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A Semilinear Equation in L1(RN).

PHILIPPE BENILAN (*) - HAIM BREZIS (**)
MICHAEL G. CRANDALL (***)

Summary. - The problem is studied where and P is a max-
ximal monotone graph in R with 0 E If N &#x3E; 3 the problem is shown to have
a unique solution in some Marcinkiewicz space. If 0 E int f3(R) and N = 1, 2 so-
lutions unique up to a constant are obtained ; in case 0 E int P(R), it may happen
that no solution exists. Finally it is proved that, under some assumptions the solu-
tion has a compact support.

Introduction.

Let B be a maximal monotone graph in R with In particular, y
fl could be any continuous nondecreasing function on R vanishing at 0.

This paper treats the problem

for given f E The problem (P) is considerably more delicate than
the regularized version

which falls within the scope of [2]. The estimates and

are easy to obtain for (P,) and they are crucial in the

existence and uniqueness proofs. The solutions u of (P) to be obtained here
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will not lie in in general, and we will need to use the properties of 4-1
considered as an operator on in a very precise way to find suitable
estimates on u. Therefore it is not surprising that the fundamental solu-
tion of the Laplacian will play a prominent role. In particular, it will be

necessary to handle the cases N =1, N = 2 and N &#x3E; 3 separately. When
N = 1 or N = 2 we will require some coerciveness from the nonlinear term

(namely, 
The main results are summarized below (M1J(RN) denotes the Marcin-

kiewicz (or weak-LI) space (see the Appendix)).
N &#x3E; 3. For every f E L1(RN) there exists a unique U E MN/(N-2)(RN) with

satisfying (P).
N = 2. Let 0 E int fl(R). Then for every f E LI(R2) there is a u E 

with Igrad u] E M2(R2) and L1u E L"(R2) satisfying (P). In addition, two solu-
tions in this class differ by a constant.

N = 1. Let 0 E int fl(R). Then for every f E L’(R) there exists a

u E W1.OO(R) with d2U/dX2 c -L’(R) satisfying (P). In addition, two solutions
in this class differ by a constant.

The plan of the paper is as follows: Some preliminary results and nota-
tions are collected in Section 1. The second section develops the general
results for N&#x3E; 3. The third and fourth sections deal with the cases N = 2

and N = 1. Section 5 discusses conditions on fl under which (P) has a solu-
tion u E L’P(RN) (for all N&#x3E; 1). Section 6 considers conditions on f and ~8
under which (P) has a solution with compact support; in this section f need
not be in L’(RN). We conclude with an appendix describing some properties
of the Marcinkiewicz spaces and the Laplacian.

1. - Preliminaries. 
,

We begin this section with some of the notation and definitions used
later. If 92 c R’ is Lebesgue measurable, meas Sz denotes its measure.

If denotes the integral of f over S2 with respect to Lebesgue
n

measure and this is shortened if Q = RN. When it is necessary to

indicate the variable of integration we sometimes write etc. The
.Q

norm in L’P(RN) is denoted by 1 cp c oo; MV(RN), 1  p  oo, denotes
the Marcinkiewicz space and is its norm (see the Appendix). If u is

a function on denotes etc.

If k &#x3E; 0 is an integer and 1  p  oo, is the Sobolev space of func-

tions u on the open set for which D’u E LP(Q) when III  k with its

usual norm. is the closure of D(Q) = in Also, if
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p = 2 we write Hk for Wk.2 . A function u lies in if Cu E 
for 

Some special classes of functions on R we will use are the cones:

3o = ~ j : R --~ [0, is convex, lower semi-continuous = 0},

and

Finally Co will be a fixed function in Ð(RN) such that ~o(.r) = 1
if and ~o(.r)==0 if ~~&#x3E;2. For 

Given f e we say that u in is a solution of (P) provided
that (in the sense of distributions) and 
a.e. on RN. If £ is a subset of Ltoo(RN) then (P) is said to be well-posed in
L if the following conditions hold :

REMARKS. The definitions of Go and To formally depend on ~, but we
will not indicate this dependence explicitly. (III) implies that f E 
if by choosing j(r) = irl, while (IV) implies that if 

and (interchanging f and Thus To is an order-

preserving contraction on if (P) is well-posed in ~. The require-
ments (III) and (IV) are natural in this problem and are motivated by the
results of Brezis and Strauss [2] to which we refer for references to previous
related works. It will be shown that (P) is well-posed in MN/(N-2)(RN) if N~ 3,
in (u E Wi~(R2) : ~ I grad u E ~12(R2)~ if N = 2 and in Ltoc(R) if N = 1.

We begin with a well-known linear result.

LEMMA 1.1. For every f E Ll(RN) and every A &#x3E; 0 unique
satisfying u - ÂL1u = f in 0’(R’Y). Moreover, IIfllL1 and also
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PROOF OF LEMMA 1.1. We give only an outline (employing elementary
functional analysis rather than Fourier analysis). Suppose first that f E L2(RN).
Then the standard variational argument shows there is a unique u E 
such For any such that one has

p(u) and

Choosing appropriate p’s we easily deduce that

and 11 U I/L1  llt I!L1 for f E L2(RN) n L’(RN). For general f E L’(RN) choose

f n E L2(RN) n LI(RN) so that - f in L1 (RN) (for example, f n = min(n,
mag( f, - n))). The corresponding solutions Un form a Cauchy sequence in
LI(RN) (since f E L’(RN) r1 l-+ u is a contraction in There-

fore u E and u satisfies the conditions of Lemma 1.1. Finally
we prove uniqueness. Suppose satisfies Let

eEÐ(RN) (since 
and Consequently u=
Q* u = 0 for all and hence u = 0.

It follows from Lemma 1.1 that we can apply [2, Theorem 1] (see also
Konishi [4]) with Au = - du + 8U, D(A) = to ob-

tain the next lemma which is crucial for the existence proofs.

LEMMA 1.2. Let N &#x3E; 1 and 8&#x3E; 0..F’or every f E there is a unique
with satisfying (P,). In addition, (III) and (IV)

hold with fl replaced + EI.
In other words, (Pe), which is (P) with fl replaced by 81, is well-

posed in In order to show convergence of the us as s - 0 + we will
use the following lemma.

LEMMA 1.3. Let and Let Ue be the solution of (P,) and
We = = f + d uE . In addition, if N = 1 or 2, suppose that Ue is bounded
in Lloc(RN). Then ([us , We]: 8&#x3E; 01 is precompact in M. oreover, if
En -&#x3E; 0 + and [uen’ - [u, w] in Lloc(RN)2, then w = f -E- du E LI(RN), u is
a solution of (P), and for every j E In addition :
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PROOF OF LEMMA 1.3. By Lemma 1.2, is a contraction on L’(RN).
Moreover, TeI+fJ is clearly translation invariant and 0 = Thus

We === TeI+fJf satisfies 

for h E RN. Thus is precompact in Ltoc(RN). Also,
by (III) for If en - 0 + and wen-+w in

it then follows from Fatou’s lemma that 

In particular, Next, using Lemma A.5 if N &#x3E; 3 and Lemma A.14
if N = 2 one finds

and

If N ~ 3 these estimates imply that u, is bounded in and hence

is precompact in with continuous

injection if 1  p  oo). If N = 2, the same is true since us is assumed to
be bounded in In addition, fgrad ul is also precompact in 
since

for Hence properties (1.4) and (1.5) are easily obtained from Fatou’s
lemma (see the remark following Definition A.1). The fact that u = lim Usn n

is a solution of (P) is clear.

Finally, if N = 1 we have

Therefore, is precompact in as soon as it is bounded in 

and (1.6) is clear. The proof is complete.
Lemma 1.3 reduces the problem of showing (P) is well-posed in a class E

considerably. For N&#x3E;3 and L = MN/(N-2)(RN) it will suffice to show that

solutions of U E L are unique. Then d u is also unique and hence
in Ltoc(RN). IV then follows from Fatou’s lemma.

If N = 2 and E = (u e or N = 1 

a bound on us will first have to be obtained. Then it will suffice to show

that two solutions of (P) in E differ by a constant. For in this case

is still unique, and IV holds as above. The cases N ~ 3,
N = 2 and N = 1 are treated separately below.
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2. - N&#x3E;3.

The main result of this section is

THEOREM 2.1. The problem (P) is well-posed in C = and

the solution u of (P) in L is unique (i.e. Go is single-valued). There is a con-

stant ON depending only on N such that

for f, Gg is order preserving.

PROOF OF THEOREM 2.1. By the preceding remarks (P) is well-posed in C
if solutions are unique. Let Ul, be solutions of (P), u = ul - U2
and Then and and on RN (by
the monotonicity of It follows from Lemma A.10 that for p e so

Since grad u = 0 and u is a constant function in 

But then u = 0.

If u = Gpf, û = IV implies

and then (2.2) is a consequence of Lemma A.5. Finally Go is order preserving
since in Ltoc(RN) and is order preserving (see [2]).E10 e.[+#

REMARK. (P) is well-posed in any subspace C of Ltoc(RN) such that

Indeed, it suffices to show a solution u in fact lies in MN/(N-2)(RN). Let

2G E MN/(N-2)(RN) be solutions and VE MN/(N-2)(RN) satisy 4 w = J (u - 4).
Then so 

Interesting examples of choices E satisfying (i) and (ii) are the following:
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To check (i) observe that MV(RN) c [:1 for every 1  p  00, while (ii) fol-

lows from Lemma A.8. Another class is

where 2  (Related spaces are considered in Nirenberg and Walker [5]).
Indeed, to check (i) note that

On the other hand since

and the right hand side tends to zero as n - oo if 

3. - N = 2. 
’

The main result of this section is

THEOREM 3.1. Assume Then (P) is well-posed in the class

In addition, two solutions of (P) in E differ by a constant and there exists C
such that

Also G~ maps bounded subsets of Ll(R2) into bounded subsets of for
1~~2. Finally we have
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PROOF OF THEOREM 3.1. We begin by showing the uniqueness up to a
constant. Let h &#x3E; 0 be large enough so that 0 EB(A) and 0 E B(- 2). Sup-
pose are two solutions of (P). We are going to prove that

grad(ul - u,) = 0. First observe that meas h] for i = 1, 2,
(since f + dui E a.e. and f + dui c L’(R2)) so that meas [ lu, - u2 ( &#x3E;
&#x3E; 22] c)o. 
wELl(R2) and u.w&#x3E; 0 a.e. It follows from Lemma A.10 that grad u = 0.
To prove that (P) is well-posed in C it remains to show (in view of the
remarks after Lemma 1.3) that the solution u, of (Pe) remains bounded in

as 8 -¿.O +. However, with the same reasoning and h as above,
meas is bounded by a constant p independent of E. Therefore,
by Lemma A.16 and the fact that grad Ue is bounded in M2 (R2) we con-
clude that IlueIlL1(B) is bounded provided B is a ball such that meas B &#x3E; ,u.
The inequality (3.2) is a consequence of IV and Lemma A.ll while (3.3)
follows from Lemma A.13. Finally, suppose f lies in a bounded subset of
Ll(R2) and let Then we have

for some C, C1. The same argument as above shows that u is bounded

in Moreover, Igradul is bounded in Lfoc(R2) for l~p2 by
Lemma A.2. It follows that u is bounded in W)j§(R2) for l~p2.

REMARK. It is clear that (P) is well-posed in any subspace ~ of 
such that

and

Examples of such classes are

(see Lemma A.11 ) and
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where 1  a  2. To check (i) for L2, note that

On the other hand, L2 c C, so (ii) holds for L2.
We now take a more detailed look at the question of uniqueness of solu-

tions of (P) in the L of Theorem 3.1. While this is settled completely
below, we first state a result giving two interesting criteria under which
solutions of (P) are unique:

PROPOSITION 3.4. Under the assumptions of Theorem 3.1, (P) has a unique
solution u = provided ~ 0 or = ~0~ .

For the proof we will need the following lemma:

LEMMA 3.5. Let fl be a maximal monotone graph in R, 0 E fl(O), p &#x3E; 1,
M ~ 1, c e R and a.e. 

then either W = 0 or c = 0.

PROOF. Let j E 30 be such that aj = fJ where aj is the sub differential

of j. By the definition of sub differential

Thus j(u + c) - j (~c) = wc. Next we show that j(u + c) - j (~c) is constant.

Since w E this completes the proof. First assume that is bounded.

Then j is Lipschitz continuous and j(u + c), j(u) E Moreover,
grad(j(u + c) - j(u)) = w grad(u + c - u) = 0 a.e. (since u e im-

plies u has partial derivatives in the usual sense a.e.). If fl is not bounded,
let fl_4 be ~ truncated above of A and below at - A (an explicit formula
is ~A = + where I. is the indicator function of K), and wA
the truncation of ~,u. a.e. By the above,
wA = 0 or c = 0. The proof is complete since wA = 0 for some A &#x3E; 0 im-
plies w = 0.

If ui and u, are two solutions of (P) then w = f + 4ui = f -~- du2 E =

= fJ(u2 + c) a.e. where is a constant by Theorem 3.1. Since

~,u E either w = 0 so - dui = f 0 and c = 0 by the preceding
lemma. Thus solutions of (P) are not unique if and only if there exist

vELOO(R2) such that dv = f and Proposition 3.4 now
follows from Lemmas A.15 and A.13.

36 - Annali della Scuola Norm. Sup. di Pisa
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The next result shows that Go is as order preserving as it can be, given
that it is not necessarily single-valued.

PROPOSITION 3.6. Let f, uEGpf, and
ic E then a.e.

PROOF OF PROPOSITION 3.6. Let p E To satisfy p(r) = 0 for r  0 and
p’(r) &#x3E; 0 for r &#x3E; 0. It follows from Lemma A.13 (applied to u - ic) that

where w = = Since is monotone (w - w) p (u - ic) ~ 0 and the-
refore Hence grad p (u - K) = 0 a.e. on R2 and

so p( u - û) = 0 with C&#x3E;0. If C = 0 we conclude that Otherwise

C &#x3E; 0 and so = C’ &#x3E; 0. Then a.e. On the other hand im-

since To is order-preserving. Thus w = = = d i.

We conclude f = 1, a contradiction.
To conclude this section we give two results related to the necessity

of the condition 0 E int fl(R) in Theorem 3.1. The first is:

THEOREM 3.7. Let fl be a maximal monotone graph in R with domain D(fl)
bounded above and fl(R) c [0, oo). Then given f E L’(R2) with f f  0 there is

no f unction u E with the properties du E and f + Llu E fl(u) a.e.

PROOF OF THEOREM 3.7. First note that the nonexistence claim is stronger
than saying (P) has no solution since du E LI(R2) is not required. Assume,
to obtain a contradiction, that u has the above properties. Set ~ = sup D( e).
Then a.e., and d~c = - f -f- (du ~- f ) ~ - f a.e. Let e E Ð+(R2),

Then   M a.e. and Since f f C 0
we can assume f I 0 by an appropriate choice of 0.

Let v : [0,00) - R be given by

Then

Thus for R &#x3E; 0
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If - f for the above implies that for

Then for some c. On the other hand ù  M

implies a contradiction.

REMARKS.

1) By a similar proof we get easily the following (known) fact. Sup-
pose (in the sense of distributions) and u is bounded

above; then u is a constant. Indeed it is sufficient to handle the case of a

smooth u. As above we get that j4u = 0 and therefore 4u = 0. Next

we can apply the previous result to w = eu; since d w = + Igrad u12) ~ 0
and w is bounded above we conclude that 4w = 0 and so grad u = 0.

2) Suppose now that lim then for any given 
r-&#x3E; + OJ

0, (P) has no solution. Indeed we get as above v(R) &#x3E; 8 log R -+- C.
On the other hand C’ ( ~ &#x3E; 0 ) and thus

which contradicts the fact that It is natural to raise the

question whether a solution of (P) exists under the additional assumption

j’/&#x3E;0.
In the case j~&#x3E;3 the proof of existence relied heavily on the estimate

that In particular, Ue remained bounded
in as 8 - 0, and this was the crucial ingredient in the existence

of u. Such an estimate does not hold when N = 2. More precisely, let
B = Then there is no C for which

We give two proofs. First, if (3.8) holds then a similar estimate holds if B
is replaced by rB, r &#x3E; 0 (by scaling). Moreover, if (3.8) holds for 

it holds for u E L1(R2). But then we have existence of solutions of (P) for
every fl, contradicting Theorem 3.7. A direct proof may be obtained by
choosing u(x) = for fixed and Then (3.8) may be re-

written as
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As k -+ 0 we find

Now set v = (o(en * log) where ~On - 3 and ~o is the cut-off function of Sec-
tion 1. This yields

However, Hen* log) (0) 00 as n ~ 00, and we have a contradiction.

REMARK. The case 0 is a special one with regard to existence. The
problem - 4u = f E Ll(R2) always has solutions u in the class BMO of func-
tions of bounded mean oscillation. If u E BMO then

grad u E M2(R2). We have not employed these facts in our presentation as
we have not needed them.

4. - N=1.

The main result of this section is:

THEOREM 4.1. Assume Then (P) is well-posed in the class
~ == In addition, two solutions of (P) in E differ by a constant and

Also, Go maps bounded subsets of E’(R) into bounded subsets of 
Finally, we have

PROOF OF THEOREM 4.1. We first obtain some simple estimates on a
solution u of (P). We write u’ = etc. It follows from u" E _L1(R)
that u’eL°’(R) and the limits u(± oo) exist. If, e.g., u’(+ oo) # 0 then

- oo as 0153 -¿. 00. However, since this contradicts the

properties a.e. and of the function w = f -E-- u".
Thus u’(+ oo) = 0 and so Next, if j E J0 and we

a.e., so Once again the properties
of w used above imply oo) = 0 and But
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j (r) -~ oo as I r - oo since 0 E int and therefore u E L°° (R). It is trivial

to show that if and uELCD(R), then and

Using (4.2) in the same way as Lemma 1.3 was employed in the proof of
Theorem 3.1 we find that solutions of (P) are unique up to a constant and
that (4.3) holds. Moreover, the above arguments applied to the solution ue
of (PE) yield so Ue is bounded

in L°°(R). Thus (P) is well-posed in L We summarize the estimates established
for a solution u of (P):

and

The inequality (4.2) follows from (4.3) since then

(u - Kl ’ ( + 00) = 0 and so  11 (u - Moreover,
(4.3) shows f bounded from L’(R) to L°°(R) and (4.4) shows that
f 1-7 Ga f is bounded from LI(R) to L°’(R).

REMARK. We cannot ask that (P) be well-posed in a class Cl larger
than It is obviously well-posed in ~.1 if 

The situation as regards uniqueness of solutions of (P) is precisely as in
Section 3, and is established by the same argument. Solutions of (P) are
not unique if and only if there exists such that v" = f and 

Moreover, if vELOO(R) and v" c- LI(R) then v’( + oo) = 0 so

-

w" = 0. Thus we have the analogue of Proposition 3.4 :
-00

PROPOSITION 4.5 If either ,8-1(0) == 101 or If * 0 solutions of (P) are

unique.
Finally we state the analogues of Proposition 3.6 and Theorem 3.7.

The proofs are simpler where they differ from those for N = 2 and are

omitted.

PROPOSITION 4.6. Let f, f E Ll(R) with f  T a.e. and f =1= Î. If u E Gg f
and 4c- Gol then u4 a.e.

THEOREM 4.7. be as in Theorem 3.7. Then given f E L’(R) with

f f  0 there is no function with the properties u" E Ltoc(R) and
f -~- ~c" E ,8(u) a.e.
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5. - Problems well-posed in Lp(RN).

If fl is a maximal monotone graph in R, then Bo denotes the function
with domain such that is the element of fl(r) of least modulus. If u

is measurable and WE fJ(u) a.e., then I a.e. Thus if u is a solu-

tion of (P), flO(u) E L’(RN). In this section, under various conditions on fl,
we are interested in the consequences of this additional information about u.

A main result of this section is:

THEOREM 5.1. Let fl be a maximal monotone graph in R satisfying
and

Then (P) is well-posed in LI(RV) f or Go is a bounded map
f rom to which is continuous i f N&#x3E;3.

PROOF OF THEOREM 5.1. The arguments differ for N~ 3, N = 2 and
N = 1. We first give the simple estimates common to the three cases. Note
that (5.2) implies 0 E int fl(R) and #-’(0) = {0} so u = Gof is uniquely de-
fined for It follows from (5.2) that

since 1 a.e. Moreover, by the

monotonicity of fl. Thus

and we have

In each of the cases N&#x3E;3,N=2 and N =1 (5.3) implies 
while (5.4) implies  oo. It will remain to show 

the reason for which varies with the case.

N~ 3. Since the C, in the remark following Theorem 2.1 includes 
in order to show (P) is well-posed in it suffices to prove C
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ÇLl(RN). Now satisfies This and (5.3), (~.4)
imply that

Thus - LI(R-)) and it is bounded. To see that Gp is continuous
into let fn - f in LI(RN) and wn=Tpfn; Then 

since To is an El contraction. For I &#x3E; 0 set or so

C I and Iwl C 11. We have

where C is independent of n. Now

If then Un = G,01,, and satisfy 
lul  kiwi I on Iwl  13 by (5.2). For such l

Taking the lim sup in (5.7) as n - oo and using (5.6) and (5.8) yields

and the result follows by sending I to zero.

N = 1. By Theorem 4.1 Go maps bounded subsets of into bounded
subsets of L°°(R). Thus (5.3) and (5.4) imply

and G,,: L’(R) and is bounded. Since L’(R) c (P) is well-

posed in 
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N = 2. This case is somewhat more delicate. We need to estimate

u E &#x3E; A] ), which is the point of the next lemma.

LEMMA 5.9. Let uELfoc(R2), grad u E lIT2(R2), ~, ~ 0 and  00.

Then

where C is independent of u and A.
Assuming Lemma 5.9 for the moment, we complete the proof of

Theorem 5.1. If u = then Moreover, by (5.2),
meas A] for all ~, &#x3E; 0. Thus Theorem 3.1, Lemma 5.9, (5.3)
and (5.4) yield

At this point we know that GOL’(R2) c Ll(R2). The fact that then (P) is

well-posed in follows from Lemma A.14, which implies that a solu-
tion of (P) in Ll(R2) lies in the t of Theorem 3.1.

PROOF oF LEMMA 5.9. We actually show a little more, namely
meas [u &#x3E; 2]  oo implies

Applying this result to - u and summing gives the result of the lemma.
and implies for 1 c p C 2 by

Lemma A.2. Given set

Then j and
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Thus Moreover, is supported in a
set of finite measure. Hence Now by the Sobolev-
Nirenberg-Gagliardo inequality (e.q. [7, section 1.9]) if grad v E
E Lr(R2), and 1~2, then there is a constant C such that

The constant C depends only on p and r. For the purposes of this lemma,
we choose p = 2, r = 1, v = p(u). This yields

Now let ,11 ~ 00. The conclusion follows from Fatouls lemma.

REMARK. If in addition to the assumptions of Lemma 5.9 we have

Llu ELl(R2), then we &#x3E; ~,] by Lem-
ma A. 11. It is interesting to note that an equality of this type does not hold
if only meas[]u[ &#x3E; ~,] and 4u E Ll(R2) are assumed. W. Rudin has

given us an example of a nonconstant harmonic function u satisfying
~,] C M oo for all ~, &#x3E; 1.

REMARK. The condition (5.2) seems fairly sharp as a criterion for well-
posedness in Indeed, let a &#x3E; 1 and lim sup  00. Choose

so that for 0 C r C r° . Let

where A, R are chosen so that u E 01(RN). Then U E 

if N &#x3E; 3, Igrad u I cM2 (R2) and u E L’(R2) if N = 2, u E if

N = 1 while ~°(u), 
One can generalize Theorem 5.1 suitably to include the cases:

There exist p, A, k &#x3E; 0 such that

We explicitly allow A = oo which means I for u E 
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THEOREM 5.11. Let (5.10) hold. Then

PROOF OF THEOREM 5.11. The proofs resemble the arguments used in
obtaining Theorem 5.1, so we only sketch them. As (5.2) gave bounds on

f lulp and &#x3E; A] for u = in the case p = 1, so does (5.10)
iiuiAi ,

give similar bounds here. The point is then to see that u E &#x3E; A]).
If N = 3, u E MN/(N-2)(RN) supplies this information if 1 c p  Nf (N - 2 ) (by
Lemma A. ~ ), while uELOO(R) if N = 1. If N = 2, Lemma 5.9 is replaced by :

LEMMA5.12. Igradul E M2(R2), h &#x3E; 0 and  00.

Then

where depends only on p.

PROOF OF LEMMA 5.12. Form the same function p(u) as in the proof of
Lemma 5.9. If use

If p&#x3E;2, use the Sobolev inequality directly with or

r = 2p/(p + 2). The rest is the same as Lemma 5.9.

There are only two points remaining. First, if A = oo, (5.10) itself

guarantees that u = for The final point is the question
of uniqueness for the case N = 2. But again we may use Lemma A.14.

6. - Solutions with compact support.

Let fl be a maximal monotone graph in R with 0 E P(O) and f E 
In this section it is convenient to index (P) by fl and f. Also, in this section,
a solution of
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is a function such that and a.e.

The requirements that f and 4u lie in have been dropped. Lo(RN)
denotes ~u e supp u is compact} where supp u is the support of u.
We will prove, under various assumptions, that has solutions u e 

The main results are stated next.

THEOREM 6.1. Let satisfy T hen has a solution

for all and 

By convention, = 0 if 99(s) = oo and qJ(s)-l = 00 if q(s) = 0. Ob-

serve that if p(r) = sign r for 0  cx  1 or 0 E then 99-1 satis-

fies (6.2).

THEOREM 6.3. Let fl(0 ) = [y_, y-  0  y+  00, and fELtoc(RN).
Suppose R &#x3E; 0 and there are functions oo)) such that v (y, f (x)) &#x3E;ioc 9
&#x3E; &#x3E; 0 for v c- -) a,e, on R] and which satisfy =00 .

0

Then has a solution If N =1 or N = 2 and y_ , 

then and i f N = 1 are

imply that has a solution 

REMARKS. Solutions u of (P~ f) are unique in the class Indeed,
if u is such a solution then u, and we may use the proofs of
the preceding sections (for N = 1 or 2, note that if functions in 

differ by a constant then they coincide).
The simplest case of Theorem 6.3 arises if y+ &#x3E; a+ ~ f ~ a_ &#x3E; y_ for some

constants a_ . This special case can be deduced from Theorem 6.2 with
the aid of Lemmas 6.4 and 6.5 below, and extends a result of Brezis [I],
as does Theorem 6.3. The generalization arises from allowing f to be un-
bounded on [ ~x ~ c I~] . Our proofs are different from those in [1] however.

The proofs of these theorems will employ the next two simple com-
parison results.

LEMMA 6.4..Let and a.e. I f (P~ f~) has a

compactly supported solution ui e f or i = 1, 2, then (PBf) has a solu-
tion u satisfying ( so Moreov er, 
C f2 ~ d u2 .
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PROOF OF LEMMA 6.4. Let D be an open ball containing supp u, and
suppu2. By a result of [2] there exists a unique such that

and a.e. on Q. Moreover a.e. on Q and

f 1 a.e. on S~. Since then supp w c Q, the f unction u
defined by u = v on S~ and u = 0 on has the desired properties.

LEMMA 6.5. Let f E and q be a maximal monotone graph in R
with 0 E 77(0). Suppose D(f3) and Ir¡O(r) c 1f3°(r) I for r E D(fl). If f ~ 0
or and (P1}¡) has a compactly supported solution, then also has a

solution with compact support.

PROOF OF LEMMA 6.5. Assume that /&#x3E; 0 and v is a solution of 

with compact support. As in the previous proof, let S~ be a ball containing
supp v and u E satisfy d~c E and f -[- d~c E fl(u) a.e. on Q. Then

and so a.e. Setting 
we therefore have a.e. on S~. Moreover h + r¡O(u) a.e. on S~.
From the results of [2] we conclude that a.e. on ,52. Again, ex-
tending u to be zero on RNBS2 results in a compactly supported solution
of The case /~0 is treated similarly.

REMARK. only use for while if 

for r  0 suffices.

PROOF oF THEOREM 6.1. Observe first that (6.2) implies that (5.2) holds.
Indeed, if r &#x3E; 0 and then 99(r)  Moreover, qJ is nondecreasing
on R+ so

Thus (6.2) implies lim (rff1°(r)) = 0, which implies (5.2) for r&#x3E; 0. The case
r 0+

follows similarly. Hence is well-posed in by Theorem 5.1.
We show the of has compact support if 

The preceding two lemmas allow us to assume that f does not change sign
and that fl is bounded. Indeed, by Lemma 6.4, it is enough to treat

f+ = max(f, 0) and - f - = f - f + in place of f, and by Lemma 6.5 we may
truncate B (note that this preserves (6.2)). Hence we assume that f &#x3E; 0 and

for some A. Let Now

implies that But 

and By standard arguments we conclude that ~e

for 1 ~ p C oo . Choosing p &#x3E; N, the Sobolev embedding the-



543

orem implies Let and fix Ixi =
==-Ro}’ Next we build a radial comparison function v 
with compact support such that and there exists g ~ 0

z

such that a.e. on The function r - j (2qJ(s))-1 ds is
o

a nondecreasing function from R+ ; it is onto because P is bounded. Let h

be the inverse function so that h’(r) = vi 2qJ(h(r)) and h"(r) a.e.

on R+. Set

where Then v E and if

then on and a.e. on If we

choose R, &#x3E; jRo so that h(Ri - jRo) &#x3E; M7 it follows that also v = h(Ri - &#x3E; u

on = The next lemma will allow us to conclude that then on

LEMMA 6.6. Let R &#x3E; 0 satisfy 
If a.e. on and uO on flxl=Rl, then

on 

PROOF OF LEMMA 6.6. Since and 

provided that y has compact support and y = 0 on
Choose p e s so that p(r) = 0 on and p’ E LOO(R). Setting
above with we find (because implies
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r

where j (r) Thus
o

and, letting n - oc, = 0 a.e. by Fatou’s lemma.
It follows that grad u = 0 a.e. on the open set ~u &#x3E; 0}, whence the result.

Applying the lemma to above we conclude and

therefore u has compact support.
1

NECESSITY. Suppose for instance that = oo. By Lemma 6.5
o

we can assume = 0. Let f be the characteristic function 
Assume, to obtain a contradiction, that u is a solution of (P,) with compact
support. By uniqueness of solutions must be radial since f
is radial and the problem is invariant under rotations. That is, u has the
form u(x) = The function v satisfies v E 01((0,00)), and

where g(r) = 1 for and g(r) = 0 for r &#x3E; 1. Since and

is positive and finite. Clearly for (6.7) im-

plies that g(r) E fl(v(r)) for r &#x3E; R while 1 E fl(O). In fact R &#x3E; 1, because (6.7)
implies that

From (6.8), rN-1 v’ (r ) is decreasing on 0~1. Hence if R = 1, then

and for Thus on (o, 1 ) . Since also

and v is not identically zero on (o, 1 ) this is impossible. Next we claim
that v(r) &#x3E; 0 on (1, R). Indeed, h(r) E fl(v(r)) so h&#x3E; 0 and

Now = 0, 0 on 1  r  R. It follows that v(r) &#x3E; 0 and h(r) &#x3E; 0

on so on Thus
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by the assumption on q. We will obtain a contradiction by estimating
on Now if W=V’2 and we have

and so Since w(R) = qJ(v(R)) = 0,
integrating this inequality over the interval (r, R) leads us to conclude that

for Thus

contradicting (6.9).

PROOF oF THEOREM 6.3. Adding the inequalities for g+ and g_ we have

y+-y-&#x3E;g++g-, so g+ and g- are bounded. Since g+ is bounded,
min(g+, y+) satisfies the same integral condition as g+ and (~+2013/~(~))&#x3E;
~ min(g+, y+) &#x3E; I~~. Dealing similarly with the minus case and re-
calling Lemma 6.4, we can suppose: f ~ 0 and there is an .R &#x3E; 0 such that

f &#x3E; y+ while Let on

and By Theorem 6.2, (Pflf.) has a compactly
supported solution un . Moreover, U,, and are nondecreasing
in n since f n is nondecreasing in n. (Note that we may ~ 0 if

N =1, 2) . At this point if N = 1 or N = 2 we assume sup f3(R) &#x3E; y+ . Since

where = are in

Ltoc(RN) (since Thus and for some

functions u, We have WEf3(U) a.e. and f + w in 

so ~c is a solution of (PfJf). Thus it is enough to bound the supports of the
un uniformly in n.

We make one further reduction. By Lemma 6.5, it suffices to assume that
f3(R) c [- A, A] for some A &#x3E; 0. On I IX ( &#x3E; Bil ( f - Y+)+ = (- = 0,
so implies Also so

as in the previous proof. Choose and set
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Now if

then lim h(r, ro ) = oo since

Choose II &#x3E; Ro so that llll = h(.R, .Ro) and let

We have v E v on {Ixl = .Ro} and y+ - g_+
on Thus if z = y+ 
and z = y+ - g+ then ZE f3(v) and z - 4w = y+2013~+&#x3E;/~. It now
follows from Lemma 6.6 that and so 

Finally we treat the cases N = 1, 2 and The main dif -

ference here is that 7u- is not available as an upper bound on the un . Assuming,
however, that there is an such that oo for = l~o we
can proceed as above. It remains then to obtain such a bound. We may
assume fl(r) = {y+} if r &#x3E; 0. Next observe that since un, L1unELl(RN),

This follows from Lemma A.13 and A.14 if N = 2 (let p
tend to the characteristic function of (0, oo) in Lemma A.13) and from (4.2)
if N =1. Thus

which implies that
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Now so Let u = lim U,,. By
the above and Fatou’s lemma

Since there exists Xo such that ~c(xo) = 0 (and hence
for all n) and 1~ C Ixol. Pick 1~2 so that 

and let Vn e  l0153l  satisfy Llvn= Llun. Since Un is nondecreasing
in n and and Un - Vn is nondecreasing in since

is bounded in is bounded in 

By Harnack’s theorem either (un - is bounded on compact subsets of
 l0153l  .R2~ or lim(un - wn) = 00 on  I~2~. Since = 0, the

first alternative holds and the proof is complete.

REMARK. The hypotheses in Theorem 6.3 cannot be weakened. Let

be radial, j* ( f - 1)+ &#x3E; 0 and f c 1 on Then:

(1) If ~(r) _ ~1} for r &#x3E; 0, ~(0)=[0,1] and fl(r) = (0) for r  0
and has a solution then f (l2013/)=oo.

)a;!&#x3E;l

(2) Assume f oo where qN(x) = log 1 according as
Ixl&#x3E;1

N = 1, 2 or N&#x3E;3. Then there is a maximal monotone B with /?(0)D [Oy 1]
and = R such that does not have a solution u e The

proofs use the methods introduced above and are left to the reader.

REMARK. RedheNer [6] has also obtained results related to those of this
section while considering equations of a more general form. However, the
results of [6] do not imply those presented here.

Appendix : What you always wanted to know about in 

This appendix contains both known material which is presented some-
what differently than in other sources and results which appear to be new.

DEFINITION A.1. Let U be a measurable function on RN, 1  p  oo and

=1. Then = min{Ce [0, oo] :f|u(x)|dx c for all
K

measurable K c R1. Mp(RN) is the set of measurable functions u on RN

satisfying 00.

It is easy to verify that lVlp(RN) is a Banach space under the norm II ~~M~.
Furthermore, it follows at once from Fatou’s lemma that if lVlp(RN)
is a sequence satisfying un - u a.e., then 
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LEMMA A.2. Let 1  q  p  c&#x3E;o. Then for every measurable f unction u
on R’

Moreover

for every measurable subset K C RN. In particular, Mp(RN) c with con-

tinuous injection and u E .lVh°(RN) implies lull E 

PROOF OF LEMMA A.2. We begin with the right-hand inequality of (i).
Given u and ~, &#x3E; 0, set and Then

Thus IlullMP and as i - 00 we find &#x3E; A]  
which is the desired inequality. For the converse, set 

and Given we have
A&#x3E;o

Now

Choosing ho so that Av 0 measK = Bp we obtain

or

Thus the first inequality in Lemma A.2 holds.
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In order to prove (ii), observe that

and

by (i). This inequality is a restatement of (ii).
As a direct application of Lemma A.2 we get:

LEMMA A.3. For function klJl-a lies in MN/a(RN).

REMARKS. coincides with the space L(p, ao) of [9, Ch. V.3] and
the norm II liMP coincides with the norm of [9, p. 203]. However, the
current definition is more direct. It has the disadvantage that p = 1 is not
allowed however. It is clear that c and (Holder’s
inequality). Lemma A.3 shows this inclusion is strict.

LEMMA A.4. If and then

) and

PROOF. We have

(Note that the above and FubinFs theorem shows f E(x - y) f (y) dy converges

absolutely a.e. x E RN.) 
’ ’ 

n

REMARK. This result is essentially (c) of Theorem 1 in [8, p. 119] (see
the comment following the proof). However, our proof is simpler.

The spaces Mp enter our problem via the fundamental solutions for - 4 .
Let EN be defined by



550

where bN is the volume of the unit N-ball. Then .EN E and

-,JEN = 3 in 0’(RN). Moreover, for N &#x3E; 3 and Igrad EN E
for N ~ 2. Thus if N&#x3E;3 then 

provides a solution in the space of the equation - 4u = f. Our
next result asserts that any solution of - 4u = f satisfying a certain decay
condition of infinity must coincide with EN ~ f if N &#x3E; 3.

LEMMA A.5. Let ) and u satisfy

Then u = EN * (-du). In particular, u I grad u E 
and II grad u II for some constants CN’
dN independent of u.

Changing variables in (A.6) by setting y = nx one sees that (A.6) is

equivalent to

Thus (A.6) states that the average of I over the annulus 

tends to zero. It is obvious that u E or u E 1  p  oo im-

plies (A. 7 ) holds (for N ~ 1 ) . Thus (since Lem-

ma A.5 is a direct consequence of the next result.

LEMMA A.8. Suppose N &#x3E; 1, u E and du = 0. If u satisfies (A.6),
then u = 0.

PROOF oF LEMMA A.8. The result is obvious if N = 1. We assume

that N ~ 2. If v is integrable on the sphere SR = {~: I RI we will de-
note the average of v over SB by VB. Since the average of lu(y)1 I over

may be expressed as a weighted average of lulr over nr2n,
(A.7) implies that there is a sequence rn - oo such that Since u

is harmonic on RN, Poisson’s formula implies that whenever

l0153/  rn/2. Letting n --&#x3E; 00 with z fixed in this inequality we find u(x) = 0.

The next lemma is used in Section 2 to prove the uniqueness of solutions
of (P) if N ~ 3.
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LEMMA A.10. Suppose N &#x3E; 3, u E and du E Then for
every p E J o is defined in Section 1)

and

REMARK. Lemma A.10 implies, in particular, that for every A &#x3E; 0

PROOF OF LEMMA A.10. Let f = pen * u, f n = f
where fenj is a sequence of mollifiers satisfying en - 30 in 9)’(RY). Mul-

tiplying the equation by and ~ E D+ we obtain

Now u~. --~ u in since (by Lemma A.5) and fn -¿. f in 

Thus Fatou’s lemma allows us to conclude that and

Now choose’ = ’n = ~o(x/~2) as before. It remains to show that Xn =
= fp (u) gradugrad’n - 0 as n - oo. Recall u E MN/(N-2) (RN) so grad u E
E MN/(N-1)(RN) by Lemma A.5. For A&#x3E; 0 one has

Now ~~ (~c) ~ c p ( ~,) - p ( - ~,) when Thus the first term Yn
above satisfies

where 1 and CN depends only on N. We conclude
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that

On the other hand

and  00 since u E MN/(N-2). Thus lim sup  °N(P(À)-
- p(- A)) 11 grad CO II Lex) for all A, &#x3E; 0. Since p(0) = lim = 0,
lim IXnl = 0. 

~~°

The results corresponding to Lemma A.5 and A.10 in the case N = 2

are presented next.

LEMMA A.11. Let u E W’,’(R2), du c- LI(R2 ) and

Then grad = grad E * (- d u) - In particular,

for some d2 independent of u.

PROOF OF LEMMA A-11. Let v = grad u + grad E2* du, v = (VI’ V2).
Clearly satisfies (A.6) for i = 1, 2. Moreover, dvi = 0 in Ð’ (R2).
Thus vi = 0 by Lemma A.8, and the result follows.

LEMMA A.13. Let u E igrad u E M2 (R2 ) and du E LI(R2) . Then

for all and, in particular, 
for ~, &#x3E; 0. If, in addition, there is a k &#x3E; 0 for which k]  00, then

for all p In particular,
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PROOF OF LEMMA A.13. Let en E Ð, en -&#x3E; d, Un = en * U and f = -,Ju
so that f n = f = - dun . Clearly un - u in W’-’(R2 ) and f n --~ f in .L1(R2).
Let C E 5)+, p c- 5’ and multiply - d un = f n by to obtain

Letting n -¿. 00 we find, as before, and

Set ~ _ Co(xjn). We will show that .Xn = fp (u) gradu.
remains bounded since grad U E M2(R2) while X,, -+ 0 if also

meas[ju &#x3E; 1~] is finite for some k. The proof will then be complete. We have

so the first claim is established. For the second write

we have

since ||gradCn|| L2 = IIgradCollL2. Now Igradul implies Kn -+0.
Finally,

so Ln - 0 as n - 00. Choosing p = :f: 1 we see that + and the

proof is complete.

LEMMA A.14. Let 1 p  oo and u E Lp(R2) be such that du E Ll(R2).
Then and In particular, 
E M2(R2) and 
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PROOF OF LEMMA A.14. has the properties as-
sumed for u as well as grad u = (grad e) * u E L2,(R2) . Thus grad ii satisfies
(A.12) and by Lemma A.11

Choose ~O = en so u in Lp(R2) and in Ll(R2). Then, by
the above, grad ft --&#x3E; grad E2 * (- J u) in M2(R2) (so also in and

the result follows.

LEMMA A.15. Let u E L’(R2 ) be such that AucLI(R2) . Then 

and there is a constant C such that

PROOF OF LEMMA A.15. Using mollification again it suffices to treat

u e n Let f = - 4u and multiply by (u for ( e D+(R2). One

finds

Setting’ = ’n = leads to

But = and the result is obtained by letting n - ao:
The final result of this Appendix is :

LEMMA A.16. Let B be a ball of radius R in RN and u E W1,V(B) with
1  p  N. Then there is a constant 0 depending only on p and N such that if
a =  Â] &#x3E; 0 then

PROOF OF LEMMA A.16. Let uB = By Poinear6’s in-
B

equality ( see e.g. [7 ]) we have II u - UB ° Thus
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and hence

Therefore
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