
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

CHARLES A. STUART
Global properties of components of solutions of non-linear second
order ordinary differential equations on the half-line
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 2, no 2
(1975), p. 265-286
<http://www.numdam.org/item?id=ASNSP_1975_4_2_2_265_0>

© Scuola Normale Superiore, Pisa, 1975, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1975_4_2_2_265_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Global Properties of Components of Solutions
of Non-Linear Second Order Ordinary Differential Equations

on the Half-Line.

CHARLES A. STUART (*)

1. - Introduction and abstract setting.

Suppose that p &#x3E; 0 and q are continuous real-valued functions on (0, 00)
such that the symmetric operator i defined by

(1.1) TU(X) == - (p(x)u’(x))’+ for x &#x3E; 0

on oo) has a unique self-adjoint extension S in L2 (0, oo) whose do-
main is (u e W2(o, oo) : u(o) = 01 and such that S is bounded below. Let Q be
a lower bound for the essential spectrum of S. Some global properties of
the set of non-trivial real solutions of the non-linear eigenvalue problem

are established in the general case where the essential spectrum of S is

non-empty.
Several authors (for example [1] to [6]) have treated the corresponding

two-point boundary-value problem for regular second order ordinary dif-
ferential equations on a finite interval which may be taken to be [0, 1].
There the appropriate setting is the scale of Banach spaces of

k-times continuously differentiable functions ( k = 0, 1, 2 ~ ... ) and the boundary
condition (1.3) must be replaced by

(*) Battelle Institute, 7 Route de Drize, CH-1227 Carouge, Geneve.
Pervenuto alla Redazione il 21 Marzo 1974 ed in forma definitiva il 10 Novem-

bre 1974.
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where (a2 + fl2)(62 + y2) -~ 0. Then compactness is readily available both in
the embeddings of Ck+1( [o, 1] ) in for 7~ = 0, 1, 2, ... and for the
resolvent of the linear differential operator T which is even compact as a
mapping from C°([0, 1]) into C~([o, 1]). Here, since we are assuming that z
is in the limit-point case at infinity, it is appropriate to seek solutions of the
equation (1.2) in the usual Sobolev spaces of square integrable functions
on (0,00) together with the boundary condition (1.3). Then the continuous
embedding of 00) in L2(0, 00) ( o 00)) is not compact for any
1~ = 0, 1,2, ... and, in general, r does not have a compact resolvent. Never-

theless, we find that the abstract approach devised for the case of bounded
intervals can be modified so as to apply in cases where compactness is not
available. Following the method laid down by Rabinowitz for the compact
case, it is shown in Stuart [8] that the topological degree theory for k-set
contractions (l~  1) developed by Nussbaum [7] can be used to this end.
The results are obtained by showing that, given appropriate behaviour of
the function f, the system (1.2), (1.3) is equivalent to an operator equation
of the form,

where R denotes the real numbers, B denotes a real Banach space with norm 11 11
and the operators A and H have the following properties.

PI) A : B ~ B is a bounded linear operator.

P2) H : B X R - B is a bounded, continuous (non-linear) operator such that

uniformly for A in bounded intervals and such that H(~, - ) : R - B is
uniformly continuous on bounded intervals for u in bounded subsets of B.

P3) The mapping G : B X R --~ B defined by

is such that G( ~ , ~) : B ~B is a contraction where k : R ~ [0, 00)
is a known continuous mapping.

Alternatively the hypotheses P2) can be replaced by the following one.

P2 )’ H : B X R ~ B is a continuous compact mapping such that

uniformly for I in bounded intervals.
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Under these hypotheses, it is clear that is a solution

of (1.4) for all 2 c R, and such solutions are called trivial. Let Q; denote

the subset of B X R consisting of all non-trivial solutions of (1.4) and let

is a characteristic value of A~ .

It is readily shown that, if  1 and (0, h) is in the closure of Q with

respect to the B x R topology, then indeed (0, h) c-’6’. In other ,vords, in
the range  4, bifurcation from the curve of trivial solutions of (~1.4) can
take place only at characteristic values of A. Let C, denote the components
(maximal connected subset) of i3’ (endowed with the induced topology
from B X R) containing Then Cl is nonempty if and only
if u is a characteristic value of A.

THEOREM 1. l . Let It be a characteristic value of A of odd algebraic multi-
plicity with k(,u) C 1. Then ep has at least one of the following properties.

1 ) ell is unbounded subset of B X R.

2) sup f k (2): (u, &#x3E; 1.

3) C, contains an element (0, 
‘ where ~C =1= fl.

In the case where we can choose k(l) = 0 for all l E R (corresponding
to G( ~ , ~,) : B - B being compact for each 2 c- R) this result coincides with
Theorem ].3 of Rabinowitz [5]. The case where the mapping H has the

special form H(u, ~,) - for some ~: B - B is established as The-

oreui J .6 of Stuart [8]. However, given either P2) or P2 )’, we see that,
for a bounded sequence f(Un, in B X R with as 

where a(xn) denotes the set measure of non-compactness of a bounded sequence
in B as defined in Stuart [8]. Hence, for a bounded sequence In))

in B X R such that un = 2n) for all n and sup {k(2n): n - 1, 2, ...1  1,
we see that ~(un, 2n)l contains a convergent subsequence. With this noted,
the proofs of Lemma 1.7 and Theorem 1.6 of Stuart [8] immediately yield
the result in the above generality.

For applications to differential equations, it is useful to interpret
Theorem 1.1 in the following setting. Let B now be a real Hilbert space
with norm )) )) and let ~S: ~(~S) ~ B be an unbounded self-adjoint operator
in B which is bounded below, Q being a lower bound for the essential spectrum
of the complexification of S. Let H, with norm III III, denote the real Hilbert
space obtained from the domain of S equipped with the graph topology.
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Then H is continuously (but in general not compactly) embedded in B.
Consider the non-linear eigenvalue problem set by

where J.1f has the following properties.

P4) M: H X R --~ B is a bounded, continuous mapping such that

uniformly for 2 in bounded intervals and such that M(u, - ) : R -~ B
is uniformly continuous on bounded intervals for ~c in bounded sub-

sets of H.

Let 8 denote the set of all non-trivial solutions of (1. 5) in .Z~ X R and

let 8’ = S’u {(O, Â is an eigenvalue of 81.

THEOREM 1.2. Suppose that p  Q is an eigenvalue of odd multiplicity
of S and that, in addition to satisfying P4), the mapping M is such that
M( ., 2): H - B is compact for each 2 E R. Let ell den-ote the component of S’
(endowed with the topology induced from H X R) containing (0, p). Then eft
has at least one of the following properties.

1 ) eft is an unbounded subset of H X R.

2 ) sup ~~, : (u, A) E 

3) ell contains an element (0, ~u) E S’ where fi =1= fl.

This result is deduced from Theorem 1.1 by following the method which
is set out in detail for a special case in Stuart [9].

Given any two of the properties 1 ), 2), 3) of Theorem 1.2, an example
can be provided in which the hypotheses of Theorem 1.2 are all satisfied
and yet there is a component which has neither of the two selected

properties. See [14].
In the case of a simple eigenvalue of S we can say more.

THEOREM 1.3. Suppose that u  Q is an eigenvalue of multiplicity 1 o f S.
Also, in addition to P4), suppose that the partial derivatives Mu and 
exist and are continuous in an open neighbourhood of (0, fl) in H X R. Then

it follows from P4 ) that Mu(O, 1) = 0 for all R and assume that
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A) = 0 f or all Â E R. Then there exist an open neighbourhood U of
in H X R, an open interval (- ð, ð) and continuous functions

such that

and

where u E H, Illulli II =1 and Su =,uu. (Here M is regarded as a continuous
mapping from H X R in B and the derivatives are taken in the Fréchet sense. )

That ell has the local structure indicated above follows immediately
from Theorem 1.4 of Crandall and Rabinowitz [10]. In this case we set

where and D§ denote the components of S’",,{(O, lz)l containing
aw(a), ,u -]- x c- (0, b)) and aw(a), ,u -f- 0) 1

respectively. It is not claimed that C) and e; are in general distinct,
although in the applications to ordinary differential equations considered
below this will be seen to be so. Using the method introduced by Rabinowitz
in Theorem 1.27 of [5], we can deduce the following global results about
the subsets C,~ and e;~-.

THEOREM 1.4. Suppose that all the hypotheses of Theorem 1.3 are satisfied
and that, in addition, M( ~ , ~,) : .H -~ R is a compact macpping for each Â E R.
Then the set ~~~ has at least one of the following properties.

1 ) is an unbounded subset of H X R.

2 ) sup ~~, : (u, I) E e:} &#x3E; Q.

3) C) contains an element (0, p) E S’ where p, =1= fl.

4) There exists an element (u, I) E C) such that (- u, I) E 

The above conclusion remains valid when e: is replaced bye;.
To ensure that the linearisation of (1.2) about the trivial solution (0, 1) is
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it is assumed that the function f which determines the non-linearity is con-
tinuous and that f (x, r, s, ~,) = o( (r2 -]- s21’) as r2 + S2 - 0, uniformly for A
in bounded intervals and x~---O. This assumption is stated formally as A1 )
in Section 2 after the notation for the function spaces to be used and the

hypotheses concerning the linear differential operation z have been in-

troduced. It is shown in Section 2 that under the assumption A1 ) the nodal

properties of solutions of (1.2) are preserved on connected sets of non-trivial
solutions in W2(o, oo) X R. The assumption A1 ) is sufficient (*) to guarantee
that the Nemytskii operator induced by f maps W2(0, oo) continuously
into Z2(o, oo). However, as may be seen by considering the map Â) = r2
for all x &#x3E; 0 and r, s, the assumption A1 ) is not sufficient to imply
that the Nemytskii operator is a compact mapping from TF~(0~ oo) into
L2(o, oo) (indeed it does not even ensure boundedness (**)). Compactness
is implied by requiring that, in addition to A1), we have also that

f (x, r, s, 1) -j- 0 as x - oo, uniformly for r, s, A in bounded intervals. This

additional requirement of «spatial decay » in the non-linear term is the

content of A2). In Theorems 2.8 and 2.9 the results for (1.2) under the

assumption A2) are presented. Then, in Section 3, this special case is used
to treat (1.2) when only the weaker assumption Al) is made, provided
that f is ultimately almost sign preserving in the sense of (2.19). This

restriction is essentially used to establish the compactness of any closed
bounded subset U of solutions of (1.2) such that (u, ~,) E U~  Q,
which is the content of Corollary 2.4. The main results for (1.2) under
these assumptions are then given in Theorems 3.3 and 3.7 and it is indicated

how, in the usual way, additional structure on f enables the properties of the
components to be further specified. Such considerations yield additional
results such as Theorem 3.7 on the multiplicity of solutions of (1.2) for

prescribed values of Â. Many more details of this kind of analysis are given
in [13]. A survey of some related material is given in [15].

2. - Preliminaries.

Let R denote the real numbers and L2 denote the real Hilbert space of all

real-valued measurable « functions » u such that

(*) Indeed, as the proof of Proposition 2.2(a) shows, I) = O((r2 + s2)’ ) as
r2 + s2 - 0 uniformly for Â in bounded intervals and x &#x3E; 0 is sufficient to ensure this.

(**) See the remark following Proposition 2.2.



271

The real Hilbert space of all elements u E L2 such that will be

denoted by W2 where the norm in W2 is given by

Here denotes the derivative of u in the sense of distributions. For u E W2,
both and u’ can be taken to be continuous functions on and we set

H2 = (t+ e -W22: u(o) = 01. Thus H2 is a real Hilbert space with respect to
the norm III III. For future reference we note that

for all u E H2 and all x:~~ 0, where here and henceforth C denotes some, but
not always the same, positive constant. The following result is easily
established.

PROPOSITION 2.1. Given s &#x3E; 0 and uEH2, there exist an X &#x3E;- 0 and an

open neighbourhood U of u in H2 such that

Henceforth, we shall assume that the linear differential operator T has
the following properties.

The coefhcient p is a continuous non-negative function on (0, oo) such that

The coefficient q is continuous on (0, oo) and

It is further assumed that the minimal symmetric operator T defined in (1.1)
by p and q has a unique self-adjoint extension whose domain equipped
with the graph topology coincides (up to norm equivalence) with the real
Hilbert space H2. Also the essential spectrum of the complexification of 8
is assumed to lie entirely in the interval [Q, oo). Then the spectrum in

(- oo, Q) consists of simple eigenvalues which are indexed
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The eigenfunction corresponding to 2,, is infinitely differentiable, belongs to H2
and has exactly n -1 zeros in 

Numerous sufficient conditions on p and q are known which will ensure
the above properties of the operator T, and we do not select one in particular
here. Certainly T has all these properties provided that p, p’ and q are all
continuous and bounded on (0, oo) with infp(x) &#x3E; 0. However p and q need
not be bounded on (0,00). Indeed, in the important special case p (x) =-=I
and q(x) - - x-I for x &#x3E; 0, T has all the properties listed above where

Q = 0 and the spectrum of S is ~-1 /~n2 : n =1, 2, ... ~ V [o, oo) . On the
other hand, there are cases (e.g. p(x) =1 and q(x) = 0 for x &#x3E; 0) in which
the above conditions are satisfied but the spectrum of S lies entirely in the
interval [Q, oo), and for such cases the theory presented below is vacuous.
The problem of determining when there are eigenvalues in (- oo, Q) is well

understood. See for example [12].
Turning now to the non-linear term in ( 1. 2 ), we state formally the assump-

tions described in the introduction.

The function f : [0, is continuous and given any bounded
interval J and any s &#x3E; 0 there exists an n &#x3E; 0 such that

The following stronger condition requires that f also has spatial decay.

A2) The function f satisfies A1 ) and, in addition, given any bounded
interval J and any E &#x3E; 0, there exists an X&#x3E;0 such that

A consequence of A2) which will be useful later is that, given a bounded
subset K c R3 and there exists an X&#x3E;0 such that

We note that if f (x, r, s, 2) = y(x)h(r, s, Â) for and r, s, 2 c- R where

a) [0, oo) -~ R is continuous and y(x) --~ 0 as x -~ oo and

b) h : R3 - R is continuous and h(r, s, Â) = o((r2 -~- s21’) uniformly for 2
in bounded intervals,

then f satisfies the condition A2).
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In the following discussion of the Nemytskii operator induced by f it
should be noted that the condition (2.6) is instrumental not only in

guaranteeing that the Nemytskii operator is o(llIulll) as IlIulll-+ 0 but even
in ensuring the H2 is taken continuously into .L2. In the absence of (2.6),
growth estimates would be required to ensure this.

PROPOSITION 2.2.

(a) Suppose that f satisfies the condition A1 ) . Then the Nemytskii oper-
ator defined by

is a continuous from H2 X R into L2. Furthermore

uniformly for 2 in bounded intervals.

(b) Suppose that f satisfies A2 ) . Then, in addition to the properties in (a),
we have that F: .H2 X R E2 is a compact mapping and also that

the mapping F(~, ~ ) : R ~ L2 is uniformly continuous on bounded

intervals for u in bounded subsets of H 2.
The proof is straight forward and is given in [13].

REMARK. In connection with the above results, it should be noted that A1 )
is not sufficient to guarantee that the Nemytskii operator ~I’ takes bounded
subsets of ~12 X R into bounded subsets of L2. For example, set

Let ~c : R --&#x3E; R be an infinitely differentiable function with support contained
in [1, 4] and such that u(x) -- 2 for x c- [2, 31. Then, for each positive in-

teger n, let

Thus t+n and liiunll12 = + U" (X) 2 I dx  oo for all n. Also f qatiq-
-00

fies A1 ) . However A) -700 as n - oo .
To ensure the boundedness of .~’ it is enough to supplement A1 ) by
the following assumption.
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AB) Given any bounded interva,l J,

It is a pleasant feature of the approximation procedure used in SectiCn 3
that it yields global results about (1.2) without requiring that the non-linearity
induces a bounded Nemytskii operator from the graph space of T into L2.

Setting f (x, r, s, A) = r2 for all x &#x3E; 0 and r, s, 2 c- R, and considering À)
where is the sequence in H2 defined above, shows that A1 ) and AB)
are not sufficient hypotheses of f to ensure that is com-

pact. Of course, when the stronger assumption A2) is made, AB) is auto-
matically satisfied and the boundedness follows o a fortiori» from the com-

pactness as established in Proposition 2.2 (b).
WTe give hypotheses on f which will ensure that the Nemytskii oper-

ator (2.9) has the smoothness properties required in Theorem 1.3. Partial

differentiation with respect to the i-th variable is denoted by ai for

i=1,2,3, 4.

AS) The function and the partial derivatives 

~42 f and are all continuous on [0, oo) X R3. Furthermore ~2 f , 
and all tend to 0 as (r 2 + S2)t -70 uniformly and 2.

in bounded intervals.

Note that if f satisfies AS) then both f and satisfy Al).

PROPOSITION 2.3. Suppose that f satisfies AS). Then, for the Nemytskii
operator F defined by (2.9), all the (Préchet) partial derivatives Fli, Fu and F;.u
exist and are I) = 0 and I) = 0 for all 2 E R.
A proof is given in [13].
We can now proceed with a discussion of (1.2) in the space H2 X R.

Henceforth 8 will denote the set of all non-trivial solutions of (1.2) in
and

The proof of Lemma 2.9 in Rabinowitz [6] shows that, provided satisfies Al),
and (~c, A) E 8, the zeros in [0 00) are all simple. Let C,, denote the

component of S’ (endowed with the topology induced from H2 x R) con-
taining (0 

In order to discuss the nodal properties of solutions we introduce a

mapping N defined on S’ as follows. For (~ Â) E 8, N((u 2)) is the number

of zeros (possibly infinite) of u in (0, oo). On 8’U8 we set N(( 0 Ân)) = n -1.
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When f has the special form f (x, r, s, Â) = rh(x, r, s, Â) for x &#x3E; 0 and r, s, 2 E R
where h : [0, oo) X R3 - R is continuous and h(x, 0, 0, A) = 0 for all and

all A e R, it can be shown simply, using the variational characterisation of
the eigenvalues of linear second order ordinary differential operators which
are essentially self-adjoint with respect to the given boundary condition,
that N(( u, 2)) = n -1 for all (u, À) E This method was used in Stuart [8]
and [9]. To treat the general case in which f satisfies only A1), we must
use a different approach. Both for this and for subsequent proofs, it is con-
venient to introduce the following definition.

A sequence {fk} of functions is said to satisfy the condition (.E) pro-
vided that:

a) the functions f k satisfy A1 ) uniformly in k in the sense that, given
0 and any bounded interval J, there exists an n &#x3E; 0 (in-

dependent of k) such that

b) f k - f as k - cxJ uniformly on compact subsets of [o, oo) X R3;

c) given any s &#x3E; 0 and any bounded interval J, there exists an X &#x3E; 0
(independent of 1~ ) such that

whenever and x &#x3E; X, 

LEMMA 2.3. Suppose that ffkl satisfies (E). Let be a bounded

sequence in H2 X R such that and such that

where H2 X R -&#x3E; L2 is the Nemytskii operator induced by 

(a) Then there exist positive and X (independent of k) such that

for all x ~ X and all k.

(b) Furthermore ~(~ck, contains a subsequence which converges strongly
in H2 X R as k - cxJ .
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PROOF. Suppose that 

(a) Since we have that and consequently inte-
gration of (2.10), after multiplication by uk, yields

Let be defined by

It follows from (E) that given any 8&#x3E; 0 and any bounded interval J, there
exists an X _&#x3E; 0 such that

Then, combining (2.12) with (E) (a), we see that, given any s &#x3E; 0, there
exists an X &#x3E; 0 such that

Hence, using (2.3) and (2.4), it follows from (2.11) and ( 2 .13 ) that there
exists an (independent of k) such that

for all x &#x3E; .X and all k, where we also have that q(y) - ltk -1 6 &#x3E; 0 for all
y &#x3E;X and all k. This establishes the second statement in (a).

Now multiplying (2.10) by p(x)uk(x) yields, 7
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for all x &#x3E; X and all k, where X has also been chosen such that p(x) ~ 2 pl &#x3E; 0
for all x ~ X. But, for and all k we have that

and so, given any e &#x3E; 0 there exists Y &#x3E; X such that

where we have used (2.14) and chosen E to be sufficiently small.

Combining (2J5) and (2.16) yields

for all y &#x3E; 0, x ~ Y and all k, where Y has now been chosen sufficiently
large so as to ensure that for all x&#x3E; Y. Choosing y = 4p, (p, 6) -1
and ~==pi~{16p~(l-)-pi~)}’~ this gives

Solving (2.17) shows that

Returning to (2.14) and recalling that for all ~&#x3E;Y~ we
have that

However, y since 
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(b) Using part (a) and (E), it is easy to see that, for each positive in-
teger n, there exists an such that

Also the compactness of the embeddings for Sobolev spaces over bounded
domains and the uniform continuity of f on bounded subsets of [0, oo) X R3,
together imply that a subsequence can be selected such that

Hence, by extracting a suitable diagonal subsequence we see that ~(u~;, 
contains a subsequence such that

as 1~’, l’ ~ oo, where ~  Q has been chosen so that u - (S - ~) u is a linear
homeomorphism of H2 onto L2. Therefore we have that -*0

as and the proof is complete.

COROLLARY 2.4. Suppose that f satisfies A1 ) and that, given any e &#x3E; 0

,and any bounded interval J, there exists an X &#x3E; 0 such that

Let U be a closed bounded subset of S’ such that (u, ~,) E U~  Q.
Then U is compact and there exists a Y&#x3E;0 such that u(x)u’(x)  0 for all

x ~ Y and all 

PROOF. This follows immediately from Lemma 2.3(b) by choosing fk = f
for all k.

LEMMA 2.5. Suppose that f satisfies A1 ) . Then there exists an open

neighbourhood U of (0, in H2 X R such that N((u, ~,~) = n -1 for all

~u, 2) c U n 8’.
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PROOF. Suppose that there exists a sequence (Vk, in S converging to

(0, in H2 X R and such that N~w,~, ,uk~~ ~ n -1 for all k. Setting 
- for x ; 0, we have that

f or where is defined by

It is easily checked that satisfies the condition (E) and that indeed

gk -+0 as uniformly on compact subsets of Hence,
using Lemma 2.3(b), we may assume that {2u~, ,uk) contains a subsequence
converging strongly to an element (w, ~C) in H2 X R. But then we have

p = and

showing that N((w, In)) = n -1.
Furthermore there exists N &#x3E; 0 such that all of the zeros of w and w,

lie in the interval [0, X) for all k. Therefore there exists an open neigh-
bourhood V of w in H 2 such that v has exactly n -1 zeros (all of which
are simple) in [0, N) for all v E V. However fwkl lies eventually in V but w,~
does not have exactly n -1 zeros in [0, X) for any k.

This contradiction establishes the result.

LEMMA 2.6. Suppose that f satisfies A1 ) . Then I

(u,A)ECn.
f or all

PROOF. In view of Lemma 2.5, it is sufficient to prove that, given
2) e 8 with 2))  oo there exists an open neighbourhood V of (u, Â)

in H2 X R such that ,u~~ = N((u, A)) for all (v, p) E V n S. With this in

mind, choose (u, A) c- 8 with N((u, A))  00. Then using (2.3), (2.4) and

Proposition 2.1, we see that there exist an 0 and an open neighbourhood V

19 - Annali della Scuola Norm. Sup. di Pisa
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such that

where X also has the property that 
and If this yields

Thus we have shown that there exists an open neighbourhood V of (u, Å)
in .H2 X R such that all the zeros of v lie in [0, X) whenever (v, ~C) e V r1 8.
Choosing V small enough, we can ensure that v has the same number of
zeros as u in [0, X) for all (v, p) E V and so the proof is complete.

For smooth enough f, we can say more.

LEMMA 2.7. (Smoothness) Suppose that f satisfies AS). Then there exist

an open neihgbourhood U of (0, A~) in H 2 X R, an open interval (- ð, ð) and
continuous functions

such that

and

where un is the unique eigen f unction with
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I’urthermore,

and

where 5)’ and :0; denote the components of S’"",{(O, containing the sets
aw, ~,~ + qJ(a)): aE(O, 6)1 and aw(a), qJ(a): O)l

respectively.

PROOF. Note that (0, Àn) is the only trivial solution of (1.2 ) in en. This

follows from Lemmas 2.5 and 2.6. Also, given any (u, Â) E S, u’(0) =A 0 and
so there exists an open neighbourhood TT of (u, Â) in H2 X (- oo, Q) such
that &#x3E; 0 for all (v, fl) E V. The lemma now follows from Propo-
sition 2.3 and Theorem  .3.

Henceforth, whenever f satisfies AS), we shall denote 5)+u and

5)-r) {(O, A,,,)l by e;:- and e; respectively. Then en = e: u e; and O,t r1 ~n =
A.)I.

We end this section by stating the global results for (1.2) in the case of
spatial decay in f.

THEOREM 2.8. (Spatial decay). Suppose that f satisfies A2). Then the

component Cn of S’ has at least one of the following properties.

1) Cn is an unbounded subset of H2 X R.

2 ) sup (u, A) E = Q.

Furthermore -

PROOF. The assumptions made concerning T together with Proposi-
tion 2.2 (b) are sufficient to guarantee that Theorem 1.2 is applicable to (1.2)
in H2 X R. Then Lemma 2.6 shows that for and so

we have the desired result.

THEOREM 2.9. (Spatial decay and smoothness). Suppose that f satisfies
A2) and AS). Then the conclusions of Theorem 2.8 remacin valid when the

component en of S’ is replaced by either of the subsets ~n or e; .

3. - The general case.

We maintain the notation introduced in the previous section together
with the assumptions concerning the linear diffPrential operator T made
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there. For each positive integer 7~, set

Then, assuming that f satisfies Al ) , the Theorem :J.8 applies to the problem

for each k. Our aim is to show that the set obtained by «taking the limit »
as k of the components of solutions of (3.1) discussed in Theorem 2.8
contains a component with the desired properties.

LEMMA 3.1. Suppose that f satisfies A1 ) and (2.19). Let V be ail open
bounded subset of such that (O,Àn)EV and sup (2: 
Then S’ (a V denotes the boundary of V H~ x R.)

PROOF. It follows from Theorem 2.8 that there exists a sequence

~(uk, ,uk)~ in 8V such that (Uk’ !lk) is a non-trivial solution of (3.1), Uk having
exactly n -1 zeros in (0, c&#x3E;o). But it is easily checked that the 
defined by

satisfies (E). Hence, according to Lemma 2.3, there exists a subsequence
converging strongly in H2 x R to an element 

Clearly (u, fl) satisfies (1.2 ) and (u, p) E avo If (u, Â) c- 8 the proof is com-
plete and so we suppose that ~ 0 as k’- oo and set

Then and is a solution of

= 1, where gk is defined by,

and i
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However also satisfies (E) and indeed gk -+ 0 as k - oo uniformly on
compact subsets of [0,00) X R3. Hence, again referring to Lemma 2.3, ~Te
can select the subsequence I’k’)l such that converges strongly
in H2 X R to an element where

This shows that /-l is an eigenvalue of ~S and so (0, /-l) E S’, completing the
proof of the lemma.

As usual we find it convenient to employ the following result proved
in Whyburn [11 ] .

LEMMA 2.2. Suppose that ~’1 and T2 are closed subsets of a compact metric
space T stteh that there is no connected subset of T which intersects both Tl
ared T2. Then there exist disjoint compact sets I~1 K2 such that

THEOREM 3. 3. Suppose that f satisfies A1 ) and (2.1 J ) . Then the component
en of 8’ has at least one of the following properties..

.: ’tL---

1) en is an unbounded subset of H2 X R

Furthermore,

PROOF. Let U be an open bounded subset of H2 X R such that (0, ~,n) E ~’
and sup ~~1: (~, Â) E  Q. It follows from Corollary 2.4 that T = U n S’
is a compact metric space where U denotes the closure of U in H2 X R. Also

and T2::= {(O, are closed subspaces of T. Suppose that
there is not a connected subset of T which intersects both T1 and T2. Then,
by Lemma 3.2 there exist disjoint compact sets K1 and .K2 such that

and Let Tr = ((t1, 
+ 1 - p ) 2  ( 1 j1 6 ) y2 for some where 

Then V is an open bounded subset of H2 X R such that 

and S’naV==0. This contradicts Lemma 3.1 and

so we have that Cn n 0. Recalling Lemma 2.6, we see that the proof
is complete.
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REMARK 1. The hypotheses A1 ) and (2.19 ) arc satisfied by f provided that

where fi satisfies A2) and f2 satisfies Al) and f 2(x, r, s, I)r 0 for all 
and In particular, the function f 2 has the desired properties
provided that it is in the form

where h : is a non-negative continuous function such that

REMARK 2. The hypotheses of Theorem 3.3 do not imply that the

Nemytskii operator induced by the non-linearity in (1.2) is necessarily a
bounded mapping from .~2 into L2. However it is often the case that this
Nemytskii operator is indeed a bounded continuous mapping of H2 with
some topology even weaker than that induced by III III. For example, if f
is independent of s and, given a bounded interval J,

then, as in the remark following Proposition 2.2, we have that F( ~, 2): H2 -+L2
is a bounded and continuous mapping for each Â E R where we can con-
sider H2 to have the topology induced by the norm

Consequently, under these assumptions, the property 1 ) in Theorem 3.3 can
be replaced by

Let us consider now the improvements available when f is smooth.

LEMMA 3.5. Suppose that f satisfies AS) and (2.19). Let V be an open
bounded subset of ~I2 X R such that (0, ~, n ) E V and (u, 2) E jr~  Q. Then
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where

PROOF. Given that f satisfies AS), it follows from Theorem 2.9 that

the sequence in 8V chosen at the beginning of Lemma 3.1 can
be selected so as to have the additional property that for all k.

As in Lemma 3.1, it then follows that it contains a subsequence converging
to an element (u, I) in 8’. However S’ is clearly a closed subset of S’ and
so indeed (~, A) E S’ *

Similarly we see that 8) r’1 a 99.

THEOREM 3.6. Suppose that f satisfies AS) and (2.19). Then the con-

clusions of Theorem 3.3 remacin valid when the component en of S’ is replaced
by either of its subsets C.+ or e;.

PROOF. Replacing S’ by S) of S’ respectively in the proof of Theorem 3.3
and using Lemma 3.5 instead of Lemma 3.1, proves the result.

REMARK 3. As in the case of a compact interval, [1]-[6], the properties
of the components can be further investigated if more is assumed about the
structure of f. For example, comparison arguments can be used to find
bounds on the range of J. covered by components and « a priori » L2-bounds
can be found under appropriate hypotheses. Details are given in [13]. Here
we give only one result which can be obtained from such considerations.

THEOREM 3.7. Suppose that

where is a continuous function such that

uniformly for 2 in bounded intervals.,

uniformly f or and 2 in compact sub-

In addition, suppose that f satisfies AS) and that a  Ân  Âm  po Then,
for each fixed A E (2,,+i, Àn+i+1] where i = 0,1, ... , m - n -1, the equation (1.2 )
has at least 2 (i + 1) distinct non-trivial solutions tu:~ : i = 0, 1, ..., i} in .~12
where Uj has exactly n + j -1 zeros in ( 0, oo), u+’(0) &#x3E; 0 and u-’(0)  0.
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