K[X,, vy X4l ®K1'f
and we define an homomorphism j: Ogn, (¢ = Ogn,

A

(35t @b)=Shitcor., ek,
i i

i 3

We wish to prove that j is bijective.
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If b= Y Lo, LK, we have:

i(37 @3ta) =i(3ug 0m) = 3m g

B3

But the last term is zero iff the coefficients of the «; are zeros and in this case

z l, ® o, =0,
hence j is injective.

Lemma 1 proves that j is surjective.
Let now K =@ =field of rational numbers, K =Q(n); we wish to

prove Q[X]N,®QQ( ) Q@) [ Xz,
In fact 1/(X €Q(n)[X]5,, but any element of Q[X]y ®o@(w) is a
well defined functlon on 7 hence 1/(X — )¢ Q[X]y, ®q € (7).

PROOF OF LEMMA 1. We remark that K is integer on K, hence Ofn, 18
integer on Og.,. We have a natural injection j: OK..,x®1? —>Ogn, 850 We
K

can deduce that A =X OK,.E@)K is integer on Ogn,. Let M, be the maxi-
mal ideal of Ogx,, clearly .M> ®K is maximal in 4 and A is a local ring

(in general A has finite numbers I,, ..., I, of maximal ideals over J(,, but
any I, contains A, ® R, hence 4 is loca,l). It is now clear that the ma.xima,l
K

ideal of Oz-, is isomorphic to ;M;m®ff.', hence j is an isomorphism.
K

REMARK 2. Let K be a field, subfield of the field K. For any A-coherent
sheaf F — K~ there exists a completion & — U and, if K is algebraic on K,
then there exists a strong completion. In any case we have: Fore T ® O%n gy
Voe K» and hence, if K is algebraic on K; On

$®K Fp ® O,

Ogn

PrOOF. There exists a resolution:
0% 25 0% > F —0.

Let yy, ..y y,€(0%s), N1y ...y n,€'(0%~) be the generators (0, ..., 1, ..., 0) ..
To fix « is equivalent to the definition of (a;;)€'(Og-)*® such that
ax(yi) = > aym;, where o : I'(0%s) — I'(0%) is induced by o.

i
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There exists (see proposition 1 of §1) an open set U of R~ such that
U> K* and the a,; are the restrictions of regular functions d,; defined on U
(moreover the d,; are defined on K and U = K»— § where § is closed and
defined on K).

The matrix (d;) defines 0% 2,0% and the sheaf coker 4= 5 is a
completion of F.

It K is algebraic on K, then, by remark 1, we have for any ze Kn:

1) 0%,~0%,QK %,0% ~ 0%, K ~5,-0.
K K

From (1) it follows §,~ F,® R and the first part of the remark is proved.
K

In the general case we have Oz~ 0% ® O, and the sequence:

Okn

~ ~
O%ﬂlKﬂ L}O%ﬂlxn —> :}-IK" '—>0

may be written:

OpKn ® Okann -&—>0qKn ®Okann -‘95 ®0k"IK“ -0

Ogn Oxrn Ogn
and the remark is proved.

REMARK 3. Let K be a field, subfield of K, (V, Oy) an affine variety on K,
and F —V an A-coherent O, module. Let F>Ubea completion of F and
y e I'y(F), then there ewists ;‘/ET’U,(f ), U open in V, U'>V, such that P ex-
tends y.

Let o: F—G be a homomorphism of coherent O, modules, and § , § two
completions, then there exists an extension &: F v —>§|U of a where U is a
neighbourhood of V in V.

Proor. Using the trivial extension of ¥ to K, it is enough to prove
the remark when V= Kn».
We have an exact sequence
%n 2> 0% > F -0

that can be extended to:

Og"lU ’LOKK”IU .2—>\‘.F—->0

(see remark 2).
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Let ye I'(F), then there exists a family {U},_, , of open sets (of U)
and sections f,€ Iy (0%s) such that: U U;= U’ is an affine open set of Rr
containing K* and 74(8:),y_¥v,nr '

The cocycle g, =f;— B, is defined on the covering {U,} and it has
values in Ker 7, hence (by theorem B) is trivial. From this it follows that
there exists y’ € I';.(0%») such that #(y’)y=yp. Clearly #(y’) extends y and
the first part of the remark is proved.

To prove the second part we construct the commutative diagram:

e 25 O
Voo
0% ¥5.0%
nl, \Ln'
F ¥ 6
v v
0 0

To define y' and p" we make the following remark: all sheaves and
vertical morphism can be extended to Spec I'(Ogs) (see lemma 2 of § 4);
hence the functor of the global section is exact on the vertical sequences
(we use the first part of lemma 3, § 4). Let §,=(0,...,1,...,0)I'(0%)
be the canonical generators and g;=yomn(d,).

As we have just remarked there exists 0,€ I'(0O%) such that n'(0,) = f;
y' is defined by y'(d:) =0,.

In a similar way we define y".

The morphism ', »" can be extended (see remark 2) and hence also y
has an extension to the completions and the remark is proved.

DErFINITION 2. Let K be a field, subfield of K, and (V, 0,) an affine
variety defined by the ideal subsheaf J;, of Oz.. A (strong) completion of
(V,04) in R, is any affine variety (¥, O;) such that the sheaf O3 is a
(strong) completion of O, .

REMARK 4. Let VCc K" be an affine variety and suppose P,, .., P €
e K[X,, ..., X,] generate 3, in any point of V. (By the remark contained in
theorem 1 of §2 J, is generated by a finite number of polyncmials).

Let P; be the elements of I?[Xl, ey Xn] defined by P;, and 3,,(: Opn the
sheaf of ideals generated by Pl, ey Pq. If R is algebraic on K, we have:

(7,05 = 01}1./3;,) is a strong completion of (V, Oy)
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hence the completion defined in § 1 coincides with the completion of defimition 2.
Moreover if V c K* then there exists a completion V closed in K=

ProoF. By definitions and remark 1 we have the exact sequences:

(1) 03,50 —>0,—->0

@) 053, @K - O0gnpn >0, K 0.
K K

Clearly 5,,“{..: 3,, ®ﬁ then from (2) we deduce the exact sequence:

(3) 0——>3V'Kn—>013ann—>0V ®I'f -0
K

and (3) proves that (¥, Og»3,) is a strong completion of (V, 0y).
REMARK 5. Let (V, Oy) be an affine variety on K and
(1) F g Bogr

an exact sequence of A-coherent O, modules.
If (V, 05) is a completion of V in the field K there exists an open set U’
of V such that: U'>V and the homomorphisms a, f extend to an exact sequence:

@) Fra 5 B g
where §', &, F" are completions of F', F, F" defined on U’ and &, f extend o, B.

ProoF. The existence of (2) is proved in remark 3. For any zeV
we have:

3) &) = Kerfg, .

The sheaves a(F’') and KerB are coherent hence (3) is true in a neigh-
bourhood of # and the remark is proved.

DEFINITION 3. Let K be a field, subfield of & and (X, Oy) a prevariety
defined on K.

We shall say that the prevariety (X, O%) defined on Kisa completion
of (X,04) iff X c X and for any x e X there exist two affine neighbour-
hoods U, in X and U, in X such that (T, 0 %|5,) 18 a completion of (U, Oxy,)-

We have the following:
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THEOREM 1. Let K be a subfield of the field K and (X, Ox) a prevariety
defined on K.

Then there exists a completion (X, 0%) of (X, O) and if (X, Ox) is a variety,
(R, 03) can be chosen to be a variety.

Let ¢: (V, 0,) > (X, 05) be a morphism of K-prevariety and (V,03),
(jf, 03) two completions; then there exists an extension ¢ of @ defined on a
neighbourhood of V in V (hence the completion is unique near V).

We need the following:

LeMMA 2. Let K be a subfield of R, (V, 0y) be a prevariety on K and
(7, 03) a completion of V.

Let (X, Ox) be a prevariety on K, (XT, 0%) a completion on Rand p: (V,0p) -
— (X, Ox) be a morphism, then there exists an extension ¢: v, 03) - (X, 03)
of @ defined on a neighbourhood V' of V in V and two such ewtensions coincide
on a neighbourhood of V in V.

ProOF. For any z € V there exists, in V, an open set V,> x such that:
@(V,) is contained in an affine open set W, of X and W, has a completion W,
that is an affine open set of X.

We may suppose moreover that V, is contained in an open set P, of 7
such that ¥, is a completion of V, and for any 7€'y (03) we have
P=0<J, =0.

Using proposition 1 of §1 we may construct an open (in ¥) covering
Voyyones V., of ¥ and some extensions ¢,: V., —~2X of P,

Let # €V, using the argument of proposition 1 of §1 we deduce that
there exists an open set B,5 x of ¥ such that all the @5, coincide (where
defined). (If B,= U B, is the decomposition of B, into irreducible com-
ponents we require that B, N V = B, has B, as completion).

So gluing together the §; we define the extension of ¢, the unicity of the
extension is proved by the same argument.

We remark that the lemma 2 implies that if ¢ is an isomorphism we
may extend ¢ to an isomorphism ¢': (¥, 03) - (X, Oz (it is enough to
extend ¢ and ¢! and to verify that ¢ ¢ =id = gog~t = id).

ProoF oF THEOREM 1. Let W = {U};_, , be an open affine covering
of X and U;c K™ some realisation of U,.

We shall denote by U the completions of U; in K™ and by g,: U; — U,
the natural isomorphisms.

Let Uy, = o7 (UyN U,) and g;log; = 04yt Upy — U

Using the lemma 2 we may extend g,, to a morphism §,, defined on an
open set U, of U{ and we may suppose {,: U, —>é,2(01,) is an iso-
morphism.



356 LUCIA BERETTA - ALBERTO TOGNOLI

Using §,, we may glue together U, with U, and construct a completion
of U, U U,. After q constructions we have the completion of X. We wish
to prove that if X is a variety then X can be constructed to be a variety.

It is enough to prove that if X = X, U X, is the decomposition of X
into open sets, and X, are two varieties, completions of X;, then we may
glue together two open sets X;CX . of X, and obtain a variety comple-
tion of X.

Let Xm_X NX,cX; and gy, XI,——>_X2 be the identity map. Let
bia: X1o >2X, be an extension of On Re= Xl uX,/R, (where « 2y
¥ = $1a()), be the quotient and =: X, [ X, - X,, be the natural projection.
The diagonal Az of X12x X12ig the image (under 7z X i) of jzg U qu Uﬁm V) 221
where A,; = diagonal of f,-xl?i and A, = graph of §,. Itis easy to see
that X% is a variety iff the Y| « are closed subsets of X ;x)?  Then X2 gy
a variety iff 4., ik, are closed in X xX..

X = X, U X, is a variety then 4,, and 4,, are closed in X, X X, and X, X X;.

Let 2 be a closed completion of A4, in X ><X For any weXu, A12 is
the gra.ph of the map g;,, hence in a neighbourhood U, of # in Xl, A12 is
the graph of a map §,, that extends g,,. Then there exists an open neigh-
bourhood X;, of X,, in X, such that A, is the graph of a map g,: X1, - X,.

Using the same argument for A,, we find two open sets X:. X, jT: cX i
such that A, defines an extension of g, on X, and clearly A, is closed
in ®;x2X,.

The theorem is now proved.

4. — The exactness of the functor I
We wish to prove the following

THEOREM 1. Let (V,0) be an affine variety defined on the field K.
Then the functor F L> I'(F) of the global sections is exact on the category of
the A-coherent O, modules.

We begin with a definition.

DEeFINITION 1. Let (V, O,) be a (reduced) affine variety defined on the
field K, we shall call associated scheme the affine scheme (Specl,, Ogy)
where Oy, is the usual structural sheaf associated to Spee I', and I, = I'(0y,).

LemMMA 1. Let (V, Oy) be an affine variety and (Specly,, Ogy) the asso-
ciated scheme, then there em’sts a natural injection j: V — Specl, such that
Osyjiry = J+(0y). Moreover j(V) = {set of the closed points of Spec(I')}.
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PrOOF. Let V be realized in K, then to any point & = (o, ..., x,) €V
we associate the maximal ideal j(x) generated by the classes {X;— o}
1=1,..,n

Now we wish to prove that any y € I'y(Og4,) defines an element yy .,y
of Iy i) (J%(0y))-

We may suppose U = {weSpecl’,/f¢x for a fixed fel',} and by de-
finition we have that any element of I';(Ogy) is of the form P[f*, Pe I',.

If z€j(V) then f¢x <> f(j-'(»)) # 0 and clearly P/f* is a regular func-
tion on j~(U Nj(V)).

Let now ye I'y(0,), v U, then locally y is the image of a rational func-
tion hence it is the restriction of a section of Oy, defined on an open set of
Spec I, containing j(z). So we have proved Ogpy) = jx(0y)-

We wish now to prove: j(V) > {set of the closed points of Spec(I7)},
(the other inclusion is clear).

Let « be a maximal ideal of I', and ¥ c K* be the completion of V into
the algebraic closure K of K.

Let & be the ideal of I generated by « and S the locus of zeros of &,
let us suppose SNV =4@.

Any Pe K[X,, ..., X,] such that P|g =0 is, by the maximality of «, in c.

By lemma 5 of §1 there exists Pe K[X,, ..., X,] such that P(x)+# 0
it we K", Pg=0 hence (1/P)el', and this is impossible. So we must
suppose SN V=~ @ hence, again by maximality: «€j(V) and the lemma
is proved.

REMARK. In the following we shall often identify V and j(V), O,
and Ogpiipy «

DEFINITION 2. Let (V,0;) be an affine variety defined on K and
F—7V a coherent sheaf of O, module; a coherent sheaf  —Spec (I'y)
of O, module is called an extension of F iff there exist two exact sequences:

o %.0% >F >0, O 2,05 =% =0
where & is an extension of «.

LEMMA 2. Any A-coherent sheaf F — V defined on the affine variety V has
an extension 5 — Spec (I'y).

PrOOF. We have an exact sequence

0}, -0, -5 -0
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and « is given by «(z;)= D auy, where 7;,=(0,...,1,...,0)eI(0}),
k

e =(0y ..., 1,...,0)€I'(0%) and o€l : Let G; be the extension of « to
Spec(I'y) and 0%, %5 0%, the morphism defined by (du)ix-

Clearly coker @ is a coherent sheaf and is an extension of .

LeMMA 3. Let (V,0;) be an affine variety defined on the field K and
F -V an A-coherent sheaf of O, module. Let F — Spec (I'},) be an extension
of F and yeI'(F) then there exists §eI'(F) sufhjha,t Jx @) = Pjm-

If &, S are two coherent sheaves on V and F, § two extensions, any mor-
phism a: F —8G can be extended to a morphism G: F —8.

Proor. Is the same as the proof of the remark 3 of § 3.

COROLLARY 1. Let (V, Oy) be an affine variety defined on the field K
and F —V an A-coherent sheaf. Any two ewtensions & ; — Spec (I'y), i =1, 2,
of & are canonically isomorphic.

Proor. The identity section of Hom (3’7' 1 F 2y can be extended to
a global section 7; §: &, — &, is an isomorphism for any » € j(V) hence, by
the argument used in lemma 3, ¥ is an isomorphism.

LEMMA 4. Let (V, 0,) be an affine variety defined on the field K and
0>F'—F - F"— 0 an exact sequence of A-coherent O, modules. The sequence
of ewtended morphisms:

0>F >F 550
18 still exact.

ProOF. The relation Kerf, =imd, is true for any € j(V) hence for
any xeS8pecly, (see the argument of lemma 3).

REMARK. It is possible to associate to any algebraic prevariety (V, Oy)
on the field K a prescheme in the following way: if K is the algebraic closure
of K, to (V, 0,) we may associate one completion (V, 07), (see §3), and to
(V, 07) we may associate in a unique way a prescheme (see D. Munford, « An
introduection to algebraic geometry »).

ProoF oF THEOREM 1. First we remark that it is enough to prove that
if the sequence

1) 0 >F ->F >F"=>0
is exact, then the sequence
2) 0—->IF)—>IF)>IF")—>0

is exact.
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In general we know that if (1) is exact, then:

0 >I(F")—>IF)—~>IF")

is exact.
It is enough to prove that if

F->F"—>0
is exact, then
(3) I'&)->I'F") -0

is exact.
Let & 2> 3"—0 be an extension of a; the coherent sheaves ¥, F” are
defined on Spec(l,) hence we have:

(4) Ge: I'(F) > I'(F") is surjective (by theorem B).

Let now y € I'(F"); by lemma 3 there exists an extension § I(F") of Vs
by (4) there exists 7j€l'(¥) such that d.(77) =7 hence y = ax(fj;y,) and
the theorem is proved.

REMARK. Theorem 1 can be proved also using the completion of V instead
of the extension (see [5] for the proof in the real case).
As a consequence of theorem 1 we have:

THEOREM 2. Let K be a field and (V, O;) an affine variety on K. In this
hypothesis the category of A-coherent O, modules is isomorphic to the category of
finitely generated I'(0,) modules.

PROOF. The same as in [2] and [5].
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