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Spectral Properties of Schrödinger Operators
and Scattering Theory (*) (**).

SHMUEL AGMON (***)

1. - Introduction.

We propose to discuss here certain spectral properties of Schr6dinger
operators - 4 + V(x) (d the Laplacian and V a potential) which have ap-
plications to scattering theory.

We denote by .Ho the self-adjoint realization of - 4 in with
= ( 1) . The complete spectral description of .Ho is ob-

tained by application of the Fourier transform map Y: 
defined by

It follows that ~o is unitarily equivalent to the operator of multiplication
bY

Consider a perturbation of Ho given by the differential operator - L1 + V‘(x).
We shall assume that V(x) is a real function such that the multiplication
operator V: ~ 2013~ is Ho-compact (that is TT is a compact operator from

into L2(Rn)). Under these conditions - A + V admits a unique
self-adjoint realization in L2(Rn) which we shall denote by H. It is well

known that both operators Ho and H possess the same domain of definition

(*) Fermi’s Lectures supported by the Accademia Nazionale dei Lincei.
(**) Lectures given at the Scuola Normale Superiore of Pisa during March-

April 1973 (revised and completed).
(***) The Hebrew University, Jerusalem.
Pervenuto alla Redazione il 30 Agosto 1974.
(1) Je2 denotes the Sobolev space of square integrable functions possessing square

integrable derivatives up to the second order in the distribution sense.
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and also the same essential spectrum which consists of the interval [0, 
We recall some notions from scattering theory. The wave operators of

the pair (H, .ga) are defined as the strong limits

When the wave operators exist they yield isometries from into 

The wave operators are said to be complete if

Here denotes the absolute continuity subspace of with respect
to H. (We recall that if A is a self-adjoint operator in a Hilbert space having
a spectral resolution then the absolute continuity subspace with respect
to A consists of those vectors f for which is an absolutely con-
tinuous function of 2 on R, (see Kato [7], p. 516).)
When the wave operators exist and are complete one defines the scattering

operator S by the relation : S = W + W_ . S is a unitary operator on 
and one finds in a general situation, taking Fourier transform and introducing
polar coordinates $ = (k, m), that

f E L2(Rn), where 8(k) is an operator valued function defined for 7~ &#x3E; 0,
taking its values in the class of unitary operators on L2(.E), f = 1,
Q) c- R-1. One refers to as the scattering matrix.
The following problems arise.

PROBLEM I. What are the conditi.ons on V which ensure the existence and

completeness of the wave operators.

PROBLEM II. What are the conditions ensure the existence of the

scattering matrix and what are the properties (2) of the operator valued func-
tion 

There is an extensive literature dealing with these problems. In particular
the first problem was investigated by many authors who gave solutions which
apply to different overlapping classes of potentials (see Kato [8; 9], Kato
and Kuroda [10], Kuroda [11-14], Rejto [18], and other references given
there) .

(2) For example, it is of interest to give conditions which ensure that 8(k) is

an analytic operator valued function of k.
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Among the various methods introduced in scattering theory there is an

interesting method based on eigenfunction expansions. The method was in-
troduced by Ikebe in [5] where he derived an eigenfunction expansion theorem,
suitable for applications to scattering theory, for a class of Schrodinger opera-
tors in R3 (see also Povzner [17]). Ikebe’s results were extended to R, by
Thoe [23], and were further improved by Alsholm and Schmidt [2] (3).

The main object of this study is to derive an eigenfunction expansion
theorem for Schrodinger operators, which is useful as a tool in scattering
theory, under minimal decay assumptions on the potential. Precisely we
propose to establish the theorem under the condition that

for some s &#x3E; 0 and p satisfying 0  /z  4. Note that (1.3) holds in par-
ticular for V which at infinity verifies the condition:

and which locally verifies the condition: V E Lfoc(Rn) with p = 2 for n  3,
p &#x3E; n/2 for n &#x3E; 4. We observe here that the decay condition (1.4) is weaker
than decay conditions imposed on V in the previously mentioned work
on the eigenfunction expansion theorem, where it was (essentially) assumed
that (4)

As an application of the eigenfunction expansion theorem we shall show
that under condition (1.3) the wave operators exist and are complete (this
result was recently proved by Greifenegger, J6rgen, Weidmann and

Winkler [4] ; see also Schechter [20]). We shall also show that the scattering
matrix 8(k) exists as a continuous operator valued function and that, for
a fixed k, S(k) - I is a compact operator.

The plan of the paper is as follows. After introducing some notation, we
begin in section 3 our study of Schrodinger operators. We consider an operator

(3) See also Shenk and Thoe [22], Schulenberger and Wilcox [21], where the
eigenfunction expansion method is applied to other problems.

(4) This statement refers to simple pointwise decay conditions only. An integral
decay condition on V which is given in [2] is not quite comparable with (1.3).
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H == - L1 + V with potential V~ of class (a class which contains in par-
ticular all functions verifying condition (1.3)). We show that the positive
point spectrum of H is a discrete set in R+. Eigenfunctions which correspond
to positive eigenvalues are shown to decay rapidly as Ix - oo (a well known
result in the case of negative eigenvalues). This property is shown to hold
also for certain generalized eigenfunctions, thus proving that such generalized
eigenfunctions are necessarily proper eigenfunctions. In section 4 we establish
the limiting absorption principle. That is, roughly speaking, we show that
in some (optimal) topology the operator valued function (H - z)-’, defined
for non-real z, admits continuous boundary values on both sides of the posi-
tive axis (excluding the discrete set of eigenvalues). The limiting absorption
principle is a basic tool in our study. Using this tool we introduce in section 5
the generalized eigenfunctions (distorted plane waves) for the class of Schr6-
dinger operators with potentials verifying condition (1.3). Our main result,
the eigenfunction expansion theorem, is proved in section 6. The applica-
tions of the eigenfunction expansion theorem to scattering theory are given
in section 7.

There are three appendices where we prove some more special technical
results. In particular in Appendix A we establish the a-priori weighted Ll
estimates which are used to prove our version of the limiting absorption
principle (see Lemma 4.1). We go here beyond the needs of the present
study and establish the estimates for the general class of partial differential
operators with constant coefficients of principal type. In this connection

we note that with the aid of these estimates one can easily extend the results
of this paper (and in particular the eigenfunction expansion theorem) to a
general class of self-adjoint operators which are self-adjoint realizations
of higher order elliptic operators. More precisely, all our results can be ex-
tended to the case where H is a self-adjoint realization in L2(Rn) of a for-
mally self-adjoint elliptic operator P(x, D) of the form: P(x, D) = P(D) +
+ V(x, D), where P(D) is an elliptic operator with constant coefficients of
order m, and where D) - I V(X(x) Da is a differential operator of order m

|a|m
with continuous top order coefficients satisfying condition (1.4), and with
lower order coefficients Va, satisfying condition (1.3) with

I~’~ - 0  fla  ~ (’m - I a I ) ’

2. - Notation and definitions.

In our study we shall find it convenient to use various weighted L2 spaces.
For any real s we shall denote by the space of all complex valued
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functions on Rn defined by

More generally, y we shall consider weighted Sobolev Ll spaces 
defined for any integer m ~ 0 and real s by

Here derivatives D’u are taken in the distribution sense,

a = (a,1, ..., an) denoting a multi-index of order
is a Hilbert space under the norm:

The spaces which are the usual L2 Sobolev spaces of order m,
will also be denoted by As is well known one defines the Sobolev

spaces Jem(Rn) for any real m as follows. is the completion of 
under the norm :

We shall have the occasion to use the well known fact that a function

in Jem(Rn), for m &#x3E; t, has a trace on any sufficiently smooth n -1 dimen-
sional manifold imbedded in Rn. More precisely, we shall use the following
special

TRACE THEOREM (5). Let T‘ be a Coo compact n -1 dimensional manifold
imbedded in Rn. Let da be the measure induced on r by the Lebesgue measure dx,
and denote by L2(r) the class of .Lu functions on r with respect to the measure da.

(5) E.g. Liol1s-Magenes [15], p. 44.
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I’or any given there exists a bounded linear map

such that

One refers to Tu as the trace of u on 1’. In particular, if ru = 0 one says
that it = 0 on r in the trace sense.

Let X, Y be two Banach spaces. We shall denote by B(X, Y) the space
of all bounded linear operators from X into Y. As usual we shall consider

B(X, Y) as a Banach space whose norm is given by the operator norm.

3. - Schr6dinger operators. The positive point spectrum and a decay prop-
erty of eigenfunctions.

In this and in the following section we shall consider Schr6dinger operators
with potentials of class SR. This general class of potentials is defined as

follows.

DEFINITION 3.~ . A real function V(x) E is said to belong to the

class (short range) if, for 0, the multiplication mapping :

defines a compact operator from Je2(Rn) in,to L2(Rn).

REMARK 1. If Tr is of class SR, then for some s &#x3E; 0 and any real s the

multiplication operator:

is a compact operator from into Indeed, this is obvious
for s = 0. For a general s the result follows from the special case noting
that the mapping: u -~ (1 -~-- ~x ~ 2 ~-~n u defines a bounded operator from

into Jem.r+s(Rn) for any real r, s and m = 0, 1, 2, ....

REMARK 2. If V is a real function verifying condition (1.3) then V is
of class SR. This follows from a well known result (see Schechter [19], Ch. 6)
by which condition (1.3) implies that the defines

a compact operator from Je2(Rn) into for any 0  s’  8.
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Consider a Schr6dinger differential operator - 4 + V~(x) with potential
V(x) of class SR. As before denote by Ho the self-adjoint realization of - 4
in L2(Rn), Denote by H the operator: Ho ~- V in 
with domain 2)(B) = Je2(Rn) ( ~ the multiplication operator by Y(x)). Since V
is a symmetric operator in which by our assumption is Ho-compact,
it follows from a well known theorem (e.g. [7]; p. 287) that H is a self-
adjoint operator in L2(RI). It could also be shown that .H is the uniqne
self-adjoint realization in of the differential operator - J + V(x)
and that H is semi-bounded. Let 6(H) be the spectrum of H. It is well

known that a(H) _ [0, oo) U where [0, oo) is the essential spectrum of
H and IA,l is a discrete set of negative eigenvalues with a finite multiplicity,
having zero as its only limit point.

We note that the results just described do not require the full strength
of our assumption on V. For instance, it is well known that all the results
hold under the weaker assumption that V is Ho-compact. However, y the

assumption that V is of class SR will be used in an essential way in the

following results.
With some abuse of notation we shall sometimes use the notation

- L1 -~- V to denote the operator H.
We denote by e+(H) the set of all positive eigenvalues of H.

THEOREM 3.1. e+(H) is a discrete set on the real line. The only possible
limit points of e+(H) on the extended line are the points A = 0 and A _ -~- 00.
Every point in e+(H) is an eigenvalue of a f inite multiplicity.

REMARK. Under more stringent conditions on V than those assumed
here it could be shown that the set e,(H) is empty (e.g. [2; Appendix 3]).
It is an open question whether e,(H) is empty for any potential V of
class SR(6).

For the proof of Theorem 3.1 we need the following

THEOREM 3.2. Let f (x) for some s &#x3E; t. Suppose that f (x) = 0
oYe a sphere ~x~ = k in the trace sense, and let K some positive
constant. For any multi-index a with 0  |a| c 2, set

(6 ) The proof that e+(H) is empty requires, among other things, the validity
of the unique continuation property for solutions of the equation - 4u + Vu = Au.
This may indicate that the property: e+(H) = 0 need not hold for TT which is
too singular.
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Then , and

where C is a constant depending only on sand K.
The proof of Theorem 3.2 (in a more general set up) is given in Appendix B.

We turn to the

PROOF oF THEOREM 3.1. We shall show that if u EJe2(Rn) is an eigen-
function of H corresponding to a positive eigenvalue Â, 0~~~~ then
U E Je2,e(Rn) for some 8 &#x3E; 0 depending only on V, and that

where C is a constant depending only on V, a and b. The theorem is an easy
corollary of the estimate (3.2). Indeed, by a variant of Rellich’s compactness
theorem (see [1], p. 30) it follows that the injection map of Je2,e(Rn) in L2(Rn)
is compact for any s &#x3E; 0. Hence, any orthonormal set of functions tujl in
.L?(Rn), which is also a bounded set in JC 2,8 (Rn) is necessarily a finite set.

This and (3.2) clearly imply that H has only a finite number of eigen-
values in [a, b] and that the multiplicity of each eigenvalue is finite.

To prove (3.2), observe first that the estimate (3.2) holds for 8 = 0. ]Indeed,
let R(i) - (H - i)-1. The relation Hu = Au implies that u - 
Since is also a bounded operator from into D(H) = Je2(Rn), it

follows that

where C’ is a constant depending only on V and b.

We set g(x) _ - Tr(x) u(x) . Using our assumption that V is of class SR,
it follows from Remark 1 (following Definition 3.1) that the multiplication
operator V is a compact operator from Je2,s(Rn) into for any
real s and a certain fixed e &#x3E; 0. Hence, in particular, we have

and any s, where y is a constant depending only on V and s. Applying (3.3)
with w = u and s = 0, using (3.2)’~ we conclude that g E L2,1+e(Rn) and that

Cj denote constants which depend only on TI, 8, a and b.
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Now, since g(x) EL2,1+E(Rn), it follows by Fourier transform that g(~) E
satisfies the differential equation: ( 4 -~- ~, ) ~ = Vu,

we also have, by Fourier transform,

From (3.5) it follows that

To see this (’) we use the formula:

which holds if with s &#x3E; ~ Here Tg denotes the

trace of g on the sphere ]$] _ ý~, and d6 is the induced measure on the
sphere. (Indeed, (3.7) is immediate if g is also continuous. In the general
case the result follows from this by a density argument, using the continuity
of the trace map r.) Combining (3.5) and (3.7), it follows readily that

which implies (3.6).
Finally, apply Theorem 3.2 to the function = g(x). Since 

and since ~6(~) = #($)(]$]2 - 2)-~, it follows from Theorem 3.2 that c-
c X,(R,) for 2. This in turn implies that U EJe2,s(Rn). Moreover, com-
bining (3.~ ) (with s = 1 -f- ~) and (3.4), we find that

which yields (3.2). The proof of the theorem is now complete.
In proving Theorem 3.1 we have obtained as a by-product the result

that any eigenfunction of H, which corresponds to a positive eigenvalue À,
belongs to the weighted Sobolev class Je2,e(Rn) for some s &#x3E; 0. As a matter

(7) (3.6) does not follow from (3.5) immediately since we know only that
Û E L2(Rn).
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of fact one can show more, namely that u E Je2,s(Rn) for any s &#x3E; 0. This

useful decay property could also be shown to hold for certain improper
eigenfunctions of H, which to start with are not assumed to be in the domain
of H. The general result is the following

THEOREM 3.3. Let V(x) be a real f unction on Rn such that (1-~-- 
belongs to the class SR for 0. Let u(x) be ac solution of
differential equation

2 a positive number. Suppose that u E for some so &#x3E; - -1 - ~. Con-

sider u as a tempered distribution acting on S(Rn) (9), and let ti be the distri-

butional Fourier transform of u (ûES’(Rn)). If then UEJe2,s(Rn)
for any real s.

PROOF. To prove the theorem it suffices to show that under the condi-

tions of the theorem it follows that For then it would

follow that the conditions of the theorem hold with so replaced by so -~- 6.
Applying the same result it would then follow that u Con-

tinuing in this manner we shall find that u for j = 1, 2, ...,
which is the desired result.

Now, to prove that u we repeat the same argument used
in the proof of (3.2). We set g(x) _ - Y(x)u(x). It follows from our as-

sumptions, using (3.3) with w = u and s = 6, that g(x) E V-,"- + 1 + " (R-). By
Fourier transform we have that g(~) and that the relation (3.5)
holds. Since follows from (3.~), with the aid of (3.7) as before,
that the trace relation (3.6) holds (here we use our assumption that 

+ 6 &#x3E; -1). Apply now Theorem 3.2 to the function f (x) = g(x) . Since

~(~) = ’(~) ( I ~ 1 2-1, and it follows from the theorem

that for )cc]2. This implies that thus

completing the proof of the theorem.

4. - The limiting absorption principle.

Let R(z) == (H - z)-1 be the resolvent of H defined for It is

of interest to know whether R(z) assumes in some sense boundary values
on the positive axis R+ = ~~, : ~, E R, ~, &#x3E; 0~, obtained as limits of .R(z) as

(8) Here and elsewhere solutions of the Schrodinger differential equation should
be taken in the distribution sense.

(9) S(RI) denotes the Schwartz class of rapidly decreasing C- functions on Rn.
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z --~ ~, through points in one of the half-planes : C _ = ~z : Z E C, =:!: Im z &#x3E; 0~ .
Since it is clear that such limits cannot exist in the uniform

operator topology of B(L2, L2) (or in any weaker L2 topology). However,
as we shall see, such limits do exist if one considers R(z) as an operator valued
function with values in B(L2,S, L2,-S) (or even in B(L2,S, ~2~_~)) for any s &#x3E; 2 .
This result, which following an accepted terminology we call the limiting
absorption principle, is the main result of this section. It has a basic role
in our subsequent study of the eigenfunction expansion theorem.

The proof of the limiting absorption principle is long and we shall arrive
at the final result through intermediate steps. The first step in the proof
consists in verifying the result for the special case of the unperturbed operator
~=-J.

THEOREM 4.1. Let (Ho2013z)-1. Consider as an analytic oper-
-ator valued f unction on CBR+ with values in 

(i) -For any Â E R+, the f ollowing two limits exist in the uni f orm oper-
ator topology of 

(ii) For any t E and A E R, the f unction u = Ro {~,) f veri f ies the
differential equation

The following identity holds (lo) :

where rf denotes the trace of f = Yf on the sphere |E| _ vil.
The crux of Theorem 4.1 are certain weighted estimates for the

operator L1 + z which we state as

LEMMA 4.1. There exists a constant C depending only

(1°) For any pair of functions f, we define
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on s, it and K, such that

Lemma 4.1 is proved in Appendix A (it follows as a special case of esti-
mates established for general elliptic operators, see Theorem Al). With

the aid of the lemma we give now the

PROOF OF THEOREM 4.1. Let f, gEL2,S(Rn), s ~ I. We shall first show

that the function F(z) = Ro(z) f, g~ which is an analytic function of z in

CBR+, has continuous boundary values on both edges of R+. Now, by
Lemma 4.1, we have

for VfEL2,S(Rn) and such that (any fixed .~~’ &#x3E; 1 ) .
This implies that with the same constant C, we have

for Vf, gEL2.S(Rn) and such that The uniform

bound (4.5)’ implies that in order to prove that ~Ro(z) f, g~ assumes con-
tinuous boundary values on both sides of R+ for any f, it

suffices to show that this is true for f and g in some dense set in 
Let f, By Fourier transform (using Parseval’s formula and

changing to polar coordinates) it follows that

By well known continuity properties of Cauchy type integrals, it follows
from (4.6) that the function has continuous boundary values
on both edges of R+ given by

the last singular integral being taken in the principal value sense.
From (4.7) and our previous remarks it follows that .Ra(z) f, g&#x3E; admits.

continuous boundary values on both sides of R+ for any f, g E L2,S(Rn).
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This in turn means that for

Moreover y since (by (4.5)) Ro(z) f is also bounded near A when considered

as a function with values in it follows (using the weak compactness
of the unit ball in that the limit (4.8) also exists as a weak limit
in We shall define for any f E and 2 E R+ :

It is clear that (4.9) defines an operator B, E B(L2.s, Je2,-s) for any 
We are going to show that the weak boundary values R/(£) of 

on R+ just defined are actually assumed in the stronger sense (4.1). Before

doing this let us observe that the relations described in part (ii) of the

theorem are simple consequences of (4.9) and (4.7). Indeed, that n = 
satisfies equation (4.2) (in the distribution sense) follows immediately
from (4.9) and the relation: (- LI- =  f, which holds for

and z 0 R. Formula (4.3) for f E Co (Rn ) follows immediately
from (4.7) (taking f = g). That (4.3) holds for all f E follows from

this by continuity, noting that both sides of (4.3) represent continuous

quadratic functionals on for any s &#x3E; -1
We continue with the proof of (i). Define the operator valued function

Rt (z) on and the operator valued function Ro (z) on

and with values in B(L 2,1 ,JC2,-,)) as follows:

is the operator defined by

From the preceding it is clear that R--l- (z) is a weakly continuous operator
valued function on 0,. We shall show that R)(z) is actually continuous
on C, in the uniform operator topology of B(L2,S, Je2,-s). To this end observe
that for u in Je2,_s(Rn) the norm is equivalent to the norm

11(1 + As is well known this last norm is equivalent to

||(I2013A)(1+|x|2)- which in turn is equivalent to the norm 
- lIullo,-s + From this it follows that in order to show that 

is continuous on C+ in the uniform operator topology of B(L2,S, JC2, -,), it

suffices to show that both and are continuous in the uniform

operator topology of L2~-S). = I + (z), this reduces
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simply to showing that Rtf (z) is continuous on 17_p in the uniform operator
topology of L~’~~) . In order to establish this result let us first observe
that is continuous on in the strong topology of .L2~-s), i.e. for
any and 

Indeed, (4.10) is obvious if zo 0 R,. If then (4.10) follows

from (4.9), using the compactness of the injection map of in 

for any s’ s (11) (we also use the observation that and that

the limit relation (4.9) holds in JC,_,, for any s’ &#x3E; 2 ~ .
Next we observe that if fz,l c C+, c L2.8(Rn), are sequences.

such that

then

Indeed, for any

which shows that

Since (by (4.5)) the sequence is bounded in Je2.-s,(Rn) for any
s’ &#x3E; 2 , and since the injection map of Je2,_s,(Rn) in is compact, for

any s’C s, it follows from the existence of the weak limit (4.11)’ that (4.11)
holds.

Finally, it follows from (4.11) that is continuous on Ox in the
uniform operator topology of B(L2.s, L2--’). Indeed, suppose by contradic-
tion that this is not true. This would imply that there exist a sequence

(11) This follows from Rellich’s compactness theorem.
(1~) The relation: which is obvious when

z 0 R+, is also valid by continuity when z E R+.
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Extracting if necessary a subsequence we may also assume that 3w -lim f j = f
in Applying (4.11), it follows that

This gives a contradiction (to (4.12)), proving the continuity of on Ox
in the uniform operator topology of B(L2~8, L2~-8). As was observed before

this last result implies in its turn that is continuous on in the

uniform topology of B(.L2’s, ~2,_S). This yields (4.1 ) and completes the proof
of the theorem.

We introduce the following

DEFINITION 4.1. A function will be called ac k-outgoing func-
tion (resp. k-incoming f unction) i f for k &#x3E; 0 the following relation holds:

Note that if u is an outgoing or an incoming function then u 
The following result will be needed later on. 

LEMMA 4.2. Let u E be a k-outgoing ( k-incoming) function satis-
f ying a differential equation of the form :

where V is a real function of class SR. Then n for all real 8.

PROOF. We shall prove the lemma for u outgoing, the proof for u in-

coming is similar. By for some f E L2.8o(Rn), so &#x3E; 1
This implies that when compared with (4.14), gives
that f = - Vu. Applying formula (4.3), using the last relation and the

reality of V, we get



166

From (4.15) it follows that 1($) = 0 on the sphere 1$1 = 1~ (trace sense;
note that Hence, applying Theorem 3.2 to f it follows that

Next we show that

where is the distributional Fourier transform of u (note that u
is a tempered distribution since u Indeed, let g E Since

~ = lim + i8) f in it follows (using Parseval’s formula, (4.16)
8~+O

and Lebesgue’s convergence theorem) that

This proves (4.16)’, showing in particular that ft E Observing now
that u verifies the conditions of Theorem 3.3, it follows from Theorem 3.3

for all s. This proves the lemma.

We shall formulate now the limiting absorption principle for general
Schr6dinger operators.

THEOREM 4.2. ..Let H = - d + V be a Schrödinger operator with potential Tr
of class SR. Let R(z) = (.H - z)-1 be the resolvent of H. Consider R(z) as
an analytic operator valued function on with values in B(L2*’, Je2,-s),
for any s &#x3E; t. Let e+(H) be the discrete set of positive eigenvalues of H, and

E R+Be+(H). Then, the following limits exist in the uniform operator
topology of B(L2.s, ~2~-S) :

Moreover, for any

In particular, ~+ _ R+(2) f is a solution, and u- = l~-(~,) ~ is

a solution of the differential equation :
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In the following we shall refer to Rl(2) as the boundary values of R(z)
on the positive axis. Clearly the function .R~(~) (with values in B(L2.8, Je2,-s)
for any s &#x3E; 2 ) is continuous on R,Be, (H) in the uniform operator topology
of B(L2,s, Je2,-s).

PROOF OF THEOREM 4.2. We shall prove the theorem for R+(2), the
proof for R-(2) is similar. With no loss of generality we may assume that s
is restricted to some interval 2 C s c 2 --E- ~, ~ &#x3E; 0. We shall choose s&#x3E; 0

sufficiently small so that the multiplication operator V is a compact oper-
ator from into .

we define 1

Here R§(z) = Ro(z) E Je2,-s) if Im z &#x3E; 0, whereas R’(z) is defined by
(~.1 ) if z = 2 c- R,. From Theorem 4.1 and the compactness of V (con-
sidered as an operator from Je2,_s(Rn) into L2,8(Rn)) it follows that T(z) is

a compact operator for every and that, furthermore, the operator
valued function T(z) is continuous on 0, in the uniform operator topology
of ·

Consider the question of invertibility in of the operator
I + T(z) where I is the identity. We claim that (I + exists if and

only if z E Indeed, suppose first that Im z &#x3E; 0. Using the re-
solvent equation:

and (4.20), it follows that for any f E L2(Rn) and u = .R(z) f E Je2(Rn), we have

Letting f vary on L2(Rn), it follows from (4.22) that range (I + T(z)) D
D Je2(Rn), which implies that range (I-f-- T(z)) - Je2.-s(Rn). From this it fol-
lows by well known results on compact operators in a Hilbert space (the
Fredholm-Riesz theory) that the inverse exists in 

Next, let z - A E R+ . By the Fredholm-Riesz theory I + is in-

vertible if and only if -1 is not an eigenvalue of T(~,). Hence suppose
that -1 is an eigenvalue of T(~) and be the corresponding
eigenfunction. From (4.20) it follows which implies
that u is a -B/A-outgoing solution of the differential equation: (- L1 + == Âu.

Applying Lemma 4.2 it follows that which in turn implies that A
is an eigenvalue of H. Conversely, let 2 &#x3E; 0 be an eigenvalue of H with

12 - Annali della Sellola Norm. Su,p. di Pisa
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a corresponding eigenfunction u c O(H). Using (4.21) we find that

for z in C+. Hence, letting z - A, using
Theorem 3.3, we which shows that -1 is an

eigenvalue of T(2). The above considerations show that (I+ exists

for z in C+ if and only if z 0 e+(H).
Now, since T(z) is continuous on 4~ in the uniform operator topology

of Je2.-s), it follows by elementary considerations that the operator
valued function (I+ T(z) )-1 is also continuous on in the uniform

operator topology of JC2,-,). From (4.21) and (4.20) it follows that

Using the continuity properties of (I+ T(z))-i and R,(z) it follows that, for
any A E 

in the uniform operator topology of B(L2,8, Je2.-s). From the last result

(or letting z - A in (4.21)) we obtain (4.18). The other results mentioned

in the theorem follow immediately from (4.18). This establishes the theorem.
We conclude this section with an approximation result which we shall

need later on. It shows that boundary values I~~(~) of a Schr6dinger operator
with a potential depend continuously (in some sense) on V.

THEOREM4.3. Let H = - d + V be a Schrödinger operator with potential V
of class SR. Let + Vi, j = 1, 2, ..., be a sequence of Schrodinger
operators with potentials V, of class SR such that: (i) lim Vi(x) == V(x) for
almost all x, and I Vi(x)  W (x) for all x and j = 1, 2, ..., where W is
some function of class 

Let R(z) and be the resotvents of Hand H,, respectively. Consider

R(z) and as operator valued functions on GBR with values in B(L2.8, Je2.-s),
for some s &#x3E; -1. Denote by 1~~(~) and Rt(Â), j = 1, 2, ..., the boundary values
of R(z) and on the positive axis, defined by Theorem 4.2. Let K be any

compact set in Then,

(i) ~ does not contain any eigenvalues of Hi f or j ~ jo sufficiently large.

(ii) The f otlowing limit relation holds in the operator topology of

uniformly for
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PROOF. As was observed before, we may assume with no loss of gener-
ality that 2  s c 2 -~- E, s &#x3E; 0 arbitrary but fixed. We choose s such that
the multiplication operator W: u - is a compact operator from

Je2,-1-e(Rn) into L2(Rn). VVe shall prove the theorem for R+(2), the proof
for R-(2) is the same.

As in the proof of Theorem 4.2 we define for A E R+

........-

where the multiplication operators V and V; are considered as operators
in L2.8), and .Ro (~’~) E B(L2.8, ~2,-s). Since by our assumption V
and T~~ are compact, it follows from (4.26) and Theorem 4.1 that T(2) and

are compact operators in for every fixed A, and that the
operator valued functions T(~,) and Tj(2) are continuous on R+ in the oper-
ator topology of 

We claim that

in the operator topology of B(~2,_s, ~2~-S), the convergence being uniform
in Â on any compact subset of R+. Now, from (4.26) it is clear that (4.27)
will follow if we show that

in the operator topology of B(Je2,-s, L2,,,) . To prove (4.28), set U(x) =
- V(x)jW(x), Uj(x) = Vj(x)jW(x), and note that Uj(x) -&#x3E;. U(x) for almost

all x, I Uj(x) c 1 for all x, j = 1, 2, .... Consider the multiplication oper-
ators U : f - V(s) f and U; : f ---&#x3E; Uj(x) f, as operators in B(L2,S, L2.1). It is

clear that s - lim U; = U. This implies that is a strongly convergent
sequence in with == f, then 3s - lim = Uf in 
This in turn implies, since V = UW, W, and W is a compact oper-
ator in L2~S), that is if lujl is a weakly convergent sequence in JC2,_s(Rn)

_ u, then

By an obvious argument used already before (13), this last property im-

plies (4.28) and establishes (4.27).
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Now, from the proof of Theorem 4.2 it follows that the inverse (7-pT(~))~
~(I -+- Z’~ (~,)~-1~ exists if and only if ( ~, E R+Be+(H~ ) ) . This
and (4.27) imply that if 3l is a compact set in R+Be+(H), then K does not
contain any eigenvalues of H~ for all j sufficiently large, and that the fol-
lowing limit relation holds in the operator topology of 

uniformly in 2 on K. Noting that (by (4.23)) we have

it follows from (4.29), (4.30) and the continuity of R+(2), that (4.25) holds.
This completes the proof of the theorem.

5. - The generalized eigenfunctions.

The question whether there exists a good eigenfunction expansion theorem
for the Schrodinger operator H = - 4 + Zr is related to the question of ex-
istence of a « good » family of generalized eigenfunctions which behave like
plane waves. This family is a function O(x, ~), defined for x E Rn and

~ E ( ~~~? ~ c+(H)), which satisfies the differential equation

and which has the form: O(x, ~) = -~--- v(x, ~) with v - 0 as jxl - o0
(in some sense). In particular v should satisfy the equation

Now, if V is of class SR and if, moreover, for some s &#x3E; 2 ,
then the limiting absorption principle (Theorem 4.2) yields two solutions
of (5.1~). Hence we find in this case two families of generalized eigenfunctions
given by

The eigenfunction expansion theorem that one obtains with the aid of
the generalized eigenfunctions 0-(x, ~) defined by (5.2) is applicable to

Schrodinger operators with potentials having (roughly) a decay rate
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Condition (5.3) is (essentially) the rate of decay assumption on V imposed
in most works on the eigenfunction expansion theorem. (We disregard here
weaker integral conditions on V which on the average imply (5.3).) Now,
the rate of decay condition on V, given by (5.3), depends on the space
dimension n. The question arises whether such a strong condition is really
necessary for the existence of the two families of generalized eigenfunctions
0,(x, ~). In the following we shall show that condition (5.3) is indeed not

necessary and that the appropriate families of generalized eigenfunctions
0,(x, $) exist under the weaker assumption:

or to that matter under the still weaker assumption that condition (1.3)
holds. It should be remarked, however, that in the general case the functions
0,,(x, ~) need not be continuous functions in both variables a and $ (as they
are if (5.3) holds), but only be continuous in x and belong to a certain class.
of measurable functions in x and ~.

In order to prove the existence of the generalized eigenfunctions under
minimal decay assumptions on the potential we shall use, in addition to the

limiting absorption principle, two lemmas. In connection with the first lemma,
and also for later use, We introduce certain classes of continuous functions

on Rn. We denote by any real number, the class of continuous
functions on Rn such that (1-~- E L°°(R’2) . We consider 
as a Banach space with norm

For any 0  0  1 and real s we denote by C°°s(Rn) the subclass of func-

tions n in Co-’(RII) such that (1 + verifies on R2 a uniform Holder

condition of order 0. We shall consider C°°s(Rn) as a Banach space with norm

The following lemma combines a regularity result with an a-priori estimate
for solutions of certain Schr6dinger equations.

LEMMA 5.1. Let u(x) be a function in L2.S(Rn) r1 for som,e real s.

Suppose that u satisfies the differential equation,
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Suppose also that there exist a number 0, 0  0  2 , and positive con-
stants Q and F such that

and

Then and the following estimate holds :

where v is a constant depending only on 0 and n ; y is a constant depending
only on 0, n and s.
The proof of Lemma 5.1 is given in Appendix C.
The second result we shall need is

LEmmA 5.2. -Let r be a C°° compact n -1 dimensional manifold imbedded
in Rn. Let da be the measure induced on r by the Lebesgue measure, and let

L2(r) be the class of L2 functions on r with respect to the measure dor. With

any given function associate a f unction g(x) on Rn, defined by

Then, The following
estimate holds:

where S is a constant depending only on m, 8 and F.

This useful lemma is due to Y. Kannai (14). It was observed by
S. T. Kuroda that the lemma follows easily, by duality, from the trace
theorem (see end of section 2). The following proof follows Kuroda’s ob-
servation.



173

PROOF OF LEMMA. Let

By the trace theorem (applied to cp) and the definition of the s-norm,
we have

where T§3 denotes the trace of ø on F, and C is a constant depending only
on s and 1~. Hence, combining (5.11) and (~.12 ), we get

which implies that ) and that

This proves (5.10) for m = 0. The estimate (5.10) for general m follows
from (5.13) by differentiation, observing that where =

= (- 9(~) -

REMARK. Set gk(x) = g(kx) for any k &#x3E; 0, g(x) defined by (5.9). It fol-

lows from the lemma that for any s &#x3E; 2 , any integer m ~ 0, and any com-
pact interval X c R+, we have

and d7~ where C is some constant.

We turn now to the construction of the two families of generalized eigen-
functions for the Schrodinger operator - L1 + V. As was already
mentioned we shall assume that V verifies condition (1.3), or, what amounts
to the same thing, we shall assume that for some s &#x3E; 0 and 0  0 C 2 , the
following condition holds:
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It was observed before that a function V which verifies condition (5.15) is
of class SR. We shall also use the following notation. With the set of posi-
tive eigenvalues e+(.H) we associate the set in .~+:

and the set in Rn :

We shall use polar coordinates k, m in the R~ space (k =: m = ~/ ~~ ~ ~ .
We shall denote by 1: the unit n -1 sphere in Rn, ~ _ 1$: 1$1 == I}.
We shall denote by dw the measure on .E induced by the Lebesgue
measure on Rn.

THEOREM 5.1. Let I~’ _ - d + V be a Schr6dinger operator with potential V
satisfying condition (5.15). There exist two families 0-,,(x, ~) of generalized
eigenfunctions of H, defined for every $ E RnBJY’(H), having the following
properties :

(i) As a function of x and ~, 0,(x, ~) is a measurable function of class

E2 loc (R- X (R JY’ ’
(ii) For every f ixed e the function 0,(x, $) belongs to C(R’) rl 

and satisfies the differential equation (5.1).

(iii) Introduce polar coordinates and write: V)-,:(x, k, w) = Then

for fixed (x, k) E Rn X the function k, oi) belongs
to L2(1). Moreover, the vector valued f unet2on ’lfJi:-(x, k, ~ ), with

values in .L2(~), is a continuous f unction of x and k on

Rn X (R+"",e+(H)t).
(iv) For any f unetion g in L2( ~’), define

Then, for a fixed the function Qg (x, k) has the representation :

where B7~--(k2) are the boundary values of the resolvent of H defined by (4.17).
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In particular
satisfies the differential equation

REMARK 1. Our proof will show that the functions ~±(~, ~), for any

fixed ~, are in r1 for some 0 &#x3E; 0 (the exponent in con-

dition (5.15)) and any 

REMARK 2. The families ~~ (x, ~) are (essentially) uniquely defined by
the conditions of the theorem. Indeed, suppose that 0,(x, $) is a second

pair of families of generalized eigenfunctions which also verify the condi-
tions of Theorem 5.1. It follows readily (using (5.18)) that

for any f E Co(Rn) and g E Oo(Rn""X) (15).
This implies that §+(s, $) = Q+(x, e) for almost all (x,;) in Rn X 

From the continuity of 0, and ~,,, in x, it follows further that for almost

all $ we have that §+(s, $) = ~~ (x, ~) for all x.

PROOF OF THEOREM 5.1. We shall prove the theorem for the family
0-(x, $), the proof for ~+(x, ~) is similar.

We start by approximating V by potentials which decay sufficiently
rapidly at infinity. More precisely, we choose a sequence of real functions

having the following properties. (i) for some

80&#x3E; i and all j. (ii) llAx) -~. TT(x) for almost all x in Rn. (iii) I Vj(x) c W(x)
for all x in Rn and all j, where W(x) is a function satisfying condition (5.15)
for some and 0  ()  t. (Thus we may always take for tvil the

sequence defined by: = for 0 for In case

for some we may take V; = V for all j.) With

the sequence {Vj} we associate the sequence of Schrodinger operators
.g~ _ - L1+ = 1, 2, .... We shall denote by the boundary values
of the resolvent of H~ on the upper edge of the positive axis, as defined
by Theorem 4.2. Thus, R+(A) is a continuous operator valued function,
defined for with values in B(L2’s, Je2,-s) for any s &#x3E; i. In

the following s will denote an arbitrary but fixed number such that 2  s 
 min (so, 2 -E- 3) where d &#x3E; 0 is chosen sufficiently small so that the func-
tion W1(x) == (1+ verifies also condition (5.15).

(15) Co(S2) denotes the class of continuous functions with a compact support in S~.
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Write ~o(x, ~) = exp (is. $) and denote by Nj the set defined

by (5.16’). For define

(Note that ~;(x, ~) is well defined since 

From (5.20) it follows that Ø;(x, ~) for any r &#x3E; and that rp;
satisfies the differential equation

Applying Lemma 5.1 to ~;(x, ~) it follows further that ~;(x, ~) is a Holder

continuous function of x. More precisely, it follows from the lemma that

where C~ is a locally bounded function of $ on Rn. From (5.20) it follows

that $) is a continuous function of ~ with values in _L2.-"(R-). This

and (5.22) imply that ~) is a locally bounded function of x and $. Finally,
applying Lemma 5.1 to the function u(z) = ~~ (x, ~) - ~; (x, ~’ ), which satis-
fies the differential equation

it follows easily (with the aid of the observations just made) that 0,(x, ~)
is a continuous function of x and $ on Rn X (RnjXj).

Let 3(, be any compact set in R,B,Be,(H) (3(, will be fixed throughout
our discussion). Since the sequence of operators verifies the condi-

tions of Theorem 4.3, it follows that there exists a positive integer jo 
such that .H~ has no eigenvalues in 3(, for For any k &#x3E; 0 with
k2 E ~, ~ ~ jo(3(,) and g E L2(.E), define

where as in (5.17) we let

Now, be Lemma 5.2 the function øg(x, k) belongs to Je2,-s(R:). This implies
that, for a fixed k, ~~(x, k) is a well defined function in 

Since ~~’(x, k) is a solution of the differential equation (5.21) (with )$) = k)
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it follows further, y upon application of Lemma 5.1, that ~S~(x, k) is a con-

tinuous function on Rn of class (Throughout the proof 0  0  2
stands for the 0-exponent in condition (5.15) for the function W.)

We propose to show that the sequence of vector valued functions ~~( - , k),
with values in C’--’(R,) rl Je2.-s(Rn), converges to a limit, uniformly with
respect to k2 in X and g in the unit ball of .L2( ~’). More precisely, we are
going to show that there exist a constant C = C(K) and a sequence of
positive numbers s, = s;(X), with Bj - 0, such that

and

for Yk2 E K and all integers m, j such that 
We shall first prove the .L2 estimates part of (5.24) and (5.24’). To this

end consider the operators

defined for any where the multiplication operators V
and Vj are taken as compact operators from Je2.-s(Rn) into Re-

calling the properties of the boundary operators R+(2) and R+(2), it follows
that P(2) and are continuous functions of A with values in 

By Theorem 4.3, we have 
~ 

uniformly for 2 in K. Also, in the process of proving Theorem 4.3 we have
shown (see (4.28)) that

Hence, combining (5.25), (5.26) and (5.26’), it follows that

in the operator topology of the convergence being uniform
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on Now, it follows from

By Lemma. 5.2 there exists a constant yo such that

for Vg E L2(.E) and Vk2 Combining (5.28), (5.29) and (~.27), we con.,

clude that

and also that

for Vk2 E:K and Here Co is some constant anc’t

tejl is a sequence of positive numbers such that E, - 0 as j - oo . This yields
the L2 estimates part of (5.24) and (5.24’).

To derive the second estimate of (5.24), we use once more the fact that

0’(x, k) is a solution of the differential equation:

where for ~V satisfying (5.15). Applying Lemma 5.1 to the
function 0’(x, k) it follows that there exists a constant yl = yi(£) such that

for and VgEL2(L). Combining (5.31) and (5.30), the second
estimate (5.24) follows.

Finally, to prove the second estimate in (5.24’), we set

For any xc E Rn and we have
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Now, using the inequality

it follows from (5.30’) and (5.32) that

Using the second inequality in (5.24), taking note of the definition of the
weighted Holder norm (5.5), we have

Hence, by integration, y

where 01 is a constant which does not depend on x°, or on g.

Combining now (5.33), (5.34) and (5.35), we find that

f or any Qn denoting the volume of the unit ball in Rn. Choosing
E~ c 1 and o = 1 if ~~ &#x3E; 1, it follows from (5.36) that

for Vxo c R-Y Yk2 Vg E L2(.E) and all integers m &#x3E; j ~ jo, where s§ = const.
’Ej 0/(n -1- 0) 0 as j - 00. This establishes the last estimate in (5.24’).

Returning to the functions defined by (5.20), it is easy to see
that the previous considerations imply the following

Spherical Mean Estimates for be compact set 
Then there exist a constant C and a sequence of positive numbers tejl, 8i --&#x3E; 0,
such that
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and

for all integers 
Indeed, to obtain these estimates observe first that (5.20) and (5.23~,

yield the following relation:

where (5.38) holds pointwisely (since Qgj and 0, are continuous in x and k)_
From (5.38) and (5.4) it follows that for every fixed x and k2 EX

and

Hence, combining (5.39) and (5.24) we obtain the estimate (5.37). Similarly, y
combining (5.39’) and (5.24’) the estimate (5.37’) follows.

With the basic estimates (5.37)-(5.37’) at our disposal, we proceed as
follows. Given any compact set K in we choose a subsequence of
positive integers {jv}, v = 1, 2, ..., such 00, where 8j = Ej(K) is.

v

the sequence of positive numbers for which the estimate (5.37’) holds. We~
also choose a number We let

We shall denote by

, it follows from (5.40) that
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We claim that the set has a Lebesgue measure zero, and that, moreover,
for any the set: ll.k kw E is a null set with respect
to the measure doi. Indeed, let 1~2 Using the monotone convergence
theorem and the estimate { 5 . 3 7’ ), we have

This implies that for any fixed k,

for almost all m in 27, which proves that is a null set with respect to dm.

Similarly, using the monotone convergence theorem and the estimate (5.37’),
we find that

From (5.42) it follows that is a null set with respect to the Lebesgue
measure on Rn.

Let now Ki, i = 1, 2, ..., be an increasing sequence of compact sets in

R+Be+(H) such that UiXi == R+Be+(H). Let r be a number &#x3E; n/2 + s.
By the result just established for it follows that there exists a

subsequence of the sequence E)} such in
v-&#x3E;oo

L(2.-rR:) for every $ in where gx, is a null set in Rn whose inter-
section with any sphere )$) = 7~; is a set of measure zero with respect to
the Lebesgue measure on the sphere. Applying the same result to the
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sequence and set ~2’ it follows that there exists a subsequence 
of such that 3 lim ~w( ~ , ,~) in ..L2’ -r(Rx) for every $ in a

v K ~ &#x26;JZ 2
null set of the same type as Continuing in this manner, extracting suc-
cessively sequences of functions tojil D (i-th subsequence ~)}~1
converges in .L~~-r(R~) for every and applying a diagonal
process, we obtain the following.

LEMMA 5.3. Let ~)~, j = 1, 2, ..., be the sequence of functions defined
by (5.20). Then, given any number r &#x3E; n/2 + s (16), there is a subsequence of
functions such that

for every ~ E R~zB~N’, ~ ~ E, where E is a null set in having the property
that its intersection with any sphere ~~~ = k is a null set with respect to the

Lebesgue measure on the sphere.
We have seen already that Øi(X, e) is a Hölder continuous function of x

and that for More precisely, since

.~~ (x, ~) is a solution of the differential equation (~.21 ), and since I Vi  W
f or j = 1, 2, ..., with W satisfying (5.15), it follows upon application of

Lemma 5.1 (compare (5.22)) that the following inequality holds:

for where y is a constant depending only
on $, 0, r and W.

With the aid of Lemma 5.3 we shall complete the proof as follows. We
fix a number r &#x3E; n/2 + s, and use the lemma to extract a subsequence

$)I verifying (5.43). We then apply (5.44) to the functions ~~v(~ , $)
which are well defined for any 6), ¿; the null set in the
lemma, for vo(~). Since, by (5.43), the sequence ~~w( ~ , is bounded
in 12,-r(RI), we have

for where C~ is some constant depending on ~ but not on v.

The estimate (5.45) implies in particular that for any 8)

(16) yyc can actually assume that r &#x3E; (n + 1)/2, since s &#x3E; 2 can be chosen as

close to 2 as we please.
(17) We recall that if $ belongs some compact set ~1 c All defined by (~.16)’,

then is a well defined function of x for io(K).
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the sequence $))~~~~~i~ is an equicontinuous sequence of functions on

any compact subset of This and the convergence in norm (5.43) imply
that the sequence ~)~v~yo(~) converges pointwisely for every x, the

convergence being uniform on compact subsets of R:.
We now define

We shall show that Ø-(x, ~) has all the properties of the family of generalized
eigenfunctions ~_ claimed in Theorem 5.1. To this end observe first that

Ø-(x, ~) is a Holder continuous function of x and also that ~-(’y ~) 
for every 6). More precisely, since by (5.45) the sequence
~~v(’ , ~ f, is bounded in as well as in Je2.-r(R:), it follows
from (5.46) that Q_(’, E) e Cewr(Rx) n for every E W JV u E. More-

over, the boundedness of ~~~y~ in and the pointwise con-

vergence (5.46) imply that

satisfies the differential equation (5.21), it follows upon pas-
sage to the limit: v - co, using (5.47) and (5.26’), that

for e U 6). Since ~_(~~ ~) = 0 for ~ e 6, we have established
that for every the function ~L(~~) is in 

satisfies the differential equation (5.48). This shows that ~_ has property (ii)
of the theorem.

Next, introduce polar coordinates in the $-space, $ = kw, and write

Since is a well defined continuous function on Rn X (Rn""Xj), it

follows that for any compact set 3 c the functions co) are
well defined continuous functions on Rn x 3 X 1: for Consider m)
as a vector valued function "Pj(x, k, ~ ), defined for (x, k) E Rn X 
and taking values in L2(1:). The estimate (5.37’) shows that
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uniformly in (x, k) on compact subsets of Rn X Now, from
(5.46) and (5.49) it follows (since Ak = (m : m kw E 8} is a null set with

respect to doi) that for every fixed x and k

for almost all o) in Z. From (5.50) and (5.50’) it follows that for every (x, k)
in Rn X (R+Be+(.H)~~ the function "p-(x, k, m) belongs to and that

the vector valued function k,.), with values in L2(.E), is a continuous
function of x and k. This establishes property (iii) of the theorem.

Since 0-(x, ~) is a measurable function in (x, ~) it follows readily from the
validity of (iii) that 0-(x, ~) E L2,(R- X (Rn""-X)). Thus, property (i) of the
theorem holds.

For any define

From the continuity of the vector valued function y) (x, 1~, - ) it follows that

~g (x, 7~) is a well defined continuous function of x and 1~ on Rn &#x3E;C 
Reintroduce the functions ~~’(x, 1~) defined by (5.38), or by

~~~(x, k) is a continuous function on From (5.50), (5.50’),
(5.51) and (5.51’) it follows that

uniformly in (x, k) on compact subsets of Recall that

(for a fixed k) the function ~g(x, 1~) is in Moreover,
by (5.24), the sequence ~~~( ~, 7~)~j~~o(~) (for is bounded in

Ce’-s(Rx) as well as in and (5.52) imply 
E C0-s(Rnx) N Jc2-s (Rxn).

Finally, using the representation (5.28) for ~~ and the limit relations (5.27)
and (5.52), we find that, for any 
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This establishes the representation (5.18), proving also that ~g (x, ~) is a

solution of the differential equation (5.19). Hence, we have shown that

property (iv) of the theorem also holds. The proof of Theorem ~.1 is now

complete.
For future reference we note the following result which follows from the

proof of Theorem 5.1. ~ 
I

THEOREM 5.2. Let H = - d + V be a Schrödinger operator with potential V
verifying (5.15). Let fo:..,(x, e)} be the two families of generalized eigenfunctions
associated with H by Theorem 5.1 (thus in particular 0-:,(x, $) E L;oc(R: X

Consider an approximating sequence of Schrodinger operators
Hj = - 4 + Vi, j = 1, 2, ..., where the sequence of verifies the
following conditions. (i) Vi E L2.8°(Rn) for some so &#x3E; t. (ii) VAx) ---&#x3E;. V(x) for
almost all x. (iii) W(x) for j = 1, 2, ..., where W(x) is a function
satisfying condition (5.15). Let ~)~ be the two families of generalized
eigenfunctions associated with H j. are continuous functions
of x and ~ on Rn X (Rn""X(Hi)) such that --&#x3E;. 0-:,: in X 

as j ---&#x3E; 00. That is, if ~ an y compact set in R+Be, (H) and r c R+, then

PROOF. it follows from a previous observation (see Remark 2 above}
that the families of generalized eigenfunctions 0,(x, ~) of .g are uniquely de-
fined by the conditions of Theorem 5 , i (as functions in &#x3E;C (R~ZBJY’(H) ) .
To verify (5.53) we apply the proof of Theorem 5.1 to our approximating
sequence We observe that in the proof of Theorem 5.1 the gener-
alized eigenfunction Øi-(X, ~) was denoted by 0,(x, ~). We have shown there
that ~5~ (x, ~) is a continuous function on Rn X and that th~~

sequence satisfies the estimates (5.37’). These estimates imply that

Since, by (5.46), 0-(x, ~) for almost all (x, ~) in X 

(for some subsequence ~jv~), it follows from (5.54) that (5.53) holds for 0-

The proof of (5.53) for 0, is similar.

6. - The eigenfunction expansion theorem.

Before discussing the eigenfunction expansion theorem we establish a
simpler spectral property which holds for Schrodinger operators having a
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potential of class SR. We show that the spectrum of any such operator H
is absolutely continuous on any interval not containing eigenvalues of H.
More precisely, we have

THEOREM 6.1. Let L2(Rn)ac be the absolute continuity subspace (18) of L2(Rn)
with respect to H == - L1 + V V is a potential of class 
be the closed subspace in .L2(Rn) spanned by the eigenfunctions of H. Then,

REMARK. - Theorem 6.1 under different conditions on the potential was
proved by many authors (see for instance [8], [10] and references given
there). In the following we denote by JE.11 the spectral resolution of the
identity associated with H, and we denote by the projection associated
with a Borel set 93 c R. We also denote by P. the projection of L2(Rn)
onto L2(Rn)ac. With this notation Theorem 6.1 asserts that

PROOF OF THEOREM 6.1. We have to show that a necessary and sufficient

condition for (Eg f, f ) to be absolutely continuous on R is for f to be ortho-
gonal to The necessity part of the condition is obvious. To prove
sufficiency we observe that if f 1 (Eg f, f ) is a continuous func-
tion on R, vanishing for )10  O. Because of this and because e+(~) is a discrete
set, to prove sufficiency it is enough to show that the function (Elf, f ) is

absolutely continuous on any compact interval in 

Thus, consider an interval [a, b] We shall use the well

known formula

which holds for any f E L2(Rn) (see [3], p. 1202). Assume that 
for some s &#x3E; 2 . It follows from (6.2) and Theorem 4.2 that

Hence, it follows from (6.2’) that is continuously differentiable on

(18) See section 1 for definition.
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R+Be+(H) and that

for any fEL2.S(Rn), s &#x3E; t. Since the set of functions f for which (Elf, f)
is an absolutely continuous function of J. on [a, b] is closed in (see [7]),
it follows from (6.2") that (Elf, f) is absolutely continuous on every com-
pact interval in R+Be+(H) for all f E This establishes the theorem.

We now turn to the eigenfunction expansion theorem.

THEOREM 6.2. Let H = - A -+ TT be a Schrödinger operator with potential V

verifying condition (5.15). Let ~+(x, ~) be the family of generalized 
tions introduced in Theorem 5.1. There exist two bounded linear maps

with the following properties :

(i) ker (.h’.~) = L2(Rn)p. The restriction of to is ac ’unitary
operator from L2(Rn)ac onto L2(R").

and

where Kj is an increasing sequence of compacts such that

(N the null set defined by ( 5 .16 )’ ) .

(iii) Let Pac be the projection of

where M,oB2 z denotes the multiplication operator 
We note that (6.4) and (1.2) yield the following

COROLLARY. Let Hac be the restriction of H to the reducing 
Then,
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where U_~ are unitary operators from L2(Rn) onto L2(R,,). given by U+ _ 
(,T denotes the Fourier map).

PROOF OF THEOREM 6.2. We denote by the class of L2 functions

with compact support in Rn. For f c-L2(RI), we set

Using the properties of the generalized eigenfunctions 0,,,,(x, $) (see The-
orem 5.3) it follows that (.~ + f )(~) is well defined for any $ E and

that E Let be the spectral resolution of the identity
of H. We shall show that

for any interval [a, b] c R+Be+(.H).
We shall first establish (6.6) under the additional assumption that V is

a bounded function with compact support (19). To this end we introduce

the resolvent operator R(z) == (H - z)-l and compute the Fourier transform
of R(z) f Im z # 0). We claim that

where

§o(r, $) = exp (ix ~ ~). Indeed, suppose first that f is of the form j
with then

(19) In this special case (6.6) is proved in [5], [23] and [2]. The proof which
we give here (mainly for the sake of completeness) is different in some details.
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This yields (6.7) for f in the class of functions

Since E is dense in it follows that (6.7) holds for

Next, we fix an interval

For any f E L§(R") we consider the function ¡(~, z) defined by (6.7’). It is

readily seen that f ($, z) is a continuous function of $ and z on Rn xQ:f:Ia, b].
Moreover, using Theorem 4.2 it follows that

uniformly for a A  b. Since V has a compact support it follows from the

proof of Theorem 5.1 that the generalized eigenfunctions 0,(X, $) are con-
tinuous functions given by (5.2). Hence, combining (6.~), (6.7’), (6.8) and (~.2),
it follows that

We shall also need the estimate

where C is some constant. To prove (6.10) we multiply both sides of (6.7’)
by a function g(~) E 0; (Rn) and integrate over Rn. We get

From (6.11) it follows that

for any s ~ 0 . Choosing and applying Theorem 4.2, using the fact
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that V is a bounded function with compact support, we have

for Vz e Q,[a, b] where Ci and C, are constants which do not depend on z.
Combining (6.12) and (6.12’) it follows that there exists a constant C such that

for VgE C’ (R,) and VZEQ:t[a, b]. This yields (6 .10 ) .
We are in a position to prove (6.6) (special case). We shall use once more

formula (6.2) which we rewrite in the following form:

Assuming a s above that ; and noting that by Parseval’s formula

it follows from (6.13), (6.14) and (6.7) that

where we set

Observing that j(~, z) is a continuous function of ~ and z on R, x Q,[a, b]
which admits a continuous extension to it follows from (6.8}.
and well known properties of the Poisson integral that

Now, to evaluate the limit (6.15) we break the integral on Rn into two parts:
an integral on the sphere |$|  A where we choose A &#x3E; and an integral
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on Since the family of functions uniformly bounded
on ~~~  A, it follows from (6.15’) and (6.16) that

It follows from (6.15’) that, for

Hence, using the bound (6.10) we have

Combining (6.15), (6.16’), (6.16~) and (6.9), we get

This proves (6.6) under the additional assumption that V is a bounded func-
tion with compact support.

To establish (6.6) in the general case (i.e. assuming only that V veri-
fies (5.15)) we approximate V by a sequence of functions with compact
supports, j = 1, 2, ..., defined as follows

We denote by Hj the Schrodinger operator - A + V;. We set 
- z)w and denote by ~ (A) the boundary values of Rj(z) on R+ (defined
by Theorem 4.2). We denote by (E)) the spectral resolution of the identity
of 

Let ~)l be the generalized eigenfunctions associated with Hj.
For define
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Since ~~+(x, ~) is a continuous function of x and $ on RIX 

(see Theorem 5.2), it follows that (,~ ~ f ) (~) is continuous on 
= ~~ : ~ E RnB~0~, ~ ~ ~ 2 ~ e+(g~ )~ . As before let [a, b] be an interval contained
in R+Be+(H). Applying Theorem 4.3 to the sequence it follows that

there exists an integer jo such that [a, b] r1 e+(H~) _ ~ for (20). Since Y~
is a bounded function with compact support it follows from the result

established above that (6.6) holds for H;, i.e., we have

for and

we find that
Now, applying Theorem 4.3 and using (6.2)’

On the other hand, using Theorem 5.2 it follows from (6.5), (6.17) and (5.53)
that

for any f E Combining (6.18), (6.19) and (6.19’), the relation (6.6)
follows.

From (6.6) it follows readily that if 0 is any open set in R+Be+(H), then

Applying (6.6’) with
ticular that

g) and using Theorem 6.2, we get in par-

for the projection of

(20) It actually follows from that
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From (6.20) it follows that the mapping /2013~+/ is a contraction from

-L2(RI) into L2(Rn). Extending the map by continuity to the whole of L2(Rn),
we denote also the extended map Thus Y+ is a contraction from L2(Rn)
into which (by (6.20)) satisfies the relation

We shall show that the linear map Y, which we have just defined has all
the properties described in the theorem.

First we observe that (6.21) and (6.1) imply that ker (~7,) = L2(Rn)v
and that ,~ ~. is an isometry from into L2(R?t). This yields part (i)
of the theorem except for the fact that L2(Rn). This last

property we shall establish later on.
To prove (ii) it would suffice to establish the relation (6.3’). Now, let f

and g be two functions in with supp f c Rn"""X(H). We have

where the change of order of integrations is justified by Fubini’s theorem.
Hence, it follows from (6.22) that

for any f E with supp f c Clearly, (6.3’ ) follows from (s.22’ )
by continuity. This yields (ii).

Let Since g) is an absolutely continuous function of A,
it follows from (6.6) that

Hence, if it follows, using (6.23), that
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Since it follows from (6.24) that

Applying 1 with i

for any f E ’D(H). This yields (6.4), proving (iii).
To complete the proof of the theorem we still have to show that

L2(Rn). For the proof of this result let us note the following
relation

which holds for any compact and any f C L2 (R,)
denotes the characteristic function of the interval 3 on R). Indeed (6.27)

follows readily from the relation (6.26) just proved, observing also that

(by a computation similar to (6.24)) we have

We shall prove that range( ( by showing that

We shall show that f = 0. To this end we observe that it follows from (6.28)
and (6.27) (by taking adjoints) that

for any interval I

from (6.28’) that
Hence, using (6.22’) it follows

Next, we introduce polar coordinates: k = l~l c- R,, (o = ~/l~i c- f, and.
set m) == 0,(x, km). We define
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Since the vector valued function "PI.(x, k, ~ ), with values in L2(E), is con-

tinuous on R, X (see Theorem 5. 1), it follows readily from (6.30)
that for each fixed x the function u+(x, k) is defined for almost all in R~.;~
and that E Moreover, from (6.29), (6.30) and Fubini’s
theorem, it follows that

for any x E Rn where [a, b] is any interval in From (6.31) and
the arbitrariness of a and b it follows that, for each fixed

More precisely, y we claim that there exists a null set A in R+ such that

Indeed, let be a dense sequence of points in Rn. It follows readily
from (6.32) that there exists a null set A in R+ such that k) = 0 for
Vk E and Vj (we choose 11. so that u-:t(x, k) is well defined for x E R"

for each k E Since k) is a continuous function of x for each

7~ E it follows by continuity that (6.32’) holds.
We consider now the function

It was assumed implicitly above that A is chosen so that for each fixed
kER+"’A the function f(kw) is a well defined function of class L2(.E). Hence,
for each such k, u(x, k) is a well defined function of class Je2.-s(Rll) ~’1 C°°(Rn)
for any (by Lemma 5.2). Next observe that u and u, are connected
by the relation

Indeed, this follows from Theorem 5.1 since (6.34) is nothing else but the rela-
tion (5.18) written for = (with the notation of Theorem 5.1 we
have u = ~o) . Hence, combining (6.34) with (6.32’) we find that
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for every k E Finally, combining (6.35) with the resolvent equa-
tion (4.18), we find that

From (6.36) and (6.33) it follows (by integration) that

for any 0  c  d, which implies (by Fourier transform) that f (~) = 0 for
almost all ~. This establishes that range(Y+) = L2(Rn) and completes the
proof of the theorem.

7. - The eigenfunction expansion theorem and scattering theory.

In this section we shall show that the eigenfunction expansion theorem
furnishes a useful tool for the study of certain problems in scattering theory.
We shall consider here briefly the two problems mentioned in the introduction:
the problem of existence and completeness of wave operators W’+ (associated
with a pair of Schrodinger operators H = - 4 + V and .Ho = - d ), and the
problem of existence of the scattering matrix S(k).

As was mentioned in the Introduction, the first problem was studied by
many authors. Among the various solutions given to the problem the
following solution was given recently in [4].

THEOREM 7.1. Let JT== 2013/)-[- V be a Schrddinger operator with potential V
verifying condition (5.15). Then the wave operators :

exist and are complete. -
We shall indicate here a proof of Theorem 7.1 which is based on the

eigenfunction expansion theorem. For reasons of brevity we shall not give
here a self-contained proof of the theorem, but rather make use of the fact
that the theorem is well known in case V has a compact support.

PROOF OF THEOREM 7.1. The proof of existence of wave operators is

elementary. It is given in Kuroda [11]. In this connection it should be ob
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served that condition (5.15) (or even the weaker condition that V is of class SR),,
implies that

I I

which is the condition in [11] ensuring the existence of wave operators. We
also remark that the proof of result follows easily from the formula

which holds for f E and from the observation that

for f lying in some subset of D(Ho), dense in 
Next, let ~7, be the generalized Fourier maps associated with H, defined

in Theorem 6.2. We shall establish the formula

Y the ordinary Fourier map. Since by Theorem 6.2 the operators are

isometries from E2 (RII) onto L2(Rn)ac’ the relation (7.2) will imply in par-
ticular that the W± are complete.

To prove (7.2) we approximate V by a sequence of potentials {Vj},
j = ~, 2, ..., defined by

We consider the Schrodinger operators H; = - 4 + V,, and denote by Wi::t:
the wave operators of the pair (H,, J?o)’ We denote by the generalized
Fourier maps which correspond to H,, and set :t’* 5~-. We shall show
that the following relations hold.

It is clear that these relations imply (7.2).
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Now (i), which is the relation (7.2) in case V is a bounded function with
a compact support, follows from the results of Ikebe [5]. To be precise,
Ikebe considered in [5] only Schrodinger operators acting on functions on R3.
However, given Theorem 6.2, the extension of Ikebe’s results to Rn is imme-
diate. We shall not repeat Ikebe’s argument here (see also [23], [2] and [22]).

The proof of (ii) is elementary and is based on the estimate (7.1 ) . We
refer to [2], p. 301, for a complete proof.

We shall prove (iii). Let f E L2 0 (Rn), and let g be a function in .L2(Rn)
such that Yg has a compact support in (JW the null set (5.16’ ) ) .
Recalling the definition of we have

where x(x) is the characteristic function of supp Yg. From Theorem 5.2
it follows (using (5.53) together with the definition of Y, f and that

Hence, combining (7.4) and (7.5) we get

Since (7.6) holds for all pairs (f, g) such that f belongs to a certain dense
set in L2(Rn), and g belongs to another such set, it follows by continuity
(since Ui, are isometries) that (7.6) holds for all f and g in .Lu(Rn). This

yields (iii) and completes the proof.
Next we establish the existence of the scattering matrix for the class of

Schr6dinger operators with potentials verifying (5.15). In this generality
the result we prove seems to be new.

THEOREM 7.2. Let H be a Schrodinger operator with potential V veri-
fying (5.15). Let S = W+yY_ be the scattering operator of (H, Ho) (yD’+ the
wave operators introduced in Theorem 7.1). Set ~S Then there exists

an operator valued f unction 8(k), defined for k E and taking values
in the class of unitary operators on L2(~) (~ the sphere Iwl = 1 in Rn), such
that the following relation holds :

for f (k, c~) E .L2(R~), where the equality (7.7) holds in L 2(f) for almost all k.

(Here k, ware polar coordinates of ~).
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The operator valued function 8(k), called the scattering matrix, has the

following properties.

Then 8-(k) is a compact operator for any k E 
has a distribution kernel s_(k, w, (o’) given symbolically by

where is the generalized eigenfunction of H defined in Theorem 5.1.
Here the symbolic representation (7.8) has the following meaning. For any two

functions and h(oJ) in L2(f) , and for every 

where 0’ and 0’ are defined by (5.17).

PROOF. For a Schrodinger operator with a potential V which decays
rapidly at infinity the theorem is well known. In particular the theorem
is known to hold if TT is a function with compact support satisfying (5.15)
(see for instance [2]). In this case it follows also that 8_(k) is an integral
operator

with a continuous kernel s_( k, w, w’) given by the right hand side of (7.8).
(To be precise, when V has a compact support it follows from the results of [2]
that 8_(k) is a well defined integral operator only for k E where F

is some unspecified closed set of measure zero in R+ . However, y using the
explicit form of the kernel, it follows readily from our results that the kernel
is well defined by (7.8) for all k E From this it follows that

8_(k) admits an extension as a continuous operator valued function to the
whole of R,Be,(H)!.)

In order to prove the theorem in the general case we shall (as in the proof
of Theorem 7.1) approximate V by a sequence of potentials {Vj} with compact
supports, defined by (7.3). We shall consider the sequence of Schrodinger
operators Hj = - 4 + denoting by WjI the wave operators of the pair
(Hj,H0.)

14 - .Annali della Scuola Norm. Sup. di Pisa
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We set Our first observation is that

Indeed, from the proof of Theorem 7.1 (or rather from [2], p. 301) we have

From (7.11) it follows, taking adjoints, that

Hence, combining (7.11) and ( 7.11’ ) we find that

Since Sj and are isometries, it follows from (7.10’) that (7.10) holds.

We shall now use the fact that Theorem 7.2 is known to hold for H~~ (see
previous remarks). We denote by the scattering matrix associated
with Hi and set ===72013§~). By the theorem applied to H, it fol-
lows that Sj-(k) is a continuous function on with values in

B(.L2(~), .L~(~)). For a fixed k, S;_(k) is a compact (actually integral) oper-
ator on L2(1) such that

for any two functions geum), in vhere

(Here ~~_(x, ~) is the generalized eigenfunction which corresponds to g~ by
Theorem 5.1). Inserting in (7.12) for 0’ its expression (5.18) (or (5.23)), we
find that the bilinear form associated with admits also the following
representation:
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where R;(k2) stands for the boundary value of the resolvent of Hj at k2
(defined by Theorem 4.2; Je2.-s) for s &#x3E; 2 ).

We have

where (7.13) holds uniformly in g, h and k, for g and h in the unit ball of
L2(.E) and any compact set in (observe that, by The-
orem 4.3, is well defined on K for all j sufficiently large).

To prove (7.13) we recall that the multiplication operators V and V~~ are

compact operators from Je2.-so(Rn) into for some (since TT(x)
is a function of class ~SR~. Moreover, by (4.28) we have

We also note that by Lemma 5.2 (see also remark which follows the lemma)
the function øg(x, k) belongs to Moreover, the following estimate
holds :

for and where C’o is some constant. From ( 7.14 ) and (7.15)
it follows that

uniformly in g and for I
we get

From (7.16) and Theorem 4.3,

uniformly in g and k for and Combining now (7.12’), (7.16)
and (7.17), we obtain ( 7.13 ) .

The above considerations show in particular that the right hand side
of (7.13) is a well defined bounded bilinear form on L2(Z) for every fixed k.
Hence, for every k E there exists a bounded linear operator in
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which we shall denote by 8-(k), such that

We define ~(1~) = I - ~_(l~), ~ E R~Be+(H)2. We shall show that has

the properties of the scattering matrix described in the theorem.
Now, it is clear from the definition of 8(k) and (7.43) that

where (7.19) holds uniformly in k on any compact subset of Since

is a scattering matrig, having the properties of Theorem 7.2 with respect
to it follows from (7.19) that, for each k, the operator 8(k) is unitary
and that 8(k) - I is compact. It also follows that the map: k --~. 8(k), is a

continuous map from into B(.LJ(~), L2( I-v)). Next, applying (7.7)
to we have

for any f E Lz(Rn). Letting j it follows from (7.20), (7.19) and (7.10)
that (7.7) holds for 8(k). Finally, combining (7.18) and (5.18) we find that (7.9)
holds. This shows that 8(k) has the desired properties and completes the
proof of the theorem.

Appendix A.

In this appendix we shall establish the a-priori weighted estimates (4.4)
which had a crucial role in our proof of the validity of the limiting absorption
principle (given in section 4). As a matter of fact we shall go here beyond
the needs of the present study and shall establish analogous weighted esti-
mates for the class of operators P(D) - z where P(D) is a differential oper-
ator of principal type and z is a complex parameter. As was already men-
tioned in the Introduction, the estimates which we shall give here could
be used to extend the spectral and scattering theory results of this paper to
self-adjoint realizations of higher order elliptic operators, as well as to certain
non-elliptic operators of principal type.
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Let P(D) = P(D!, ..., be a partial differential operator with constant
coefficients of order m, acting on functions on Rn. We denote its principal
part by Pm(D). The operator P is said to be of principal type if

.P is said to be elliptic if

Clearly an elliptic operator is also an operator of principal type.
WTe shall say that a number z E C is a critical value of P if there exists

a ~o E Rn such that P(~o) = z, grad P(~o) = o.
We shall denote the set of all critical values of P by Ac(P). If P(~)

is a homogeneous polynomial of degree&#x3E;2 thenAc(P) consists of the single
point fOl. In general we have the following

THEOREM. The set of critical values is a finite set.

For a proof of this theorem see Milnor [16], p. 16 (Corollary 2.8).
We shall establish the following

THEOREM A.l. Let P(D) be a differential operator with constant coefficients-
of order m and of principal type. Set m’- 1n if P is elliptic, m’- n’t - --L

be a set in and let s &#x3E; 2 . The following
estimate hol ds

for d~c E Jem (Rn) where C is some not depending on z or u.

RElVIARK 1. Theorem A.1 when specialized to the operator 
is Lemma 4.1.

REMARK 2. One can prove the following sharper form of Theorem A.I.
Let {~: C, dist (z,  61. Then for any given s &#x3E; 2 and
6 &#x3E; 0 there exists a constant C = Cs,a such that

for Vu and Vz E 

We reduce the proof of Theorem A..1 to he proof of certain lemmas. The
first lemma is an elementary inequality.
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LEMMA A.1. Let

holds :

The following inequality

where

PROOF. We set

We may assume without loss of generality that f E Ll(R) (otherwise
00 and (A.3) holds trivially ), and that Re l 0. Solving (A.4) for u

we get

From (A. 5) it follows that

Multiplying (A.6) by ( J and integrating on R, we obtain

This yields the lemma.

LEMMA A.2. Let P(D) = P(D1, ..., be a partial differential operator
of order m. Then for Vu E Jem(Rn) and any given s &#x3E; 2 1, the inequality
holds :

where c, is the constant (A.3’).
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PROOF. We shall prove (A.7) for j = 1. We write P($) = P(~1, ~’),
~’ _ (~2’ ..., ~~} . For a fixed ~’ we denote by j = 1, ... , v(~’ ), the

roots of P(~1, ~’) in ~1 taken according to their multiplicity. We have

where the Q, are polynomials in ~1’

Let, now, and write = u(x1, x’), x’= (x2, ..., xn). We denote
by u(x1, ~’ ) the Fourier transform with respect to the variable x’ . Using
the relation (A.8) it follows that for any with v{~’) &#x3E; 0,

We shall apply now Lemma A,I to the function = i

taking /t=~,(~). From (A.3) and (A.8’) it follows that

Combining (A.9) and (A.10), we get

for any $’ with v(~’) &#x3E; 0. Since (A.11) holds trivially when v($’) = 0, we
have (A.11 ) for all $’. Integrating (A.11 ) with respect to $’, using Parseval’s
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formula, we find that

This proves the lemma for 

To complete the proof of the lemma we observe first that (A.12 ) holds
also for any function u with compact support in Jem(Rn). This follows

readily from the result just established and from the fact that such u is

a limit in of a sequence of functions uk E such that the Uk
have their supports in some fixed ball. Next, we choose a cutoff function

with ~’(x) = 1 for and set ~’k(x) _ ~(1~-lx). By the above
(A.12 ) holds for Letting it follows readily that (A.12 )
holds also for e+. (In the last step one assumes without loss of generality that
2  s c 1. ) This establishes the lemma.

LEMMA A.3..Let P(D) be a differential operator of principal type of order m.
Set m’ = m -1 otherwise. be a 

and let s be a real number. The following estimate holds

for and where Os is a constant not depending on z or u.

PROOF. Since P is of principal type it follows that there exist positive
constants C and Ro such that

Since we also have
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Hence, it follows from (A.14 ) and (A.14’ ) that with a possibly larger con-
stant C, we have

for all eERn and If P is also elliptic it follows further that with a.

different constant C we have

for all EeRn and 
Let now be a function in 3etn(Rn) with Fourier transform ic(~). Multi-

plying both sides of (A.1~) ((A.15’) if P is elliptic) by ]ti($) 12 and integrating-
on Rn, using Parseval’s formula, we find that

for Vz c- K where y is a constant depending only on n and m (here and in then
following 11 - II denotes the norm in L2(Rn)). This proves (A.13) for s = 0.
To prove (A.13) in the general case fix a real s and introduce the family
of weight functions es(x) on Rn, defined for every ~&#x3E; 0 by ee(x) _ (1-~- 
Observe that

for where Ca are constants given by

Observe also that if Q(D) is a differential operator with constant coefficients
of order k, then

for Vu E Jem.s(Rn) and V8 such that
pending on ~) . Indeed, we have

(K is some constant not de-
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where the Qa are certain differential operators of orders c k - ~ . Combining
(A.17’) and (A.16) the estimate (A.17) follows.

Let now Applying the estimate (A.13) for s = 0 proved
above to the function we have

for Vz c- K (C some constant depending only on P and K). Using (A.17)
for Q(D) = D’, Q(D) = P(D) - z and Q(D) = P~’~(D), it follows from (A.18)
that for any and 081,

where .K1 and K are constants not depending on 8 or z. Finally, y choosing
B = min (lf2K, 1 ), it follows from (A.19) that

for all u E and z c- K. This implies (A. 13) and completes the proof
of the lemma.

We pass now to the

PROOF oF THEOREM A. 1 . and let X be a compact set in 

By Lemma A.3 there exists a constant C-, such that

for all By Lemma A.2, we have

for all Hence, combining (A.20) and (A.20’), we get

for all u E Jem(Rn) and z E 3B,. This yields (A.2) and establishes the theorem.
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Appendix B.

In connection with Theorem 3.2 we establish here the following more
general result.

THEOREM B.1. Let F(x) be a real C°° f unction on Rn such that F(x) =1= 0

for I x ~ .Ro , and which satisfies

for all multi-indices a; Ro and C,,, certain constants. Set r = {x: F(x) = 01.
Assume that r is not empty and that grad 0 for x E F, so that r is a
smooth compact n -1 dimensional manifold in Rn.

Let now u(x) be a f unction in Jes(Rn), with s &#x3E; 2 , such that u(x) = 0 on r
(trace sense). Then,

and

where C is a constant depending only on F and s.
We note that Theorem 3.2 is an easy corollary of Theorem B.1, with

F(x) _ ~x~z - k2, using also the following well known result (e.g. [15], Ch. 1 ).

LEMMA B.1. Let a(x) be a bounded C°° function on Rn such that

sup 1 00 f or Va. Then the map : u ---&#x3E;. au takes into itself for
x

every real s. One has

where c, is a constant depending only on a and s.
The main step in the proof of Theorem B.1 is given in the following

LEMMA B.2. Let u(x) be a f unction in with s &#x3E; I. Set u(x) =-
== u(x1, x’), X’ =- (x2, ..., xn), and assume that u(O, x’) = 0 (trace sense). Then,
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and

~ 

where ys is a constant depending only on s.

PROOF. Consider as a function of x, with values in .L’(Rx~ 1).
It is well known (e.g. [15], Ch. 1) that u(x1, . ) is a Hölder continuous func-

tion satisfying

where c, is a constant depending only on s. Since u(0; ) = 0, we have

which implies that

Next we show that u/x1 E Jes-1(Rn), assuming first that 2c is a function with
compact support. Set

and note that by the preceding f is a function with compact support in L1(Rn).
Taking Fourier transform, it follows that f($) and K($) are C°° functions on Rn,
tending to zero as -~ 00, and satisfying

We shall use the following inequality due to Hardy. Let g(t) be a continuously
differentiable function on R such that g(t) - 0 as t ---&#x3E; ± 00. Then for any

s&#x3E; 2,

(One proves (B.5) by integration by parts, noting that when the right hand
side of (B.5) is finite then g(t) = o( ~ty-2S+1) as t --~. ~ (0).
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We shall write and shall apply (B.5) to the

function g

If it follows from (B.6) and (B.4) that

which gives the desired result in the case considered. If s &#x3E; 1, an applica-
tion of (B.5) to g(t) == f(t, ~’) with s = 1 gives

Multiplying (B.7) by (1 + ]$’ ]2)S-i and integrating with respect to ~!, we find

Adding (B.6) and (B.8) it follows that

where ys is a constant depending only on s. This yields (B.3’) and establishes
the lemma for u with compact support.

To prove (B.3’) in the general case, be a cutoff function

(~?) === 1 for and set Uj = = 1, 2, .... and

by the result just proved r1 and the corresponding in-

equality (B.3’) holds. Letting j - oo it follows readily (since Uj ~ u in

JeARn) and ujlx1 - ulx1 in that E and that (B.3’) holds.
’This yields the lemma.
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A somewhat more general form of Lemma B.2 is the following

and

where ys is a constant depending only on s and g.

PROOF. By change of coordinates: yl = xl - g(x’ ), i for ~i = 2, ..., nr
one defines a C°° = of Rx onto R~ . By a well
known result (e.g. [15], p. 94) the map T*: - is an isomor-

phism of Jes(Rn) onto itself for every real s. The conclusion of the lemma

follows now immediately from this result and from Lemma B.2 applied to
the function in R~. We give now the

PROOF oF THEOREM B.I. Using a partition of unity and Lemma B.1
it is readily seen that to prove the theorem it suffices to show that for every
point y E Rn there exists an open neighborhood Py such that the conclusion
of the theorem holds for all functions u satisfying the conditions of the

theorem and having their support in Uv, and also that the same is true for
a neighborhood of infinity U_ = {.r: .Ro~ . (The constant C in (B.2 )’ may
depend on U’II.) To prove this result suppose first that y is any point in Rn
such that y 0 1~’. In this case let Uv be any open neighborhood of y such
that T’ = 0. Using a cutoff function we define a function a(x) E 
such that a(x) = 1 /T’(x) for x E U,,. Since ulF = au for any u E with

supp u c U~, it follows from Lemma B.1 that ujFEJe,(Rn) and that

where C is a constant independent of u. One sees similarly that (B.10) holds.
for all functions u E JC.,(R,) with supp u c ..Ro~, Ro chosen sufficiently
large.
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Finally, y let Since (grad F) (y) # 0, we may assume without loss of

generality that 0. By the implicit function theorem it follows
that in a sufficiently small ball the function .F ad-

mit s a factorization

where G E C°°(Ba), G # 0 in B~, and where h(x’) is a C°° function of x’ for

 3. Set Ua = {~:  3 j2) and choose functions a(x) e 
and such that a(x) = 1 /G(x) in Ua, and g(x’) = h(x’) for

!~2013~~!~/~’ For with supple U~, we have

If in addition u Ip =- 0, it follows from (B.ll) upon application of

Lemma B.2 bis and Lemma B.1 that ulF EJeS-1(Rn) r’1 and that (B.2)’
holds with a constant C depending only on a, g and s. This completes the
proof of the theorem.

Appendix C.

We give here the proof of Lemma 5.1. Set 

It is readily seen that Lemma 5.1 is implied by the following local regularity
result.

THEOREM C,I . Let u(x) be a function in Je2(B1). Suppose that u verifies
the differential equation

where q and f belong to L2(B1).
Suppose also that there exists a number 0 0  0  1, and positive con-

stants Q and F such that
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Then u. is a Holder continuous function in For every 0  r  1 the fol-
lowing estimate ho lds

where v is a positive constant depending only on 0 n, and Or is a constant
depending only on 0, n and r. Here

We also have

PROOF. It suffices to prove (C.3) since (C.3’) follows from (C.3) and (C.1)
by the interior .L2 estimates for solutions of the Laplace equation. For con-
venience we shall assume that ~&#x3E;3. With an obvious modification our

proof is also valid for n = 2.

Suppose first that the restriction to B~ (0 C r c 1) is in for

oo. Then ive claim that u E with PI &#x3E; p, PI  o0

given by

where 6 is a positive number depending only on 0 and n (one may take
2 ~ = 8/ (n - 8 ) ) . Moreover, for any we have the estimate

where C is a constant depending only on 0, n, r and r1.
Assume for a moment the validity of the claim just made. Then, since

,u E L2(B1), it would follow from the above that u with 1 /po =
- (1/p - 3)~ , and that for any 0  a  1

If oo, we apply again
cluding that u E LP1(Ba2) with and that
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Iterating this argument at most vo = [1/25] + 1 times it follows that u is

bounded in Combining the successive inequalities (C.6), ( C.6’ ), ...,
setting ay° = r and noting that r may be any number  1, we conclude
that u is locally bounded in Bl and that

where 0,. is a constant depending only on r.
Turning to the proof of (C.5), we denote by the fundamental solu-

tion of - zl = with yn = 4 T’(n/2 -1 ) ~-n~~. We introduce the
two functions:

Using (C.2’ ) it follows readily that is a bounded function in B1 satisfying

where c is a constant depending only on 6 and n. Also, using (C.2), it

follows that

for almost all x in R1. Since lu(y) B2 E LV/2(Br), and since Ix¡-n+20 E L1/(1-2a)(Bi)~
with 25 = 0/(n - 0), it follows from ( C.10 ) applying Young’s inequality that
Vr E LPl(B1) with I1p1 = (lip - 6), and that

where cl depends only on 8 and n.
Set It follows from (C.1), (C.8) and (C.8’) that hr is

harmonic in Br, so that in particular Using a standard esti-
mate for harmonic functions, together with (C.11) and (C.9), we find that
for any r:

15 - Annali della Scuola Norm. Sup. di Pisa
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where c2, c3 depend only on

Finally, since
and

it follows from the above that u E More precisely, combining (C.13),.
(C.12), (C.11) and (C.9) we obtain (C.5), as claimed.

We have already shown that (C.5) implies that u is locally bounded in B¡.
To show that u is Holder continuous we use the following

, LEMMA. Let

where g is a f unction in L2(B1) such that

Then, and

where co is a constant depending only on 0 and n.
We omit the proof of the lemma which follows by a standard potential

theoretic argument. To complete the proof of the theorem we use again the
decomposition ( C.13 ) . Applying the above lemma we see that wo is Holder
continuous of order 0 and

Also, by the same lemma applied to vr it follows that vr e CO(B1). More pre-

cisely, taking note of (C.8’), (C.7) and (C.2), we find that

Combining (C.13), (C.12), (C.14) and (C.14’), it follows that u E CO(B,) and
that (C.3) holds. This establishes the theorem.
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