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BOUNDARY VALUES FOR SOBOLEYV - SPACES
WITH WEIGHTS. DENSITY
OF p(@ IN w;, ., @ AND IN B, (@

FOR s>0 AND »— s..%]’

by HANS TRIEBEL

1. Introduction and results.

Let € be a bounded domain in the Euclidean n-space R, with smooth
boundary. d@€ €. We consider the SOBOLEV-SLOBODEOKIJ-spaces W, (2);
§2>0;1Tp<<oo;

Wo@ = (f1/eD" @), [l = 2 [ D°f|l, < oo
P ja|=<s ?

for 8 = integer,

W@ = {717 @, 17,0 =
1

| Do f (@) — D f(y) |? ? )
=”f“Wp[’]+|a|2=[a1( j | @ —y [rtise dwdy) <°°§
axe

for s = integer, s =_[s] -+ {s} with [s] integer, 0 <C{s} << 1. D’(®) denotes
the complex distributions over €. We have a similar definition when we
replace € by R, or an other bounded or unbounded domain. It is well-known
that W, (®) is the restriction of W, (R,) to @, and the norms || f ”W; o 80d
inf || /]|
Few, (By)

~

fw)y=f(x) for xeQ

8
W, (Rp)

Pervenuto alla Redazione il 24 Novembre 1971.



74 H. TrieBeL : Boundary Values for
are equivalent. Further we consider the LEBESGUE — spaces or BESSEL —
potential-spaces H, (®). The definition of H, (R,), s >0, 1 <p < oo, is
-t
H) (Ry) = (f|f€8 (Ra)y g =F 7 (1 +|&[)? Ef € L, (R)}

11 gy =191 ey

with

8’ is the set of tempered distributions. F is the Fouriertransformation. F—1
is the inverse Fouriertransformation. H, (®) is defined as the restriction of

H, (R,) to @,
A1, inf || 1]

H, (@) s
FeH, (By

f@)=F(@ for zeQ.

L
Hy (By)

If s an integer, so holds H,(Q) = W, (Q).
Let fe W, (®) or fe H, (Q), s>%. Then

0 . 1
Xifl30 = 6v{ € L, (0Q) for 0§J<8—?

v =1y, denotes the normal vector in y € oQ (See [10] or [12]). For a real
number o we set

o. = [a]~ + [a}t with [&]~ integer, 0 < (a}t < 1.
For s >—;— we define

. 1=
WP’YO '~!7'r(9 fIfEVV ’ijla[)::();oéjé 8_?] =r£’

and in the same way H, ',,0,,,,,” (®). Further we write V%; @) (1%; (Q)) for

the completion of D (®) in W, (?) (Hy (?). D(®) is the set of all complex
infinitely differentiable functions with compact support in €. ‘

1 -—
THEOREM 1. Let s > 5— and r = [s-— l] . Then holds
p

8 o $
Wy oo (@) = W7 (@)
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and
s (%
HP! Yoroo ¥r (9) == Hp (9).

For s = L holds
p

s A s o3
Wp (@) = W, (Q) and H, (Q) = H, Q).

For p =2 the result is known and proved by LioNs and MAGENES [6].
For 1 << p < oo, p == 2, the result for the W-spaces is also known for the

1
«non-singular » cases s —?=|=integer, see LioNS-MAGENES [8]. For the
H-spaces in the non-singular cases see SHANIR [14]. The density of D (®)

in W, (?) and H,(®), s<%, is also known and proved by LioNs and

MAGENES in [7]. In [7] is also a proof for W,?(®) — W2?(®). The author
1
is unknown if the problem for the singular cases s ——? = integer is sol-

ved. In the book of LioNs and MAGENES is it remarked as a problem ([6],
problem 18.3, p. 116). We give a proof including the singular cases. The
considerations show that the main part of this note is concerned with the
singular cases, the considerations for the non-singular cases are simple and
more or less an appendix to the singular cases. Our main tool is a com-
parsion of the W spaces and the H-spaces with special SOBOLEV-spaces
with weights on the background of interpolation theory. So we carry over
the singular cases for W-spaces and H-spaces to singular cases for SOBOLEV-
spaces with weights. After solving the problem for these spaces we return
to the W-spaces and H-spaces. Now we describe the needed SOBOLEV-spa.
ces with weights.
We set
M={rv|o=,., e)ER,, 0 < ax, <1}

For 1 <p< oo, an integer I; 1=1,2,...; and a real number «; 0=
=o=Ip; we define

n 8xl

Py ={ 1707 OO, £l = || 22 5|, 41715, < oo
»

Py qp i8 a BaANAOH-space. With spaces of such or similar type are concerned
many papers in the last years, see the collected papers in [20], especially
the papers of DEABRMLOV, Ju. 8. NixkoL’sk1J and USPENSK1J. We refer
also to [1]. The boundary values on the hyperplane |z, = 0} are known.
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But for selfcontainedness we shall develop the needed results. We set

Mt=iz|weR,, 0 <a, =1}

and denote with 131, . p the closure of all functions f€ Cm(ﬁ ) with compact
support in M+, Further we need an interpolation method. We use the
K-method, developed by LioNs-PEETRE [9] and PrETRE [13] (See also [2]).
Let B, and B, be two BANAcH-spaces with B, < B,. Then we set for
u€B, and t > 0

K (t,w)= K (t,u, B, B,) = inf
u=uo+u;

u, € By

and for 0<C0 <1, and 1 = p = oo,

(g llm + 2wy [lm);

o 1

de\»
(Byy Bylo,p = {u|u€By, ||[u|e,= (/(t—oK(t, u))P _t—) < 00% .
0
(For p = co we have to change the definition in the usual way). (B, B,)s.p
is a BANAcH-8pace and ||u|le,, i8 a norm.
THEOREM 2. (a) Let 0 <0 <1, and 0 = o, = &y < lp. Then holds
(Prap, p* Pra1, 20,0 = P, ax1—6)+a,6, p -

(by Let 0 =a<lp—1. For a function fE€P,,, the expression

aif . o+ 1
m(w); 01— | 1; has boundary values on the plane
n
{x | 2y = 0} lying in L, (Ra._,), and
a+1
- [ZT] —1 | a]’f 0 -
2 ' @(-’L“ y eeey Tn_1, 0) Ly(En_p =0 ”f”Pl, «,p

(¢ does not depend on f).
(¢) Let 0 = o <lp — 1. Then holds
oif

j
or)

o
Pl.c,p=§fif£Pl,u,p)

=0 for ogjg_z—[“jll—lt.

Tp=0

For Ip —1 =< a < lp holds
[¢]
Plap=Pieyp-
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The most difficult part is the proof of (¢) for the singular cases i=in~
p
1
teger — — .
p

First we prove theorem 2. On the basis of this result we prove theo-
rem 1.

Interpolation theory and the method for the proof of theorem 1 lead
to a sharper result than theorem 1. For description of this result we
introduce the BESov-spaces

By (@) = (L, (), W, (R))s,q,

l integer; 1=1,2,...;5 0<<O0<1; 8=01l; 1<<p<Too;1=qg=<o0. It
is possible to describe the norms of By, (2) explicitly, but we do not make
it, see [11] or [19]. (For the domain M, q¢ = 2, and s = integer see formula
(33). In the general case the norms have a similar structure). Now we can

formulate a result which is sharper than theorem 1. We denote with 103;,1(9)
the completion of D (2) in By, (2).

THEOREM 3. (a) Let 1 <p<oo; 1<K q=oo. For 8>% holds

«

Os ) 87 . 1]-
By (@) = f|fEqu(9);ijSQ=O§J=07---,[3—?] E

For 0 <s < —11;— holds
08 8
Byq () = By, (D).

(b) Let 1< p<<oo. For s‘;% holds

3if

O s . 1
Bp.l(9)= flfeB.l(Q)yav_j aa=0§1=0:-"7[8—?]§'

For 0 <s <L % holds

08 8

BP, 1 (ﬂ) = Bp’ 1 (Q}.
Theorem 3 is sharper than theorem 1 because

B;), min (2, p) (9) c .H; (9) (= B;, max (2, p) (ﬂ)
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and
B;,, min (2, p) (9) c W; (9) < Bs, max (2, p) (9)-

1
The singular cases & = integer | ? are the most interesting cases. The

results for the non-singular cases follow immediately from theorem 1. For
fixed p the spaces B;q with 1 =< ¢ < oo are very « near » to each other in the
sense of interpolation theory. From this point of view the difference in (a)
and (b) for the singular cases makes clear that the question of boundary
values and approximation in these cases is delicate.

The motive for the considerations in this paper is the following. In [18]
we show that the spaces W, (®) and H, (?), s > 0, are isomorphic to I, or
L, ((0, 1)). Especially they have a SOHAUDER-bagis. With help of theorem 1
follows in an easy way that the spaces Vciﬂ,’ (2) (and lo-T; (®), s>0, are

complemented subspaces of W, (2) (and H, (2)). So they are also isomorphic to
l, or L, ((0,1)), and they have also a SOHAUDER basis.

2. Proofs.

2.1. Density property for the spaces P, ,,. We want to show that the
C ~-functions with compact support in M are dense in P ap; 1=1,2 .3
0=a=1Ilp; 1<p<oo. We choose a function x(¢) with

ZOE0=(0,1); 0=zM=1; zl)=1 for 0=t=—.
We set w(f)=1— y(t). Let be we P, ,. Then holds
2L @)U (@) EP 0y and (@) u (@) € Wy, (M)
By this holds
1 g o'f o'f
Wha O = |71 Ly e il WSl =17l + | 55

j

(’I.‘he existence of 530_1'("’ u) and the estimate
n

diypu

ox)

= 0==j=1
Ly_ G”u”W;""n(R"‘lx(%'l))’ =I=0
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follows from the well-known theory for the spaces W} (@, b))). But we can
approximate y (x,) u (x) in the desidered way in Wl,,cn (M) and so also in
P g p. So we may agsume without loss of generality

UEP 4p, u(@=0 for xeM, 0xn<zx, <1.

We set u(¢)=0 for 2, =1. For 1 —% >0 >0 is

!

Ug (4) == U (®y ooy Tn—1, ¥n + B) € W, , (M).

It is not hard to show

usg(w)—u(x) in P,, for &}0.

On the other hand we can approximate u; € Wl,,n (M) in Wl',,'l (M) (and so

also in P, ,) in the desired way. This completes the proof.

2.2. Proof of theorem 2 (a).

1. 8TEP. First we consider the special case o,= lp, a, = 0. For
J€P, iy, we want to show

(1) K2 (@, fy, PiLip,py Pio,p) o

c\:f [min (a2, tr)
ir

oo means that we can estimate the right side of (1) by the left side with
help of a positive constant (independent of ¢} and vice versa. That the
right side of (1) is smaller than the left side (with help of a positive con-
stant) is clear. We have to prove the opposite direction by a « good »
decomposition of f in f=f,+fi, fo€Piipp and f,€P, o ,. We assume

r

i) -+ min (1, t?) | £|?| da.

7
ox},

_ 1
that f is C>~-function with compact support in M. For - <t<<oo we set
f=11, and f, = 0. Then follows the desired inequality.

For 0 <t = —;— we need a special construction. On the basis of the

well-. known HARDY inequality [4]

@) f v () |Pprdp = ¢ f | v® (p) |2 pat#i dp, w(p) € 0= ([0, co0)),
0 0
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a>1; 1< p<ooj; follows with help of SOBOLEV’s inequalities [15]
1 1 1
[lamirao=e( [1wv@1epman+ [ 1) do)s wweo=qo,1).
0 0 ,—L
1

Approximation shows that (3) is true for w€ W;((O, 1)). We return to the

1
cage 0 <t = - and set #’ = (v, ..., %n—y), and @ = (¥’,2,). We choose

J (@) for <o, <1
= (= 1y 5
Ji(@) 21 (o — 1M1 97 f

v - 7 2. 1 " tlﬂ
Z i1 6901( ,tUhy for 0 <@, <<

Jo (@) = f(x) — fy (). It holds f, € W;,‘m(M ). With help of (3) follows

4) K2t f)=c(]|fo “1%, wp +t7 |, ”1131. o,p)

-1
éc’f[min(wff’,tl’) |f|1’\dw+c’t? 3 [
=0
i

n—1

»
g f(w t‘“)( dx’.

Using SOBOLEV’S embedding theorems for the intervall (0,1) (see [12] or
[15]) we find

(5) flafx tl/l

(4) and (5) lead to the desired inequality. This completes the proof of
(1) for C-functions with compact support in M. K (¢, f, Prip,p, Py 0,p) and

(1_2—l/l)+tl[l

e T2

n—l

1
the — — power of the right side of (1) are equivalent norms in Py ,. Now

the pronf of (1) for f€ Py , follows from 2.1,

2. STeEP. We prove theorem 2 (a) for @y = Ip snd a, = 0. (1) shows

”f||£’¢,;p,,,.P,,0,p\,9'P th-epf [min (wif,tl’ -+ min (3, t?) | f|? dw——
b i

LAk
o,
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We compute the right side in a completely elementary way. It is equal to

b 4

8‘f
o | %

n

c[|f|1’ dw—}—c’fxif(l‘e)
by b7

by suitable choice of the positive constants ¢ and ¢’. But this proves theo-
rem 2 (a) for &, = Ilp and a, = 0.

3. STEP. The full proof of theorem 2 (a) follows now from the reitera-
tion-theorem of interpolation theory [9] and the special case of the second
step.

2.3. Proof of theorem 2 (b). Let u(f)e ¢~ ([0,1]), o a number with

1 1
0 = ap’ <1, where p’ is determined by ) +§,— =1, and ¢t €[0, 1] with

1

w(t') =[u(t) dt.

0

(We assume without loss of generality that w(¢) is real, so that #’ exists).
Then is
1

=
=c te?
0

Using HARDY’s inequality (3) and SOBOLEV’s inequalities [15] we find

tl
a d
iumw=|—f§m+uw> Lt e a
0

dky |?
L

1
(6) lu(O)Il’écf(t” -+|uyp)dt,

0

¢ is an arbitrary number with
p -
0=o <17—{—(k-——])p—kp-1.
If f(x) a C-function with compaet support in M then follows form (6)

(@', 0) =c ”f“l’z,a,p

H 3 f

oxd
n

p'Ru—l

6. Annali della Scuola Norm. Sup. di Pisa.
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with
0=<a<(k—jp—1.

This leads to theorem 2 (b) for C-functions. The full proof follows from
the density property 2.1.

2.4. Proof of theorem 2 (e).

1. STEP. A trivial consequence of theorem 2 (b) is

if 1
M Brapclf1fePray, 2L =0 for 0§j§z—[°-‘i]—1}.
Oa/'}. 2p=0 r

2. STEP. For the proof of the opposite direction we start with a re-
mark. Let f be a function of the right side of (7). 2.1 shows that we find

O *-functions ¢y ; k=1,2,..; with compact support in M with
or—>fin P4, for k-— oo.

Then follows from theorem 2 (b)

— [“i‘l] -1

» Ln o c?k (mly 0)

lr=(o— 5 mZueo)
3=0 J n P, ap,p
- [2H] )
z 67:?10 (w’s 0)

=\f— +e¢ 3 AR LA Rl —0
= ”f Pr ”Pt, ap,p =0 ‘ 8.7011‘ Ly(By_q)

for k — co. But this shows that it is sufficient to approximate C-functions
f with compact support in M and with

®) 81

oxJ
n

(m',0)=0;j=0,...,l—[“+1]_1;

by C-functions with compact support in M+,

3. STEP. We prove theorem 2 (¢) for the non-singular cases o == integer
1

7 In this case we can use standard estimate technique. We use a set

1
of functions %, (t); 0 < A < 5 with

(e Co(0,1]); %=1 for 0<t=<A,

Li)=0 for 2a=<t=1, || =<cr",
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(¢ independent of A). Let f be a C>-function with compact support in M
and with (8). For the proof of theorem 2 (c) it is sufficient to show

9) (L—%)f—f in P,ap for A0,

For this it is sufficient to show

(10) M[ ae

We set m =1— [%] Now it is

xe
n
M

pY:
ot

P
(Z,,,f)» de—0 for AjO.

24
1] 1 .
L wmnparses / f .
" 0

j=0

oif|» ,
(—9;,{7) dx dwn

Bp—1

21
i . , m—1 . .
= / S wr AP da, + o 3 [ ap Ao gl dy,

j=m J=0

21
<o f R T T S
= n n —
0

for A0 because oo +1 — (I —m)p > 0.

4. STrp. We prove theorem 2 (c¢) for the singular cases . =1Ip — 1;
k=1,2,..,l. The estimate of the last step does not work because o -
+1— ({0 —m)p=0. We generalize the estimate technique developed in
[16]. Let f be a (¢ -function with compact support in M and with (8). Now
we have

|-

We write f(x) in the form

1) f@—ar L O

w1 a0 O F g (@) =2t b @) g (@)

For the function ¢(x) the estimate of the last step works (there we can
replace m by m - 1). So we can assuwme (without loss of generality) g(x)==0
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n (11), h(z") € D (R._1). For given e > 0 and B < 0 we set

o, (@ w)=(—cloga alFh(@); 0o, < el ' €R, .
It holds

ajgpa 8]'
— gf(— I3 n Y gk
(12) Gag (0) =< (— Tog e h (&) 5 0

n

+ ef b () 2l 2 bj,s (— log wa)f—2; 0 =j=1
=1

b;,s are constants. Especially we hawe

(13) % @’y e=18) = h (&) i]— xt -k 4+ k(') 0 (e 1/s0—k—D)
Bw}l ! (9“/'1{ " :tn=e*1/'

for 0 < j <1— 1. o(x(e) is LANDAU’s symbol in the sense ¢} 0. We extend
the function ¢, (v) into the x,-intervall [e—1/*, 2 ¢~1/s] by the polynom in @,

(14) P, (% x,) =
=h(@)[@* 4+ (@, — 2 67 (a) (@n — ) - o + @ (@ — e—ta)l—1]

in such a way that

89 81 P,
(15a) 8.%1 @e (@', e71E) = 800,{_ (@', 1)
and
31 P, 07
(15b) W ( x’ 2 e—]/') = h (2’ ) — oz l_k |:t =28_1/‘
n n

for j=0,..,1—1 hold. We determine the coefficients a; by induction.
With holp of (13) and the definition of ¢, (x) we find

(16) a; = o (e!/s(x+D),
We set
@ (@, xn) for 0 <L ap =< e e
m) v, (07, o) = s (@, x,) for el @, < 2elle
J (@) for 2e Ve <, < 1

Then holds vy, () € Wpl, o (Bn—1 >< (8, 1)) for all § > 0. We want to show . (x) €
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€ Pl, a,p and
(18) I/ @) — w. @) lp,,,—> 0 for ei0.

For this purpose are the following three estimates are sufficient.

(@) From (12) with j =1 follows

/s —lfe
j wkp—1 %’% (@) ip Az < ¢ P / xl,, (— log a,) 76— du, = ¢ p—(l%ﬁ
0
() From (16) follows
ge—1le
/| P, (@) |? da, = o0 (1) + e"%ljl_: ol My o),
o—1e B
(¢) From (16) follows
ge—1e
kp—1 b, ¥ dx, = e__:—(kp_l) E] 0 (eg(kﬂ)) e_%j—% =o0(1).
" 3.1” j=1

This proves (18). Now we have to show the possibility of approximation
of ¢, (x) for a fixed = by C°°-functions with compact support in M+ in the
space P, ,. For this purpose we choose a number p with 0 << p <1 and
determine a polynom in wx,

1 1
Q.o (@) = h (@) wh T (by 4 by (@4 — € @) .o By (w0 — € @)1,

in such a way that

1 .

(x’ e—?ﬂ)——?up' (a’ e_:']-')' j =10 1—1

’ = ow y 0 J PRI y
n

07 Q5.0
ox]

holds. We compute the coefficients by induction. With help of (12) we find

i+1
(19) bi=0(pFee); j=0,..,1—1

By this 0 (¢(p)) is to understand in the sense pi 0, (¢ is fixed). Now we
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construct
1

‘ Qe o @) for 0< a,<le @
(20) Ne, 2 (¥) =

1
(w,(w) for e ¢ <z, <1.

Ne o (®) € Py ap. We want to show
(21) | e.e — 'P.HP,’,,,p—-*O for pi0, (¢ fixed).

We know w, € P, ,. Using (19) the relation (21) follows from

1

e @s

j | Q.o (@) |? dw, = 0 (1)
0

and
-1
e @¢
. L »
[wff“ Tyne ;2;;9 (@) | dwn, =0 (1).

0

(18) and (21) show that the functions %, . (%) approximate f(x) in Pj,, ,
But for the functions %, ,(«) the estimate technique of the third step works

(we may replace m by m - 1). It follows that we can approximate f(x) by
1

functions % (2,) ~q, e(®), 2h < e €, in the sense of the third step. But
X1 (@) g, o (20) € W, .z, (M) and vanishes near the plane {«|x, = 0}. Such a

funetion we can approximate in W;,xn (M) (and so also in P4, by O
functions with compact support in M +. This completes the proof.

2.5. An embedding theorem. We go over to the proof of theorem 1. We

start with an embedding theorem and define W, (M) for s = [s] 4+ {s}, [s]
integer, 0 < {s} < 1.

Wi ey O = \FIFED A0, 1F1]e =117, +
by FIL »
aal @0 = Gpr @ %) 3
|t—c]1+:;>p dtdcd”’) <°°§'

Rll—-l fo, 11X{o0, 1]
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From the well-known fact (see [9] or [10])
(Ly (0, 1)), Wy (0, 1))o,p = W,* (0,1)),
k integer, 6k ==integer; 0 <0 <1, 1<<p<oo;
and the structure of the interpolationfunctional K (¢, ) follows

(22) (Ly (M), Wy, (M))o,p = Wy, (),
k integer, 6 k == integer.
Indeed, for a C*-function » with compact support in M is

E? (t, uy, Ly, (M), Wy s (M)) co

0% u,
ozt

e [(lmlr eyl o

u=’1:,0+u1
u, € Wp, z, (M)

»
)dx

1
= / inf /(]uo(x’, @) |2 A 7 | uy (@7, @a) |2 +

u(z’, xn)=uo('-t': xn)‘i'ui(m,v @p)
e Wp" (©©,1))
8% uy (@, )

k
awn

+ e

n—1

87

p) Awy da’ oo pr (&, u (@', ), Ly ((0, 1)), W;((O, 1)) dx’.
R,

Approximation shows that the first and the last expression in this relation

are equivalent also for u € L, (M). From this follows (22).
Now we want to prove

(23) Pyt p € Wpa,(M); 0=2=1 1<p<oo.

If » an integer this follows from the inequality (3) and the smoothness
property 2.1. If x == integer the result is a consequence of theorem 2 (a)

and (22).

2.6. The spaces W; @, (M). The completion of all O%-functions with

compact support in M+ in the space W, w, (M) we denote with W’; w, (M).
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We want to show: fe W, (M) belongs to Wy, (M) iff

(24) Of(/())=0 for j=0,...,[n—%]—,

(If x = % this means W, ay (M) = p, o, (M ))

1. STEP. It is well known that for a function f¢€ W;, w, (M) the opera-
tors 5w f have boundary values, j=20,. [x — %}—, and

[+ ‘]"

(25) |22

j=o

<0l|f1|

ax’ n )

holds. Indeed, this relation follows from one-dimensional embedding theorem

-
2

=0

Srw ol sclre,

W (w1’

[12], and an integration over R,_,. This proves that the conditions (24)
are necessary.

2. StEP. We assume f€ W, , (M) and (24) holds. In the same way as
in the second step of 2.4 we approximate f in W, , (M) by C>-functions
with compact support in M for which (24) also holds. (We used that the

O -functions with compact support in M are dense in W, v, (M)). So we
assume without loss of generality that f is a C°°-function with compact
support in M and (24) holds. Now it is easy to see

1 —
(26) [ __] =l_{°il_]_1,
b P
l integer, 1>, oa=p({—=x)
Then follows from theorem 2 (¢) that we can approximate f in Py, p, by

C=-functions with compact support in M+, Now (23) and (26) show that
the same is true in W, z, (M'). Hence (24) is also sufficient.



Sobolev-Spaces with Weights. Density ete. 89
2.7. Proof of theorem 1 for the W-spaces.

1. SteEP. Let f¢ V%; (®). With help of the usual method of local
coordinates and the embedding theorems [12], p. 291, follows

8if , 1
@7) T o= " J—O,...,[S ﬂ .

2. STEP. Let be f€ W, (2) and (27) holds. (27) is equivalent to
Drflyg=0 for |7|=lo— 2| .
»

We use again the method of local coordinates and the last relation. It fol-
lows that we can restrict the considerations to the case:

. 1 |
FEWS (D), suppfciz]le] > 5, 0 < <1

(28)
i, , : 1]~
= < 1< _—
axz(w,O) 0 for 0=]___[s p} .

With help of similar arguments as above we may assume that f is a C<°-

function with compact support in M. From the interpolation theory for
W-spaces and also from the theory of equivalent norms [5] follows for

(s} >0

@9 el colledl,
;- [ [ a]r
n—1 |‘93u olslu » tlp
_
+j£ l t—istp !a—xgﬁ(wl,...,évj__l,xj+t,wj+l,...,wn)-——a—w,['—sT 2z Lp(M)——t—]
: [s] olsl dt i'
dlslu Slu »
=82 || —— (@, @+ ) — — (@ ——] .
+[ f e = L1
0

The first and the last term together are equivalent to || u]|W;m from 2.5.

For {s} = 0 we have

n asu
w0 =lull, + 2 |

3 .
]=1 Bw ] Lp
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Now we approximate f in the sense of 2.6 by C°-functions ¢; with

compact support in M+ in the space W,f,xn (M). But the approximation-
method developed in the third and the fourth step of 2.4 and the explicit

expression for the norm in W, (M) show

If— o HWP,—>O for ¥k — oco.

For the method in the third step this is clear. For the method in the
fourth step also, when we take into consideration that we need only the
case «'—*. & (’). Further we may assume

1
supp ¢ C{w | |a | <o, @ > 0f .
This completes the proof.
2.8. Proof of theorem 1 for the H-spaces.

1. STEP. Let fE€ I?I,f (®). With help of embedding theorems [12] p. 420,
and local coordinates, follows again (27).

2. STEP. We consider the case 1 < p =< 2. Then we have
WS H, s S 7l

Let f€ H, and (27) holds. With the same method as above we show
that we can assume without loss of generality f€ C °°(§). But then we ap-
proximate f in W, (®) by functions from D (2). The last estimate shows

that this is also an approximation in H,. This proves the theorem 1 for
H, with 1 <p=<2.

3. STEP. The case 2 < p << co. Let feH,(®) and (27) holds. We
. — . 1
may again assume f€ C* (Q). If s == integer + — we can approximate f in
1 1
W;"" () for 0 <e < [s — ;] +1— (8 — -17) by D (®)-functions. The pos-
sibility of approximation in H,f follows from
Wyt (@) € H; (@),

. 1
If s = integer 1 we use again local coordinates and restrict the consi-
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derations to the case

f is O=-function with supp fc

1
ol <5y 0<m <,

j J—
O w0y =0 for 0<j=<|s——]|.
oai P

n

The considerations to the begin of the fourth step of 2.4 show that we can
restrict our attention to the case

1
(30) f@, @) =a. ? h(@’), h(@)€ D (Ru_y).

Now we use an one-dimensional embedding theorem. It is

(31) L, ((0,1) > W£((0,1), W, ((0,1)2 Wt (o, 1)),

. 1 1 .
with p = - = 7 [12]; 1 =1, 2,.... With help of (23) (one-dimensional case)
follows

Ly ({0, 1)) D Piyy, 90 41—0), 2 9 W; ((0,1)) @ Piyy;90-0),2 -
Theorem 2 (a) and the interpolation theory for W-spaces lead to
(32) B2 ((0,1) D Pyt sg—spr—er2 0<s <1

B; , are BEsov-spaces. For definition and interpolation theorems see [3,12,

1
17]. (See also formula (33)). With s =integer -}-% and p = —;— 7 follows

_[20—s4+1—p+1 _ .1 . 1]
l+1 2 —1=3s p—-l—[s p]'

1
Theorem 2 (¢) shows that we can approximate x; ? in the space
Piy1,20—s+1—0),2 in the desired way (one-dimensional case). But the re-

1
lation (32) proves that we can approximate w:_F also in the space
B}, ((0,1)) in the desired way. Now we go over to the space Bj , (M).
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From the interpolation theory for BEsov-spaces follows

33 u oo || u
83) 1wl oy ¥, o, +
- ls 3
n—1 EIOEY olslu 2 dt
ji:l [ ft 2{sf l o |-’] (xl, g Xj—1 4 X5 + t, Lgg1 geeey -’L'n) . —B—.IF x LP o) —t—
0
1 J 1
EIEIET 2 dat]?
+ [ ft—zg'” ” (-7/ y Ln + t [s] ( ) 7] ¢
J o, Lp(Rpy_y X(0, 1—1))

1 . .
In our case is ({s} =?. In the one dimensional case the first and the last

term of the right side together are a norm in Bj 5 ((0, 1)). This formula is
similar to formula (29). A repetition of the consideration after formula (29)

leads to: Each function of type (30) we can approximate in Bj 3 (M) by
(¢ ~-functions with compact support in M +. It holds

By, (M)c H, (M),

[12]. From this follows the possibility of approximation in the desired
way in H, (M). This proves the theorem.

1
2.2. Proof of theorem 3 (a). Let s:[:integer—i-})—. Then the theo-

rem follows immediately from
Wy @ e B (@ W™ (@), >0,

. . 1
theorem 1 and similar arguinents as above. Let s_—:mteger-{—?. That

[}
for a function f€ Bj , the conditions (27) hold follows again from the em-
bedding theorems [12], p. 291. Now we assume f€ B,, (?) and (27). Similar

considerations as above and

B;’»m(ﬂ) c B;,qz(ﬂ) for 1= =g =0

show that we can restrict our attention to B, ,(®) with 1 < ¢ < p. Now
we generalize (31) and (32) and find

L, ((0,1)2 W0, 1), W, ((0,1)2 W0, 1)
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11
with p=— — = [12]; 1 =1,2,..;
p q p [ ]7 = ’

B;q ((0’ 1)) o Pl+1' q(l4+1—p—3), q 9 0 < s < 17

(one-dimensional case). Further we have again

8§ — —
q

R ey
b

The rest is only a repetition of the arguments of the third step of 2.8. (The

norm of By, (M) we can write in the form (33) after replacing the number
2 by g).

2.10. Proof of theorem 3 (b), Again we can restrict our attention to

the singular case s = integer 4 % . Let fe By, 1(2) and

o1f . 1 1
(34 I T e et ¥

From
w2t @B, (@, 0<e<],

and theorem 1 follows f¢ 102;,,1 (®). We have to show that (34) holds for a

o
function f€ B;,l(ﬂ). For this purpose we prove a special one dimensional
embedding theorem. Let C(*([0,1]) the HOLDER-space,

C* ([0, 1) = {f|fDe0([0,1]) for j=0,..,%}, #x integer,

Cx (0, 1) =1 f|FD € 0([0,1]) for j=0,..,[x];

| £ (@) — £ () |
B !

sup
@y
x, y€(0,1)

x == integer, with the usual norms. Is 0 <e <1, and ! an integer; =
=1,2,..; then holds (one-dimensional)

1 1
+1 et L
oW, 7, oW, 7,

[12]. Interpolation leads to

1 1 1
= -5+ — et — +61
Qe+ol o (Oc’ O‘—H)O,l = (Wp‘ P, W]P s p)O,l =B .°? .
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This proves
1

(35) 0 728,

1
for 8 > -;— We need the relation (35) also for s =?. For this purpose

we introduce the subspaces

By =(f|feBp1, F(O)=0}, s>

1
"17 3
and

O = {f|f€ 0, f(0)=0}, 5>0.

(In the same way we define VV; ) It is easy to see that the operator
Af =j’ leads to an isomorphic map from C' (W;) onto ¢! (W;—l), where
l is an integer; 1 =1,2,....

By interpolation follows that A4 is also an isomorphic map from 0"

onto ¢* ' and from B), onto By7' for x> 1. Now we can prove (35) for

1
the limit case s = . For gEBIfl is

1
¥

loll x Zell a7 gl 2zl 4= glp= e g0

b4
Bpll Bp,l

o . 1 .
¢, ¢, ¢’’ positive numbers. This proves (35) for s = — . We counsider a -

function with compact support in M. With help of (35) and the explicit

norm of By, (M) (we have only to replace in (33) the number 2 by 1) fol-
lows

1
" 2, 0) =ollllF@, ). |
j=o || 0%} LyRpy) Bp,1 (0, 1) EptFn—)
! o [s]
1o s f ol f dt
< ft_1s§!_x’w + ) — (@', -
=, | aa:ggl( v ol 7 ) Ly (0,1—)

+ @ ) Iz, w0,

vy (R'n-—-l)
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1
otf sl f at
J lef] y n aa,.lf] Lp(Rn._]X(ovl—ﬁ) t ”f”Lp(M)

é e’’’ ”f”B; L) ¢

From this relation with help of the method of local coordinates follows

(34) for a function f€ 103;_1 {2). This proves the theorem.

H. Triebel
Sektion Mathematik der Universilit
69 Jena - Universititshochhaus
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