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Completely Monotone Families of Solutions
of n- th Order Linear Differential Equations
and Infinitely Divisible Distributions (*).

PHILIP HARTMAN (**)

dedicated to Hans Lewy

1. - Introduction.

It was shown in [9] that if x is the unique solution of the

modified Bessel differential equation

satisfying as t - 0, then I,(t) is a completely monotone
function of 1 _ #2 ~ 0 (for fixed t &#x3E; 0 ) ; for the definitions of the solutions

Iu(t), Kp(t) of (1.1), see [15], pp. 77-80. Thus, by the theorem of Hausdorff-
Bernstein (cf. [16], p. 160), there exists a (unique) distribution function
W(r) = W(r, t, oo ) on r &#x3E; 0 satisfying

so that W(0) = 0, =1, W(r - 0) = W(r), and W(dr) &#x3E; 0. The results

below will imply the following generalization:

THEOREM 1.0. (a) 0  t C ~ - 00. Then is a completely mono-
tone f unction of 1 _ p2 0, so that there exists a (unique) distribution f unc-

(*) This study was supported by NSF Grant No. MPS75-15733.
(**) The Johns Hopkins University, and Courant Institute for Mathematical

Sciences, New York University.
Pervenuto alla Redazione il 24 Settembre 1975.
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tion satisfying

the distribution function

W(r) = W(r, t, T) is infinitely divisible

is non-decreasing in r and t, and non-increasing in z;

where 6,,(r) is the unit distribution f unction (i.e., 6(0)=O and 6(r)=l for r &#x3E; 0) .
(b) Also, and are completely monotone functions of

~, = ~C2 &#x3E; 0 for 0  t  í so that there exists a distribution function
W(r) = W(r, t, -r) on r &#x3E; 0 satisfying



269

The distribution f unction W(r) = W (r, t, i) satisfies (1.2), (1.3) with -r,. &#x3E; 0,
in (1.4), (1.5) for 0  -r  - ; (1.6) ; (1.7) with and (1.8).

The arguments of [9] can be used to show that if the definition of W(r, t, i)
for r &#x3E; 0, t &#x3E; 0 is extended by putting W(r, t, r) = 0 for r  0 and/or t = 0,
then W (r, t, i) is continuous for - oo and 0  t  of class 000

0  t  and satisfies the parabolic equation

for fixed 7:, on - oo  r and 0 C t  7:(~ 00).
The result of [9] concerning the complete monotony of I,(t) as a function

of ~, _ ,u 2 &#x3E; 0 (for fixed t &#x3E; 0) suggests the questions as to when a family
of solutions x = X(t, I) of a 1-parameter family of differential equations

(1.9) Dnx + qn-I(t)Dn-1x + ... + q1(t)Dx - q(t, A)x = 0, D = d/dt,

is a completely monotone function of Â E A (for fixed t E T )
or when such a completely monotone family of solutions x = X(t, I) exists, y
and when the analogue of Theorem 1.0 is valid.

NOTATION. - Unless otherwise specified, an « interval» can be bounded
or unbounded, and closed or open or neither. T is a t-interval with endpoints a
and fl, and (x, fl) is its interior. A is a A-interval

and AO its interior.

We shall make some of the following assumptions from time to time.

(Al) q1(t),..., q,,,-:, (t) E C°(T) and q(t, Â) E C°(T x A). For fixed A E A,
(1.9) is disconjugate on T; i.e., no solution x(t) ~ 0 has more than n - 1

zeros on T.

(A2,) exists, is continuous, and satisfies (-1 )m+k 0

on f or m = 1, 2,... and a fixed k (in particular, ( -1 ) k+1 is

completely monotone on ll.° for fixed t E T ) .
It is immaterial in assumption (Al) whether or not zeros are counted

with multiplicities. For a more general result, see [6]; and for a simple
proof for the linear case at hand, see [13].

When (Al) holds, (1.9) has first, second, ..., n-th principal solutions at
say x = ~1(t, ~,), ..., ~n(t, A); i.e., solutions satisfying ~~(t, ~,) ~ 0 for t

near fl and ~~(t, ~,)/~~+1(t, ~,) -~ 0 as for j = 12 ... , n; [7], pp. 328-347
or pp. 353-355 or [11]. (In [7], pp. 353-355, the assumption of « discon-

jugacy » is relaxed to « non-oscillatory at =~8~). Furthermore, if 7: E TO,
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then there exist unique principal solutions r~l (t, 7:, A), ..., 1Jn(t, z~, Â) at t = ~8
such that x = T, I) satisfies

[7], Theorem 7.2n(vii), p. 332. The solution x = 77,(t, 7:, A) is called the j-th
special principal solution at t = fl, determined by 7:. A first principal solution
x = ~,,(t, Â) is unique up to a non-zero constant factor and ~,,(t, Â) =1= 0 for

([7], Theorem 7.1n(i), pp. 331-332), so that 7:, Â) _ ~~(t, 
Sometimes it will be convenient to assume

(A3,,) Let ar = a or J = fl. There exists a family of non-negative first
principal solutions x = ~~(t, Â) at t = ~B satisfying

This assumption is equivalent to the requirement that

holds for arbitrary first principal solutions xl(t, ~,) &#x3E; 0 of (1.9). For

in this case, ~,,(t, Â) = xl(t, v), for a fixed v satisfies (1.11Q). The
asymptotic integration theory of (1.9) gives simple sufficient conditions for

the validity of (1.12), hence of (A3). Also, if T = (oc, fl] is closed and

bounded on the right and x = ~1(t, Â) is the solution of (1.9) satisfying the
initial conditions (1.10) with j = n and i = fl, then (1.11.) holds; contrast
part (b) of the following theorem with the result in the Appendix 2 below.

THEOREM 1.1. Assume (AI) and (A2k) f or a fixed k, 0  k  n. (a) Let
T E TO and x T, Â) be the special (n - k)-th principal solution at

t = ~8 determined by T. Then T, A) E CO(T X TO for i = 0, ..., n,
and 21.-k(t, z~, ~ ) is completely monotone on ,ll.°, for fixed (t, i) with a  z~ - t  fl.
(b) If, in addition, n - k = 1, AO D [0, 00), and x = ~1(t, A) is a first principal
solution, then, for a  t c T  ~, there exists a distribution function W(r) =
= W(r, t, T) on r &#x3E; 0 such that

The distribution f unction W(r) = W(r, t, i) satisfies (1.2), (1.3) with il&#x3E; a

and in  fl; (1.4 ) ; and (1 - 7) with a  a  ~.
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REMARK 1. In Theorem 1.1 (b), condition [0, 00) » can be replaced by
«   = (0, provided that ~1(t, ~,), defined on = Tx(0, cxJ), has a
continuous extension to T X [0, oo ) ; see [7], p. 335, or [5], p. 360, Corollary 6.6
and the comment following it. A similar remark applies to Theorem 1.2(b)
and the last part of Lemma 2.2 below.

REMARK 2. If (A2k) holds, then (A2n_k) holds after the change of variables
t -~ - t. Thus, part (a) implies that if x = T, A) is the k-th special
principal solution of (1.9) at t = « determined by T, i.e., x(t) = Ck(t, T, Â)
satisfies the conditions for 1:!~~ i  k and Dk-xx = (-1 )k-1 at

t = T, then i, I) E C°(T X T for i = 0,..., n, and Ck(t, T,.) is com-
pletely monotone on for fixed (t, r) with a  t  T  fl.

THEOREM 1.2. Assume (Al), (A2n_1) and (A3,,) with a = oc [or a = ~3].
(a) Then for 0  i  n, and ;l(t,.) [or 1/~-)] ~ 
pletely monotone on for fixed t E TO. (b) If, in addition, Ao :D [0, 00), then
there exists a distrib2ction function W(r) = W(r, a, t) [or yY(r) = W(r, T, ~8)]
on r &#x3E; 0 such that

TO [or such that

and t E To] ; also zl = a [or in = ~8] is admissible in (1.3) ; W(r, t, i) - 6,(r)
as t  i - oc [or i&#x3E; t ~,8]; and W(., a, i) [or W(., t, ,8)] is infinitely divisible.

REMARK 3. It will be clear from the proofs that Theorems 1.1 and 1.2
remain valid if (1.9) is replaced by an equation involving quasi-derivatives
of the form

the operators Di for i = 0, ..., n are replaced by .Li = Di for 0 ~ i  K and
Li+K = Pi+1D... DPl1 DK for 0 ~ i 1~C, and assumption (Al ) is replaced by

(A1’ ) M &#x3E; 0, and n = K + M ; = p;(t) E C° ( T ) for j =1,...,
.1~C-f-1; qj = q;(t) E CO(T) for j = 1, ..., K - 1; q = q(t, A) E C°(T and (1.9’)
is disconjugate on T for fixed A 
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As an application, different from that concerning 1,(t), we might mention
that the results above imply that the Legendre differential equation

has a family of principal solutions x = X(t, p, v) at t = I on T (1, oo ) such
that X(t, p, v) is a completely monotone function of 1 = /Z2 0 for fixed
t &#x3E; 1, v &#x3E; 0. In fact, from Theorem 1.2, we obtain in the form

where c(,u, v) can be given explicitly in terms of the r-function
and is a Legendre function of the first kind; cf. [4], p. 122, (3) and (5).
Also, if Qv (t) is a Legendre function of the second kind, then Qf(t) is a prin-
cipal solution at t = oo for fixed ,u, v &#x3E; 0 and, by Theorem 1.2, F(v + p -E-1 ) ~
exp is a completely monotone function of 1 =IZ2&#x3E; 0 for fixed
t &#x3E; 1, v &#x3E; 0; cf. [4], p. 122, (5). We could also formulate an analogue of
Theorem 1.0.

In Section 2, we state the main Lemma 2.1 concerning the complete
monotony of certain Green’s functions with respect to A (for figed s, t).
Section 3 contains the proofs of Theorems 1.1 and 1.2. Section 4 gives some-
what different criteria for a family of solutions X(t, Â) of second order dif-
ferential equations to be completely monotone with respect to A. The-

orem 5.1 deals with a generalization of (1.1) in a neighborhood of a regular
singular point. Finally, Section 6 contains interesting related observations
about the -P-function.

Appendix 1 concerns the situation when m is restricted to a finite range
in condition (A2,). Appendix 2 deals with the Cauchy functions of a

1-parameter family of n-th order linear differential equations. Appendix 3
extends known characterization of a j-th special
principal solution of a disconjugate equation; cf. Theorem 7 .1n, [7], p. 330
for the case j = 1.

2. - On Green’s functions.

Assume (Al) and fix [a, b] c T and k, 0  k  n. Write the left side

of (1.9) as L(2) x, where L(A) = Dn + qn-1Dn-1 + ... + q,D - q is a differ-

ential operator. Consider the boundary value problem on [a, b] consisting
of the differential equation = 0 and boundary conditions
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The fact that (1.9) is disconjugate on T, hence on [a, b], implies the existence
of a Green’s function Gab(t, s, Â) defined on [a, b] X [a, b] X 11 such that if

h(t) E CO[a, b] or h(t) E Z2(a, b), then

has a unique solution satisfying (2.1 ), (2.2), and x is given by

Recall that Gab is uniquely determined by the conditions: (i) as a function

of t, x(t) = Gab(t, s, Â) is a solution of (1.4) on [a, s), (s, b] and satisfies (2.1),
(2.2); (ii) for fixed and

i = 1, ..., n -1, and Dn-1 Gab(s --~- 0, s, ~,) Dn-’Gab(S - 0, s, ~,) =1.
The main lemma is the following

LEMMA 2.1. Assume (Al), (A2k) with fixed k, 0  k  n, and [a, b] c T.
Then s,.) is completely monotone on A for fixed s, t c [a, b].

McKean [12] contains a similar result for self-adjoint (possibly singular)
boundary value problems with n = 2, q(t, ~,) _ ~, --~- Q(t) &#x3E; ~, &#x3E; 0. We sim-
plify his operator-theoretic proof.

REMARK. Lemma 2.1 implies that if h(t) = h(t, I) E C° ( [a, b] x A) has the
property that h(t,.) is completely monotone on ll. for fixed t e [a, b], then
the unique solution x(t) = x(t, I) of (2.1)-(2.3) given by (2.4) is completely
monotone on A for fixed t E [a, b].

The proofs of Lemma 2.1 and Theorem 1.1-1.2 can be modified to ob-
tain the following:

LEMMA 2.2. Let satisfy (A21), and

disconjugate on T for fixed A. Let x = Y(t, A), Z(t, A) be non-negative (first)
principal solutiong o f (2.5) at t = a, fl, and suppose that Y, Z are linearly
independent and normalized by p(t)[ZY’- Z’ Y] = 1. Then G(t, s, A), defined
as Y(t, A) or Y(s, Â) according as t  s or t &#x3E; s, is a completely
monotone function of A E ll° for fixed s, t E T. If either s  -c  t or t  -r: s,

18 - Annali della Scuola Norm. Sup. di Pisa
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then G(t, s, ~ 7:,.) is completely monotone on If also [0, 00),
then there exists a distribution f unction P(r) = P(r, t, s, 7:) on r &#x3E; 0 satisfying

for ~, &#x3E; 0, and P(., t, s, i~ is infinitely divisible. Note that

PROOF OF LEMMA 2.1. It will be clear from the explicit construction of
in the proof of Theorem 1.1 that 

exists and is continuous on if m = 0 [or m&#x3E; 0]
and either 0  i, j  n - 2 or t ~ s. It is known ([1], [10],
[14]; cf. [2], p. 105) that (-1)kGab(t, s, A) &#x3E; 0 on [a, b] X [a, b] 

If then L(A) G( ., s, ~,) = 0. Differentiation of this equation with
respect to gives (2.3), where x = s, 1) j81 and h = s, A) -
· aq( ·, a,)laa,. As functions of t, h is continuous and x E on [a, b] satisfies (2.1)-
(2.2). Hence (2.4) holds, i.e.,

Successive differentiations with respect to A EAo and an obvious induction
give Lemma 2.1.

3. - Proof of Theorem I,I(a) .

Let x(t) = X(t, z, A) be the solution of (1.4) satisfying the initial condi-
tions (1.10) with j = n, so that X(t, ~, Â) is the Cauchy function for (1.9)
for fixed Â EA. It is clear that (A1 ) implies that E 

Also if (A2k) holds, then 

E for i, j = 0, ..., n and arbitrary m.
Let x(t) = Y(t, a, s, b, A), Z(t, a, s, b, A) be the solutions of (1.9) such that

according as a ~ t ~ s or b. Thus, condition (ii), following (2.4) and
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defining Gab’ implies that Z - Y = X(t, s, A), while (i) implies that x(t) = Y
satisfies (2.1) and x(t) = Z satisfies (2.2). Since Y = Z - X, x = Z is deter-

mined by the boundary conditions

Similarly, y x = Y is determined by

Let x(t) = s, i, I) be the unique solution of (1.9) satisfying the
boundary conditions

Thus, by (3.2) and (3.3), we have

This makes it clear that Y, Z have smoothness properties similar to those of X.

PROPOSITION 3.1. Assume (Al) and (A2k) with k fixed, 0  k  n. Then

a, s,.), f or a  t  s, and Xn-k(t, b, s,.), f or s  t  b, are com-

pletely monotone on A.

PROOF. The definition of the Cauchy function X(t, r, Â) implies that
t as uniformly on compacts of A.

Hence, by (3.5) and (3.6),
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Thus, Proposition 3.1 follows from Lemma 2.1 and (3.1); cf. [16], pp. 147 ff.,
or Appendix 1 below.

PROPOSITION 3.2. Assume (Al) and let Â E A be fixed. Then

This limit is valid in Cn on arbitrary (t, s)-compacts of T X TO.

REMARK. This proposition and (3.5) imply, for example, that

is completely monotone on ,ll.° for fixed (a, s, t), a C s C t and a, t E T.

Proposition 3.2 is contained in Appendix 3 below.
It is now easy to complete the proof of Theorem I,I(a). Proposi-

tions 3.1, 3.2 imply that s, ~ ) is completely monotone on A° for fixed
(s, t), a  s  t  P. In particular, it is continuous and non-increasing with
respect to A for fixed (s, t). It therefore follows from Dini’s theorem that

A) ?7n-k(t, s, 20), uniformly on (t, s)-compacts of

oc C s c t  fl, hence of T X T°. Consequently, s, Â) e C°(T X TO xAO).
Hence, s, I) E CO(T X TO X11.°) when i = 0, ..., n, for a solution

of (1.9) is uniquely determined by its values at n distinct t-values (i.e., 7 if

a?i(, A) ... , xn(t, I) are linearly independent solutions of (1.9) and 
then det(xi(t" 1)) =1= 0). (For an analogous non-linear result, see the proof
of Lemma I 1.1, [8], pp. 207-210. In the linear case at hand, a proof need
not use the disconjugacy of (1.4), cf. Lemma 7.1, [5], p. 479.)

PROOF oF THEOREM 1.1(b). Since t7 -) = ~1(i, ~ )/~1(t, ~ ) is completely
monotone on ll = [0, oo) for fixed (t, r) with by part (a), the
existence of a unique distribution function W (r) = W (r, t, r) satisfying (1.13)
follows from the Hausdorff-Bernstein theorem. The relation (1.3) for

7:1  ...  7:n with T is a consequence of (1.13) and the standard the-
orem on the products of Laplace-Steltjes transforms. The statement (1.4)
follows from (1.3); in fact, if then (1.3) implies that

so that
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which implies (1.4). The statement (1.7) is clear from (1.13) A) =
= ~1(~’, ~)/~1(t, A) ~ 1 as t, r - J uniformly on (~, I)-conpacts of TO X [0, oo).
Furthermore, the monotony condition (1.4) and (1.7) imply, by virtue of
Dini’s theorem, that (1.7) holds uniformly on compact (r, a)-subsets of

The infinite divisibility of W(., t, í), follows

from (1.3) and the uniformity of (1.7); cf. [3], pp. 128-135.

PROOF oF THEOREM 1.2(a). By Theorem 1.1, ~1(z~, t, ~ ) = ~1(z, ~ )/~1(t, ~ ) is

completely monotone on if a  fl. Thus if (A3~) holds and p E 11.
is fixed, ~,, (r, - ) = t, ~ ) ~1(t, ,u), as t is completely monotone on AO
for fixed t E TO. Similarly, if (A3,) holds, then is completely mono-
tone on for fixed t E TO. The asserted smoothness properties of 81(t, ~,)
follow as in the proof of Theorem 

PROOF oF THEOREM 1.2 (b ) . This is similar to the proof of Theorem 1.1(&#x26;)
and will be omitted.

4. - Use of asymptotic estimates.

It was mentioned in [9], although no details were given, that a proof
that Iu(t) is a completely monotone function of 1 = ~C2 &#x3E; 0 could be based
on a knowledge of the asymptotic behavior of I,~(t) near t = 0 and t = oo , y
instead of using Green’s functions. A generalization of such a proof can be
obtained from the following simple proposition.

Theorem 4.1. In the differential equation

let 0  p(t) E C°(T), q(t, Â) satisfies assumption (A21) and q(t, A) &#x3E; 0. Let

x = X(t, Â) be a solution of (4.0) such that X, C°(T X l1.), and 
exists and is continuous on T xAo for n = 0, 1, .... Then X(t,.) is comp lete-
ly monotone on A (for fixed t E T) i f and only if

holds for a = a, # and all A E 11.°.

In contrast to Theorems 1.1 and 1.2, it is not supposed that x = X(t, Â)
is a principal solution. A variant of Theorem 4.1 is the following:
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THEOREM 4.2. Let p(t), q(t, Â) be as in Theorem 4.1 and x = X(t, Â) a
principal solution (4.0) at t = fl such that exists and is continuous

on T X ll° for n = 0, 1, .. and that either

Then ~(t, · ) is completely monotone on A i f and only if

PROOF OF THEOREM 4.1. Since the necessity of (4.1J and (4.1~) for

is clear, we only prove the sufficiency. Since q(t, a standard

maximum principle shows that a solution of (4.0), for fixed ~,, cannot have
a negative minimum interior to T. Thus (4.1a) for n = 0 and a = a, #
imply the case n = 0 of

Let n -1 &#x3E; 0 and assume (4.4~) for k = 0,..., n -1. If x = X(t, ~1) in (4.0),
n differentiations with respect to A on give

q(m) = omq/oÂm, and Onk = n !/k ! (n - k) !. Another appeal to the maximum
principle shows that, for a fixed A, y cannot have a negative minimum in-
terior to T. Hence (4.1a) for ~r = implies (4.4n). This completes the proof.

PROOF oF THEOREM 4.2. Since one-half of Theorem 1.2 is trivial, we
prove only the sufficiency of (4.3) for the complete monotony of X (t, · ) .
We first consider the case

of (4.2). By induction, we shall prove (4.4n) and
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Of course, (4.8n) is trivial if T = (a, fl] is closed on the right, by virtue
of (4.7) and the continuity of X~ n~ on 

The case n = 0 of (4.4n) follows as in Theorem 4.1. Also the case n = 0

of (4.8n) follows from (4.7) and Lebesgue’s monotone convergence theorem.
Assume (4.4x) and (4.8k) for k = 0, - .., n - 1, and differentiate (4.0) with
respect to to obtain (4.5), (4.6). Suppose, if possible, that

Note that if T = (a, /3] is closed on the right, by (4.7). Since y
cannot have a negative minimum at an interior point of T, it follows

from (4.3) that y’(t, 0 and y(t, ~ y(r,  0 for t &#x3E; 7:. By con-
tinuity, y (r, 1)  0 and similarly y (t, Â) ~ y(r, A) s y ( z~, ~,o ) /2  0 for t &#x3E; 7:

and A near 

If ~, &#x3E; ~u, then we have

The right side is not less for A, p near lo
and t &#x3E; 7:. Integrate (4.10) with respect to p over an interval [e, A] to
obtain

I

which is not less than - (Â - e)n+ly(-r, -E-1) ! &#x3E; o. This contradicts

(4.7) and (4.8k) for k = 0, ..., n - 1, and so (4.9) cannot hold. Thus

on TxAo, i.e., (4.4n) holds. Furthermore, (4.7), (4.8k)
for k = 0, ..., n -1, and (4.11) imply (4.8n). This completes the induction
and the proof of Theorem 1.2 in the case (4.7) of (4.2).

We now consider the case f dtip (t) = 00 of (4.2). By induction, we
prove (4.4n) and
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This proof is similar to that above if it is noted that (4.9) implies not only
y’(t, Â.o)  0 for t  7:, but also that y(t, ~ - oo as t ~ fl. This follows

from a convexity argument since (4.5) shows that d2y(t, 0 for

0  s  oo , where s(z) = 0, and t = t(s) is the inverse of s = s(t).

5. - A regular singular point.

The next result conerns the case of the family of differential equations

THEOREM 5.1. Let ro be arbitrary and q,, q2, ... non-negative constants such
that the power series in (5.1) is convergent for It  oo). Let qo(Â) E C°°(1l.)
satisfy

and is completely monotone on A .

The indicial polynomial P(v) = P(v, ~,),

has the (unique) positive zero

and completely monotone on j4. Let c(~,) ~ 0 be arbitrary. Then,
for ~,, (5.1) has a solutions

on 0  t such that = 1 and is completely monotone on A for
n = l~ 2, .... Hence, if c(~,)tv~~~ is completely monotone on A for 0  t  fl),
then the same is true of (5.5),, (This is the case if c(A) = 1 and flo  1.)

PROOF. We shall make use of the following simple fact in this proof and
in the next section.

PROPOSITIOH 5.1..Let g(f.l) be completely monotone for ~u Let

~C = be continuous for ~, &#x3E; 0, = 0, g~ E C°° (0, 00), and is com-

pletely monotone for ~, &#x3E; 0. Then = is completely monotone

for ~, &#x3E; 0.
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Substituting (5.5) into (5.1) gives the recursion formula

Here P(v, Â) is the indicial polynomial (5.3) for so that, by (5.4),’

An analogue of Proposition 5.1 with g(p) = (2n,u + n 2)-l and =

= [(1- ro)2/4 -~- shows that = is completely monotone.
Another application gives that qi/P(n + v(A), A) is completely monotone
on A. An induction and (5.6) imply that =1, ... are completely
monotone.

6. - A property of the r-function.

The modified Bessel differential equation (1.1) is of the type (5.1) with

qo(Â) _ ~, = ,u2 &#x3E; 0. The solution lp(t) has an expansion,

analogous to (5.6) ; cf. [15], p. 77. From Theorem 5.1, we can only deduce
that is a completely monotone function of 1 = ,u2 &#x3E; 0 for 0  t  2e-Y

(rather than for all t &#x3E; 0 ) . In fact, we have the following :

PROPOSITION 6.1. Let t &#x3E; 0 be fixed and Then
= is completely monotone for ~, &#x3E; 0 if and only if

where y is the Euler-Mascheroni constant. In this case, - a is also

completely monotone for ~, &#x3E; 0.

REMARK 1. By the Hausdorff-Bernstein theorem (cf. [16], p. 60), it fol-
lows that if (6.2) holds, then there exists a distribution function V(r) =
= V(r, t) for r &#x3E; 0 satisfying

according as
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REMARK 2. The exponent 1 2 in = is the ((best)) possible in

the sense that f (~,a) is not completely monotone on A &#x3E; 0, for any 6 &#x3E; 1
and any t &#x3E; 0. In fact, it is readily verified, by using the formulas in the
proof to follow, that 0 if 2  6  1, t &#x3E; 0.

PROOF. Let be the logarithmic derivative of 1p(¡.t) = 
By a standard formula,

cf. [4], p. 15. Put

Then Proposition 5.1 is applicable to for, in this case,

is completely monotone for

When (6.2) holds, (te’Y)/1 is a completely monotone function of ,u &#x3E; 0, hence
of ~, &#x3E; 0 (by Proposition 5.1 with = Al). Also, e~ is a completely mo-
notone functjon of ~O &#x3E; 0, so that exp (- e(lz)) is a completely monotone
function of A (by the case (6.4) of Proposition 5.1). Consequently, (6.6) is
completely monotone for ~, &#x3E; 0 when (6.2) holds. Also, in this case,
- = + [log (1/(te’’)]/2~,t is completely monotone for ~, &#x3E; 0,
where is given by (6.5).

Let te’’ &#x3E; 1. Then, by (6.6), df (,u)/d,u = -E- log (te")] f(p). Since

de/d/l = 0 at p = 0, by (6.3)-(6.4), and log (te’’) &#x3E; 0, we have 0 at

p = 0. Hence = is increasing for small A &#x3E; 0 and cannot be com-

pletely monotone.

Appendix 1: Monotone families of solutions.

We use the notation of Sections 1-3.

DEFINITION. The class JM~(.4). A function h(~,), A c- A, is said to be of
class Ml = if h is nonnegative and nonincreasing. A function h E Mi(A)
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is said to be of class M2 = if it is continuous and convex on A.

If p = 2, 3, ..., h is said to be of class Mp = if h E OO(A) n 
and for m = 0, ..., ~C - 2. is the class of comple-
tely monotone functions on A.

Note that is continuous if ~M&#x3E;1. The class Mg is closed under
point-wise convergence if A is open. This is false if if ~l. _ [0, oo ) as
is seen from the example = exp (- 

LEMMA. Let an open interval. Let for n = 1, 2,
such that h(A) = lim exists as n  oo for A E !1. Then h E Mg. Further-

2, then

uniformly on compacts of A.

PROOF. It is clear that h E M,, if P, = 1 or p, = 2. Let p, = 2, a  c  ~8,
and [a, fl) c A. Then c  ~  T implies that

so that hn is uniformly Lipschitz continuous on [c, P) with a Lipschitz constant
independent of n. Thus (1) with j = 0 holds uniformly on I-compacts.

Let ,u = 3. The argument just completed shows that the sequence of
first order derivatives h,,, h~, ... are uniformly bounded on A-compacts.
Thus, since they are convex, they are uniformly Lipschitz continuous with a
Lipschitz constant independent of n on Â.-compacts. Hence the Arzela selec-
tion theorem implies that there exist subsequences of hl , h~ , ... uniformly
convergent on I-compacts. But the limit of such a subsequence is neces-
sarily h’, independent of the subsequence. Consequently, (2) with j = 1 holds
uniformly on I-compacts. This proves the case p = 3. The proof of the
Lemma can be completed by a simple induction.

Let ,u &#x3E; 1 and 7c &#x3E; 0 be fixed integers. Let exist, be con-
tinuous, and satisfy on for (in
particular, E 

The Lemma just proved and the arguments in Section 2 and 3 have the
following consequences which are analogues of statements in Sections 1-3.

THEOREM 1.1kp. Assume (.A1) and (A2k.) for fixed integers (k, p),
0  k  n and 7: E TO. Then 7:, A) E CO(T X TO X11°) for
0 _ i!!~~ n and r¡n-k(t, 7:, .) E for fixed (t, 7:), a  7: s t  ~8.
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THEOREM 1.2/l. Assume (Al), (A2kp) with k = n -1 and ,u &#x3E; 1, and (A3Q)
with a = « [or a = P]. Then Â) E C°(T x AO) for 0  i:!~~ n, and ~1(t, ~ )
[or 1 /~l(t, ~ )] is of class .Mu(11.°) for fixed t E TO.

LEMMA 2.1kp. * Assume (Al), (A2kP) with fixed (k, p), 0  k  n and fl&#x3E; 0.
Let [a, b] c T. Then s,.) E M/l(A).

PROPOSITION 3.1k/-t. Assume (Al), (A2ku) with fixed (k, p), 0  k  n and

It &#x3E; 0. Then ( -1 ) k+1.X k ( t, a, s,.) E for fixed (t, a, s), oc  a  t  s  /3,
and Xn-k(t, b, s,.) E for fixed (t, b, s), a  s  t  b.

Note that ~1. (rather than AO) and fl&#x3E; 0 (rathe- than 1) occur in
the last two assertions, since no limit process is involved in the proof of

Lemma 2.1 k~ and the limit process in the proof of Proposition 3.1~, is

uniform on compacts of A.

Appendix 2: Cauchy functions of n-th order equations.

In the N-th order linear differential equation

let D = d/dt ; k:~~! 1; contin-

uous on such that p (t, ), q (t, ) are completely monotone on A (for
fixed t E T). For suitable functions x(t) on T, define the vector y(t; x) -
= (y1, ... , yn) by for 1  j  1~ and for

1  j  m, so that (1) is equivalent to the first order system

cf., e.g., [5], pp. 309-310.
For fixed ~1, let X (t, s, A) be the Cauchy function for (1), i.e., if is

the vector belonging to the solution x(t) = X(t, s, A) of (1), then y satisfies
the initial conditions
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We denote this vector y(t; x), with x = X(t, s, A), by Y(t, s, Â) = (YI(t, s, 1),
..., Yn(t, s, ~,)~ . For example, Y,(t, s, Â) = s, Â) for 1:!~~j: k.

THEOREM. Under the conditions above, Yj(t, s, ~ ) is completely monotone
on A for fixed t, SE T, t &#x3E; s, and j = 1, ... , n.

Note that, in this theorem, q~ (t, ~ ) is completely monotone, so that as-
sumption (A2,) holds, but the disconjugacy of (1) is not assumed. It is clear

that the theorem is contained in the following

LEMMA. Let A(t, Â) be a continuous n X n matrix f unction on such

that every entry is completely monotone on A, for fixed t E T. Let U(t) =
= U(t, s, Â) be the fundamental matrix of

reducing to the identity at t = s. Then each entry of U(t, s, .) is completely
monotone on A for fixed s, t E T, t &#x3E; s.

REMARK. - It follows that if h(t, ~,) is a continuous vector on T such

that each component of h(t, -) is completely monotone on ll and is a

vector with completely monotone components, then

has the solution

with completely monotone components on A, for figed t, s E T, t &#x3E; s.

PROOF oF LEMMA. Since each entry of A (t, À) is non-negative, it is clear
that each entry of U(t, s, À) is non-negative for t &#x3E; s. Let U = U(t, s, I)
in (4) and differentiate with respect to ÂEAo to get

Since U~ (t, s, A) = 0 when t = s, the variations of constants formula gives

j

This shows that each entry of U.,(t, s, I) is non-positive for t &#x3E; s. Repeated
differentiations with respect to and an induction give the lemma.
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Appendix 3: Special principal solutions.

Let the differential equation

have continuous coefficients on a t-interval T with endpoints a, P, where
a C ~  ~ . Let TO = int T.

THEOREM. Let (1) be disconjugate on T and [s, b] c To. Let x = X;(t, b, s)
be the solution satisfying the boundary conditions

Then

exists in Cn on arbitrary (t, s)-compacts of T X TO and is the j-th special prin-
cipat solutions of (1) at determined by s; of. (1.10) above.

PROOF. The case j = 1 follows from Theorem 7.1~(ii), [7], p. 330. In

particular, the theorem is correct if n = 2. Assume its validity for dis-

conjugate differential equations of order n - 1 (-2! 1). Let 1 C j  n.

Let 77,,(t, s). There exists a disconjugate differential equation of

order n -1, say Ln-Iv = 0, such that x is a solution of (1) if and only if
is a solution of furthermore, for

1  j  n, x is a j-th principal solution of (1) at t if and only if

is a (j - I)-st principal solution of Ln_iv = 0 at The-

orem 7.2n(iv), [7], p. 332. Put Vi-1(t, b, s) = b, s)) for j = 2,...,
n -1. Then is a solution of and satisfies the same

boundary conditions at t = b, s as does Xj-’(t, b, s), i.e., (2) with j replaced
by j -1. By the induction hypothesis, s) = lim W(r¡l, Xj(t, b, s)), as

exists in On-Ion arbitrary (t, 8)-compacts of T X po, and is the

( j - I)-st special principal solution of = 0 at t = ~3, determined by s.
This implies that as b ~ ~8. Hence, also e(t) b, s)
exists, as in Cn on arbitrary (t, s) -compacts of T X TO, and
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where c is a constant. Since = 0 and 0, we have c = 0, so that e
satisfies the condition (1.10) with r = s. Also, from 1p;-1 = it fol-

lows that x = e(t) is a j-th principal solution of (1) at t = ~3. Hence
= s), and the proof is complete.
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