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A Relative Embedding Theorem for Stein Spaces (*).

F. ACQUISTAPACE, (**) F. BROGLIA, (**) A. TOGNOLI (***)

Introduction.

In this work we prove the following theorems:

THEOREM 1. Let X be a reduced Stein space, Y a

closed subspace of X and I an embedding with + 1.
Then the set of all maps f : X ~ Ci which extend to X and are proper,

one-one and regular at each regular point of X is dense in the space of
all maps extending p to X.

THEOREM 2. Let (X, Ox) be a Stein space of dimension n and locally of
type N, possibly non reduced. Let (Y, Oy) be a closed subspace of X and
99: Y - Cl an embedding with I &#x3E; n + N. Then the set of all maps f : X - Ci I

which extend 99 to X and are embeddings of X is dense in the space of all
maps extending 99 to X.

A similar result is obtained in the real case.

Theorems 1 and 2 were proved by R. Narasimhan in [2] and K. Wieg-
mann in [5] in the case Y = 0.

1. - Convex open sets and admissible systems.

Let (X, be a Stein analytic complex space; if = n  oo and X

is locally of finite type N, by [2], [5] we can always embed (X, as a closed

subspace of Cm for suitable m. Let us consider a fixed embedding

(*) Lavoro eseguito nell’ambito del G.N.S.A.G.A. del C.N.R.
(**) Istituto matematico, Universita di Pisa.

(***) Istituto matematico, Universita della Calabria.
Pervenuto alla Redazione il 27 Gennaio 1975.
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In this way the Fréchet topology of can be considered as the

quotient of the compact-open topology of 0m).

DEFINITION 1. An open set U e X is called X-convex if for each com-

pact IT c U, the set

is compact.

REMARK 1. Let Xrea be the reduced space associated with X ; an obvious
consequence of definition 1 is that an open set is X-convex if and

only if U is Xred-convex.

REMARK 2. Let Q c Cm be a Cm-convex open set (usually called a

Runge-open set). Then is X-convex. In fact since

Om) ~ 1~(X, Ox) is surjective, if r1 X is a compact set, then

is compact .

If X is a reduced space and TI c X is a X-convex open set it is known that

each section s E F(U, Ox) can be approximated by global sections (see for
instance [1]). We give now a generalization of this :

THEOREM 1. Let Q c Cm be a Cm-convex open set and U = Q r1 X. Then

the restriction map

has dense image.

PROOF. Let Since TI is a closed Stein subspace of the Stein
manifold Q, there exists Om) such that Glu = g.

Since S2 is Cm-convex, G can be approximated by a sequence of

holomorphic functions defined on Cm. c be the sequence
induced by IF,,}. Since r(U, Ox) has the quotient topology of F(S2, Om),
the converges to g.

DEFINITION 2. A locally-finite family {Ui}iEI of relatively compact open
sets in X is called an admissible system, if it verifies the following properties:
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is X-convex;

(3) is given a sequence of open sets such that:
. 

is X-convex for each n .

Moreover we can suppose Ui c Bn if (see [2]). In this case the

sequence ~Bn~ is called associated to ~ Ui~.

REMARK. If is an admissible system for Cm and (An) is an as-

sociated sequence then and are respectively an admis-
sible system for .X and an associated sequence.
Lemmas 1 and 2, theorems 1 and 2 of [2] still hold for admissible systems

obtained as in the remark.

Only theorem 1 of [2] needs some care. We have to show that it is pos-
sible to find 2n + 1 admissible systems A = 1, ... , 2n + 1 such that

Following the proof of Theorem 1 of [2] it is enough to prove that there
is an admissible system in Cm such that A = X - U (Di n X) is a real

i

analytic set which doesn’t contain any point in a chosen countable subset of X.
Consider a family of open cubes ( 1 ) {Q,} in Cm, with sides parallel to

the real axes, such that if Q, (B Qk =1= ø then Q,, n Qk is exactly a common
face of some dimension. Then Cm - is the union of a countable family

il

of real hyperplanes. We can clearly choose them so that their equations
are satisfied by none of the points of the chosen set.

Now let ( Y, be a closed subspace of (X, 0x) and let 99: Y - Ci 
I be

a fixed embedding. We have I and we suppose

We define Ox) I to be the set of the maps: ex-

tending 99. Clearly, since Y is a Stein subspace, F(X),, is a closed non void
subset of Ox)i.

(1) For a cube in Cm we mean a subset of Cm defined by

where z. ... , zm are coordinates in Cm.
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THEOREM 2. Let 92 c Cm be a C’m-convex open set and U = S~ Let

F E .1~( U, be such that

where g E 1-’( Y, Oy).
For each neighborhood A of in F(U, 0x), there exists a section

such that = g and 

PROOF. Since Y is a Stein subspace of X, there is a section G E h(X, Ox)
such that g : therefore we need only to prove that it is possible to ap-
proximate the section which vanishes on Y,
with a section in Jy), where Jy denotes the ideal sheaf defining Y.

Let us firstly suppose U to be relatively compact in X.
Because of theorem A, for each y E Y the stalk is generated by a

finite number of sections in r(X, 3y). Since U is relatively compact we can

choose t1, ... , 3y) generating for each y E U. These sections de-

fine a surjective homomorphism of sheaves:

Because of theorem B the restriction homomorphism between Ox)q and
3y)Q is again surjective. In particular we get:

where For each open neighborhood A of we can ob-

viously find neighborhoods Ai of ai in such a way that if Pi E Ai then
Because of theorem 1 for each i there is such

_ 

Q 
_

that therefore is such that 
’L=1

If l7 is not relatively compact, consider any neighborhood A of flu.
Since has the quotient topology of the compact-open topology
on for each extension of flu there is a compact
KCQ and a constant E &#x3E; 0 such that if and 

then 

Let be a Cm-convex open neighborhood of K and let ti, ..., tq E
o

3y) be global generators of JY,lI for each Then 
° 

i

Since ,S2’ is convex we can approximate ai on K with Pi e Om), in such
a B!

a way that Define 1= (ifiti)Ix and, by construc--
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REMARK. If (X, is a reduced space, theorem 2 holds for any X-convex

open set U. In fact we can apply the proof of theorem 2 without considering
,S~ and D’. Since in the reduced case the topology of .(X, is again the

compact-open topology, it is sufficient to approximate f in the topology
of where V is any relatively compact X-convex open set containing
the compact set .g which defines the neighborhood A.

THEOREM 3. Let be an admissible system for Cm and Ui f1 X.

Let g be in and be such that

For any choice of open neighborhoods A i o f f i in F(Ui, for each i, there
is a section f E F(X, é) x) such that:

PROOF. Suppose firstly that (X, is reduced (2) and the neighbor-
hoods A are given by compact sets .gi and constants 8i. Let be

associated to the admissible system Let 

for 

Let be a compact set such that and gi c gn for 
00

Choose dn such that Mdu  Because of theorem 2, since U = U Ui’in %el

is X-convex, there is such that and 

for Since is X-convex there is F2ET(X, such that

F2Iy=gy, and for and so on.

Since the constructed sequence converges uniformely on compact sets,
its limit is in It is clear that and by

,I--

construction 

If X is not reduced let q E 0m) be an extension of g and f e 0m)
be extensions of fie Fix compact sets and constants 8i in such a

way that by the open map

we have

(2) In the reduced case our proof is the proof of theorem 2 of [2].
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Applying the previous proof to (Cm, 0m), g and f i, we can find

such that and  for each i. Defining
f we complete the proof.

LEMMA 1. Let N be a f ixed integer and each compact
set K c X let A (H) c T(X, be a family with the following properties :

(1) A(K) is dense in T(X,OX)N.
(2) A(K) is dense in (3).

(3) If K c -k’ then A (K) D A (K’).
(4) If K’ is a compact neighborhood of K in Cm and f E T(Cm, 0m) is

such that f = fix E A (K), there is 0 such that if  s

then g = ijlx E A (K). This implies that A (K) is open in OX)N.
Let ~, = 1, ... , N, I be admissible systems in Cm, fix

for any choice o f an open neighborhood A of g in T(X, and

open neighborhoods A i of in .1~( Ui, Ox), there such that

f or A = 1, ... , N and 99 c- A (K) for each compact set K c X.

PROOF. Suppose firstly (X, Ox) is reduced (4). Let the open neighbor-
hoods A, AZ be given by compact sets C c X, K’ c Ul and constants s,

8i &#x3E; 0.

Consider a sequence associated to the admissible 

~, j_9 ..., N. Let be a compact neighborhood of in B" such that
if .g2 c Bn then K: Let be a compact neighborhood of in Bf .
Define Suppose for i

Clearly If for all n then, by prop-

erty (3), f E A (K) for all compact subsets K of X.
We may suppose 0 c K1 and E  si for Im,x ill.

,a

is dense; therefore we can find ..., such

that g  -218 and ga for i  i:. By property (4) there
is a ðl such that if ðl then Since is X-con-

vex (here UÂ = U there is ’f2 E _V(X)f such that ,a - ’a , 4 (the-
refore and for i"ii". 1 2 Since A(-K’) 2 is

dense there is f 2 = ( f i , 7 f N) E n A such that - fl ~~ cl C 2 ðl,
i for i  il. 2 There is ~2 , with 0 C ~2 C 2 ~1, such that if

(3) We recall that is the set of all extensions of f to X.
(4) The proof of the reduced case is, with slight differences, the proof of lem -

ma 2 of [2].
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 6. Iterating this process we get a sequence {fn}
with the following properties: for all n ; 

 2 Vn_1; - gAll 11 K% C 2 Si for i  if . Let us define 99 = then 99 E 2 A 1 2 
00 

n--

Since 1/2 dn-1 we have Mdu  dn ; so we obtain and the-
u=n+1 

’n

for all n, i.e. qJ E A(K) for every K. Moreover if dn is

chosen sufficiently small, we have and 

If X is not reduced, consider the restriction map r: 

Since r is open r-1 (A(g)) is dense in and

r-’(A (K)) is dense in If X, K compact subset of Cm,
let us define A’(K) = n X)). It is easy to verify properties (1 ), ..., (4)
for the family {A’(K)}. If fix any extension of g.
Applying lemma 1 for # to the reduced space Cm we prove lemma 1 in the
general case.

LEMMA 2. Let an embedding E There is

an open neighborhood V of Y in X such that olv is a proper map.

PROOF. Let be a sequence of concentric polidiscs invading Cm.
Define .Kn = Pn r1 X and = .gn n Y. Choose a subsequence fH.,l such

that for each Each compact has an

open neighborhood Ui in X such that inf loa(x) &#x3E; i - -1. Take Vi = K,,,,,,;
ut 

2 HI

Vi is a relatively compact open neighborhood of Hni - and clearly
inf |QA (x)&#x3E;| i - 1/2 . Therefore V = U Yi has the required property.
V,

For an extension Q of an embedding Q E T(Y, 0 )) we give the following

DEFINITION 3. An admissible system {Ui} is called relative to 0 if there

is an open neighborhood V of Y in X such that:

(1) 0 1 -v is a proper map;

(2) If then U,cV.

LEMMA 3. there is an admissible system in Cm suck

relative to ~.

PROOF. Let V be an open neighborhood of Y in X such that is a

proper map. We want to construct a countable family of open cubes ~Qh~
in Cm, as done after the remark to definition 2, with the following properties:
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(3) If then .F is exactly a face of one of them.

(4) There is a sequence {Pn} of open cubes such that:
n_ n,,,-

For this purpose let us consider a sequence of open cubes invading Cm.
If .gn = Pn n X and Hn = Kn m Y, take a subsequence as in lemma 2.

Divide Pno into cubes Qh, h = 0, ... , qo so small that if then

Q, c V. Divide Pnl - Pno in small cubes = qo + 1, ..., ql, in such a way
that property (3) holds and if then Q",cV; and so on.

Since is an admissible system, is an admissible system and

by construction it is relative to 0. Moreover it is easy to show, with the
same argument used before, that X can be covered by 2n ~-1 admissible
systems obtained in this way and relative to ~.

2. - The first relative embedding theorem.

We want to prove the relative case of theorem 5 of [2]; in other words
we try to find in all the maps of X into Cz which are one-one, proper
and regular in each regular point of X.

Since a non reduced space might have no regular points, from now on X
will be supposed a reduced space.

We want to prove the following theorem:

THEOREM 4. Let X be a reduced Stein space, Y a closed subspace of X
and 99: Y -&#x3E; C’ i an embedding. Suppose 1 &#x3E; 2n + 1, where n = dime X.

Then the set of all macps which are proper, one-one and regular itt each

regular point of X is dense in 
If --E- 1 the same result is obtained by adding to ..., n + 1- t

arbitrary components.

In order to prove this theorem let us give some definitions, following [2].
Let ~’ be the set of singular points of X. Then, if f is any section in Ox)7,
we define:

rank of f in for mn.

M(f) = union of all the irreducible components different from the

diagonal of
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Here, if x is a regular point of X, for rank of f in x we mean the rank of
the jacobian matrix of f.

If f E then, for each x E Y- S, rank of f in x is greater or equal
to the dimension of the Zarisky tangent space to Y in x; in particular the
equality holds if this dimension is equal to dimx=X. Moreover, since 
is one-one, M( f ) n Y X Y = 0.

We now need the following lemmas.

LEMMA 4. Let xl, ... , xD ~ Y. Then the set of sections

5y) separating xo, ..., Xj) is dense in r(X, 3 y).

(Here 3y is the ideal sheaf of Ox which defines Y).

PROOF. Consider the exact sequence of coherent sheaves:

where 3 is the sheaf of germs of holomorphic functions vanishing on Y and
in xo, ..., X1). Since ’a is coherent, because of theorem B, the map:

is surjective. But where k = p if

xo E Y, k = p + 1 if Y. Then there is a function f such that f (x i ) = i,
i = 0, ..., p. If h is any section in then h + sf does not separate
xo, ..., 0153I’ only if 8 takes a finite number of values. If s is less than all these

values then h + sf separates xo, ... , x» and approximates h.

LEMMA 5. Let x,, ..., 0153I’ E X - S be such that if xZ E Y then the dimen-

sion of the Zarisky tangent space to Y in xi is less than n = dimc X.
Let /11, - - - , f k be holomorphic f unctions on X such that fily = 99 i for each i c t.
Then the set of f E F(X, Ox) such that:

is dense in 

PROOF. For each xioy we choose n sections zi, ..., 
giving a system of local coordinates in a neighborhood of xi . If xi E Y we
choose z’, ..., Jy) giving a minimal system of equations for b(Y)x(
in a neighborhood of oe, . Then is a suitable linear combination of all

35 - Annali della Scuola Norm. Sup. di Pisa
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these sections

(This is not true only for a finite number of values of the coefficients of ~).
If h is any section in consider h -~- E~. Then

only for a finite number of values. Taking 8 less than their minimum we get
the thesis.

LEMMA 6. Let (11’ be a holomorphic map veri-
fying the following conditions :

Let h be a holomorphic function. For any choice of an admissible
relative to h, compact sets Ki c Ui, a compact set C c X and

constants 8i 7 E &#x3E; 0 there is a function f E F(X, Ox) such that fly = hly, 7
~~ f - hlIE«  êi, 11 f -  8 and moreover the map (11’ ..., f) verifies 
and 

PROOF. We can suppose that qJl, ..., are ordered in such a way that

..., qJk) verifies ak and bk relatively to Y for each Obviously in
this case, if m = rank of ..., in y E Y, then 

If y EY is a regular point of X, then dim and so 

Let Mq be one of the irreducible components of .lIT ( f 1, ..., f k) whose di-
mension is 2n - k. It cannot be MQ c Y X Y, since in this case we should
have

Therefore we can choose a point 
Let .Xm be the union of those irreducible components X£ of ... , I fkl m)

whose dimension + m. We choose a point ~ E Xm in such a way
that This is possible since if then

Both the set and the set are discrete.
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For each compact set ..K c X we define A (g) as follows :

if and only if

By the results of [2], A(K) is dense in Ox); it is dense in by
lemmas 1 and 2; all the other hypothesis of lemma 1 are satisfied.

Therefore we can find such that 

and g E A (K) for each compact set K c X. Therefore 5~ g(yq) for any q
and ..., in x~ is equal to m + 1 for any p and m. Then we get:

1) dimm(fi, ..., since every component of

Jf(/iy ... , f k, g) different from L1 must be contained in some component of
and cannot be one of those of greatest dimension.

2) ..., f k, g, m)  f k, m) since every component
of the first one is contained in some component of the second one and cannot
be one ~~ because (fi, ...y/~/) has rank m+1 in 

Then (/iy ... , f k, g) satisfies and and the lemma is proved.

PROOF oF THEOREM 4. Let us fix an (§i , ... , ~ ~ ) .
Suppose t ~ 2n -~-1 (if not it is sufficient to add arbitrarily to (§i, ... , §1)
2n -E- l - t components). Choose I admissible = 1, ..., 7 1
relative to 0. Choose compact sets in such a way that X = U gi .
Because of theorem 3 there is h = (hl, ..., hz) E such that: i.A

Since conditions ao and bo are void, a function 11 E F(X, exists such

that dimM(fl)2n-l, for We can

successively choose functions f 2 E ..., E in such a way that :

~ for OCmC w n-
fA - II fA - 

Therefore the map F = ( f 1, ..., verifies the following properties:

1) 

2 ) Since dim .lVl (F) c 2n -1 c -1 and dim X (F, m) c n -1 -f- m c -1,
the map F is one-one and regular on the regular points of X ;
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3) It is a proper map: in fact if (rn) c X is a divergent sequence,
then either is definitively in U K’ or it is definitively out-

side; in the first case diverges, since does so and

1, in the second case diverges because 

3. - The second relative embedding theorem.

From now on the Stein space (X, Ox) will not be supposed reduced.
We want to show the following theorem:

THEOREM 5. Let Stein space o f dimension n and locally of
type N. Let ( Y, closed subspace and 99 = (qJl, ..., E r( Y, a

fixed embedding; we may suppose + N (5). Then the set of all maps

of X into C’ which are embeddings is dense in the space _ ~ f E r(X, ]

Let us recall the following

DEFINITION 4. A map f: X -+ Cz is called regular at the point x E X
if f x can be extended to a map ix defined in an open neighborhood of x in
the Zarisky tangent space 1J(X)x such that the jacobian matrix of f x, which
is a morphism between two complex manifolds, has rank at x equal to
dim1J(X)x.

In this case we shall say that f has maximal rank at x.
Now for each compact set .K c X let us define Ox) I to be

the set of all maps which are one-one and regular on K. The following
lemmas show that the family verifies the hypothesis of lemma 1.

LEMMA 7. Let K be a compact subset of X and suppose Let

be an extension of f. For each compact neighborhood K’ of K
in Cm there is an 8 &#x3E; 0 such that if U E r(Cm, and IIU - Illc,  s then

PROOF. If (X, Ox) is a reduced space this is lemma 5 of [2]. Since the

property of being one-one is a topological property we need only to prove
that the set

is regular at each point of K)

(5) Otherwise it is sufficient to add to (g~l, ..., qJz) exactly n + N- I arbitrary
components.
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is open in 0m)1; but this is clear from the definition of regularity,
since by small changes the rank of a map does not decrease.

LEMMA 8. is dense in T(X, i and in T(X)qJ.

PROOF. Choose 0x)p. Define M(g) to be the union of all irre-
ducible components of the analytic set {(x, y) E X X X g(x) = g(y)} which
are not contained in the diagonal. Define V(g, m) as follows: a point x is
an element of if and only if any extension of g has

rank c m at x. So V(g, m) is defined in X to be the set of common zeros

to a family of holomorphic functions over Cm ; hence V(g, m) is an analytic
subset of X.

We begin by proving the following:

Let x be a point of X : if x E Y suppose Suppose
Ox)p has an extension gET(Cm, 0)p of rank r C N at x. Then the

set of all such that the following properties hold:

(1) (if p + 1  1)
(2) (g, h) has an extension in T(Cm, 0m)»+1 of rank r + 1 at x

is open and dense in 

In order to prove this (6) be fixed as follows: if x 0 Y
it is a linear combination of elements in T(Cm, 7y) giving a system of local
coordinates at x : if x E Y it is a linear combination of elements in 3y)
giving a minimal system of equations for the Zarisky tangent space TJ( Y)x,
as a submanifold of Cm.

In both cases (g, ~) has rank r +1 if the coefficients are suitably chosen
(there is only a finite number of possibilities that this does not happen).
Now if is any extension to Cm of for smafl e, §5p+i + £~ approxi-
mates and is such that (g, ~~) has rank r + 1 at x.

This argument shows that the set we speak about is non void and dense
since its inverse image in 0m) and in is non void and

dense; but this set is clearly open (same argument as lemma 7), so our

statement is proved.
Now let g = (gl, ..., gp) E have the following properties :

(1) gily for each il;
(ap) all the irreducible components of M(g) meeting K X .K have dimen-

sion  2n - p;
all the irreducible components of V(g, m) meeting _K have dimen-
sion for 

(6) Here 7y is the ideal sheaf defining (Y, Oy) as a closed subspace in Cm.
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then the set of those hEF(X, such that

is dense in 

In order to prove this statement in each component of .M(g) of dimension
2n - p meeting choose a point in each component
of V(g, m) of dimension n - p + m meeting .K choose a point 01537’ in such a
way that if then 

This is possible because 99 is one-one and regular; therefore it separates
the points of Y and if x E Y any extension of q has rank at x at least equal
to the dimension of In this way we have two finite sets ~(xq, c

c g and c K. Moreover by hypothesis g admits an extension of

rank m at x7’.
The same argument used in lemma 6 shows that condition (1) and (2)

are equivalent to the following:

h(yq) for each q;

(b) (g, h) admits an extension to Cm of rank m + 1 at xi’ for each r
and each m.

To prove (a) it is sufficient to show that the set of extensions of 

separating a given pair (x, y), where is open and dense in 

To prove this consider the exact sequence of coherent sheaves

where 3 is the coherent ideal sheaf defining the subspace By
theorem B the map

is surjective. Hence there is a global section s E such that

s (x) :A 0, s(y) = 0. If we extend h to and s

to 0m) ; if s is sufficiently small approximates A, therefore
h -f- Es approximates h. On the other hand it is clear that our set is open.

We have already proved that the set of h satisfying (b) is open and

dense, as intersection of a finite number of dense open sets.
So we obtain the thesis by intersecting the dense open set relative to con-

dition (a) with the dense open set relative to condition (b).
Now, since conditions oco, ~8o are void, what we have shown proves that
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the set of all I such that

is dense in 

The same argument, except for the condition of extending Q, proves
that A (K) is dense in 

PROOF OF THEOREM 5. For each compact set let us define as
before

Because of lemmas 7 and 8 all the hypothesis of lemma 1 hold. Given

g = (gl, ..., gz) E F(X),,, choose l admissible systems ~SZ~ ~, A = 1, ..., 1, such
= S2i r1 X} is relative to g for each A and compact sets K: c D"

such 
2, ~

Choose any open neighborhood A of g in T(X, Ox) and any extension g
of g to Cm ; let C be a compact in Cm and e be a constant such that if

f E -h(Cm, Om) and then fix E A.
By theorem 3 there are holomorphic functions in T(Cm, 0m)

such that:

By lemma 1 there is 1 = (/i, ..., E .h(Cm, Om) with the following properties :

Let f be fix. Conditions (3) and (4) show that f is a proper map, since
the set of points x such that ~, = 1, ... , Z, is contained in the

compact set
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where H is the compact set where the proper map g’ = glv is less than i -r-1
( V is the neighborhood of Y defined in lemma 2).

Condition 5 says that f is one-one and regular on all of X and therefore
theorem 5 is proved.

4. - The real case.

We can deduce from theorems 4 and 5 the statements for real analytic
spaces (7). More precisely we obtain the following theorems.

THEOREM 6. Let (X, be a real analytic space of dimension n and
( Y, 0y) a closed subspace. Let 99: be an embedding, + 1. The
set of all analytic maps of X into RI which are proper, one-one, of maximal
rank in each regular point of X and extend qJ is dense in

THEOREM 7. Let (X, be a real analytic space of dimension n and
locally of type N. Let (Y, 0 y) be a closed subspace and 99: Y ---&#x3E; Rl Z an em-

bedding, + N. Then the set o f all maps which are embeddings of X
into RI z and extend 99 is dense in 

PROOF. The proof is reduced (as in [3]) to the existence of suitable

admissible systems. Such systems can be constructed as in [4].

(7) Any real analytic space (X, Ox) is coherent, but it may be non reduced.
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