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Some Properties of the Ring of Nash Functions.

TADEUSZ MOSTOWSKI (*)

1. — Introduction and statement of the results.

In this paper we shall study the ring N(U) of Nash functions defined
on an open semialgebraic set Uc R». Recall that a real analytic function

f:U—-R
is called a Nash function if it satisfies an equation
P(a, f()) =0

identically in U, where = (2, ..., #,) and P(z, ¢) is a nonzero polynomial.
It is known that N(U) is noetherian ([2], [4], [7]).
This paper will be devoted to the proofs of the following statements.

PRrOPOSITION 1. Suppose that U is semialgebraic and connected. Then,
if pc N(U) is a prime ideal, then its set of zeros V(p) is connected.

PROPOSITION 2 (Artin’s Theorem for Nash functions). If U is semialgebraic,
connected, and fe N (U) takes nonnegative values, then f is a sum of squares
in the field of quotients of the ring N(U).

ProprosITION 3 (Nullstellensatz). Let U be semialgebraic and let a c N°(U)
be an ideal. Then the following conditions are equivalent:
a) any function in N'(U) vanishing on V(a) is in a,
b) if 2+ ...+ 2 ea, f,e N(U), then f,ca.

(*) Mathematical Institute of University of Warsaw.
Pervenuto alla Redazione il 30 Dicembre 1974.
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2. — Separation of semialgebraic sets.

The proofs are based on the following lemma.

SEPARATION LEMMA. Let A, Bc R*" be closed, semialgebraic and disjoint.
Then there exists a Nash function F on R" which separates them, i.e.

F>0 on A4, F<0 on B.
Moreover, F can be chosen in the form
F= Z P, l/ ;z—Q_; ,
where P;, Q;; are polynomials and

2Q%4>0 for all i.
i

PROOF OF THE SEPARATION LEMMA. Our main reference is [5].
NoTATION. Let 0 (possibly with indices) denote on of the following sets:
{teR:1>0}, {0}, ({teR:t<0}.
Let 8;(R™) denote the family of all i-dimensional sets of the form
{1y ...y ym): y,€0,, for all j},
and let §,(R™) be the family of all unions of the elements of U S,(R™).

i<i

Let {4,}Y_, be a finite family of disjoint subsets of R*. We shall say

a=1
that a map
&: R* - R"
separates {4,} if there exists a family {8,}, 8, € S..(R"), 8, disjoint, such that

D(4,)c8,, forall «.
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LeMMA 1. Let {A,}Y , be a finite family of disjoint semialgebraic subsets
of R*. Then there exists a polynomial map

Q:R*—>Rm
separating {4,}.

Proor. We use induction on n. The lemma is trivial for n=1. Assume
it is true for some n and we prove if for »+1. The points of R~*+! will
be denoted by (z,t), where xeR", tcR.

1) Tt is clear that if {4,} is a refinement of {4,} (i.e. any 4, is a sum
of some A'ﬁ’s) and we can prove the lemma for the family {Zﬁ}, then we can
prove it for {4,} (in fact, the same polynomial map may be used).

2) It suffices to prove the lemma under the following assumption:

p(Al) :p(Az) = e =p(AN) ’

where p: R**1 — R is the canonical projection.

In fact, assume we can prove our lemma for any family satisfying this
extra condition, and let {4,}Y_; be an arbitrary family of disjoint semi-
algebraic subsets of R+, Put A_=p(4,). We claim that there exists a
finite refinement {B,;} of {A;} consisting of disjoint semialgebraic sets.

The proof is by induction on the greatest number r such that there exist
indices «;, ..., «, such that

A, N NA#D.
If =0, then the A_’s are disjoint. Now let >0 and we proceed by in-
duction on the number s = s({4.}) of sets of indices having this property.

If {«?, ..., a0} is such a set, then we put
1) T

B, =Aun..NAp,
A, =ANB,, a=1,.,N.
We observe that {B;, A}, ..., Ay} is a refinement of {4,}, its elements are
semialgebraic and s({B;, 4y, ..-; Ay, }) <s({4,}), which finishes the proof.
By theinduction hypothesis the B,;’s can be separated by a polynomial map

Q':R*—>Rn.
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For a fixed f consider the family
{4ty Ap=A4,Nnp7 (B,
where « runs over the set of all indices such that 4,7 0. It is clear that

P(4,5) = By.
Thus if
Qs: R —Rm

separates {4,s},, then the map

Q: R+ > R™+2ms
Qz, 1) = (Q’(m)7 Q(z, 1), )
separates {4,}.

3) Let
pld)=..=pAd)y=4".

Let P(z,1t) (1=1,...,I) be a set of polynomials which define the A, ’s. Let

0iP,
Pz, t) = o (2, 0)

and for any yc{l,...,I}x0,
'Pvp(w7 t) =TT Pz, 1),
(id)ey

A,,={acd’: P,(a',) has exactly k complex roots}.

The A;’k’s are semialgebraic, so they have a finite number of (topological)
components which are also semialgebraic ([5], [11]). Let 2’ be the family
of all intersections of the components of the A,'p’,c’s, and let ¥ be the family
of all minimal non-empty elements of '.

It is shown in [5] that if K €, then any P, (a,*) has a constant number
of real roots for ae K, and these roots are continuous functions of a.
For any Ke let

v =1(4,5): P;; # 0 on K xR},
PK:P’PK’

fi(e)<...<(, (a)—real roots of Py(a,-).
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It is also shown in [5] that each p~'(K) N 4, is a sum of sets of the form

{(a, ) e EX R, (a) <t<lupi(a)},

1)
{(a,)e KEXR:(, (a) =1}.

We note (reasoning exactly as in 2)) that it suffices to prove the lemma
for every family

U ={p(K)N4,}, Ke¥,
and therefore (by 1)) for every family £, consisting of sets of the form (1).

It follows directly from Thom’s lemma ([5], p. 69) that £ is separated
by the map

0 0*
Re#43 (0,0 = (Pale, 0, 5, Peln, 0, 55 Pl 0 ),

and thus lemma 1 is proved.

LemmaA 2. 1) If A, Bc R" are semialgebraic, closed and disjoint, then for
some constants C, N >0

d(a, B)>C(1+ |«|)™  for every acA;
2) If Fe N(R"), then for some constants C, N >0
Fx)<O(1+ [z)".
Proor. 1) Clearly the set
8={(u,v)eR*: JacA,u(l+ |a]?) =1, v=d(a, B)}
is semialgebraic, as a projection onto the (%, v)-plane of the semialgebraic set

{(u,v,0,0)eR*XR"XR": ac A, be B, u(l+ |a|*) =1, v = d(a, b))\
(%, v, a, b) e R* X R* X R*: d(a, b) < v}.

A and B are closed and disjoint, so

SN{(u,0):ucR}=0.
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Thus in some neighbourhood of the origin in R?
v>d((u, v),{(%,0): we R}) > Clu¥

for (u,v)e8 and for some constants C, N>0. Therefore 1) holds if a is
sufficiently big and thus holds everywhere (where C is replaced by a bigger
constant, if necessary).

2) follows immediately from 1) and the following lemma (cf. [2]).
LemmA 3. If Uc R" is open and semialgebraic and f: U — R is Nash, then

graph(f) = {(x, f(#)): € U}c R

18 semialgebraic.
In fact, if we put

A= {(@®,0): veR"} c R,

1
— n+1
B = graph (1+F2)CR
and use 1), we get 2).
Proor or LEMMA 3. We can find a polynomial P(z, t) such that
P(z, f(x)) =0 identically in U

and its diseriminant ép(x)4 0. Thus if d,(x) 0, all the roots of P(x,-) are
simple. Therefore

A = graph(f) N {(z, t) e R" X R: 8,(v) = 0}
is a sum of components of the semialgebraic set
{(z,t)e UXR: 6,(x)#0, P(x,t)=0}

and thus is semialgebraic. It is obvious that graph(f) is the closure of 4 and
since the closure of a semialgebraic set is semialgebraic, we are finished.

LeMMA 4. Let fe N(R"). Let A, Bc R" be closed semialgebraic and sup-
pose that

>0 on A; f<0 on B.
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Then for some constants C, x>0

f>0 on U,=}eRr:d(z A)< 01+ =)™}

f<0 on Uy={zeR":d(x, B)<O(1+ |»?)™*}.

Proor. Since {(z, f(x)): v€ A} and R"x{0} are semialgebraic, closed and
disjoint, we have, by lemma 2, 1)

lf(z)| = f(w)>d({(w, f(@)): we A}, Rn ><{0}) > 0,14 |o|?)™ ™, for zed,

for some constants C;, N,. All the derivatives of/ox; are Nash, so, by
lemma 2, 2),

lgrad f(@)| < C(1 + |of*)™, weAd,

for some C,, N,. The lemma follows now from the formula

f(¥) —f(@)|< |y — »|sup [grad /(2)],
the sup being taken over the interval joining # and y.

LEMMA 5. Let S€ 8, (R™), D,8>0. Then there exists a Nash function
R™ —~ R such that

f<0 on {yeB:d(y, 38)>D(1+ |y|*)~"}
f>0 on all 8'€8;(R™), 8’ 8.

Moreover, f can be chosen to be of the same form as in the statement of the
separation lemma.

Proor. First we remark that it is enough to prove the lemma in the case
m = i. For in the general case we identify R* with the ¢-dimensional hyper-
plane in R™ spanned by S8, construct the function f, for S considered as a
subset of R¢ and put f=f,p, where p: R® — R* is the orthogonal pro-
jection.

We may assume that § is described by the inequalities #, >0, ..., x,, > 0.
Thus the function

m

—II (@i + |o.))

i=
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is zero outside of S and is mnegative in S. It is easy to check that or
£> 0 sufficiently small and N sufficiently big the function

fla) = — 1""[ [(z: 4 VE@) T+ )1+ 2?)]+ VE@) ,

where

E@)=e(1+ |o])77,

satisfies all the requirements of the lemma.

Now we prove the separation lemma. We may assume that 4, B are
separated in the sense of lemma 1, for (in the notation of lemma) if F >0
on @Q(4) and F <0 on Q(B), then FQ>0 on A and FQ<0 on B (clearly
Q(A) and Q(B) are semialgebraic and disjoint, and, replacing @: R* — Rm
by @ xid: R* —~ R™ X R" if necessary, we may assume that they are closed).

Let

R"=US8R™, i<m,
A, =ANR", B,=BNR".

For any ¢ we shall construct a Nash function
F,;:R"—>R,
of the form as in the statement of the separation lemma, such that
F,>0 on 4,, F,<0 on B,.

For i=0 such a construction is trivial, so assume F, is constructed.
First observe that R} can be defined by a single polynomial equation:
P(x) =0, where
Pyx)=TI @+ ...+ a5).
e
for k#1
Clearly P,x)>0 and grad P,=0 on R[.
We claim that there are constants C, «>0 such that

F5>0 OnAF\U,
@)

where

F,<O OanU,

U ={zeR: d(z, R") < O(1 + |o[2)~"}.
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In fact, by lemma 4

F,>0 on U,={z:d(x, 4.)<0,(1+ |=z[)~*},
F,<0 on V,={z:d(z, B,)<0,(1+ |»|*)~™}
for some C,, «,> 0. Now consider the sets A\ U,, B\V,: Clearly they

are semilagebraic and disjoint from R7. Thus, by Lemma 2, there are
constants C,, «,> 0 such that

d(z, RY) > Co(1 + |2]2)~, for every xe ANU, U B\V,,

which proves our claim.
By an appropriate choice of N we can find constants C;, «;, ¢ >0 such
that if

W={a: d(z, R") < C;(1+ |[*) "},

then
(14 |[2[})*Pi(x)>2¢ for every # e R™\W.
Put
1+ 2P,

Q. vanishes together with its first derivatives on R]’. Thus for some
constants L, C,

Qi(2) < C,(1 + |2*)*&(x, RY') -
So for some C, o; >0, C, <1, if

V ={a:d(@, RY") < C5(1 + [#[*)~", d(z, R}?)<1},

then
R'cVcWw
and
3) Q:(x)< 3d(x, R?) <%, for all zeV.

For any ye §,,,(R™) let f, be the Nash function constructed in lemma 5,
where we replace D by O; and § by «;. Let

Se84+,(R™)
SnB#p
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We observe that
f>0 on A, ,\V,
f<0 on B, \V.

F,,, will be of the following form:
Fya(@) = F (@) + 0@ (@) (1 + o[} f(2) .

First we note that, since F; and f are both positive on (WN\V)N 4.,
and negative on (W\V)N B,,,,
F{+1> 0 on (W\V) N Ai+1 ]
F,,<0 on (WN\V)NB,,

for any constants Cq, M,, M,.
Outside of W we have

f>0, @.>2;
therefore, by lemma 2, we can find constants Cq, M, such that
CoQi"@)(1+ [2) ™ If(2)| > |F ()],

for every x € R*W\, for any constant M,. Therefore for any M,, F
has the desired property outside of W.

Now, using (2), p. 11, and (3), p. 12, and choosing a sufficiently large
constant M,, we have

P ()] > Co@i"(@)(1 + |2f) " If(2)],

for every xzeV.

Thus F;,,>0 on 4,,, F,,<0!on B;,,, which finishes the proof.

In the sequel we shall have to work with a class of functions R(U) which
is slightly larger than the polynomials. If Uc R" is open, we put

Ro(U) = R[wy, ..., %],
Ri;1(U) = the set of all functions of the form

Zk‘Pk V? ‘Piu
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where @, p,€R:(U) and Y y5>0 in U, for all &,
1
R(U) =UR(D).
i=0

Clearly if fe R(U), then f|U e N(U).

CoroLLARY. If UcR" is open, semialgebraic, and A, Bc U are semi-
algebraic, disjoint and closed in U, then there exvists a function fe R(U)
such that

>0 on A, f<0 on B.
For the proof we need a lemma.

LemMA 6. If Cc R" is semialgebraic and closed, then there exists a func-
tion fe R(R"\C) such that

f=0 on B, f>0 on R\C.

Proor oF LEMMA 6. Clearly if C = C, U C, and we can construct such
functions for C, and C,, then their product will be good for €. Thus we may
assume that C is defined by

po:() & p1>0 & ces & _pk>0

(cf. [6]), where Py, ..., pr are polynomials. Now we use induction on k.
If £ =0, then we may put f=p2. Let C, be defined by

Pi+pi=0 & 7,>0 & ... & Pey>0,
and C, by
Po=0 & ;>0 & ... & pPr.>0.
Therefore C; is the set of zeroes of a function g, R(R™\C,), 1=1,2.
In R" xR consider the sets
K ={(= t):"”eazyg?(w)tzl}’
K,={(z,t): 2€C, gi(x)t=1};

They are both semialgebraic closed and K\ K, is also closed. Therefore, by
the separation lemma, there exists a function g€ R(R" X R) such that

>0 on K,, <0 on KNK,.
Thus

Vgl (@) + ¢*(w, 92 (@) — ¢(x, g7%(@))
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multiplied by an appropriate (positive) power of g5 (to cancel the negative
powers of g%) satisfies all the requirements of the lemma.

ProoF oF THE COROLLARY. Since U\ U is closed semialgebraic, it is the
set of zeroes of a function ge R(R™\(U\U)). The sets

A,={(@,t)eR"XR:we A, g*(x)t =1},
B, ={(z,t)e R"xXR: z€B, ¢*(»)t =1}

are semialgebraic, disjoint and closed in R*X R, and thus there exists an
F,e R(R* xR) such that

F,>0 on 4,, F,<0 on B,.

It suffices to put
(@) = Fy(@, g~*(2)) 9" (@),

where N is so big that the negative powers of g—* cancel out.

REMARK. It is interesting to mnote that even if A, Bc R® are com-
ponents of an algebraic set, then, in general, they cannot be separated by a
polynomial. We give an example.

Consider the following set in R?:

A

I, X,
AN
207 |
3 2
P
X4
B
4
1

Figure 1
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It is trivial to see that there is no polynomial ¥ such that V>0 in 2, 3, 4,
and V< 0in 1, in some neighbourhood of 0. In fact, supposing the contrary,
let V, be the homogeneous part of V of lowest degree. Replacing the angles
1, 2, 3, 4 by smaller ones we see that V, would have the similar property.
But either the (total) degree of V, is even, and then if V,< 0 in 1, then
V,<0in 3, or its degree is odd, and then if V>0 in 2, then V,<<0 in 4.

Nowlet P a fixed polynomial such that its homogenous partis of degree 4%,
positive on 1, 2, 3, 4. Then there can be no polynomials ¥V, W such that
V+ WVP<0in 1l and V4 Wv/P>0 in 2, 3, 4. In fact, supposing that
such V and W do exist,let ¥, and W, be the homogenous parts of ¥V, W respec-
tively, of lowest degree. Let I,, [, be straight lines with !, constained in the
angles 1 and 3, and /, in 2 and 4, such that V,|l;, W,|l;% 0, ¢ =1, 2. Clearly
there is a polynomial @, of even degree, such that

VPl =Q|l; +o@QL.) , as #—>0, 1=1,2.

Now, approximating V -+ W\/fﬂli by V,+ W,Q|l;, we get a contradiction.

Suppose that P is negative outside the angles 1,2, 3,4 and let P’ be a
polynomial negative on the ball B and positive outside of it we can adjust P
and P’ such that their sum 8 is positive on the shaded set and negative out-
side of it. We can adjust P and P’ such that their sum 8 positive on the

sharded set
/

B'

Figure 2

and negative outside of it. 'We can also assume that |P'[P|—0 as |z] - oo.

17 - Annali della Scuola Norm. Sup. di Pisa
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Now consider the set Cc R® described by
xg = 8(@y, %) -

Clearly it has two components A and B, projecting onto A’ and B’ respecti-
vely. We claim that 4 and B cannot be separated by a polynomial. For
let Q(wy, x,, ;) be a polynomial such that @ >0 and 4, @ <0 on B. Then
the function

F(wy, ) = Q(wu Ly \/S(wn mz))

would be >0 on A’ and < 0 on B'. But clearly

F(wy, @) = V(@y, #3) + W@y, @) VS(wy, 7)

for some polynomials V and W. Now we look at what happens near infinity.
Put 2,==,/|z|%, ¢ =1,2. For big N the function [¢[* F(x,,2,) is of the form

T(21y 25) + U241 22) \/S(zu 2)

where T, U, 8 are polynomials and the lowest homogenous part of S is of
degree divisible by 4. But near infinity 4 and B look exactly like the angles
inf fig. 1. Therefore we have a contradiction.

It is easy to prove that the separation by a polynomial is possible if one
of the sets A and B is compact or is of (topological) dimension 1.

3. — Proofs.

Proposition 1 follows immediately (as observed by J.-J. Risler) from
our corollary, p. 14.

Let pc N(U) be prime; since N°(U) is noetherian, we can find a finite
number of generators f,, ..., f,. By lemma 3, the set of zeroes V(f) of any
Nash function f on U is semialgebraic; in fact, it can be identified with

graph(f) N (R x{0}) c R+

Therefore V(p)= V()N V(f;)N...N V(f,) is semialgebraic.
Assume V(p) is not connected; thus

V(p)=A4AUB,
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where A and B are closed, disjoint and semialgebraic (since the components
of a semialgebraic set are semialgebraic, [5]). Let fe N(U), >0 on A4,
f< 0 on B. Consider the functions

fo=VE+ .  +RA+P+T,
fo=VEL+ . +A+F—T.

Clearly they are Nash and f, -0 on A, f.s=0on B. In particular, f, ¢ b,
f-¢p. But f,f_=f'4 ...+ fiep, and we have a contradiction.

In the proofs of propositions 2 and 3 we shall use Tarski’s theorem ([10]).
It can be formulated as follows.

Let K be a real-closed field. Let us call a polynomial relation in K any
formula which can be obtained using alternatives and negations from for-
mulas of the form f(x,, ..., #,) >0, where f(X,, ..., X,)e K[X,,..., X,].

TARSKI’S THEOREM. LetQ denote eitherVor Iandlet F(wyy ..., Zoy Yyyoevy Ym)
be a polynomial relation in K. Let us consider the formula

Quyy ooy QUuF(Byy ey @y Yrgeny Yum) -

Then there exists a polynomial relation G(yy, ..., Ynm) tn K such that for any
real-closed extension K., of K

QT ooy QT F(Lyy ooy By Yiy ooy Ym) <>Q Y1y ooy Ym) -

In particular, if m =0 (i.e. Qu, ..., Qr,F (@1, ..., ,) is a sentence), and
if Qvyy..., Qe F(2xy,...,2,) holds in some real-closed extension of K, then it
holds in any real-closed extension of K.

A quick proof of Tarski’s theorem can be found in [1].

In the proof of proposition 2 we shall follow [8], pp. 214-225.

LeMMA 7 ([8]). Let K be a field, and let C be a subset of K such that 0 ¢ C,
1eC. In order that an element a =0 of K be positive in all orderings of
the field K in which all elements of C are positive it is necessary and sufficient
that a can be represented in the form

— 2
a=Yca, ack,

where the ¢, are products of elements of C.

In particular, the necessary and sufficient condition for the existence of
an order on K such that all elements of C are positive is that there is no rela-
tion of the form » ¢,a®=0, a,eK, c¢,-products of elements of C, a;#%0.



260 TADEUSZ MOSTOWSKI

LEMMA 8. Let K be an ordered field and ac K, a 0. Then the order
on K can be extended to an order on K(X) such that

atX>1.

The proof is a trivial application of lemma 7.

To make the proof of proposition 2 clearer, we shall repeat the proof given
in [8] of the classical theorem of Artin: if a polynomial fe R[X,,..., X,]
takes only nonnegative values, then it is a sum of squares in R(X,,..., X,).

Assume it is not a sum of squares. Then, by lemma 7, there exists an
order of R(X,, ..., X,)such that f < 0. Let K be areal closure of R(X,, ..., X,)
and let X,,..., X, e K be the images of the polynomials X,,..., X, under
the natural imbedding R(X,, ... X,)—> K. The phrase

V&1 eey @y f(®yy ey @n)>0
holds in R, therefore, by Tarski’s theorem, it holds also in K. But
(X, ..., X,) =im f(X,, ..., X,) <0

and we have a contradiction.

Now we pass to the proof of proposition 2.

Let fe N(U), f(x)>0 for all ze U, and assume that f is not a sum of
squares in the field N’(U)* of quotients of the ring N’(U). Thus we can order
N(U)* so that f<O0.

We choose a polynomial P(x,t) such that P(x,f(x)) =0 and its diseri-
minant d(x) # 0.

Consider the sets

A={@=y,t)eR*XRXR: we U, t=f(»)},
B ={(z,y,t)e R*"XxRXR: e R™\(U\U), 8*(z)y>1, P(w, t) = 0, t #~ f(x)} .

Clearly they are semialgebraic, disjoint and closed in (R™\\U)XRXxR.
Thus there exists a function ¢ € R((R™\\U)x RxR) such that ¢ >0 on 4
@ <0 on B. Therefore we have:if P(x, t) =0, 6*(z)y>1, ¢(x, y, t) > 0, then
t>0.

Bylemma 8 we can extend the order on N’(U)* to an order on N(U)*(Y, T')
such that 0%(») Y >1.

Now consider the field K of quotients of the ring § defined as follows. Put

“To:' N(U)[Yr T].'
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and consider it as a ring of functions on UXRXR. Let

J,.1=the set of all functions of the form 2%‘/2 v, where @, yi, € T,
k k

and Y y%>0 on UXRXR, for every &,
i
ﬂ‘ = U"Tz-

i=0

Since T is obtained from N(U)[Y, T'] by an inductive procedure of ad-
ding square roots of sums of squares, K can be ordered in such a way that
it extends the order on N(U)*(Y, T).

It is clear that for any V c R™, open and semialgebraic, and for any
peR(V), the formulas y(y) >0, p(y) = 0, can be translated in the obvious
way into formulas obtained from polynomial relations by using quantificators;
eg. if p=>P, VEQ?,., where P;, Q,; are polynomials, then

i i

v() >0 <Vt = SQ3) = I Py) >0 .

In the sequel the formulas y(y) > 0, ete., will always mean the polynomial
relations with quantificators described above.
Now consider the following formula:

V21, oy @y t[P(2, 1) =0, 0%(2)y>1, @z, ¥, 1) >0 =1>0].

Clearly it holds if we interpret the variables as real numbers. We shall
show that it does not hold in the real closure L of K, and thus, with the help
of Tarski’s theorem, we shall obtain a contradiction.

Let i: KL be the canonical imbedding. We shall show that the ele-
ments T, = A®@,), ..., Tn= A®,), § = Ay), f= Af) (Where z,, y are the coor-
dinate functions on U X R X R) do not satisfy our formula. It is obvious that
P, f)y= AP, f)) =0, 8*&)F = A0%(»)y)>1, f= A(f)<0. Thus we have
to check that ¢(Z, 7, f) > 0.

The last formula is by definition equivalent to a sentence of the follow-
ing form:

Vi, =20u& 7 )&
K3

Vﬁz ﬁ: = z ¢§j(§1 Y, f’ "ﬁ) &
i

DE, , [, 72, 7lzy --.) >0,
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where @,;, @,;,..., ® are polynomials such that
> Pz, y,t)>0 for all (@,9,t)e UXRXR,
i

> ®%(w,y,t,u)>0 for all (z,9,t,u)e UXRXRXR.
i

Thus we may choose 7, to be the image in L of the function

m@,y) =V O4(, y, f@)eT,

7, to be the image of

na(@, y) = '\4/2®:5('7"’ v, f(@), ?ﬁ(w, f’/)) ) ete. .

Then D, §, f, 71, 73, -.-) = A(P(@, 9, f, 1, 73, ---)) and the condition B (Z, 7,
f, 73y 3y ...) >0 means that g(,y, f) > 0 in the order of K. But for any
@, y€ UXR ¢(=,y, f(x)) >0, so it is a square.

This completes the proof of proposition 2.

The proof of proposition 3 follows similar lines, but is slightly more in-
volved. We shall need the following lemma, which is a rough version of
Y.ojasiewicz’s « normal partitions » and «normal systems of distinguished
polynomials ».

LEMMA 9. Let UcR*" be open semialgebraic, fo, fiy ..., fu€ N(U). Then
there exist a finite number of (finite) systems of polynomial equations and ine-
qualities in R, B, ..., Bi, and polynomials P(x,t) 1=1,...,k j=0, ..., m)
such that:

1) every we U satisfies exactly one P, (written B(x)),
2) if Pi(x), then P(x, f;(@)) =0 and 6,,(x) 0, d,(x) being the discri-

minant of P;.

The proof is an easy adaptation of Xojasiewicz’s construction, [5], pp. 60-62.
Before proving proposition 3, we give a simple proof, based on Targki’s
theorem, of the following Nullstellensatz for polynomials [6]. Let
acR[X,, ..., X,] be an ideal; then the following conditions are equivalent:

a) if fe R[X,, ..., X,] vanishes on V(a), then fea;
b) if Y ffe€a, then f,ea.

Of course if sufficies to prove that b) implies a).
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We can assume a is prime. In fact, any ideal in R[X,, ..., X,]is an inter-
section of primary ideals; since a satisfies b), it is a radical and thus intersec-
tion of prime ideals: a = p,;. It is easy to check that every p, satisfies d).
Let f vanish on V(a). Then it vanishes on V(p;) and, assuming the Nullstel-
lensatz for prime ideals, we get f € p, for all ¢, i.e. fea.

Now let fi,..., fn generate a and let f vanish on V(a). It follows from b)
that the field of quotients of the (integral) ring R[X,, ..., X,]/ais real. Let K
be its real closure.

The phrase

V21, ooy Bf[fi(@1y ...y 82) =0 for i=1....,m] =>f(2y, ..., ¥.) = 0}

holdsin R, soitholds alsoin K. Let,, ..., Z, be the imagesin K of X;, ..., X,
under the natural homomorphism R[X,,..., X,]— K. Clearly

fg(El, ceey 55,,) = imf,'(.Xl, veey X") == 0 )

so f(%,, ..., %,) =0, which implies that fea.

We return to the proof of proposition 3. Again it suffices to prove the
implication b) =>a). We can also assume that a is prime and U is connected.
Thus N°(U)/a is integral and its field of quotients (N(U)/a)* is real. We
order it arbitrarily.

Let f,,..., fn generate a. Let fe N°(U) vanish on V(a). Put f, =f and
let B;, P,; have the same meaning as in lemma 9.

Fix a set of polynomials in Rz, ..., x,] which define U. Thus the formula
x € U can be interpreted as a polynomial relation, and therefore makes sense
in any real-closed extension of R.

If p € N°(U), then [¢] will denote its class in (N(U)/a)*.

From here the proof will be obtained via three steps.

Step 1. ([.], ..., [z.]) € U.
Let K be the real closure of (N°(U)/a)*. For ¢ € N°(U) we shall denote
by ¢ its image under the composition of the natural maps

N(O) - (N(U)]a)*~> K .

It suffices to prove that z = (%,,...,%,) e U.
By lemma 6 and corollary, p. 14, there exist functions ¢, ¢,€
€ R(R™\(:I\\U)) such that
P>0, @' (0)= ﬁ\U’
>0 on U, ;<0 on R\U.
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Let ¢ = ¢,¢,. Thus, for any xe R",
rve U <p(r)>0
Now the formula g(x) > 0 is equivalent to a formula of the following form:
Vi =2 Pylo) &
Vi, = g_E%(% ) &
D(2, 73, 7%,...)>0,
where @,;, D,;,..., D are polynomials and
> P(x)>0 for all ze U,
i

> D@, y)>0 for all (x,y)e UxR, ete.
i

Thus ¢(Z) >0 means
iy =2 @&

Vij, 2 o; 2i(Zs 77-)

D@, i, 72, .)>0.
We may choose 7, to be the image in K of the function

m(@) = |/ B @) e N(0),
7], to be the image of

VE D35(w, ni(@)) ete. .

Then D(Z, i3, 72y -..) > 0 if and only if the class [¢] of g(x)e N(U) in
(N(U)/a)* is positive. But g is positive on U, so V¢ € N(U); therefore [¢]
is a square.

Step 2. We shall show that there exists exactly one s, such that B,,:(@);
moreover, 0, (%) %0 for i=0,...,m
In fact, the formula

Vo[ze U = 3!1sP,(»)]
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holds in R, so it holds also in K (the symbol 3!s B,(x) can be easily translated
into usual quantificators: 3sP,(x) & Vs1, 8:[B, (z) & B, (#) =>s,= 8,]). In par-
ticular, T satisfies exactly one %, , since ze U.

To prove that J, ;(Z) #0 we consider the formula

Vo{[we U &B,,(@)] = 0, :(x) = 0}

and argue in the same way.
In the sequel we shall write % for %, , P, for P, and J, for J, ;. Let

m
6 - H 6,'.
i=0
Step 3. The generic point in R™*+! will be written as ¢ = (¢, ..., t,,) and let
A={(@1t,y)e UXR™*XR:t;=f(x) for i=0, ..., m,},
B={(x,t,y)e UXxR™'XR: Py(w,t,) =0 for i =0, ..., m, t;5=f,(x)
for some ¢, 6*(x)y>1}.

A and B are semialgebraic, disjoint and closed in UxR™!xR; let
pe R(U X R™* x R) be such that

>0 on A4, <0 on B.

Let L be the field of quotients of the ring § defined as follows: Put
§o= N(U)[y] and consider it as a ring of functions on U XR. Let

~

J.1=the set of all functions of the form Y @i}/ > y3, where ¢, v, €J;
k i
and > 935>0 on UxR, for all %,
1

~

ﬂ, = 5’,—,

=0
§ =%F.

By lemma 8, the field (N(U)/a)*(y) has an order extending the (arbitra-
rily chosen) order on (N°(U)/a)* such that 6*(z)y>1. It is easily seen that L
can be obtained from (N(U)/a)*(y) by an inductive procedure of adding
square roots sums of squares. Therefore we can extend the order on (N'(U) /a)*
to an order on L such that 6*(x)y>1.

Consider the formula

I3

Y(@, %, y) e UxRxR: [Po(w, #) =0, Pix, 0)—= 0
for i=1, ..., m, 03(x)y>1, @(x,1,0,...,0,¥) >0] =1,=0.

m
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Let L be the real closure of L. If e N(U)[y], then ¢ will denote its
image under the composition

N(U) [yl = (N(U)[a)*(y)>L—~L.

Our formula holds in L since it holds in R.
It is obvious that (&, f,, 7) satisfy:

Py(Z, ?o) =0,
Py(x, 0) = P,(%, f;) =0, since f;=0 for i=1,...,m,
@) g>1.

The argument that ¢(Z, f,,0,...,0,%) > 0 is exactly the same as the
last part of the proof of proposition 2, so it willbe omitted. Therefore f,= 0
which implies f,ea.
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