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On an Initial-Boundary Value Problem
for the equation Wt = Wxx2014 xWy (*).

CARLO DOMENICO PAGANI (**)

Summary. - The following problem is considered : to find a function ’tv (x, y, t) in the
region Q ---- {O  t  T, y &#x3E; 0, - oo  x  + oo} which is a solution of the equa-
tion nit = wxx - xw.,, with the boundary conditions : w(x, y, 0) = f (x, y), where f is
a given function defined for - oo  x  + 00, y &#x3E;- 0 and w(x, 0, t) = 0 for x &#x3E; 0,
0  t  T. We prove the existence and uniqueness of a solution w, which is a con-
tinuously differentiable function of t, with values in a certain Banach space. The

2cniqueness assertion follows from a suitable a priori estimate of the solution; the
existence theorenz is proved by means of the semigroup theory, as an application
of the Hille-Yosida theorem. Then the main part of the paper contains the study
of the stationary equation : u~~ - xu, - ku = f (k &#x3E; 0). This is a f orward-baek-
ward parabolic equation, and it is studied via a Wiener-Hopf technique. This

procedure requires the study of the associated parabolic equation of evolution:

uxx-Bxluy-ku = f (k &#x3E; 0) and of a certain integral equation of a Wiener-Hop f
type.

1. - Introduction.

In this paper a boundary problem for the simple-looking equation

is considered in the region Q - {O C t  T, y &#x3E; 0, - oo  x  + the solu-

tion w satisfies the initial condition w(x, y, 0) = y) and the boundary
condition w(x, 0, t) = h(x, t) only for x &#x3E; 0 (and every 0  t  T).

(*) This research was partly developed at the University of California at Berkeley
(supported by a scholarschip of the italian C.N.R.) and partly at the Politecnico
di Milano (Italy) (supported by the « contratto di ricerca sulle Equazioni Funzio-
nali &#x3E;&#x3E; from the C.N.R.

(**) Istituto di Matematica del Politecnico - Via Bonardi, 9 - Milano (Italy).
Pervenuto alla Redazione il 4 Dicembre 1974.
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Such a problem arises when studying a randomly accelerated particle
moving on the half-line y &#x3E; 0 (see [1] for the analogous stationary problem);
then eq. (1.1) is the backward equation for the vector Markov process
(r(t), v(t)), where r(t) is the position of the particle at time t, v(t) is its velocity.
We can notice also that eq. (1.1) is a linearized model of the (onedimen-

sional) kinetic equation, when the collision term is simply approximated
by the differential operator 02/0X2. In this case the function w has the

meaning of the (deviation from the equilibrium of the) distribution func-
tion of the molecules at the time t, position y, and velocity x; the gas fills
the half-space y &#x3E; 0, has the initial distribution f, and has a distribution h
on the boundary y = 0, but this distribution is assigned only for the

emerging molecules (x &#x3E; 0 ) .
From a mathematical point of wiew, ( 1. ~ ) is an equation of the kind

where rank Such equations (sometime called in the literature
ultraparabolic) have been considered especially in connection with the

Cauchy problem: see, e.g., Kolmogorov [4], Weber [13], Il’in [5], Oleinik [6]
and others. Conversely, y there are few papers dealing with mixed (initial
and boundary) problems: see [2], [11 ] ; see also [7] recalled below. On the
other hand, we note that boundary problems for the so-called elliptic-parabolic
equations (i.e. , (second order) equations with nonnegative characteristic
form) which are obviously a wider class then (1.2), have been largely con-
sidered by various authors (see the book [7] for a detailed bibliography):
in particular Kohn and Nirenberg [3] give an existence and uniqueness
theorem for the first boundary value problem in Sobolev spaces; but some
restrictions imposed to the boundaries make their results inapplicable,
e.g., to the problem outlined above for eq. (1.1), as well as for the most
interesting problems arising in the theory of brownian motion or in kinetic
theory.

When discussing eq. (1.1), our aim is to find solutions w(t) which are
continuously differentiable functions of t, with values in a certain Banach
space; w, as a vector in this space, has generalized derivatives wx, and w,,,
which are square integrable with suitable weights. In such a class, a

uniqueness theorem will be easily proved: it will follow from an a priori
estimate of the solution. An existence theorem will be proved by means of
the semigroup theory, as an application of the Hille-Yosida theorem. Thus,
we have to discuss first the stationary equation,



221

This is a forward-backward parabolic equation, and we will treat it by
the same technique already used in [10] (see also [8]), which involves the
discussion of an integral equation of the Wiener-Hopf type.

In Sect. 2 we list some functional spaces and state some trace theorems.

In Sect. 3 we discuss an evolution equation associated to (1.3), i.e.

The results obtained in this section are preliminary to the discussion of

eq. (1.3) in Sect. 4. Finally, in Sect. 5, the results previously obtained are
applied to the study of eq. (1.1).

2. - Function spaces and trace theorems.

Let us define first some functional spaces used in the following. B2 will
denote the whole plane and (when this plane is referred to an orthogonal
cartesian system) ~+ is the half-plane Y+ the half-plane 
.R denotes the real line, R+(_~ the positive (negative) half-line.

denotes, as usual, the space of infinitely differentiable functions,
defined on R2, with compact support. where G is an open subset

of R2, is the space of the restrictions to G (the closure of G) of functions
belonging to C-(R2).

Z(G) is the set of complex-valued functions u, defined on G, such that
uxxg XUy (the derivatives of u are taken in the sense of distributions)

belong to L2(G) .
We can make two simple remarks : i) Z(G), equipped with the norm,

is a (complete) Banach space: ii) is dense in Z(G), provided G is suf-
ficiently smooth; the cases of main interest for us will be G = X+ or G = Y+ .

W( Y+) is a subset of Z( Y+) ; it is defined by the functions u with the
properties

W+(Y+) is quite analogous to the previous one; it is defined by func-
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tions such that

For w’( Y+) and W+( Y+) we can make remarks analogous to those made
for Z, i.e.: i) W(Y+)[~W"+(Y+)] is a (complete) Banach space (equipped with
the norm

[and an analogous definition for ||.||W+(Y+)]) and ii) C- - is dense in
W(Y+){W+(Y+)]
We will use also the notation Y+) for the set of functions

defined in the first quadrant of belonging to Y+), with the same
property ii) in the definition of W+( Y+) .

We will consider the usual Sobolev spaces (I is an open subset
of R ; s real) and the space

the set of functions cp, defined on I, such that the following
norm

1

is finite.

REMARK. Let us point out that c L2(R+); the assertion may be
deduced from the following inequality

which may be proved by integration by parts. Similarly, we have also

Now we can state the following theorems (trace theorems) which charac-
terize the traces of functions u of class Z or W on the coordina,te axes.

THEOREM 2.1. The following operator
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is a densely defined bounded operator f rom Z(X+) into HI/2(R). Let

be its (uniquely de f ined) linear bounded extension. Then the range of Y1 is-

exactly H1/2(R) and Yl is 

THEOREM 2.2. The operator

is a densely defined bounded operator from 2(X..~) into H1/6(R). ..Let

be its (uniquely de f ined) linear bounded extension. Then the range o f Y2 is

exactly H1/6(R) and Y2 is an isomorphism between Z(X,)/(Kernel Y2) and Hl~g(1~).
The boundedness of (2.4) and (2.5) will follow from Lemma 2.3 below.

The other assertion (about the invertibility) will follow from Ths. 3.2 and 3.3
of Sec. 3.

LIEMMA 2.1. Let v be a complex-valued function belonging to C2(R+) and
such that xv and v" belong to L2(R+) . Then the following inequality holds

where the constant 01 (which is the best possible) is given by formula (2.13)
below.

PROOF. The proof of this lemma can be achieved by a standard procedure.
We give here only few accounts of the calculations.

Let v be real-valued (for convenience). If one is not interested in finding
the best possible constant, an inequality like (2.6) can be showed directly
by putting g = and representing v in the form

here v, is the solution of the homogeneous equation v1-xv1= 0 such that

xvl E LZ(.1~+) and so normalized that ri(0) =1 : we get
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Hg is the solution of the non-homogeneous equation vanishing at the origin:
.g is the integral operator whose kernel is given by

-change x with y to obtain the expression of H(x, y) for x &#x3E; y. Iv(z) and

K,,(z) are the modified Bessel functions of order v. By Schwartz inequality
one easily proves that

where 11 II L’(R+ :x2) means
and (2.8) we have

Then, from the representation (2.7)

thus we get, since

From (2.9) one obtains an inequality like (2.6) via standard arguments
of dimensional analysis.

In order to get the best possible constant appearing in (2.9) one has
to look for the maximum of the functional

This problem has a unique solution; for, let Tr be the set of functions v
c~~ 00

belonging to C2(-R,) and such that js2 v2 ds and 00 and X the set
o 0

of v E V with = 1. TT is an Hilbert space (with obvious definition of

the scalar product) and X is a convex subset of V ; .X is also closed

(thanks to (2.9)). Now the problem to find the maximum of J is equivalent
to project the origin of V on X ; thus, this problem has a unique solution.

The maximizing function is the solution (in V) of the following problem
(Euler equation):
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let us put A= max J(v); A is then given by v(O)lv’(0). The most general
solution v of the differential equation appearing in (2.10) is given by

Here is the first Bessel function of the third kind (Hankel’s function);
a is an arbitrary complex constant; is the path in the complex z-plane
sketched in the figure.

Figure 1.

Now, imposing the condition v~~ ( 0 ) = 0 and calculating 2 gives

where we put

These numbers can be explicitly calculated, y and we get
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The constant 01 appearing in (2.6) is related to A by

LEMMA 2.2. Let v be as in lemma 2.1; then the following inequality holds-

where the constant O2 is the best possible) is given by formula (2.15),
below.

PROOF. It is quite analogous to the previous one. To calculate O2 one
has now to solve the problem (in the same class as before)

and calculate One finds

where the numbers

The constant O2 is then given by

LEMMA 2.3. Let the transform (with
variable y) of u(x, y); we have

where 01 and O2 are the constants defined in ( 2 .13 ) and (2.15).
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PROOF. Let us apply inequality (2.6) to the function v( ~, ~); square
both members of the inequality, multiply by iql I and integrate over q; by
applying Holder’s inequality one gets

Now, from Parseval’s formula, one gets (2.16). (2.17) is proved in a
similar way.

THEOREM 2.3. The operator

~(2.18) u --&#x3E;- [restriction of u to the half-line y = 0, x &#x3E; 0]

is a densely defined bounded operator from W+(Y+) into 
Let

be its (uniquely defined) linear bounded extension. Then the range of y+ is
exactly and y+ is an isomorphism between W+(Y+)f(Kernel y+) and
Jel(R+) .

The boundedness of (2 .18 ) will follow from Lemma 2.4 below. The other
assertion will follow from Thm. 4.3.

LEMMA 2.4. Let u E Co (Y+); let h be the restriction of u to the x-axis.

Then the following inequalities hold

PROOF. (2.19) immediately follows from the identity

by applying Schwartz inequality.
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To prove (2.20) we need a result that will be proved later. For the

moment, let us suppose ~(0,’)===0; by integration by parts, we get

By using now Schwartz and Hardy’s inequalities, we get

From this inequality we immediately derive (2.21) if ~(0,’)=0; for the
general case, the proof will be given in the corollary to Th. 3.3.

3. - The forward equation.

This section, which has an auxiliary character in view of the next one,
contains some results for the parabolic equation (1.4), which may be of some
interest by themselves. First, in the subsection 3.1, we will find solutions
of (1.4) defined in all .R2 ; then, for the associated homogeneous equation,
we will consider the first (and second) boundary value problem in X+
(subsect. 3.2) and the Cauchy problem in the half-plane Y+ (subsect. 3.3).
Let us notice that we are dealing with a parabolic equation of evolution
type degenerating on a line and the problems we will speak about are the
classical ones.

Let us write eq. (1.4) in the standard form
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Here A is the linear second-order differential operator - 
(k &#x3E; 0), acting in some Hilbert space H. In [9], where a class of equations
similar to (3.1 ) were considered, we choosed as H the space L2(.R; i. e. , the
space of square summable functions with the weight lxl. This choice is, in
some sense, « natural », since A is symmetric in .L2(.R; but it turns not

to be the good one in view of the applications of eq. (3.1 ) to the nonstationary
equation ( 1.1 ) .

Now we will take for .g the space L2(R; x2) (our solutions u must have
the property that suy is square summable). Unfortunately, in this space,
A is not symmetric nor dissipative; and this fact will give some complica--
tions in the discussion of the Cauchy problem for eq. (3.1) (see subsect. 3.3).

3.1. Solutions defined in the whole plane.

THEOREM 3.1. Let given function ; there exists only one
solution u to eq. (1.4) belonging to Z(R2). This solution satisfies the inequality,

Moreover, if f = 0 for y  0, this solution vanishes on the lower hal f -plane
and its restriction to the upper half-plane belongs to W( Y+) and satisfies the

inequality

PROOF. Uniqueness. It follows from the inequality

which can be derived a priori. For, let u E Co00 (R2) and put f = ku -

By taking the square of the modulus of f and neglecting the non--
negative term we get

(*) All along this paper, const means an absolute constant; sometimes we will
write const (k) to indicate a constant depending on k.
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Integrating now over the half-plane using integration by parts,
gives

from this, we derive immediately (3.4). This inequality, established for

functions, holds in Z(R2), owing to density arguments.

Existence. Elementary calculations show that, if a solution 

of eq. (1.4) exists, its Fourier transform (with respect to y), v say, can be

represented in the following way

where g(x, ~ ) is the Fourier transform of f (x, ~ ) and V(q) is a one-parameter
family of integral operators whose Kernels are

Here vo(x,r¡) is that solution of equation v = 0 which

vanishes for x ~ -~- oo, and W(q) is the wronskian of the two independent
solutions vo(x, q ) and vo(-x, 27).

Let us put

Then, if q &#x3E;0, so that we have

where a and b are given by
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In (3.11 ) and (3.12 ) the notation means that the arguments of the Bessel
functions H(l)(2) is 3 ( k3~2/ I~I ~ )’

If we have

Finally, y the wronskian W is given by:

We need now the following lemma :

3.1. Let ~T~‘(r~ ) be the previously defined family of integral operators.
For every c~ and every real q we 

We can now complete the proof of Th. 3.1. From (3.5), taking account
of ( 3 .16 ) , we get

By integrating now over q and taking account of Plancherel theorem for
Fourier transforms we obtain

From (3.15) we have also

from which we get

16 - Annali della Scuola Norm. Sup. di Pisa
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Then, let us write

If 99 is a test function, we can write, by changing the order of integration
(all the variables run from -00 to + oo)

By integration by parts, taking account that the function (z, q) 2013&#x3E;

-7fexp [iyn] 99 (x, y) dy has compact support with respect to x and is fast

decreasing with respect to q, one has

Thus u is twice differentiable (with respect to x) in the sense of distribu-
tions and uzz is given by Then u solves eq. (1.4~
and, from (3.17) and (3.18), inequality (3.2) is easily derived. Let now be

f = 0 for y  0. The previously found solution u, which vanishes for y  0

(remember (3.14)), satisfies the equation ix lx| + ku = F, where F == uzz - f ;
then it may be represented as follows: 

’

Thus, by Schwartz inequality, y we get

Then we have

Now inequality (3.3) follows, since and the norm of 

can be estimated by the norm of f. Theorem 3.1 is completely proved-
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LElBIlBI.A. 3.2. Let E(x, x’ ; q) be defined by (3.6) and subsequent 
The following majorizations hold:

for every x, x’, r~ reals.

LEMMA 3.3. The functions,

are bounded by positive constants.

PROOF OF LEM1tiA 3.]. Let us write out

Then, by Schwartz inequality, and changing the order of integration,
we get

If we estimate the integrals in dx and dx" by making use of (3.19) we get
easily (3.15).

With a similar procedure we have

Let us make use now of estimate (3.20); let us put 2 - t and
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we obtain

u

By estimating integrals in dt and dt" by the aid of lemma 3.3 we get (3.16).

PROOF oF LEMMA 3.2. Let us recall a bound for Hankel functions:

Then we see that la(r¡)1 and Ib(r¡)1 are bounded by positive constants
(independent on k) :

Now a bound for v+ and v_, and thus for is easily derived

where z is given by (3.8). Then we get, for E, the following bounds:

where we put z’ = z(x’ ) .

and we still get a bound like the previous one
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Similar bounds can be written when summarizing the results gives

and, finally, we can use, in any case, the bound (3.21).
Now, from the definition of z, we have

Let us now provide an estimate for

putting

Now let us suppose, for the moment, x’&#x3E; x (so that 
we have

Now we can see that the bracked expression, as a function of k, attains
its minimum value at the origin (for every ~) and, as a function of q, it

attains its minimum value still at the origin (for every k). Similar con-

clusions can be deduced in case x’ x. Thus we got
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Now, from (3.21), by using (3.23) and (3.25), bounds (3.19) and (3.20)
can be derived without difficulty.

PROOF OF LEMMA 3.3. Let us notice that, since I q- tt’&#x3E; tt’, we can write

Then the first integral appearing in the statement of the lemma is

majorized by

The other assertion of the lemma is a special case of lemma (3.4) in [9].

3.2. Boundary value problems in 

THEOREM 3.2. Let 1p E H112 (R) be a given function. Z’here exists a unique
f unction u such that

(in the sense of traces)

Such a f unction can be represented by the formula

where A(x, ~), the Fourier transform (with respect to y) of A(x, y), is given by
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Moreover, the following bounds on u hold

where is the fractional derivative (order 2 ) of 1p.

PROOF. The uniqueness assertion follows from inequality (3.32) which
can be deduced a priori from the fact that, if u is a well-behaved (e.g., u is

+00

of class Z) solution of eq. (3.27), the function is convex;
+00 -00

if u E Z(X+), it is bounded too; for 0  x -fiu(x, y)j2dy belongs to 
-oo

together with its derivative; thus this function takes its maximum value
at the boundary.

Representation (3.29) can be easily checked by straightforward calcula-
tions ; for, by taking the Fourier transform with respect to y, and denoting
by " the transformed functions, we get

where 1 is given by (3.30). Now, we can estimate very roughly
in the following way

To get (3.35), remember (3.24) and usual bounds for Hankel functions
recalled in the proof of lemma 3.2.

From representation (3.29) by taking account of (3.35), one can show that
u is a C°°-solution of eq. (3.27). Let us show that u E Z(X+). From (3.34)
and (3.35) we obtain
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Thus we have

and, from Plancherel theorem,

Now, taking account of (3.36), directly from the equation 7

we get (3.33).
Besides the problem (3.26), (3.27), (3.28), we will need to consider also

the following one: to find u such that (3.26) and (3.27) hold and

Since the treatment of this problem is completely analogous to the

previous one, we limit ourselves to the statement of the results in the fol-

lowing theorem.

THEOREM 3.3. be a given function. There exists a unique
solution u to problem (3.26), (3.27), (3.37) ; this solution can be represented
by the formula

where .~(x, r~), the Fourier transform of B(x, y) is given by

take the complex coniugate of the above expression for 27  0

and z, zo are the same as in Th. 3.2. The following bounds on u hold
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In carrying out the proof, the following estimate is usefull

We can complete now the proof of inequality (2.20). More precisely, we
want to prove the following statement:

COROLLARY. Let u be a given function belonging to Co (~’~. ) ; let h be its-

restriction to the x-axis ; thus inequality (2.20) is valid.

PROOF. Let us put 99(y) == ux(O, y) for y &#x3E; 0 and = 0 for y  0.

Then 99 EH8(R) for s  .1, in particular for s = g . Let now w be a solu-

tion of the equation for x &#x3E; 0 such that: 
+00

sup ju,,(x, y) /2dy  oo and satisfying the condition : = Q.
x&#x3E;O-00

Such a solution exists and is unique, thanks to a slight modification of
Th. 3.3; obviously, this solution vanishes for y = 0. Now, let us put
v = u - w in Y+; then it will be and v( ~ , 0) = h. Now, we can
apply to v inequality (2.20), which we already proved for functions whose
x-derivative vanishes on the y-axis ; we get

Now we can estimate the norms of and wxx by the norm of D 116 99
(thanks to inequality (3.41) with k = 0) and Di’6q by means of the norms
of ruv and uzz (thanks to inequality (2.17)). The same proof can be
carried out for x  0 and so (2.20) is completely proved.

LEMMA 3.4. The restrictions of the solutions to pbs. (3.26) (3.27), (3.28)
and (3.26), (3.27), (3.37) to the first quadrant X+ r1 Y, belong to W+(X+ r1 Y+).

00

PROOF. The function 0~ -~ .r~(~y is bounded. For (let us carry
o

out the proof for the first problem) we have from the representation (3.34)~
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Now, let 0x~; by Schwartz inequality, and by using estimate (3.35 ),
we obtain

The integral in dx may be estimated by omothety, and equals
,const (|n|1/2 -+- 1n1| 1/2)-2. Now the same we can do for the integral in dn1
and we obtain finally

An analogous procedure for the second problem gives us

3.3. Initial value problem in Y+ .

Let us consider now the Cauchy problem for the evolution equation

in the half-plane Y+. Because of the symmetry properties of eq. (3.45),
which is invariant under transformations x -&#x3E; - x, we will consider sepa-

rately the cases that the initial value, assigned at y = 0, is an even or an

odd function. There are some reasons for a separate treatment: i) the cal-
culations will be more clearly understandable, ii) in Sec. 4, when the results
of this section will be used, we will need only even solutions of eq. (3.45);
iii) finally, the results in the two cases are different.

a) .Even solutions.

THEOREM 3.4. Let given function; there exists only one
function u belonging to ~’+(X+ r1 Y+), solution to eq. (3.45) and verifying the
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conditions u(., 0) = h and ~cx(0, ~ ) = 0 in the sense of traces. Such a function
satis f ies the inequality

The proof of Th. 3.4 will be easily deduced from the following lemma :

LEMMA 3. 5. Let h EJel(R+) be a given function ; there exists a function w
defined in X + f1 Y, with the properties

Proof of TH. 3.4: let us introduce a new unknown 0 == I

where w is the function considered in lemma 3.5. It is clear that w ~ exp (- ky)
belongs to r1 Y+) and satisfies the same conditions as w at the

boundaries. Then in order u to be a solution of pb. (3.47) ... (3.49), it is 
cient that 0 must be a solution, belonging to W+(X+ r1 Y+), of the equation

with homogeneous boundary conditions. Because of (3.50), we see that the
right member of (3.52) is an Y+) function; then, after having con-
tinued this function into the whole plane as an even function of x vanishing
for y  0, we can apply Th. 3.1. We deduce that the function 0 exists

and, from (3.2), (3.3), it satisfies the inequalities
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From these, by taking account of (3.50) and (3.51), we obtain

Then we proved (3.46), by showing also the dependence on k of the constant
appearing there.

The uniqueness of the solution may be derived in the same way as we
did in the proof of Th. 3.1. For, by following the same procedure there used
to get inequality (3.4), we can obtain, by integrating on the first quadrant
and putting f = 0,

This a priori inequality implies uniqueness for our problem. Theorem 3.4

is proved.
To prove lemma 3.5, we need the following lemma.

the operator represented by

is a bounded one-to-one operator of L2(.R+) into itself, whose range is

the inverse operator (which is unbounded) is represented by
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the integrals appearing in (3.56) and (3.58) converge in L2 -norm. Moreover
we have

Here flf is the Mellin transform of f and J, is the first Bessel function of
order v.

REMARK i). As it is known from the theory of Mellin transform, if

its Mellin transform, is a square summable function on

the line s = 2 -~- i~O, and the Parseval formula holds:

As it is easy to see, the Mellin transform e -~. (~(,t) ( 2 -f- ie) is the Fourier

transform of the so that the condition that f
belongs to B means belongs to 

REMARK ii). The case ot .1 is the well-known case of Hankel trans-
10rms; the set ~3 coincides with the whole space L2(R+) and SJv.l/2 = 
is a unitary operator of L2(R+).

PROOF of lemma 3.5. Let us represent the requested function w as a
~superposition of separated variables solutions of eq. (3.47):
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where W(’ t) is a bounded continuously differentiable solution of the equa-
tion WIT + it2r ~‘ = 0 satisfying the condition W’(o, t) = 0 ; we have

where b is an arbitrary function. Requiring that the condition at y = 0~
to be satisfied, gives

and putting

we can write formally this condition as follows

this notation means that I is the I~-I 1/3.1/6 transform of b. Now, since
00

by hypothesis, then lEL2(R+) and (3.65) has a unique solu-
o

tion (thanks to lemma 3.6) given by

thus we can write the function w as follows

Then the function $ -* ~1~2w(~2~~, y) is given by the composition of three
operators applied to 1: the operator ~-113.1/s which acts from L2(.R+) to the

multiplication by exp [- 4 ( ~ ) 2y], which is a continuous operation from ~3.
to ~3 (see below) and, finally, which acts from 93 to L2(R+) . Thus

the composition of these three operators is defined on all L2(R+) and it is.
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also continuous; for, let y &#x3E; 0 be fixed ; by taking account of (3.60), we get

Then, by taking account of the change of variables (3.64), we get

Let us consider now w,,; from (3.67) we obtain

First, let us show that

For, by integration by parts, taking account that

we get

(*) Remember the remark i) after lemma 3.6 and the fact that the multiplication
by the function i - exp (- 9/4y e2’) is a continuous operation in for it is
continuous in .L2(R) and in H1(R), because of the uniform boundedness of the above
written function and of its derivative.



246

The finite part vanishes (it can be checked by easy calculations; in [12],
Sect. 2.2, calculations of this type are extensively done in a more general
situation); thus we get (3.70). Now, since 11 (~) - 1$-11($) = ZXI/4 h’(x), the

means $ -~ Z’(~) - ~~-1 l(~) E L2(I~+); thus the
function t - tb(t) belongs to 93. With calculations and considerations ana,l-
ogous to those previously done to prove (3.68) we get

Taking account of the change of variables (3.64), we obtain

Besides (3.68) and (3.71) we can obtain also the following estimate

To get (3.72 ), let us rewrite condition (3.63) in the following way:

where we put b(t) = tllsb(t); putting also 1($) = the same condi-

tion writes
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Then we can proceed as before, when we deduced (3.68); the calculations
are even simpler, since we are dealing now with the case a = 2 of lemma 3.6,
which is the well-known case of Hankel transforms.

Finally, from (3.71) and (3.72) we deduce (remeber the remark after the
definition of the space in Sec. 2):

Now, from (3.68) and (3.37), we deduce (3.50). Let us consider now wy ;
from (3.67) we have

Then, by applying inequality (3.60), we get

By integrating over y from 0 to 0o we obtain

By putting, in the first integral, tl = t-r and changing the order of integra-
tions, we get
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Finally, by applying the convolution theorem for Mellin transforms, we get

(integrate first on T, then on e, finally on a)

Thus, by returning to the old variables, we proved

Then (3.51) is also proved and this complete the proof of lemma 3.5.

PROOF of lemma 3.6 : the proof is an applications, with some modifications,
of Th. C given in [9], sec. 2.3; we refer to [9] for details.

Let P(s) be defined by

On the line Res = 2 we have

By taking account of the asymptotic behaviour of T function, we get
the bounds

where C1 and c2 are positive constants.

Now, given let g be defined by
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and e -+ (1 + I |g|1/2 ) 1/2- a p( is bounded. Then the correspondence f -&#x3E; g
established by (3.79) defines an operator from -L~(J~+) into
which is bounded in _L2(_R+). The representation (3.56) follows by taking
the inverse Mellin transform of (3.79): it is easy to see, by the calculus of

residues, y that

Inequality (3.59) follows from (3.80) and (3.68). Conversely, let 
and f be defined by

where

Then, since e -¿. (1 -~-- + ie) is bounded, -f- is L2(R) and
f E L2(R+). The correspondence g - f established by (3.82) defines an oper-
ator from 93 into L2(.R+); this operator is the inverse of reason of (3.83),
and inequality (3.60) follows from (3.78). The representation (3.58) also
follows by taking the inverse Mellin transform of (3.82).

b) Odd 

THEOREM 3.5. Let be a given function, there exists at most

one function u E W~.(X+ r1 Y+), solution to eq. (3.45) and verifying the condi-
tions u(., 0) = hand u(O,.) = 0 in the sense of traces. Such a solution actually
exists, provided that h verifies the following condition :
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To prove the theorem, we need the following lemma.

to the set 9) given by (3.57). For the inverse operator, the same representation (3. ~8; J
holds. Moreover we have

REMARK. Let c &#x3E; 0 and g(t) = t,- 112 for 0 «  1 and g(t) = 0 f or 0 1;
then and (~I(~g) (s) _ (s - 2 -~- s)-1. By applying the convolution
theorem for Mellin transforms, we get

Thus the condition that L2(R+):3 f belongs to A means that the one-para-
1

meter family of functions be bounded in

must be uniformly bounded in .L2(R+).

PROOF oF TH. 3.5. This proof follows closely the proof of Th. 3.4.

The proof of uniqueness is the same as in Th. 3.4; the proof of the existence
can be reduced, as we did in the case a) to the determination of a solution w
to eq. (3.47) satisfying the same boundary conditions as the requested
solution u.

In order to determinate w, let us look for a representation like (3.61)
where now We , t), having to satisfy the condition W(0, t) = 0, is given by
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where a is an arbitrary function. Imposing the condition at y = 0, and

using the same change of variables (3.64), gives

eq. (3.89) has a unique solution and we can write the function w

given by (3.61) as follows

From (3.90), an inequality like (3.68) can be derived as we did in a.
Let us consider now Wx; from the representation of zv we get

Thus we can write, with the change of variables (3.64)

Let us consider now the function t --~-ta(t). As we did in a) in deriving (3.?’0)
we get now

Thus, in order t - ta(t) to belong to the set 93, the function e -* 1/2 -e l(e) -

- 1’($) must belong to the set A defined by (3.85). This means (remember
the remark after lemma 3.7), that

be uniformley bounded in Z2(.I~+). Returning to the old variables, we have

(by an integration by parts)
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The second term may be estimated by an extension of Hardy’s inequality
(see [15], formula (9.9.10)) and we get

Then, by hypothesis, this integral is finite and we have, from (3.86)

(from the Parseval formula for Mellin transform)

Now, from (3.91), we see that also the belongs
to the set A, and, from (3.87) and (3.94), we get the estimate

00

Now an estimate of follows from the estimates of
v&#x3E;o 

0

Finally, let us consider tcv ; directly from

the representation (3.90) we get
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By the same calculations as in a), but taking account now of (3.94), we
get the estimate

By the knowledge of the function we can now complete the proof of
Th. 3.5, as we did for Th. 3.4.

PROOF OF LEMMA 3.7. The proof follows the same line as for lemma 3.6

(see also the proof of Th. 2.4 in [12]). Let P(s) be the function defined

by (3.76); we have now

and so we get the bounds

where C1 and c2 are positive constants.

Now, let f E A, let g be defined by

We say that for

and the function e ~ (1 + lel-1)-1(1 + + is upperly bounded.

Conversely, y let and f be defined by

where Then f c A, since we can write

Then the correspondence f ~ g established by (3.98) and (3.99) defines two
operators, one inverse of the other, between the sets A and ~B. The repre-
sentations and the inequalities (3.86) and (3.87) follow as in lemma 3.6.
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4. - The forward-backward equation.

In this section we want to discuss eq. (1.3), that we rewrite here,

in the half-plane y &#x3E; 0. The problem is to find a function

which is a solution of eq. (4.1) and such that

Here f and h are given functions, and 

THEOREM 4.1. Let f E .L2( Y+) and be given; there exists only
one solution u to pb. (4.1 ), (4.2 ), (4.3). Such a solution satisfies the inequalities

The exact dependence of const (k) on k will be established in the proof of
the theorem. 

-

Proof of the uniqueness: let u be a function; let us put
taking the square of the modulus of f and suppressing

the non-negative term luxx-x’UyI2 gives

Integrating now over Y+ gives, by integration by parts,
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This inequality, established for C--functions, can be extended to functions
belonging to W+(Y+); then we obtain (4.4) as an a priori inequa,lity, from
which the uniqueness of the solution to pb. (4.1 ), (4.2 ), (4. 3 ) may be derived.

The proof of the existence will follow from Ths. 4.2 and 4.3 of the next
two subsections.

4.1. The non-homogeneous equation.

THEOREM 4.2..I’or every f there exists a solution u of
eq. (4.1) belonging to Z(R 2) . This solution verifies an inequality of the form

Moreover, if f = 0 for y  0, the restriction of u to Y+ belongs to W+( ¥+)
and satisfies the inequality,

PROOF. Standard calculations show that, if a solation u exists, its Fourier
transform (with respect to say, may be represented in the following form:

where V(q) is the family of operators defined in subsection 3.1 and B is given
by (3.39); the bar means, as usual, complex conjugate and the star means
adjoint. Moreover ic;~(o, ~) is given by:

where we put
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Let us prove that the function u defined by (4.8) actually belongs to Z(R2).
1:(1]) may be estimated by Schwartz inequality as follows:

To get (4.11) one has only to use the following estimate for E(x, 0; ~):

(4.12) is easily derived from (3.21) by making use of (3.23) and (3.24). Thus
we have

It is not difficult to see that the last integral is bounded by
const (k3 +,q2)-1/3; thus we get (4.11). Moreover, by using usual estimates
for Hankel functions, we get

Thus we have an estimate for ~) :

Now, from the representation (4.8), 7 remembering what was proved in
subsections 3.1 and 3.2, we obtain an inequality like (4.6).

Finally, if f = 0 for y  0, inequality (4.7) can be obtained, for instance,
by taking the representation (4.8) for x &#x3E; 0 : the first term at the right
member may be treated as in the proof of lemma 3.4 and we get an inequality
like (3.44); by taking account of (4.14 ), the right member of this inequality
may be estimated by const the second term is treated as in

the proof of Th. 3.1 and we get an inequality like (3.3); combining the two
inequalities so obtained gives (4.7).
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4.2. The homogeneous equation (Wiener Hop f procedure).

THEOREM 4.3. Let hEJel(R+) be given; there exists a (unique) f unction u
such that

this satisfies the inequality

PROOF. To prove this theorem, we will use a technique previously used
to discuss a piecewise constant coefficients equation of the same kind

as (4.16) [10]. Let us briefly describe this technique. We will consider
separately the equation in the two regions x &#x3E; 0 and x  0 and then we

impose a  smooth » match at x = 0 for the solutions. Thus, in the first

quadrant of R2, we will determine a solution u to eq. (4.16) satisfying the
conditions: ~( ~ , 0 -~- ) = h and ux(0 -p ~’) _ CfJ+ where is an auxiliary func-

tion ; in the second quadrant, where the equation is backward parabolic,
we will determine a solution u such that: ~x(0 -, ~ ) _ ~p_, where 99- is

another auxiliary function. Then the condition that u and uz match smoothly
at x = 0 will determine the auxiliary functions and it will be
= q_ and the common value, 99 say, must satisfy an integral equation in

convolution on the half-line (a Wiener-Hopf equation).
By following the above sketched procedure, let us look for solutions u

represented in this way:

Here and are functions to be determined such that
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and U is the (unique) solution of class W+(X+ n Y+) to the followings
problem:

Such a function actually exists, thanks to Th. 3.4. The function B ap-

pearing in (4.19) is the same as in Th. 3.3; thus we see that the function u
given by (4.19) belongs to W+( Y+B the half-line x = 0), verifies the equa-
tion and (by the second of (4.20)) ~(~0-)-)= U(x, 0 + ~
if x &#x3E; 0; thus the condition u(x, 0 -~- ) = h(x) if x &#x3E; 0 holds true.

Moreover we have

and

Now, the function given by (4.19) will belong actually to W+(Y+) if
and only if u(0 -, ~ ) = u(0 + ,.) and ~(0 2013,’) = + ,.). This means that
the functions and T- must satisfy the following equations, for y &#x3E; a~

A solution of (4.25), verifying (4.20) and (4.21), can be obtained in this.
way: p+ = is a solution, such that

of the integral equation
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where the kernel .K is given by

and l is any function such that

Let us remark that we can find functions 1 verifying (4.29), y since the
function 0  y -&#x3E; y) belongs to Hl/2(R+); in fact it is the trace on the
positive y-axis of U(x, y) which belongs to W,(X, n Y+), (remember Th. 2.1).

Thus we have to solve a Wiener-Hopf problem. For such problems a
formal technique of solution has been developed long ago and only recently
it has been arranged in a satisfactory way, at least for a large class of these

equations, y in the context of Sobolev spaces; for every detail and biblio-
graphy see [12].

In the particular case we are dealing with, we can apply Th. 4.1.1 of [12];
this theorem states that a (unique) solution 99 of (4.27), verifying (4.26),
exists, provided the kernel K satisfies certain hypotheses; such hypotheses
are verified in the following lemma:

LEMMA 4.1. Consider the f unction given by (4.28) ; let I~ be its
Fourier tracns f orm. There exists two f unctions, K+ and K-, such that

holomorphic in the half-plane Im e &#x3E; 0 and

continuous in the closure Im ~ &#x3E; 0; ~ ~ ~_(~) is holomorphic in the half-plane
Im ~  0 and eontinuous in the closure 

iii) -K(,q) = for every real q (the couple (.K+, I~_) is called
a factorization of K).

Now we can apply Th. 4.1.1 of [12] which, in our case, gives us the

following result :

LEMMA 4.2. Consider eq. (4.27), where the kernel K is given by (4.28) and
the f unction 1 by (4.29). Then a unique solution 99 verifying (4.26) exists and
satisfies the inequality
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REMARK. The inf at the right of (4.30) is the norm, in the space Hi’2(R+)
of the restriction of 1 to R+ ; thus, since this restriction is given by ~7(0,’),
we have, recalling (2.16) and (3.46),

Thus Th. 4.3 is proved.

PROOF OF LEMMA 4.1. From the definition of P in (3.39) we obtain

By recalling now some elementary properties of Hankel functions, namely :
= g~2~(z), H~2~(z) = and the wronskian Hv2~) 

we obtain

Now, let us consider the function

An inspection of ? shows that the following properties hold: i) - g(t)
is a continuous real-valued positive function (at the origin it is defined as
lim g(t) = ;r/2); ii) 9(- 00) == 9(+ oo) = 3 ~ 2-1o~3.I’2(s ) ; ind Sf = 0 (*). Then
t-0

(see Th. 2.1.1 in [12]) we can assert that a factorization of ? exists with
the following properties

Then, the assertions of lemma follow, since

(*) ind Sf, the index of Sf, is the index, with respect to the origin, of the curve
[- ~, + a] 3 0 - g(tg 0/2). Roughly speaking, ind 9 is the number of times the
curve t -~ turns around the origin, when t varies from - oo to -E- oo.
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5. - The time-dependent problem.

Let us consider the problem outlined in the introduction; we can now
pose this problem in a precise way. Let us consider the linear operator

acting in L2( Y+) ) with domain D(L) so defined

Then we have the problem to find a vector-valued function ]0, - w(t),,
with the following properties

where f is a given function belonging to the domain of L (as one can see,
here we took homogeneous conditions at the boundary : but it is clear how
we can reduce to this case, starting from a different situation).

THEOREM 5. 1. Let f be a given belonging to D(L). Then, there exists
only one function w with the properties (5.3).

PROOF. Uniqueness : it is a consequence of the following inequality

(5.4) follows from the property that, for every we have

(5.5) is proved by integration by parts, as we did in the proof of uniqueness
for Th. 4.1.
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Existence : the existence of a solution is a consequence of Th. 4.1. For,
we can say:

i) D(L) is dense in L2(Y+) ;

ii) L is a closed map in L2( Y+) ) with domain D(L) ;

iii) every k &#x3E; 0 belongs to the resolvent set of L, i.e., (L-k)D(L)
is the whole L2( Y+) and (L-k) has a bounded inverse;

iv) for every k &#x3E; 0 and every f E L2( Y+), we have

Assertions ii) to iv) follow from Th. 4.1 (in particular inequality (5.6) fol-
lows from (4.4)) while i) is obvious. These assertions imply (by Hille-Yosida
theorem [14]) that L is the infinitesimal generator of a strongly continuous
semigroup of contraction operators

Thus, if f E D(L), then w(t) = 13(t) f is the unique solution to pb. (5.3).

REMARK. From theorems given in sect. 3, we can solve some other time-

dependent problems for eq. (1.1), like the Cauchy problem in the region
R2 x ]0, T[ or the mixed problem in the region X+ X ]0, T[. For instance,
the following results could be easily proved:

i) Let fEZ(R2) be given; let L be the operator defined by (5.1) acting
in L2(R2), with domain Z(R2) ; then there exists only one function w such that

ii) Let f E Z(X+) be given and /(0-)-~)==0 for 

let L be the operator defined by (5.1) acting in L2(X+) with domain D(L)
so defined:
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then there exists only one function w such that:

The problem considered in ii) has been studied in [11].
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