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Some Properties of the Ring of Nash Functions.

TADEUSZ MOSTOWSKI (*)

1. - Introduction and statement of the results.

In this paper we shall study the ring of Nash functions defined

on an open semialgebraic set U c Rn. Recall that a real analytic function

is called a Nash function if it satisfies an equation

identically in U, where x = (Xl’ ..., xn) and P(x, t) is a nonzero polynomial.
It is known that N(U) is noetherian ([2], [4], [7]).
This paper will be devoted to the proofs of the following statements.

PROPOSITION 1. Suppose that U is semialgebraic and connected. Then,
X(U) is a prime ideal, then its set of zeros is connected.

PROPOSITION 2 (Artin’s Theorem for Nash functions). If U is semialgebraic,
connected, and f E takes nonnegative values, then f is a sum of squares
in the field of quotients of the ring X( U).

PROPOSITION 3 (Nullstellensatz). Let U be semialgebraic and let a 
be an ideal. Then the following conditions are equivalent:

a) any f unction in X(U) vanishing on V(a) is in a,

(*) Mathematical Institute of University of Warsaw.
Pervenuto alla Redazione il 30 Dicembre 1974.
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2. - Separation of semi algebraic sets.

The proofs are based on the following lemma.

SEPARATION LEMMA..Let A, B c Rn be closed, semialgebraic and disjoint.
Then there exists a Nash function F on Rn which separates them, i. e.

.Dloreover, F can be chosen in the form

where Pi, Q ii are polynomials and

PROOF OF THE SEPARATION LEMMA. Our main reference is [5].

NOTATION. Let 0 (possibly with indices) denote on of the following sets:

Let denote the family of all i-dimensional sets of the form

and be the family of all unions of the elements of U 

Let be a finite family of disjoint subsets of Rn. We shall say
that a map

separates if there exists a family 8.(R-), Sa disjoint, such that
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LEMMA 1. Let be a finite family o f disjoint semialgebraic subsets
of Rn. Then there exists a polynomial map

separating 

PROOF. We use induction on n. The lemma is trivial for 

it is true for some n and we prove if for n + 1. The points of will

be denoted by (x, t), where x E Rn, I t c- R.

1 ) It is clear that if ~A~~ is a refinement of (i. e. any Aa is a sum
of some Ap’s) and we can prove the lemma for the family ~A~~, then we can
prove it for (in fact, the same polynomial map may be used).

2) It suffices to prove the lemma under the following assumption:

where p : is the canonical projection.
In fact, assume we can prove our lemma for any family satisfying this

extra condition, and let be an arbitrary family of disjoint semi-
algebraic subsets of Rn+l. Put We claim that there exists a

finite refinement ~B~~ of consisting of disjoint semialgebraic sets.
The proof is by induction on the greatest number r such that there exist

indices Xi, ..., oc,. such that

If r = 0, then the Al’s are disjoint. Now let r &#x3E; 0 and we proceed by in-
duction on the number s = s({A’}) of sets of indices having this property.
If {mo~, ..., is such a set, then we put

We observe that A[ , ..., is a refinement of ~Aa~, its elements are
semialgebraic and ..., A.NI~)  s(~A«y, which finishes the proof.

By the induction hypothesis the B~’s can be separated by a polynomial map
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For a fixed {3 consider the family

where oc runs over the set of all indices such that 0. It is clear that

Thus if

separates then the map

separates 

3) Let

Let be a set of polynomials which define the Aa’s. Let

and for any

The are semialgebraic, so they have a finite number of (topological)
components which are also semialgebraic ([5], [11]). Let 9T be the family
of all intersections of the components of the and let W be the family
of all minimal non-empty elements of 9T.

It is shown in [5] that if K e 9ty then any -P~,’) has a constant number
of real roots for and these roots are continuous functions of a.

For any let



249

It is also shown in [5] that each p-1(g) is a sum of sets of the form

We note (reasoning exactly as in 2 )) that it suffices to prove the lemma
for every family

and therefore (by 1)) for every family LK consisting of sets of the form (1).
It follows directly from Thom’s lemma ([5], p. 69) that LK is separated

by the map

and thus lemma 1 is proved.

LEMMA 2. 1 ) If A, B c Rn are semialgebraic, closed and disjoint, then for
some constants C, N &#x3E; 0

2) If F E X(R-), then for some constants

PROOF. 1) Clearly the set

is semialgebraic, as a projection onto the (u, v)-plane of the semialgebraic set

A and B are closed and disjoint, so



250

Thus in some neighbourhood of the origin in R2

for and for some constants C, N &#x3E; 0. Therefore 1) holds if a is
sufficiently big and thus holds everywhere (where C is replaced by a bigger
constant, if necessary).

2) follows immediately from 1) and the following lemma (cf. [2]).

LEMMA 3. If TI c Rn is open and semialgebraic and f : tl --~ R is Nash, then

is gemialgebraic.
In fact, if we put

and use 1), we get 2).

PROOF OF LEMMA 3. We can find a polynomial P(x, t) such that

identically in 1J

and its discriminant 0. Thus if 0, all the roots of -P(~’) are
simple. Therefore

is a sum of components of the semialgebraic set

and thus is semialgebraic. It is obvious that graph( f ) is the closure of A and
since the closure of a semialgebraic set is semialgebraic, we are finished.

LEMMA 4. Let f E X(Rn). Let A, BeRn be closed semialgebraic and sup-
pose that
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Then for some constants C, a &#x3E; 0

PROOF. Since {(X, and Rn X (0) are semialgebraic, closed and
disjoint, we have, by lemma 2, 1)

for some constants Ci, Ni. All the derivatives ayaxi are Nash, so, by
lemma 2, 7 2 ), 7

for some C2, N2. The lemma follows now from the formula

the sup being taken over the interval joining x and y.

LEMMA 5. Let S E Si(R-), 0. Then there exists a Nash function
Rm - R such that

Moreower, f can be chosen to be of the same form as in the statement of the
separation lemma.

PROOF. First we remark that it is enough to prove the lemma in the case
m = i. For in the general case we identify R’ with the i-dimensional hyper-
plane in R- spanned by S, construct the function fi for S considered as a
subset of Ri and put where is the orthogonal pro-
jection.

We may assume that ~S is described by the inequalities zi &#x3E; 0,..., 0.

Thus the function
m
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is zero outside of S and is negative in S. It is easy to check that or

E &#x3E; 0 sufficiently small and N sufficiently big the function

where

satisfies all the requirements of the lemma.
Now we prove the separation lemma. We may assume that A, B are

separated in the sense of lemma 1, for (in the notation of lemma) if .F’ &#x3E; 0

on Q (A ) and F0 on Q(B), then FQ&#x3E;0 on A and FQ0 on B (clearly
Q(A) and Q(B) are semialgebraic and disjoint, and, replacing Q: Rn -+Rm
by Q if necessary, we may assume that they are closed).

Let

For any i we shall construct a Nash function

of the form as in the statement of the separation lemma, such that

For i = 0 such a construction is trivial, so assume 2~ i is constructed.
First observe that Rm can be defined by a single polynomial equation:

Pi(x) = 0, where

Clearly and grad Pi = 0 on R’.
We claim that there are constants C, a &#x3E; 0 such that

where
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In fact, by lemma 4

for some Cl, a1 &#x3E; 0. Now consider the sets AB Ui, BBYi : Clearly they
are semilagebraic and disjoint from R~. Thus, by Lemma 2, there are
constants C2, such that

which proves our claim.

By an appropriate choice of N we can find constants C3 , OC3, 8 &#x3E; 0 such

that if

then

Put

Qi i vanishes together with its first derivatives on Rm. Thus for some

constants L, C4

So for some

then

and

For any let fs be the Nash function constructed in lemma 5,
where we replace D by C~ and ~8 by Let
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We observe that

will be of the following form:

First we note that, since .I’i and f are both positive on (W%V) r1 
and negative on r1 7

for any constants Cg, M1, "

Outside of W we have

therefore, by lemma 2, we can find constants 06, such that

for every x E for any constant Mi. Therefore for any Mi, F
has the desired property outside of ~.

Now, using (2), p. 11, y and (3), p. 12, y and choosing a sufficiently large
constant Mi, we have

for every E V.

Thus F;i &#x3E; 0 on A;i, F;i  Oi on Bi+l’ which finishes the proof.
In the sequel we shall have to work with a class of functions which

is slightly larger than the polynomials. If is open, we put

the set of all functions of the form
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where and

Clearly if j i

COROLLARY. I f U c Rn is open, semialgebraic, and A, B c U are semi-
algebraic, disjoint and closed in U, then there exists a functions f E 
such that

For the proof we need a lemma.

LEMMA 6. If C c Rn is semialgebraic and closed, then there exists a func-
tion f E such that

PROOF OF LEMMA 6. Clearly if C = Ci u O2 and we can construct such
functions for 01 and C2, then their product will be good for C. Thus we may
assume that C is defined by

(cf. [5]), where po, ... , pk are polynomials. Now we use induction on k.

If k = 0, then we may put f = p2. Let 01 be defined by

and O2 by

Therefore Ci i is the set of zeroes of a function gi E :R(Rn"" 0 i), i = 1, 2.
In Rn X R consider the sets

They are both semialgebraic closed and is also closed. Therefore, by
the separation lemma, there exists a function (p x R) such that

Thus



256

multiplied by an appropriate (positive) power of gi (to cancel the negative
powers of g() satisfies all the requirements of the lemma.

PROOF OF THE COROLLARY. Since UBU is closed semialgebraic, it is the
set of zeroes of a function The sets

are semialgebraic, disjoint and closed in Rn X R, and thus there exists an
such that

It suffices to put

where N is so big that the negative powers of g-2 cancel out.

REMARK. It is interesting to note that even if A, B c Rn are com-
ponents of an algebraic set, then, in general, they cannot be separated by a
polynomial. We give an example.

Consider the following set in R2 :

Figure 1
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It is trivial to see that there is no polynomial V such that V&#x3E; 0 in 2, 3, 4,
and V 0 in 1, in some neighbourhood of 0. In fact, supposing the contrary,
let Yo be the homogeneous part of V of lowest degree. Replacing the angles
1, 2, 3, 4 by smaller ones we see that TTo would have the similar property.
But either the (total) degree of Yo is even, and then if Vo  0 in 1, then
Yo  0 in 3, or its degree is odd, and then if Yo &#x3E; 0 in 2, then Vo  0 in 4.

Now let P a fixed polynomial such that its homogenous part is of degree 4k,
positive on 1, 2, 3, 4. Then there can be no polynomials V, yY such that
V + W1/P  0 in 1 and V + 0 in 2, 3, 4. In fact, supposing that
such V and yY do exist, let V, and Wo be the homogenous parts of V, W respec-
tively, of lowest degree. Let ll, l2 be straight lines with 1, constained in the
angles 1 and 3, and l2 in 2 and 4, such that 0, i = 1, 2. Clearly
there is a polynomial Q, of even degree, such that

Now, approximating V -~- by we get a contradiction.
Suppose that P is negative outside the angles 1, 2, 3, 4 and let P’ be a

polynomial negative on the ball B and positive outside of it we can adjust P
and P’ such that their sum S is positive on the shaded set and negative out-
side of it. We can adjust P and P’ such that their sum /S positive on the
sharded set

Figure 2

and negative outside of it. We can also assume that as 00.

17 - Annali della Scuola Norm. Sup. di Pisa
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Now consider the set 0 e R3 described by

Clearly it has two components A and B, projecting onto A’ and B’ respecti-
vely. We claim that A and B cannot be separated by a polynomial. For

let Q(XI’ X2, be a polynomial such that Q &#x3E; 0 and A, Q  0 on B. Then

the function

would be &#x3E; 0 on A’ and  0 on B’. But clearly

for some polynomials V and W. Now we look at what happens near infinity.
Put =1, 2. For big N the function IzI2Np(X1, X2) is of the form

where T, U, S are polynomials and the lowest homogenous part of S is of
degree divisible by 4. But near infinity A and B look exactly like the angles
inf fig. 1. Therefore we have a contradiction.

It is easy to prove that the separation by a polynomial is possible if one
of the sets A and B is compact or is of (topological) dimension 1.

3. - Proofs.

Proposition 1 follows immediately (as observed by J.-J. Risler) from
our corollary p. 14.

be prime; since X( U) is noetherian, we can find a finite
number of generators f l, ..., f m . By lemma 3, the set of zeroes V(f) of any
Nash function f on ZT is semialgebraic; in fact, it can be identified with

Therefore V(p) = r1 VCf2) n... r’1 Y( f m) is semialgebraic.
Assume V(p) is not connected; thus
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where A and B are closed, disjoint and semialgebraic (since the components
of a semialgebraic set are semialgebraic, [5]). Let f &#x3E; 0 on A,
f  0 on B. Consider the functions

Clearly they are Nash and 0 on A, 0 on B. In particular, 
f _ ~ ~. But /+/-=~+...+/~e~y and we have a contradiction.

In the proofs of propositions 2 and 3 we shall use Tarski’s theorem ( [10J~ .
It can be formulated as follows.

Let K be a real-closed field. Let us call a polynomial relation in K any
formula which can be obtained using alternatives and negations from for-
mulas of the form /(~...,~)&#x3E;0y where f (X1, ..., 

TARSKI’S THEOREM. Let Q denote either V or 3 and let F(X1’ ... , xn, y1, ..., Ym)
be a polynomial relation in K. Let us consider the f ormula

Then there exists a polynomial relation G(YI’ ..., ym) in K such that for any
real-closed extension .gr , of K

In particular, i f m = 0 (i. e. QX1, ..., QxnF(x1, 7 ..., is a sentence), and
if QXI’ ..., Qx. F(x,, ..., xn) holds in some real-closed extension of K, then it

holds in any real-closed extension of K.
A quick proof of Tarski’s theorem can be found in [1].
In the proof of proposition 2 we shall follow [8], pp. 214-225.

LEMMA 7 ([8]). Let K be a field, and let C be a subset of K such that 0 g~ C,
1 E C. In order that an element a =1=0 of K be positive in all orderings of
the field K in which all elements of C are positive it is necessary and sufficient
that a can be represented in the form

where the ei are products of elements of C.
In particular, the necessary and sufficient condition for the existence of

an order on .K such that all elements of C are positive is that there is no rela-
tion of the ci-products of elements of C, 
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LEMMA 8. Let K be an ordered field and a E K, 0. Then the order
on K can be extended to an order on K(X) such that

The proof is a trivial application of lemma 7.
To make the proof of proposition 2 clearer, we shall repeat the proof given

in [8] of the classical theorem of Artin: if a polynomial f E R[X1, ..., Xn]
takes only nonnegative values, then it is a sum of squares in ..., 7 X").

Assume it is not a sum of squares. Then, by lemma 7, there exists an
order of R(X,, ... , Xz) such that f  0. Let g be a real closure of R(X,, ... , Xn)
and let be the images of the polynomials under

the natural imbedding R(X1, ... The phrase

holds in R, therefore, by Tarski’s theorem, it holds also in K. But

and we have a contradiction.

Now we pass to the proof of proposition 2.
Let f (x) ~ 0 for all x E U, and assume that f is not a sum of

squares in the field N(U)* of quotients of the ring Thus we can order

so that f  0.
We choose a polynomial P(x, t) such that P(x, f (x) = 0 and its discri-

0.

Consider the sets

Clearly they are semialgebraic, disjoint and closed in (RnBU) X R X R.
Thus there exists a function 99 E 9t( (Rn"" U) X R X R) such that cp &#x3E; 0 on A

99  0 on B. Therefore we have: if P(x, t) = 0, 62 (X) y &#x3E; 1, cp(x, y, t) &#x3E; 0, then

By lemma 8 we can extend the order on to an order on T)
such 

Now consider the field .g of quotients of the ring ff defined as follows. Put
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and consider it as a ring of functions on

set of all functions of the form

Since 5’ is obtained from T] by an inductive procedure of ad-

ding square roots of sums of squares, .K can be ordered in such a way that
it extends the order on T).

It is clear that for any V c open and semialgebraic, and for any
the formulas y(y) &#x3E; 0, = 0, can be translated in the obvious

way into formulas obtained from polynomial relations by using quantificators ;
e.g. if where Pi, Q i j are polynomials, then

i 2

In the sequel the formulas y(y) &#x3E; 0, etc., will always mean the polynomial
relations with quantificators described above.

Now consider the following formula:

Clearly it holds if we interpret the variables as real numbers. We shall
show that it does not hold in the real closure L of K, and thus, with the help
of Tarski’s theorem, we shall obtain a contradiction.

Let ~: be the canonical imbedding. We shall show that the ele-
ments Â(x1), ..., xn _ ~,(xn) ,~~y 2(y), f A(f) (where xi, y are the coor-
dinate functions on II X R X R) do not satisfy our formula. It is obvious that

1) = Â(P(x, f)) == 0, = ~~~2(x)y) ~1 ~ f = I(f)  0. Thus we have

to check that y, ï) &#x3E; 0.

The last formula is by definition equivalent to a sentence of the follow-
ing form:
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where are polynomials such that

Thus we may choose ~1 to be the image in .L of the function

77, to be the image of

Then Ø(x, y, f , ... ) y, tgq29,q2, ...)) and the condition 0(.7v, y,
77 ... ) &#x3E; 0 means that 99 (x, y, f ) &#x3E; 0 in the order of K. But for any
x, y E U X R T(x7 y, f (x)) &#x3E; 0, so it is a square.

This completes the proof of proposition 2.
The proof of proposition 3 follows similar lines, but is slightly more in-

volved. We shall need the following lemma, which is a rough version of
Lojasiewicz’s « normal partitions )&#x3E; and « normal systems of distinguished
polynomials ».

LEMMA 9. Let be open semialgebraic, f o , f l , ... , f m E JY’( U’) . Then
there exist a f inite number o f (finite) systems of polynomial equations and ine-
qualities in Rn, ..., ~k, 9 and polynomials Pii(X, t) (i = 17 ..., k, j = 0, ..., m)
such that :

being the discri-

The proof is an easy adaptation of Lojasiewicz’s construction, [5], pp. 60-62.
Before proving proposition 3, we give a simple proof, based on Tarski’s

theorem, of the following Nullstellensatz for polynomials [6]. Let

aeR[X1, ...,J’] be an ideal; then the following conditions are equivalent:

Of course if suiRcies to prove that b) implies a).
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We can assume a is prime. In fact, any ideal in R[XI, ..., is an inter-

section of primary ideals; since a satisfies b), it is a radical and thus intersec-
tion of prime ideals: a = no,. It is easy to check that every V satisfies b).
Let f vanish on V(a). Then it vanishes on V(Vi) and, assuming the Nullstel-
lensatz for prime ideals, we get f E V for all z, i. e. f E a.

Now let fi , ..., f m generate a and let f vanish on V(a). It follows from b)
that the field of quotients of the (integral) ring R[Xl, ..., is real. Let K

be its real closure.

The phrase

holds in R, so it holds also in K. Let Xl’ ..., ilin be the images in .g of Xl, ... , X~,
under the natural homomorphism ..., X,,,] --&#x3E; K. Clearly

so which implies that f c- a.
We return to the proof of proposition 3. Again it suffices to prove the

implication b) =&#x3E; a). We can also assume that a is prime and U is connected.
Thus JV( lT)j« is integral and its field of quotients (JV(U)/«)* is real. We
order it arbitrarily.

Let generate a. Let jEJf(U) vanish on V(a). Put /0=/ and
Pij have the same meaning as in lemma 9.

Fix a set of polynomials in ... , xn] which define U. Thus the formula
x E U can be interpreted as a polynomial relation, and therefore makes sense
in any real-closed extension of R.

If then M will denote its class in 
From here the proof will be obtained via three steps.

1. ( [xl] , ... , [liln]) E U.
Let K be the real closure of For 99 E we shall denote

by q5 its image under the composition of the natural maps

It suffices to prove that x = ..., xn) E U.

By lemma 6 and corollary, p. 14, there exist functions Ti, 99, E

E such that
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Let Thus, for any

Now the formula &#x3E; 0 is equivalent to a formula of the following form:

where are polynomials and

Thus &#x3E; 0 means
B.

We may choose ~1 to be the image in .g’ of the function

~2 to be the image of

Then and only if the class [q] of cp(x) E X(U) in
is positive. But 99 is positive on U, so dq E therefore [~~

is a square.

Step 2. We shall show that there exists exactly one so such 
moreover, I

In fact, the formula
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holds in R, so it holds also in .K (the symbol 3!s fl£ ~ (z) can be easily translated
into usual quantificators:  s1= s2]). In par-
ticular, x satisfies exactly since x E U.

To prove that =A 0 we consider the formula

and argue in the same way.
In the sequel we shall write 1

Step 3. The generic point in R-+’ will be written as t = (to , ... , tm) and let

A and Bare semialgebraic, disjoint and closed in let

be such that

Let .L be the field of quotients of the ring ’ defined as follows : Put

~’o = and consider it as a ring of functions on F x -R. Let

3B+i==the set of all functions of the where ’Pk, i

k 
’ 

l

By lemma 8, the field (X( U)¡a)*(y) has an order extending the (arbitra-
rily chosen) order on such that It is easily seen that L
can be obtained from by an inductive procedure of adding
square roots sums of squares. Therefore we can extend the order on (J~( 
to an order on L such that ~(~)~&#x3E;1.

Consider the formula
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Let L be the real closure of L. If q E N(U) [y], then §5 will denote its
image under the composition

Our formula holds in L since it holds in R.

It is obvious that satisfy:

The argument that cp(x, f o , 0, ... , 0, y) &#x3E; 0 is exactly the same as the
last part of the proof of proposition 2, so it will be omitted. Therefore f o = 0
which implies to E a.
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