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On the Rectifiability of Domains with Finite Perimeter.

L. A. CAFFARELLI (*) (**) - N. M. RIVIÈRE (*) (***)

In the study of free boundaries in variational inequalities it arises

naturally the question of regularity of domains with finite perimeter in the
sense of Caccioppoli [1] and De Giorgi [3]. In two dimensions, for instance,
with the rectifiability of the topological boundary of such domains; which
we prove in the context of this paper; the tools developed by H. Lewy [6],
and H. Lewy and G. Stampacchia [7] can be utilized to show further

regularity of the free boundaries, see [7], [5], [2]. The domains in question
usually verify the following two conditions:

(A) The interior of its complement is composed of finitely many
connected components. (B) The points in the boundary of the domain are
of uniform positive density with respect to the interior of its complement,
see [2]. In the two dimensional case either condition yields the rectifia-
bility of the domain. In the notation of geometric measure theory (1) our
results prove that the irreducible currents associated with are the

boundary curves of the connected components of E. In the n-dimensional

case condition (B) implies the additivity of the perimeter of ,S~ in terms of

its connected components.

Domains with finite perimeter.

Following the notation of De Giorgi [3], set
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If XE denotes the characteristic function of E, we define its perimeter as

In [3] it is shown that if is a sequence of polygonal sets converging
in measure to E, then

Moreover when E has finite perimeter there is a sequence of polygonal
domains ~~n~, such that nn converges in measure to E and

Denote with CE the complement of E and with Eo its interior.

m(E) will denote the Lebesgue measure, for a measurable set E.

LEMMA. I. Let Q be an open set of finite perimeter. The sequence, 

of polygonal domains converging to Q in measure and approximating its per-
imeter can be chosen so that:

(i) If .g1 and X2 are compact sets, .g1 and X2 c (eQ)O; then, for
X1cnn and X2c(enn)o.

(ii) I f m ( ~x, when denotes the

boundary of Q), e  eo, and a &#x3E; 0 independently of e and xo; then 7rn c c Q.

PROOF. We follow the construction of De Giorgi [3] of a polygonal
sequence of functions, ~gk~, defined from .Rn into R such that if

then

(b) When c 1 /k. Here 4 denotes the sym-
metric difference; A A B = (A n B’ ) u (A’ m B).

Observe that, in virtue of (b) and a previous remark,  lim for

081.
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On the other hand, by Fatou’s lemma and (a),

Therefore S(Q) = lim (!k(O) in a set E, m(E n (0, 1)) = 1.
Given n, choose A~ so small that  n when x E g2 and 

~ 1- r~ when xEKI. Then if we choose 7tk(O) such that 0 E (2~, 1 - q ) n E
and part (i) follows.

To prove part (ii), observe first that when 0: 

uniformly for Observe also that WÂX.o(x) satisfies the heat

equation in the (z, I) variables, when moreover for such x,
0+ as 1 - 0+. Therefore, by virtue of the maximum principle

WÂXn(x), x E CS2, must reach its maximum at a point (XO, with

That is a’ 1 when (x, A) E CQ X (0, 
Choose 0 E .E r1 (a’,1) ; in virtue of the observations above, for nl large enough

Using part (i) of the lemma we can choose n2; 
by induction part (ii) follows.

LEMMA II. Let Q c 1~2, be a bounded open set such that (a) 8Q = 

(b) C(Q)° = U D,, Di connected. If further T(S2)  00, then the boundary of

each of its conneeted components is aceessibZe. Moreover, if C is a connected
components of Q, given converging to x, x E a C, there exists a Jordan
arc, [0, 1) ~ C, and a subsequence such that r(tk) = xnx and

t ~ 1-.

PROOF. Let xo E aC, set Bk(xo) = {x, Ix - zo[  l/k}. Take xnl E r1 C

and let Sl be the collection of polygonal curves joning xnl with 
Let a = inf ~d(l~’), T e S,}, d(-) denotes the diameter of the set. Choose rl, y

joining Xnl with Xn2’ such that  2a, Xn2 E B2(xo) r1 C.
Repeating the above argument inductively we obtain a sequence of poly-

gonal curves, Xn1c with such that, and

ak   The lemma follows if we show that CXk - 0 as k ~ 00 :

We argue by contradiction; suppose there exists a sequence, ~ak~, such
that E Bk(x°) r1 C. Consider ko so large that then xnk’

belong to different components of If other-

wise, Xnk and x., belong to the same connected component, then

d(F,)  E, contradicting the fact that CXk &#x3E; E.

Call ~7~ the connected component of C r1 {x, jx - xo  E} containing 
k &#x3E; Again by virtue of the fact that d(rk) &#x3E; E, {x, = s f4) / 0.
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Let hk be a polygonal arc joining Xnk with a point of {x, Ix- xol = 

Set and T, from [o, 2~) onto S, the standard
transformation into polar coordinates. Observe that when E Ekl,

y~/2, there exists 0 ; 0,.  0  0,; On the other

hand if n (~S~)° _ ~ and S’t n (CS2)0 = ø, ri  e/2; since 8Q = 

there exists a connected component of Di, 
By hypothesis there are at most m+1 radii such that ,Sr n 0.

Finally we restrict our attention to a finite number of polygonal paths P,,
dividing the set into N different re-

gions. In each region we can construct a compact set gt composed of radial
segments K, c (CQ)°, such that the perimeter of the circular projection of Ki
into a given radius exceeds e/16. By Lemma I we may choose nn; such that

a consequence, on each

region the perimeter of must exceed e/16 and therefore &#x3E; N E/16.
This contradicts our hypothesis on the finiteness of the perimeter of S2 and
the lemma follows.

REMARK I. Let Q be as in Lemma II, then Cj r1 Ck consists of at most
points.

PROOF. If two points belong to the common boundary of C, and C, there
are two Jordan arcs, by virtue of Lemma II, the first joining them in C~ the
second in Ck. Together they form a Jordan curve whose interior must con-
tain a component of since 8Q = 8C(Q)°.

REMARK II. Under the assumptions o f Lemma II the boundary of each
of the connected components, C~ , of ,S2 is composed of at most m Jordan curves.

PROOF. Clearly is composed of at most m connected components.
Let E1 be the unbounded component of and C* = then

(i) C, c C*; (ii) (iii) C* is connected and simply connected.
In virtue of Lemma II every  prime end» of C* consists of exactly

one point which is a simplepoint, since 00* = oE1. As a consequence 8C*
is a Jordan curve (see [8], Secs. 7 and 8). The other components, 
reduce to the above case by an inversion mapping.

Next we will « separate » two connected components, Ci and O2, of S~ by
a Jordan curve contained in C(Q)° and a finite number of small balls.

By Remark II, given s &#x3E; 0, there are at most m+1 balls, 9

of radius E such that if
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LEMMA III. With the above notation, let E be a connected component of C2.
There exists a f inite nmber of balls fB,,}, at most m + 2, of radius less than 8

such that (i) Bk n E = ø, (ii) There exists a Jordan curve, r, contained in

separating from E.

PROOF. In virtue of Remark I we may assume that O2 is contained in
the exterior of the exterior Jordan arc of Ci (applying an inversion if needed).
We may cover the finite holes of C1 and assume that 01 is connected and simply
connected. Since Cl r1 E = 0, we may choose 6, such that if x c Cl, 9 y E E,
[x- yj&#x3E;2~.

Consider since aS2 = then xo E Observe that if

then for any 6 &#x3E; 0 there exists a polygonal arc, y, con-

tained in Dl and connecting {~ with {x, ~x - z ~ C ~~ . On the
other hand the points zo and z divide the boundary of Ci into two Jordan
arcs, and 1’". Note that either y together with r’ and both balls separates T"
from E or else y together with .1"’ and both balls separate from E.

Parametrize 8Ci with {Z, iz I = 1} = SI-9 F(81) = aC2, f ($,,) = XO. Using
the above argument let ul be the end point of the longest arc, to the left of ~o,
such that for z in the open arc, (i) F(z) E (ii) is separated from E

by the corresponding arc y, the complementary arc of in a C1 and the
balls {x, ix - x,, I  6{, {x, ~x - z ~  ~~ . As a consequence is sepa-
rated from E by an arc c the complementary arc of and

two balls of radius 2b centered at xo and F(ui).
It follows from the construction that either UI = $0, and the lemma

follows, or else If we repeat the construction induc-

tion inductively after at most m +1 steps, ~o and the separation
process is completed.

00

THEOREM I. Let Q be as in Lemma II, then if ~J C;, C; connected
components 

;=1

(ii) composed of a f inite number, at most m, o f rectifiable Jordan
curves, r;k, and 

k

PROOF. To prove (i) we separate, recursively, each component from all
the others using Lemma III.

Let Xl E 01, x2 E O2, in virtue of Lemma III we may select a family of
balls, radius less than El and a Jordan curve, h, such that
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separates where denotes

the connected component of (B))°) containing z;.
k 

As a consequence of Lemma I, we may choose a polygonal domain ap-

proximating such that; and where .g1 is a compact
set of connected interior, 

Next we « separate» Ci from O2 and 03 by the above process removing
at most 4m + 6 balls of radius less than E2; and so on. In this fashion we

construct a sequence of polygonal domains, associated to the sequence En,
sn - 0 as n - oo and to the sequence Kncn:, where C(Kn)) -&#x3E; 0

If Bn denotes the connected component of n£ containing gn observe that,
by construction, On the other hand

m(C,, r~ C(Bn))  m( 01 r1 ~ 0, as n - 00. Hence, since A S2) --&#x3E; 0,
we have Cl) - 0 and m ([ U C;] A [n£ n - 0, as 

Therefore 
NACII) -&#x3E;0 m (I j-&#x3E;2 n

that is

On the other hand the sublinearity of the perimeter yields = S( Ci) +
+ T( U C;) and property (i) follows by induction.

;~2
To complete the proof we analize a C1.
Note that aC,, is composed of at most m Jordan curves, 1’?, two of

which intersect in at most one point. Adding to 01 at most m balls, 
of radius el we may « separate » all the Jordan curves in the following sense :
let A; be a connected component of C(C1)°, Fj = if, C11= 01 U U .Bkx
and XiEAi, we may select a polygonal approximation, a., of C11 such that
each xj belongs to different connected components of We proceed
inductively to construct a sequence (xn) associated to sn, en ~ 0 

Let x£ be the simply connected closure of nn (i.e. the set of points that
can not be joined to infinity without crossing n’). Clearly ~’(~n) c ~’(~n) c

-E- bn -
Let D =  11 c C, and f n the conformal mapping from D onto 7r,*

such that = XO. If H1(D) denotes the space of analytic functions on D
whose Ll-norm over circumferences of fixed radius remains uniformly
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bounded (see [9]), then

Therefore and, since = xa, in virtue of Harnack’s

Theorem there exists a subsequence (which we readily such

that f n converges to a limit f, uniformly in D. By Fatton’s lemma

At this point we make use of Caratheodory’s Theorem, (see Theorem 2.1
of [8]) and choose our so that f is a conformal mapping from D
onto the kernel of the said sequence, see Def. on pg. 33 of [8].

In virtue of Lemma I, Gxp = where A1 denotes the unbounded

component of Hence

To complete the argument, for each xj E A;, consider the connected

component of C(nn)° containing x f, T;n, form its simply connected closure,
T~ , then repeating the argument above it follows that length (1 ~’3 ) 
Therefore, since T(n*) + I  T(an) and - ~(Ol), as n - oo, we
have (1-’f).

Finally 01 is a connected domain bounded by at most m rectifiable Jordan
curves and the converse inequality follows restricting the conformal mappings
to subcircles of radius less than one.

REMARK. Under the assumptions of Lemma II, if instead

of the arguments of Lemmas II and III, together with Theorem I yield
that : and hence the conclusions of Theorem I remain valid.

LEMMA IV. Let Q c Rn, be a bounded region with connected components a i ;
00

Q = U Assume that T(S2) and that there exists a sequence of poly-
i=i

gonal regions, n, increasing (i.e. nn c 7Tn+l c o) such that r1 0

and -+ as n -* c&#x3E;o. Then

i’he sequence can be constructed under condition (ii) of Lemma I.
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PROOF. Let Bn be the union of the connected components of contained

in Ci . Clearly m(C1 n ~Bn) ~ 0 and m U Cj u Bn) - 0, as n -~ oo ;
hence j-&#x3E;2

that is

00

Inductively, it follows the subadditivity of the per-
imeter proves the theorem. 

’ =1

THEOREM II. Consider Q c R2, open, such that if x E aS2, + Be) n

am (B. .), where 0  a  1 is unif orm for x E aS2. Write
vv

Cj connected component ; then T(S2) = i Moreover i’

where i=i

(a) Fjk is a rectifiable Jordan curve and

(b) the set of limit points of (i.e. x E Ei iff x + Be intersects in-
finitely many h;k and U Fik) and H,,(E) = 0, H1(.) represents the one

k

dimensional Hausdorff measure.

PROOF. In virtue of (ii), Lemma I, the first part of the theorem follows
from Lemma IV.

To study the boundary of Cj we set = S2 then, by the assump-
tion made on 92, it follows that (C£5)° = i Observe that = 0, since

and, if m((x + Be) r~ S~) -~- m((x + Be) n (CS2)0 = m(Be).
that is 8Q is contained in the subset of Q

of points of density less than one and hence of measure zero. Therefore

aC; = 8£5 is a set of measure zero. In consequence = S(£5).
But Q satisfies the conditions of Theorem II and hence if U Dlk

k

Dik connected components; adik is a rectifiable Jordan curve;

(1-’;k).
k

Finally if .Ej is the set of limit points of the family is a

covering by balls of radius less than e, we may divide the family into four

subfamilies {Ufllflc-f, where all the balls are disjoint. By assumption
m( Up n &#x3E; exm( Up). On the other hand f2 D Then, for each fl,
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either:

(ii) There exists such that the length of is

greater than or equal to 

Observe that, if (i) holds, the isoperimetric inequality of de Giorgi; [3],
Theorem VI; yields aj2r2( Up) )C( I (j’2(Dik))’ Therefore in either case
~ r ( U~ ) c C~ ~ and, since N~ - oo as 8 - 0, the theorem follows.

Finally, we present a family of simple examples showing that the hypo-
theses of theorems I and II are essential either for the additivity of the per-
imeter or for the representation of the topological boundary of the set.

Consider two squares, Ci and C2, with a common side, I, and from such
side remove countably many disjoint balls, ~8~~, the sum of whose perimeter
is as small as we please and such that 

Set i

then

In the same fashion, placing countably many balls on the curves

y = x sin (1/x) or y = sin (1/x) we can construct domains S~ such that S~ is
a connected, simply connected open set of finite perimeter, y 3~ = 

and, in the first example, its boundary is a non rectifiable curve. In the

second example, the boundary is not even a curve.
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