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A Parabolic Quasi- Variational Inequality Arising
in Hydraulics.

AVNER FRIEDMAN - ROBERT JENSEN (*)

TABLE OF CONTENTS

1. The physical problem ..................... pag. 423
2. Reduction to quasi-variational inequality............. » 424

3. Another formulation of the quasi-variational inequality ...... » 429

4. Uniqueness of solutions ..................... » 431

5. The finite difference approximations ...............  433

6. Existence of unique solution for (5.7)-(5.11) ........... » 435

7. Solution of the finite-difference approximations ..........  441

8. A priori estimates ....................... » 442

9. Convergence of the finite-difference scheme ............ » 450

10. Further properties of the solution ................ » 457

11. Asymptotic behavior of the solution ............... » 461

References ........................... » 468

Introduction.

Consider a compressible fluid in a vertical underground pipe filled with

porous medium. The potential u(x, t) and the level of fluid in the pipe, 99(t),
satisfy a system of equations. This system is essentially equivalent to a

quasi-variational inequality for the pair (w, 99) where = x - wx . The

purpose of this paper is to solve the quasi-variational inequality. The main
result is that there exists a unique classical solution (w, 99), and E C°°.
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This quasi-variational inequality has the special feature that the deriv-
ative Ø(t) of the free boundary x = enters into the non-homogeneous
term of the differential equation; more specifically,

In Section 1 we describe in detail the physical problem. In Section 2

we introduce the quasi-variational inequality and show that solving it is

equivalent to solving the original physical problem. Another useful formula-
tion of the quasi-variational inequality is given in Section 3.

In Section 4 we prove a uniqueness theorem.
Sections 5-9 are devoted to the proof of existence of a solution. The

method consists of:

(i) Introducing a finite difference approximation to the original
problem. Each approximation is a system of quasi-variational inequalities
in one space variable.

(ii) Proving that the system has a unique solution.

(iii) Proving the convergence of the solutions of the approximating
models to a solution of the original quasi-variational inequality.

Section 5 deals with item (i). A similar finite-difference approximation
was used in [7] to solve some variational inequalities.

In Section 6 we prove a general existence theorem for a certain type
of quasi-variational inequality in one space variable. This is used in Sec-

tion 7 to establish item (ii).
In Section 8 we derive a priori estimates for the solution of the finite-

difference approximations. Finally, in Section 9 we establish item (iii).
Some additional properties of the solution are given in Section 10. In

particular it is proved that if 0) -1 changes sign a finite number

of times, say m, then there exist points 0 C t1  ... C tk  T, where k  m,
such that is monotone in each interval (ti, ti+1) and in the intervals (0, ti)
and (tk, T), where (0, T) is the t-interval where the solution exists. An

analogous result for the Stefan problem was proved in [11], [4], [7].
In Section 11 we study the behavior of the solution as t --* 00. It is

proved that, as (w(x, t), 99(t)) converges to a stationary solution

(w*(x), b*), where w*(x) _ (x - b*)2/2.
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1. - The physical problem.

Consider the following problem: Find a function u(x, t) and a curve

g~ ~ 0, given, such that

Here l(t) and g(x) are given functions, and b, T are given positive numbers.
It is assumed throughout this paper that is continuous and g(x) is con-
tinuously differentiable.

This problem represents a physical model which arises when compressible
fluid is moving in an underground vertical pipe, and the interior of the pipe
consists of porous medium. The variable x represents the height, and x = 0~
is the bottom of the pipe. The variable t represents the time. The porous
medium is assumed to be uniform throughout the pipe. The function u(x, t~
represents the piezometric head and - t) is the velocity of the fluid.
Thus the condition (1.2) means that the fluid is moving through the bottom
of the pipe upward (if or downward (if at the rate 11(t)l.

Since the piezometric head u is the sum p + x where p is the inner

pressure and x comes from the gravity, we should have u (x, t) &#x3E; x if 
Taking t = 0, we arrive at the physical conditions

This condition will be assumed throughout this paper. We shall also always
assume that

The problem formulated above is derived (for Z(t) - 0) in Bear [1], for
instance, in the case of several space variables.

The system (1.1)-(1.5) is a free boundary problem with x = q~(t) as the,
free boundary.
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2. - Reduction to quasi-variational inequality.

If (i) ux, ut are continuous for 0  t  T; (ii) u, 99 form

.a solution of (1.1)-(1.5), and (iii) cp’(t) is continuous in t and g~ (t ) &#x3E; 0 for
:t E (0, T], then we call (u, cp) a classical solution of (1.1)-(1.5).

LEMMA 2.1..Let (u, cp) be a classical solution of (1.1)-(1.5). Then

.acnd, f or all t E (0, T],

PROOF. Let

Consider the function

in S2. It satisfies

We claim that v ~ 0 in Q. Indeed, otherwise v must take its negative minimum
.at a point (x, t ) of the parabolic boundary of Q. We cannot have (x, t ) = (x, 0),
for v(x, 0) = g(.7v) - ~ &#x3E; 0, by (1.6). We also cannot have x = for

Thus we must have and, consequently,

Since, by (1.7), vx(O, t) = - l(t) - 1  0, we get a contradiction.
We have thus proved that in S~. Since in Q, the strong

maximum principle gives v &#x3E; 0 in Q ; hence (2.1).
Now, v is a solution of the heat equation in 0 in Q, and v = 0

on x = q~(t). Since E C1, the inside strong sphere property is satisfied at
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each point (99(t), t). By a version of the strong maximum principle (see [3])
it follows that

i. e. , (2.2) holds.

LEMMA 2.2. ..Let u, 99 satisfy the conditions (i ), (iii ) in the de f inition o f a
classical solution of (1.1)-(1.5), and let (1.1)-(1.4) hold. Then the condition (1.5)
is equivalent to the condition

PROOF. Suppose (1.5) holds. Differentiating t) == we get

Substituting u, t from (1.5) we get

By Lemma Hence

Conversely, if (2.4) holds then by substituting (p’ from (2.4) into (2.5)
the relation (1.5) follows.

COROLLARY 2.3. I f (u, cp) is a classical solution of (1.1)-(1.5) (or (1.1)-(1.4)
and (2.4)) then

Indeed, this follows from (2.4) and (2.2).

REMARK. Notice that if the condition (1.4) is replaced by the condition

t) = 0 then, together with (1.1)-(1.3), (2.4), we have the Stefan free

boundary problem [3].
Let u be a solution of (1.1)-(1.5) and let I~ be a positive number, suffi-

ciently large, such that



426

and introduce the functions

Observe that the condition (1.6) implies that

Consider the system of equations

The last equation is, of course, equivalent to

THEOREM 2.4. I f (u, 99) is a classical solution of i

a solution of (2.12 )- (2.1f ).
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PROOF. We calculate

since

Consequently,

then w = 0 and

by Corollary 2.3.
The equations (2.14), (2.15) are obvious. To prove (2.16), take x = 0

in (2.19):

Substituting into (2.12), (2.16) follows. This completes the proof of the

theorem.

we can rewrite (2.12), (2.13) in the equivalent form
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The conditions (2.14)-(2.16) determine w on the parabolic boundary
of QR Using (2.1) we see that

and wx(x, t)  0 if 0  x  

If is a known function, then the system (2.21), (2.14)-(2.16) together
with the condition

form a variational inequality for w and, if then the curve x = 

given by ,

is the free boundary. If y(t) coincides with then the pair will form

a solution of (2.21), (2.22) and (2.14)-(2.16). Thus, we may consider the
system (2.21), (2.22) and (2.14)-(2.16) as a quasi-variational inequality.
Quasi-variational inequalities of a similar nature have been considered

in [5], [6]; however the methods of the present paper are entirely different
from the methods of [5], [6]; see Sec. 3 for more details.

By a classical solution (w, cp) of the quasi-variational inequality (2.21),
(2.22), (2.14)-(2.16) we mean a solution such that wx, wt, wxr are continuous
for w, wx are continuous in QR’ 99 (t) is continuous for

0  t  T, cp’ (t) is continuous for 0  t  T, and 0  99(t)  R for e[0,T].
The next theorem is a converse to Theorem 2.4.

THEOREM 2.5. Let (w, 99) be a classical solution of the quasi-variational"
inequality (2.21), (2.22), (2.14)-(2.16). If

then (u, 99) is a classical solution of i

PROOF. The verification of (1.1), (1.3) is immediate. Since w takes the

minimum 0 in QR at x = (p(t), t) = 0. Hence (2.24) yields (1.4)..
Next, from (2.19),
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and (1.2) follows. It remains to prove (1.5) or, equivalently (by Lem-
ma (2.2), (2.4).

Let ~ be a 000 function with support in Qp. Let S~n = ~(x, t) ; 0 C x C
 - I fn, 0  t  T}. By integration by parts,

where

By

Since

we get

Substituting this into (2.25), and recalling that = x on x = 99(t), we
obtain

Since ( is arbitrary, (2.4) follows.
From now on we shall study only the quasi-variational inequality (2.21),

(2.22), (2.14)-(2.16).

3. - Another formulation of the quasi-variational inequality.
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then the quasi-variational inequality (2.21), (2.22), (2.14)-(2.16) reduces to

Notice that (3.2) means that

when we take v(x, t) == (provided of course  R so that v(x, t) == cp(t)
holds in some x-interval).

Since v - 99 takes minimum 0 in Q : at the points where x = q;(t), we
also have

For a given 99(t), consider the variational inequality: Find v(x, t) such

that (3.2) holds for all z E K(q;(t)), v(x, t) E K(99(t)), and v satisfies (3.4)-(3.6).
If 99(t) is smooth, say in C1, then the methods of Bensoussan and Friedman [2]
can be applied to establish the existence of a unique solution v. Let

We write 1p = Wgg. Then, the quasi-variational inequality (3.2)-(3.7) has a
solution (v, cp) if and only if i.e., 99 is a fixed point of W.
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One is thus tempted to solve (3.2)-(3.7) by establishing the existence of a
fixed point for yY. However, the following difficulties arise:

(i) If W is to be defined for 01 curves cp, then one must establish

that y = WqJ is also a 01 curve.

(ii) One must show that W satisfies conditions which ensure the ex-
istence of a fixed point. Here there is a difficulty proving that yY is continuous.

(iii) In [5] [6] quasi-variational inequalities were solved using Tartar’s
fixed point theorem [10] which does not require the continuity of the

mapping W. That theorem, however, requires that W is a monotone operator.
In the present problem W does not appear to be monotone.

We shall adopt a different approach to the solution of the quasi-variational
inequality. This approach is based on finite-difference approximations in
the t-variable of the quasi-variational inequality. The scheme will be described
in Section 5. The subsequent sections will be devoted to establishing the
convergence of the scheme.

4. - Uniqueness of solutions.

DEFINITION. A pair (w(x, t), cp(t)) is said to form a solution of (2.21),
(2.22), (2.14)-(2.16) if (i) is continuous for 0T, is continuous

for 0  t  T, 7 for all (ii) w is continuous in Qp , and
wt, wx, belong to and (iii) the relations (2.21), (2.22) and (2.14)-
(2.16) hold.

Similarly one defines the concept of a solution (v(x, t), q(t)) of (3.2)-(3.7)
by requiring: (i) q(t) be continuous for (ii) v is continuous in Q,,
and vt, VX, 7 vxx belong to and (iii) (3.2)-(3.7) are satisfied. Note that

the derivative q’(t) of does enter into the quasi-variational in-

equality (3.2)-(3.7).

THEOREM 4.1. There exists at most one solution (w, cp) of the quasi-
variational inequality (2.21), (2.22 ), (2.14 )- (2.16 ) such that 2vx is continuous

OCtT.
We shall need the following lemma.

LEMMA 4.2. If (w, q) is a solution of (2.21), (2.22), (2.14)-(2.16) with wx
continuous then if 0 t T.

PROOF. Consider the function ~ = vx where v is defined by (3.1). Then

29 - Annali della Scuola Norm. Sup. di Pisa



432

on x == 92 (t) (since w &#x3E; 0 in QR’ w = 0 on x == 99 (t)) - Fur-

ther, (z(0, t) = h’(x) c 0 by (2.11). We claim that ( cannot take a positive
maximum in SZ. Indeed, otherwise, by what we have already shown, that
maximum must be assumed at a point (0, t), 0  t  T. Consequently,

Since however

we get a contradiction. We have thus proved that’  0 in S~. By the strong
maximum principle it then follows that ~  0 in Q, i. e., w&#x3E; = w&#x3E; = 1  0
in S~.

PROOF OF THEOREM 4.1. Let (w, q) and (w, ~) be two solutions of the
quasi-variational inequality, with wz continuous for 0  x  (P (t) and aux
continuous for 0~~(). Define

The function z = v - v satisfies

We claim that z  0 in Suppose otherwise, then z attains its positive
maximum in S2o at some point (x, t) of the parabolic boundary of ,~o.

Since v = v when either t = 0 we must have x =

= min(o(t), 92(t)). We claim:

Indeed, if §3(t)  T(t), then

But since, by Lemma 4.2, vx(x, t)  0 when 0  x  g~(t), vex, t)  w(§3(t) , t)
i.e., z(x, t)  0; a contradiction. If §3(t) == ~(t) then z(x, t) = 0 and we again
obtain a contradiction to z(x, t) &#x3E; 0. Thus (4.1) holds.

Since z takes its maximum in .~o at (~)~)y we have zx(g~(t), t) &#x3E; o, i.e.,
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But this is impossible since t)  0 if 0  and, by (4.1 ),
 ~(t). This contradiction completes the proof that in Similarly

one shows that z ~ 0 in It follows that §l(t) = 99(t) and w = w.

5. - The finite difference approximations.

We introduce a finite difference scheme for (2.21), (2.22), (2.14)-(2.16).
For any positive integer n, divide (0, T) into n intervals of equal length T/n

and let

The free boundary x = will be replaced by a polygonal curve with
vertices (bi, ti) where bi = q(t;), bo = b. Writing

the variational inequality (2.21) is replaced by a sequence of variational
inequalities

where ( , ) denotes the scalar product in L2(o, R).
The conditions in (2.22) become

The conditions (2.14)-(2.16), when finite- differenced, become

Later on we shall solve the system (5.1)-(5.5) under the additional con-
dition that
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In order to solve this system, we first consider a general quasi-variational
inequality in one dimension:

where G = G(x) is a given function and y is a given number. In the special
case of (5.1)-(5.6)

We shall assume that

It will be shown later on that wx 1 (x) C 0 if (for i = 0
this follows from (2.11)). Consequently, G’ (x)  0 if x  b i_1 and G’ (x) = 0
if x &#x3E; bi-l. Since

the last two conditions in (5.13) hold when G(x) is defined as in (5.12).
The condition (5.14) is a consequence of (1.7) and the definition of y

in (5.12).
Later on we shall prove that when G, y are defined by (5.12), iv-(0) &#x3E; 0.

Hence (5.9) reduces to
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6. - Existence of unique solution for ( 5.7 ) - ( 5 .11 ) .

This section is entirely devoted to proving the following theorem:

THEOREM 6.1. There exists a unique solution (w(x), b) for the 
tional inequality (5.7)-(5.11), and  0 if 0  x  b.

For any 8 &#x3E; 0, let be a 000 function satisfying:

for some constant K independent of 8.

Given a number c E [0, R] consider the variational inequality

Denote by w’ the solution of

(By a monotonicity argument, can be uniquely solved from (6.4),
and (6.2), (6.3) has a unique solution w’(x) when is given.)

If we multiply (6.4) by and use the conditions on ,Be, we find
that
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where .H is a constant independent of c. Hence, as ëtO through some
sequence {ë’},

w(0) = exists.

for otherwise , which is impossible
then from (6.4) we obtain, when

then from (6.4) we obtain, y when

thus, in both cases,

With solved from (6.4), we can treat (6.2), (6.3), 
by standard methods. We thus deduce that

is a subsequence of {8’1), and w is a solution of (6.1).
Since further the system (6.1) has a unique solution, (6.6) holds when ~~,0
(instead of just 8 = 

LEMMA 6.2. 

PROOF. Suppose first that ~,v(o) &#x3E; 0. The satisfies

Also, since &#x3E; 0,

by (5.14), if E is sufficiently small Next,
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if is chosen so that

We can now apply the maximum principle to conclude that ~(x) cannot take
a positive maximum in [0, R] at the end-points. Hence ~(x) c 0 in (0, R).
Taking e~ 0 we get wx ~ 0 in the interval (0, R).

So far we have assumed that w(O) &#x3E; 0. If w(o) = 0, then

by (5.14). Consequently w(x) = 0 is a solution of (6.1), and the assertion
follows.

Let

Denote by W the mapping c i.e., i = yYc. We would like to prove
that W has a fixed point, by showing that W is a continuous mapping. Since
there seems to be some difficulty in trying to prove that W is continuous, y
we modify our procedure as follows.

For any small p &#x3E; 0, consider the variational inequality

As in the case p == 0, for any c E [0, R], there is a unique solution w
of (6.7), and 

Denote by Wn the mapping c --~ c where

We shall prove :

LEMMA 6.3. Wu is a continuous function.



438

PROOF. If c increases then, for the corresponding solution of (6.7),
w(0) decreases. Since also -1 -E- aG - decreases when c increases, y
a standard comparison theorem for variational inequalities shows that w(x)
decreases when c increases. We conclude that

Therefore, in order to prove that Wu is continuous it suffices to show that,

To prove (6.9), notice that

On the other hand, the solution wn of (6.7) corresponding to c = cn satisfies

It is easy to show that, as n - oo,

where w is the solution of (6.7) corresponding to c. Taking n - oo in (6.12}
we then obtain Hence In conjunction
with (6.11), the assertion (6.9) now follows.

To prove (6.10), suppose the assertion is false. Then there exists a

6 &#x3E; 0 such that

Let ~ be a smooth function with support in the interval 
1

From the variational inequality for Wn we get

As n - oo, weakly in -W2,, (0, R). Hence the left-hand side of (6.14),
converges to
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It follows that

Since ~ is arbitrary,

and G’(z)  0, the left-hand side is strictly monotone decreasing ;
a contradiction. This completes the proof of (6.10).

The function c ~ W,~ c maps [0, .l~] into itself and, by Lemma 6.3, it is

continuous. By a very special case of Brower’s fixed point theorem it fol-
lows that has a fixed point c = c,. Denote the corresponding solu-

tion of (6.7) by Thus wu is a solution of (6.7) for c = c, and, in ad-
dition,

LEMMA 6.4. There is ac unique solution c,) of the quasi-xariational
problem (6.7), (6.15).

PROOF. Existence was already proved. To prove uniqueness, suppose
is another solution. We may take Now, wu and Wtt are

solutions of variational inequalities (6.7) with c = cu and Since

(6.8) implies that  tt~,,(x). This is impossible since

We return to the quasi-variational inequalities (6.1), (6.15). The proof
of Lemma 6.4 shows that there is at most one solution of (6.1), (6.15).

Now take through a sequence p = p’, so that

It is easily seen that w is a solution of the variational inequality (6.1) with
c = c. Let

If we prove that 6 = c then (w(x), b) is a solution of the quasi-variational
inequality (6.1), (6.15).
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Since = 0 and since w, - w uniformly in x E [0, .~] as ,u = 

(four a suitable subsequence p" of ,u’) we have w(c) = 0. Hence To

prove the converse inequality, we suppose that 6  c and derive a con-

tradiction. Since 6  c, there exists a 6 &#x3E; 0 such that

sufficiently small.

Let X be a smooth function with support in (b, b + 6). From the quasi-
variational inequality for (w,, cu ), p = C", we then have :

From (6.16) we conclude that, as ,
converges to

the left-hand side of

Hence

Since X is arbitrary, y

Now, since i
gives

Since c &#x3E; b we then obtain

thus contradicting (6.18). Thus completes the proof that c = 6.
Since (6.1), (6.15) coincide with (5.7)-(5.11), we have thus completed

the proof of existence and uniqueness of a solution of (5.7)-(5.11). Lemma 6.2
shows that where (w, 6) is the solution of (5.7)-(5.11). Applying the
strong maximum principle to wx in the interval 0  z C b, we conclude
that wx  0 in this interval. This completes the proof of Theorem 6.1.

REMARK. In the proof of Theorem 6.1 we have actually not used all
the conditions in (5.13); we have just used the condition that G’ (x) c 0.
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7. - Solution of the finite difference approximations.

Consider the system of variational inequalities consisting of (5.1)-(5.4),
(5.6) and

Applying Theorem 6.1 step-by-step we conclude that this system has
a unique solution (wl, b.,,), (w2, b2), ..., (wn, bn) and

Suppose I Then ( 7 .1 ) implies i Adding
the equations we get

We shall now assume that

and prove that

provided n is sufficiently- large.
Since = h(x), (7.5) is valid f or i = 0. Suppose (7.5) is true for

we shall prove that it is also true for i = j + 1. Indeed, otherwise
we have = 0, wi+1(o) = 0, and (7.1) gives

Substituting from (7.3), we then get a contradiction to (7.4), provided n
is sufficiently large. This completes the proof of (7.5).

From (7.5) it follows that (7.1) is equivalent to (5.5). Furthermore, (7.3)
holds for all 1 c j ~ n. Hence
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Using (7.2), the inequalities

follow.

We have proved the following theorem.

THEOREM 7.1. I f (7.4) holds then f or any n sufficiently large, say n ~ no ?
there exists a unique solutions bo), bI), ..., bn) of the system of
quasi-variational inequalities (5.1)-(5.6), and 0  bj  R for 0 j  n, pro-
vided R &#x3E; M where M is defined in (7.6). Further, (7.2), (7.3) and (7.7) hold..

If l(t) &#x3E; 0 then we can take no = 1.

8. - A priori estimates.

In this section we assume that n ~ no where no is defined in Theorem 7.1.

We shall derive estimates on the solutions (wi, bi), independently of n.

We shall need the following comparison lemma.

LEMMA 8.1. Let be a function satisfying (5.13), let Ý be a constant,
and denote by (w, b ) the corresponding solutions o f the quasi-xariational in-
equality (5.7)-(5.12) (when G, y are replaced by G, y respectively). If G &#x3E; Gr

then b &#x3E; b.

PROOF. Suppose Denote by w* the solution of the variational

inequality (6.7) corresponding to c = b. By comparison, ~,u~(x) ~ w(x). Next
observe that, with b fixed, the functions w* and w are solutions of varia-

tional inequalities and, since a standard comparison theorem

gives Hence and, in particular, Since

w(b ) = 0, we then have w(b )  0, b  b, which is impossible.
Let

Let us use the (standard) shorter notation:

for the variational inequality (5.1), where (J(t) is the monotone graph
j8(0) == (- oo, 0), = 0 if t &#x3E; 0. Notice that the function wo = h satisfies.

the variational inequality
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LEMMA 8.2. For all

PROOF. We first prove (8.4) in case i = 1. We may assume that b1&#x3E; bo.
Then, by (8.2) (with i = 1) and (8.3),

We also have

Suppose the right-hand side of (8.6) is  0 for all x E (0, bo). Then wl - wo
cannot take a positive maximum in at an interior point. If also

the right-hand side of (8.7) is  0 then, since (w I - = 0, the
function attains its strict maximum in Con-

sequently,

Since however = 0, w’(b,)  0, this is impossible. We have thus proved
that either

or

This readily completes the proof of (8.4) in case i = 1.
To prove (8.5) for i = 1, suppose first that bo. Then (by (8.2) with

i = 1 and (8.3)) the function’ == (wl + b1) - (ivo + bo) satisfies
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Hence

Since also

we can apply the maximum principle to C - Kla to conclude that

if This gives (8.5) for in case 

If then ~(x)  0 if bi  x  R. Next,

and

Applying the maximum principle we conclude 

in (0, b,). This completes the proof of (8.5) for i =1.
We now proceed by induction and assume that

We shall prove the same inequality with i replaced by i + 1, i.e.,

To prove (8.10) it suffices to consider the case where
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The argument following (8.6), (8.7) can now be applied to show that either
the right-hand side of (8.12) is &#x3E; 0 for at least one value of x E (0, bi) or else
the right-hand side of (8.13) is &#x3E;0. In either case, after using (8.9), we
get (8.10).

To prove (8.11), suppose first that and consider the function

Using (8.2) we find that

After making use of (8.9) we get

We also have

Applying the maximum principle to ,- X/ex, we conclude 
if i.e., (8.11) holds.

It remains to establish (8.11) in case bi+l  bi. In this case, the func--

tion defined in (8.14) is 0 if On the other hand

and

It follows, by the maximum principle, if 

This completes the proof of (8.11).

LEMMA 8.3.
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PROOF. To prove (8.16) for i = 1, it suffices to consider the case where
Then (cf. (8.6), (8.7))

If the right-hand side of (8.18) is &#x3E; 0 for all x E (0, bl) and if the right-hand
side of (8.19) is &#x3E; 0, then the minimum of x, in [0, bi] must occur at
the boundary point bl. Consequently, wo)x(bl)  0, which is impos-
sible. Hence either the right-hand side of (8.19) is  0 or the right-hand
side of (8.18) is &#x3E; 0 for some x E (0, b1). In either case we obtain the in-

equality (b1- bo) &#x3E; - 
In what follows we shall need the inequality

This inequality follows from the variational inequality (8.2) (since = 0

in (bi, R)).
To prove (8.17) for i = 1 consider the function

If then

The expression in brackets is &#x3E;0, by (8.20) with i = 1. Hence

Next,

and, consequently, y

Applying the maximum principle, we conclude that

and (8.17) for i = 1 follows.
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We next have to consider the case where I

In (0, be),

Also

The maximum principle if 0  x  bo, and (8.17) for

i = 1 follows.

We proceed to prove (8.16), (8.17) by induction. Suppose

We wish to prove that

To prove (8.22), we may assume that  bi. Then (8.12) holds for
0  x  bi+l. By the argument following (8.18), (8.19) we deduce that either
the right-hand side of (8.12) must be  0 for some x E (0, or the right-
hand side of (8.13) must be &#x3E;0. In either case we obtain, upon exploit-
ing (8.21), the inequality (8.22).

To prove (8.23) suppose first Then the function ~, defined

by (8.14), satisfies

By

Hence

We thus conclude that
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Using (8.21) we then have

By the maximum principle it follows in i.e.,
(8.23) holds.

It remains to prove (8.23) in case b; . In this case the function ~r
defined by (8.14), satisfies

Thus it remains to estimate it for

get, after using (8.21),

, Since ~ satisfies (8.15), we

Also,

It follows in (0, b;), and (8.23) follows.
Combining Lemma 8.2, 8.3 we have:

LEMMA 8.4. For all

where K is the constant given by (8.1 ).
Noting that

and using Lemma 8.4, we get:

LEMMA 8.5. For all
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Lemmas 8.4, 8.5 will be crucial to the convergence proof of Section 9.
We shall now prove some lemmas concerning the monotonic behavior of b, i
and wi z with respect to i, under the additional assumptions:
either

LEMMA 8.6. I f (8.27) holds then, for all 

and, more generally,

LEMMA 8.7. I f (8.28) holds then, for all

and, more generally,

PROOF OF LEMMA 8.6. The pairs (w°, b°) and bl) satisfy quasi-varia-
tional inequalities; the variational inequality for w° is (8.3). Since 

and l(t,) c 0, Lemma 8.1 can be applied to deduce that To prove (8.30)
for i = 1 consider the function

It satisfies

Hence, by the maximum principle,  0 in and (8.30) is proven
for i = -1.

We now proceed by induction. We assume that
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Since

we have

Using (8.33) and (8.34), (8.35), we are in a position to apply Lemma 8.1
to (wi, bi) and bi+1). We then conclude that

Consider the function

It satisfies

Also

The maximum then implies that (0 in Consequently,
2vi+1 -~- --~- bi if We have thus completed the proof of

Lemma 8.6.

The proof of Lemma 8.7 is similar, and is omitted.

9. - Convergence of the finite-difference scheme.

We shall now write the solution (wi, bi) of (5.1)-(5.6) as Let
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Thus, where i :/n then

We piece together the functions w,,i and points i linearly:

LEMMA 9.1..Z’’or any subsequence ~n’~ o f {n} there exists a subseque,n,ce
~n"~ c such that

q(t) is uniformly Lipschitz continuous in [

w satisfies the variational inequality

PROOF. From Lemmas 8.4, 8. ~, we get
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It is shown in [7] that (9.2), (9.3) imply that

where C is a constant independent of n. The assertions (i), (ii) now follow
from the estimates (9.1)-(9.4).

To prove (iii), let t be any number not of the form and set j = O’(t).
Thus

For any Z E L2(0, R), z ~ 0, consider the expression

for n = n". We can write

Since

uniformly in is continuous in

Notice next that since

and, since w(x, t) is continuous in
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From (9.7), (9.8) we conclude that if

Using this and the fact that,

we easily deduce that

Next,

From the variational inequality satisfied by we have

Using (9.7), (9.1) we find that
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Combining (9.6) with (9.1l)-(9.16), the assertion (iii) follows.

We shall now prove (iv). Taking n = ~2013~ oo in the relation t) = 0
we get ~(~()~)==0. Since ~(.r~)~0y we see that if w(x, t) &#x3E; 0 then

x  9?(t). We shall now prove the converse, namely, w &#x3E; 0 in the region

Let G be an open set with G c D. For t fixed, let z be any function
in Z2(o, _R) such that the support of z(x) - t) is in

If n = n" is sufficiently large then t) &#x3E; 0 if x E Gt and therefore (9.14)
holds with « _ &#x3E;&#x3E; instead of «:&#x3E; &#x3E;&#x3E;. Taking we obtain the equality

Since z is arbitrary, this implies that

Recall that the vanish in some interval where q
is positive and independent of i, n. Hence w(x, t) = 0 
Taking z(x) with support in (R - q, .R) in (iii) we find that

Since w &#x3E; 0 and on the parabolic boundary of D, the strong maximum
principle gives: w &#x3E; 0 in D. This completes the proof of the lemma.
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LEMMA 9.2. If w, 99 are as in Lemma 9.1, then 99(t) &#x3E; 0 and 99(t) is
continuously differentiable in (0, T], and wxx, Wt are continuous f or 0  x ~ ~p(t),~
0  t T.

PROOF. From (7.3) we obtain
t

In view of (7.4), the right-hand side is positive for all T. Consequently
g~(t) &#x3E; 0 for 

Introduce the function

Then Consequently

Since w&#x3E; is continuous for 0()y 0  t c T, the same is true of vx 

Finally, 99(t) is Lipschitz continuous and

By a well known result for the heat equation (see [3], [4], [11]) (vx)x is then
continuous up to the boundary x = Consequently also

vt is continuous

Notice that

We can now write, for a positive number
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In view of (9.21), if 3 = Lh where L &#x3E; K, then the closed line segment
connecting (p(t + h) - ~, t + h) ) to + h) - 6, t) lies in the set 0  x  cp(t),
0  t  T. Applying the mean value theorem, we find, upon using (9.19 ), that

Using (9.20) we also have

.as h ~ 0. Hence

The same assertion can be proved when htO. We conclude that

Since the right-hand side is a continuous function, the same is true of 99’(t).
This completes the proof of the lemma.

COROLLARY 9.3. The pair (w, 99) in Lemma 9.1 is a classical solution of
the quasi-variational inequality (2.21), (2.22), (2.14)-(2.16).

This follows from Lemma 9.2 and from the definition of a classical

solution.

COROLLARY 9.4. The assertion of Lemma 8.1 holds for the full sequence fnl
f or (1e")) .

Indeed this follows from Corollary 9.3 and the uniqueness of the classical
solution (Theorem 4.1).

We now state the main result of this paper.

THEOREM 9.5. Let (1.6), (1.7), (7.4) hold. Then there exists a unique classical
.solution (w, (p) of the quasi-variational inequality (2.21), (2.22), (2.14)-(2.16).
Furthermore, cp(t) E C°° (0, T] and w is infinitely differentiable for 0  

PROOF. Existence and uniqueness follow from Corollary 9.3 and The-
orem 4.1. To prove that 99 E 000 we shall use a method due to Schaeffer [9].
We make the transformation
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in a neighborhood of the free boundary where u = x - WX. The heat equa-
tion for u becomes

Now, a careful look at the proof that is continuous up to the boundary
x = 99(t) shows that is actually Holder continuous. The same is there-

fore true of ux. Next, by Lemma 2.5,

Hence is Holder continuous, for some 0  a  1. The coef-

ficients in (9.24) are therefore in 0«.
Using the Schauder estimates [8] for 4 in some region - q  y  0,

0  t  T, we deduce that i,, is in i.e., ux is in C,,,,,. But then, by
(9.25), also cp is in Notice that (9.25) implies

Working now with the relations (9.24), (9.26), we can establish step-
by-step that §5 E C« + i2 , for m = 1, 2, .... This implies that 99 E 000 and then
also that w is in C°° for 0~~~()y 0  t  T.

COROLLARY 9.6. Under the assumptions of Theorem 9.5, the solution (w, 99)
o f (2.21), (2.22), (2.14)-(2.16) satisfies the inequalities :

for OtT, OxR where K is the constant given by (8.1 ).
Indeed, this follows immediately from (8.24), (8.25) and the assertion (i)

of Lemma 9.1.

10. - Further properties of the solution.

THEOREM 10.1. (i) Let the conditions of Theorem 9.5 hold, and let (8.27)
hold. Then 99(t) and each of the polygonal approximations cpn(t) (for n~ no)
is monotone decreasing in t, and (8.30) holds.

(ii) Let the conditions of Theorem 9.5 hold, and let (8.28) hold. Then 99(t)
and each of the polygonal approximations ( f or n ~ no) is monotone in-

creasing in t, and (8.32) holds.

This follows from Lemmas 8.6, 8.7.
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THEOREM 10.2. Let the conditions of Theorem 9.5 hold. If l(t) =t= 0 in any
interval, then 99(t) fl const. in any interval.

Thus, in particular, under the additional assumption (8.27) or (8.28), r
q(t) is strictly monotone.

PROOF. Suppose 99(t) - const. = xo for to  t  tl: Consider the function

It satisfies

By the Cauchy-Kowalewski theorem it follows that
0  t  to. In particular,

thus contradicting our assumption that t(t) ~ 0 in any interval.

THEOREM 10.3. Let the conditions of Theorem 9.5 hold and suppose that
l(t) - 0. If p(t) - const. = xo in some interval to  t  t, ~ x,, for
all to  t  T.

PROOF. The argument given in the proof of Theorem 10.2 shows that
w (x, t) = (x - xo ) 2/2 for to  t  tl . If we define

then (w, ~) is a classical solution of the same quasi-variational inequality
as (w, q;), for t &#x3E; to. By uniqueness, the two solutions must coincide. Hence

w zo for T.

REMARK. From Theorems 10.1, 10.3 we see that in case (8.27) or (8.28)
holds either is strictly monotone for all or there exist a

to E (0, T) such that is strictly monotone in (0, to) and constant in (to, T).
We shall now assume that h" (x) -1 changes sign a finite number of

times; more precisely,
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THEOREM 10.4. Assume that l(t) = 0 and that (1.6), (10.1) hold. Then

(i) 99(t) is piecewise monotone and the direction o f monotonicity changes at most
m times; (ii) for any n &#x3E; 1, the polygonal approximation is piecewise mono-
.tone, and the direction o f monotonicity changes at most m times.

Notice that (i) is actually a consequency of (ii).

PROOF. A proof of (i) can be given by exploiting Theorem 10.1. We
introduce the curves .hi passing through (ai , 0) and along which t) = 0;
the continuity of these curves was studied in [4]. Let us assume for defi-

niteness that h"(x) - 1 &#x3E; 0 if x  b. Let ð be a small positive number
to be determined later. We shall prove that 99(t) is increasing for 0 c t c ~.

Denote by t* the value of t at the point where Fm first intersects the free
boundary (t* = T if no such point exists). We such that

vt(xo, t) &#x3E; 0 for some so &#x3E; am and 0 c t c ð. Denote by y the vertical seg-
ment 0 c t C ~. Then v, p satisfy a variational inequality in the

rectangle 0 C t C ~. Since on y, Theorem 10.1 can

be applied to deduce that cp(t) is increasing for 0  t  ð.

The above argument can be repeated step-by-step, as long as t  t*. We

thus find that cp(t) is increasing for 
In the region bounded by and t = 0 the maximum principle

can be applied to vt to deduce that vt  0. Hence vt(x, t*)  0 for

where We can now proceed as before and

show that is decreasing for t*  t  t**, where t** is the value of t

where intersects the free boundary. Proceeding in this way step-by-
step, the proof of (i) is completed.

Since some of the Fi may coincide after some time, the total number of
changes in the direction of monotonicity is actually c m.

We shall now give a proof of (ii) based on the methods of [7]. Let

It is obvious that the number of sign changes of ui in (0, b i) is also Con-

sider the four cases:
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The function ui satisfies

We shall prove that if (1) holds then

Since we can (using (10.2)) apply Lemma 1~.~
of [7] to conclude that

We now consider two cases :

starts out positive;

(B) ui starts out negative.

Suppose (A) holds. If (10.3) is false then, in view of (10.4),

But then u-1 must start out negative. Let (0, a) be the largest interval such
that in (0, a), and let (0, a’ ) be the largest interval such that 
in (0, a’). Applying the maximum principle to ~c~ in (0, a’) we get

Now let

K; = number of sign changes of ui in (a, b i) .
0 in (0, a’],

On the other hand, by the same Lemma 15.2 of [7] applied to ui(x) for
a we get

a contradiction.

Similarly one can prove (10.3) in case (B). We have thus completed
the proof of (10.3) in case (1) holds. Similarly one can show that if (2)1
holds then (10.3) holds and, ’furthermore,

and Ui-l end up with opposite signs .
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The same type of arguments also shows that if (3) or (4) holds then

Combining all the assertions for cases (1)-(4) it follows that

This clearly implies the assertion (ii) of Theorem 10.4.

We conclude this section with some comparison results.

THEORF,M 10.5. Let (w, p) and (all, cp) be the solutions of the quasi-variational
inequalities (2.21), (2.22), (2.14)-(2.16) corresponding to l, h and to i, A respec-
tively. If then where --~ w, b = ~ + w.

The proof is similar to the proof of Theorem 4.1.

COROLLARY 10.6. (i) If, for some 

then

then

Since == 2 1 (X - c) 2, ~9 - c is a solution of the quasi-variational inequality
with l == 0, = -!(X - C)2, Corollary 10.6 follows immediately from The-
orem 10.5.

11. - Asymptotic behavior of the solution.

We shall consider the asymptotic behavior of (7,v(x, t), as t - 00:

It is assumed that l(t) is continuous for all t ~ 0, that (1.7) holds for all t ~ 0,
and that

positive constants),
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Then there exists a unique classical solution (w, p) of the quasi-variational
inequality (2.21), (2.22), (2.14)-(2.16) for T = oo, and, from (7.3),

By Taylor’s formula and the fact that

Substituting this into (11.3) and recalling that we get

Using (1.11) we then find that

From (11.4) and the second inequality of (11.1) we also get

Thus:

THEOREM 11.1. If (11.1), (11.2) hold, then p(t) satisfies (11.4), (11.5). Set

We shall need the conditions:

LEMMA 11.2. I f (11.1), (11.2), (11.6) hold, then
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PROOF. Differentiating the relation

and using the relations , we get

The function Vt satisfies the heat equation in Qoo and vt = I on x = 0,
v t = ~ on x = ~ (t ). Since (by Corollary 9.6), the maximum principle
implies that

Since I is a bounded function and (by (11.4)) vt satisfies the heat equation
in a strip 0  x  oco, 0  t  oo (where DCo&#x3E; 0), it follows by the standard
parabolic theory that

Hence

Multiplying the equation
we get

by v and integrating over 

Integrating by parts and using (11.8), we find that

We also have, by integration by parts,
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and t) = cp(t). Substituting these expressions for I, J into (11.10),
using (11.9), and noting that

since 1 -~- cp ~ 0, the assertion (11.7) readily follows.
We shall need the condition:

THEOREM 11.3. Let Z(t) satisfy the conditions (11.1 ), (11.2 ), (11.6 ) and (11.11 ) .
Then, as t - oo,

where

and, uniformly in x E [0, R],

Finally, for any x =1= y,

PROOF. From (11.7) it follows that there is a sequence tm fi oo such that
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Since we also have

Using the Sobolev inequality, y we deduce that

Since we get

Set

Then, by Corollary 9.6,

if x c- [0, R], x =A 99(t). Since, by (11.18) and the assumption (11.11),
if m - 00, the assertions (11.13), (11.16) follow.

From (11.16) we conclude that

Since

it follows that

In particular,

Recalling (11.3 ), we get
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Now, there is a unique non-negative solution y of the quadratic equa-
tion (11.14). Since 99(t)&#x3E;O, the relation (11.21) implies that -y as

i.e., (11.12) holds. Finally, the assertions (11.15), (11.17) follow
from (11.20), (11.19) respectively.

REMARK 1. We give another proof of (11.12), (11.15) (in case l - 0)
which does not depend on the estimates (9.27), (9.28). The proof is based
on (11.18) (which was obtained using the estimate (11.7)). We may assume
that yo = limq;(tm) exists. From (11.18) it follows that there exist numbers bm
such that

Since 1 - 0, Corollary 10.6 yields

Similarly, y

where The assertions (11.12), (11.15) clearly follow

from (11.22), (11.23).

REMARK 2. If l(t) 0, f 1 (t) dt = oo, y then q(t) may increase to oo. One
o t

can obtain bounds on the growth of g~(t), in terms of the growth of ds.

For instance, if o

m positive constants)

then

To prove it, we begin with the equality
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After integrating by parts on the left, and evaluating the integral on the
right, we obtain the identity

Observing that t) &#x3E; 0 and using (11.24), the assertion (11.25) imme-

diately follows.

Added in proof.

We outline another approach to the main existence and uniqueness results of
this paper.

1. - If we apply Green’s formula to u - x and the Neuman function of the
heat equation in x &#x3E; 0, and use (1.1)-(1.4), (2.4), we can obtain a nonlinear Volterra
integral equation for ’l/,ae( q;(t), t), as in the case of the Stefan problem [3]. We can
then prove the existence and uniqueness of a (regular) local solution.

2. - In order to complete the proof of global existence and uniqueness, it suffices
(as in the Stefan problem) to establish the a priori estimate

First proof of (*). If ux takes a positive maximum in 0a?~(), 0  t  s at
x = op(t) then, by the maximum principle, 0, i.e., ut &#x3E; 0 at x = tp(t) (we use
here the continuity of up to x = q, which is proved as in Theorem 9.5). Dif-

ferentiating t) = 99(t) at t = t we then get ~g, or g~(1--~- g3) &#x3E; 0. Since

(by Corollary 2.3) 1+~&#x3E;0, ~&#x3E;0 at t, i.e., ux~ 0 at a contradiction.

Similarly ux cannot take a negative minimum on x = T, and (*) follows by the
maximum principle for u~ .

3. - If g’ and l change sign a f inite number of times changes sign a finite
number of times. (This contains part (i) of Theorem 10.4). The proof is similar
to the proof of Theorem 10.4. Moreover, it can be given without using finite dif-
ferences, i.e. the special case given in Theorem 10.1 can be proved without finite
differences. Thus, if cp(t) &#x3E; 0 for 0  t  a and ux &#x3E; 0, ux fl 0 on the remaining pa-
rabolic boundary, then = - a) cannot vanish; for, otherwise, the
relation 0 at t = a gives u,x - 0 at x = 99(or), whereas

0 at x = T(or) by the maximum principle.
4. - Second of (*). If &#x3E;0 for 0 C t C s then 11 = -As(x-cp(t)) + T(t)

satisfies ( 1--f- As) g~ &#x3E; 4 and, by the maximum principle, so that
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Similarly, if ~~0 and then we compare u with + 99(t) and
deduce that ( 1, A,). From these two cases we obtain (*) in case if;
changes sign a finite number of times. Now approximate l, 9 by polynomials ln, gn.
By 3, the corresponding ~9 = yn changes sign a finite number of times. Applying (*)
for the case of In, gn and taking n -+ 00, the proof of (*) is complete for general 1, g..
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