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ON LOCAL IMAGES OF HOLOMORPHIC MAPPINGS

A. T. HUCKLEBERRY

1. Preliminary Remarks and Examples.

There are many known results concerning images of holomorphic map.
pings. The following is a brief summary of some of these. Let X and Y be

analytic spaces and

be a holomorphic mapping. will be an analytic set in Y if f has one
of the following properties :

(a) is compact for every compact KeY [14,8].
(fl) For every y E f [X ], there is a relatively compact neighborhood of

y, U, and a compact set so ~T [11 ].
(y) ~’ is pure dimensional, and for every x E X, f -1 [ f (x)J has cons-

tant dimension [13].
The theorem associated with condition (a) will be called the proper

mapping theorem, (fl) the semi-proper mapping theorem, and (y) the constant

fiber dimension mapping theorem. We remark that  (ex). (y) is only a
local theorem in the sense that for every x E X, there is a fundamental

system of neighborhoods of x whose images are analytic sets.

Unfortunately the above theorems are not applicable in some important
cases. This is particularly true in the case of algebras of holomorphic func-
tions. For example, one would like to give necessary and sufficient condi-

tions for a point in a Grauert scheme to have a neighborhood which is an

analytic variety [7, 12]. This is equivalent to characterizing local images of

holomorphic mappings. Furthermore, it would be interesting to know exactly
when local holomorphic images of analytic varieties are not analytic varieties.
Knowing this, one might be able to define the smallest category of sets

Pervenuto alla Redazione il 14 Luglio 1970.
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with analytic structure which is preserved under holomorphic mappings.
We prove here a theorem giving necessary and sufficient algebraic condi-

tions for a map from one 2-dimensional complex manifold to another to be

locally open at a point. A conjecture for the n-dimensional version of this

theorem is outlined in the last section.

Let ~’ be a neighborhood of the origin in G2. Suppose

is a holomorphic mapping with

where f and g are holomorphic functions which vanish at the origin. Let

0 be the germs of holomorphic functions at the origin in (t2. Define F~‘ [0]
to be the pull-back of 0 by F and Q [F* [0-J] its quotient field.

DEFINITION. Let F be as above. F is said to be subflat if and only if

If F = ( f, g), where f and g are polynomials, we replace 0 with the sheaf
of germs of holomorphic rational functions at (9, the origin.

Note that subflatness is equivalent to the property that every holo-

morphic solution of the equation for arbitrary non-zero H1 and

H2 in F* [C)], must again be in 1~’~ ~~J. This condition is implied by, but is
weaker than, the condition thato is flat over ~’~ [0]. The comparison with
flatness is carried out in detail in the last section.

DEFINITION. Let F be as above. F is said to be open at the origin
if and only if there is a fundamental system of neighborhoods 
the origin with F [ U.] open for every a E A.

Open mappings on analytic spaces are well understood. In fact, with

.Y pure dimensional and Y locally irreducible, f : X- Y is open if and

only if f has constant fiber dimension m - p where dimension X = m and
dimension Y = p [13]. We will refer to this as the open mapping theorem.

At this point it is relevant to look at several examples.

EXAMPLE. Let

be defined by
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F abviously does not satisfy any of the conditions mentioned above. This

is rightly so as F ~~2~ is not an analytic set at the origin. This follows

from noting that F [G2] = G~ 2013 ~ where S = Hz, w): z = 0~ ~ =)= O~.
We remark that F is not subflat as g/f E Q (F* [C)]) n O - F* ((~J.

EXAMPLE. Let

be defined by

Again, F does not satisfy any of the conditions for the image to be an

analytic space or open. We remark that F is suMat. It can be shown

that F is open at the origin. We do this explicitly here to indicate the

difficulty of such a calculation in this particularly simple algebraic case.

We wish to show that F (z, w) = (zw, z (w2 + z)) is open at the origin.
This is equivalent to showing that the system

has small solutions for values of x and y prescribed small enough. If x === 0,
1

then we take w = 0 and Z = y 2. For x =1= 0, we substitute u’ = in (1.2)
and get

If zo is any solution of (1.3), then

Thus

or

Thus

Take zo to be a solution of (1.3) with maximal absolute value. Since the

product of the absolute values of the roots of (1.3) is equal we have
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Taking Wo = X/zo 9 we have

and

Since equations (1.1) and (1.2) are satisfied by F is open at the

origin. We remark that the calculations for many other examples are more
difficult than the above. This is due to the fact that the equation which

is obtained by eliminationg one variable is not so simple as (1.3). It is not

necessarily true that every solution of that equation tends to zero as x and
y tend to zero. For this reason, one must be cautious when choosing the

appropriate root.
Such examples as these lead us to conjecture that .~ is open at the

origin if and only if .~ is subflat. This, in fact, is our main result.

Parts of this paper were contained in my Stanford University disserta-
tion, which was directed by Professor H. Royden. I wish to hank him for

many helpful conversations. Also, I thank Professor A. Andreotti for sug-
gesting that I make a comparison between flatness and subflatness.

2. A Necessary and Sufflcient Algebraic Conditions for Local Openness
at the Origin.

For F = ( f, g), a holomorphic map of the type considered above, denote
by Jx ( f, g) the jacobian of ( f, g) at the point x. We say that F is of generic
rank 2 if Jx ( f, g) ~ 0.

THEOREM. Let IT be a neighborhood of the origin, 0, in G2 and

a holomorphic mapping of generic rank 2. Suppose = 19. F is locally
open at 0 if and only if F is subflat.

We note that if F does not have generic rank 2 then the theorem is

false. However, it is only relevant to discuss case of generic rank 2, as

J ( f , g) = 0 trivially implies ~’ _ ( f ~ g) is not locally open.

PROOF OF THE THEOREM. If F is not subflat then there are non-unit

germs of holomorphic functions at the origin, gi and H2, so that
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where f and g are germs at the origin of f and g respectively. Without
loss of generality we may assume that HI and .g2 are relatively prime.
Taking representatives of the germs in (2.1), we have

where h is holomorphic in some neighborhood of 0. If F were locally
open at 0 then we could choose V, an open neighborhood of 0, such that

By 1) there would be a p E W such that F (p) E (H2 = 0) - (Hi = 0). We
would then have

But this is contrary to 2). Therefore F is not locally open. Hence, F locally
open at e implies .F is subflat. The proof of the converse is given by the
following remarks and lemmas.

Since the theorem is local in nature, we may restrict our attention to

as small a neighborhood of the origin as we like. From here on, U will

denote such a neighborhood, no matter how small we have taken it. We

remark that since C) is a unique factorization domain, we may write

and

where P and Q are relatively prime. Thus there exists a neighborhood U
and representatives of the above germs so that

where P and Q are relatively prime on IT [8].
Let



452

We remark that Za? (F) is a subvariety of U of dimension 0 or 1. Since P

and Q are relatively prime, they can only vanish simultaneously on a

discrete set. Thus if R is a unit at the origin, then

If (2.2) is the case, then the semi~continuity of dim .Lx (F) gives dim Z~ (F) = 0
for x E U where U is taken sufficiently small [8]. In this case, F is in fact

an open map on ~T [13]. We thus assume that R is a non-unit at the origin.
Let Since g is 1-dimensional, its singular points

are 0-dimensional and thus discrete. Hence, we may take CI small enough
so that g has at most the origin as a singular point and is connected. Let

,Y == f x E = 0). 92 is a 1-dimensional sub-variety of g. If x E II is

such that dimx Lx (F) == 1 then x E g. Thus .Lx (F) c g as a subvariety.
Hence Zx (F) must contain one of the irreducible components of g and as

a result contains the origin. Therefore, dimx Lx (F) = 1 implies .F’ (x) = 0.
Since dimx Lx (F) = I for every x E we have

By the semi-continuity of dim,, (F) and the constant fiber-dimension

mapping theorem, we conclude that if dim,, lx (F) = 0, then F is open in
a neighborhood of x. From this fact and (2.3), we see that

where V = F [ U - is an open set in G2.
We say that 0 is an isolated boundary point of V if and only if it

is not an accumulation point of the boundary points of V. If O is an
isolated boundary point of V, then we can take B to be a small ball with
center at the origin so that

Thus B’ = B - (0) satisfies

B’ is connected. V n B’ and are disjoint open sets covering B’.
B’ fl V# 0. Thus B’ c V. As a result,

and F is open at the origin.
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As a consequence of the above remarks we will have proved the
theorem if we show that if F is subflat then the origin is an isolated boun-

dary point of F [ U - 

DEFINITION. Let p, q E IT where U is prepared as above. We say that

p and q are associates (denoted by p co q) if

or

LEMMA 2.1. If F is subnat then every is an associate of 0.

PROOF. Suppose p and 4 are not associates. Then for S and T suf-

ficiently small disjoint neighborhoods of p and 0 respectively, we have

for every’ E S - CR and t E T - 92. There exists a 1-dimensional complex
line j6 through p such that En % = [13]. F has fiber dimension equal
to zero on J2. By the constant fiber dimension mapping theorem, there
exists a neighborhood of p, S’ such that and is a 1 di-

mensional subvariety containing 19 in an open set Q in (t2. For notational

purposes, take S’ = S. Let e be an irreducible component at the origin
of S) so that =) ..e n S. Then

where g is a prime holomorphic function which vanishes at the origin.
By taking 8 and T small enough, we may assume that ~[~]~[T] 

We now restrict our attention to T. Let

Then c)) is a sub variety of T containing the origin. We have F (s) ~
~ for every s E S - Of¿ and t E T - 92. We claim that for every t E flfl,
F (t) = 0. This follows by noting that if there exists t E ev such that F (t) ~ 0,
then F (t) E S) - ~]. Hence, there exists s E such that

F (s) _ .~ (t). But F (s) ~ F (t) for every s E S - c)2 and t E T201392. Thus on
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T, .B(,f’, g~ = 0 if and only if R = 0. Hence for N large enough,

is holomorphic in a neighborhood of the origin. Thus

are elements of Q [F* f1 O.

Suppose

Then

where Hi (s, t) is holomorphic in some neighborhood of the origin.
Thus

where

is holomorphic in some neighborhood of the origin. If Ai is not a function

Of 8 alone, then we have a non-trivial analytic relation

which involves both f and g. This can only happen if J (f, g) == 0, which
is not the case. Thus A1 is a function of s alone. We apply the same

argument to q2 with the result that there are holomorphic functions A2
and 112 so that 

. I ~,-, ....... -,

and gN - A2 ( f, g) = 0. Hence A2 must be a function of t alone. But

Thus H is a unit. This is absurd. Thus, F* [0] + 0 and
F is not subflat.

In the case that f and g are polynomials it is enough to show that
g can be taken to be a polynomial. This will follow if (~ is an algebraic
variety. But this is indeed the case as it is the image by a polynomial
map of a complex line.
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LEMMA 2.2. Let A be the algebra of polynomials in f and g where
f and g are holomorphic on Uc G2 (U, f and g taken as above). Let 92 be
as above, and {92a}:=l be the irreducible components of 92. If A’~ is the

quotient field of A, then there exists an open neighborhood of the origin,
II’, contained in U and q. = 17 ... n, with qa having at most the

origin as a point of indeterminacy and having discrete level sets on 

{(0, 0)).

PROOF. Recall that 92 has at most the origin as a singular point.
Each being irreducible, has the property that cRa - ((0, 0)) is a con.

nected 1-dimensional complex manifold. Thus, if we can construct qa which
is holomorphic on ((0, 0)) and takes more than one value on C’f2a-
- ((0 0), then its level sets must be discrete.

As before,

where P and Q are relatively prime.

where the .Ra are prime and

It suffices to construct ql , as the construction of the other q’s is the

same except for taking ~’ smaller.

Since P and Q are relatively prime, Ri does not divide both P and Q.
Thus either (P= 0) n CR1 or ( ~ = o) n CR1 is discrete. Hence, without loss of
generality, we assume that U’ has been chosen small enough so that

Now, let p E - {(O, 0)). Since is regular away from the origin,
we may take Ri as the first of the coordinates at p. By a holomorphic
change of variables in a neighborhood of p and translation to 0, we write

and

where f, and g1 are holomorphic near and gi are taken to have no

factors of z. Since f vanishes only on ckl near p, f, is a unit at 0. We
desire to construct a quotient of polynomials in f and g which is holo-
morphic in a neighborhood of the origin, and is not constant on (z = 0).
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If g1 is a non-unit at 0, the proof is complete as 91 (z, w) = g’ (w) +
+ zgl’ (z, w) where g’ (0) = 0. In this case,

Since fi is a unit, q is holomorphic, and

is non constant.

Now suppose g is a unit. Let Q be the subset of A* the elements
of which can be written as in the above coordinate system with u

being a unit. Let qo = zd u be an element of Q with minimum positive
exponent of z. There are integers s and t such that

where u is a unit and k is the greatest common divisor of d and n.

k  d and

Thus k = 0. Hence n = ki d and

where ul is a unit. If ui (0, w) = ai is constant, then

where h is holomorphic in some fixed polycylindrical neighborhood of the

origin, Jy and is not divisible by z. Thus

where all functions mentioned are holomorphic in L1 and z does not divide

ql - We now repeat the above procedure for instead of f. Suc-
cessively applying this procedure, we either get a quotient non-constant
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on (z = 0) at some stage or

formally.
Since we have assumed that g1 is a unit, we can apply the same pro-

cedure as the above to g with the result that we either complete the proof
by finding a quotient which is non-constant on (z = 0) or

formally. However, (2.4) and (2.5) cannot simultaneously hold. This follows

by noting that in this case, J ( f, g) is formally identically zero, and thus
the Taylor expansion at the origin of J (f, g) has all coefficients zero. As a

result, J ( f, g) _--_ 0, which is contrary to our assumptions. Hence, there is
a quotient qt which is holomorphic at the origin and non-constant on (z = 0).

In our original coordinates, we have constructed an element of A*, I

which is holomorphic in a neighborhood of p and is non-constant on *

Let (? be the polar set of qt. Since q, is holomorphic near is

discrete. Now

is a connected 1-dimensional complex manifold. q, restricted to M is holo-

morphic on M and is non-constant on M in a neighborhood of p. Thus q,
has discrete level sets on M. We take U’ small enough so that CRt n
n (6P u ((0, 0))) = ((0, 0)), and q, has at most (0, 0) as a point of indetermi-

nacy in Z~’.

For notational purposes, denote U’ in the above lemma by U.

COROLLARY 2.3. For p # ~, let Sp = ~2u E 0). Sp is

discrete.

PROOF. For p E U - this is clear as F is discrete fibered at such

points. If p E 9?? then Sp c 92. In this case, let w E Sp . Then w E Cf2i for

some i. Thus, by Lemma 2.2., there exists qi which is holomorphic in a

neighborhood of w, W, and qi has discrete level sets on can be

taken small enough so that qi takes the value qi (w) on 9~ f1 W only at w.
p cu av implies that there exist sequences ~w,~~ and ( pn) contained in

U - Of(, converging to p and w, respectively, with Since qi
is a quotient of relatively prime polynomials in f and g and is not indeter-
minate on U - Lf2, qi (wn) = qi ( pn). Due to the fact that qi is not indeter-

6. Annali della Scuola Norm. Sup. di Pisa.
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minant at p and w, it is continuous at these points, and thus

Further, if w’ E W n c)2i is an associate of p, then by the same argument
as above,

Thus

and w = w’.

LEMMA 2.4. E l7 and oo w. Assume that there are rela-

tively compact disjoint neighborhoods N, and Nw of p and iv respectively
such that there are no associates of p in Nw other than wand no associa-
tes of p in Np other than p. Let c be a sequence which con-

verges to p. Then there is a sequence [Wnk) C U - C’f2 which converges to
w with

PROOF. then w E U - ck and F is an open mapping near p and
w. F ( p) = F (w) = a. We may take ,Vp and Nw as above and such that F [Np] =

= Q is an open neighborhood of a. We may assume that E f)

for every n. Let avn E Nw such that = F (pn). Let’ (wnk) be a subsequence
of which converges to w’ E Nw. Thus F (p) = F (w’) and p ru tv’. Hence,
by assumption, w’ = w. (wnk) is therefore the desired sequence.

Suppose p, w E Since P :’BJ w there are sequences c Np - % and
it,,) c Nw - LR with F (s~) = F(tn). Now F (Np - LR) = (Jp and F (Nw - LR) =
Dw are open sets, each having 0 as a boundary point. Let S~ = Qp n 

Let Np = ft Np and Nw = [Q] f1
n Nw. Np and Nw are open sets having p and w, respectively, as boundary
points. 

’

Suppose f1 (Np - ~) -~ p. Then F (xn) E &#x26; Q C a 
U a · Since ..~ (xn) E Qp, F · Now, a SZw = 3~ C ~’ [&#x26;Nw].
Thus for every n. Since aNw is compact, there is a sequence

c aNw such that Ynk - w’ E aNw and F (ynk) = F Thus w’ cu p.

Therefore, by assumption, w’ = w. But w’ E aNw. This is contrary to Nw being
a neighborhood of w. Thus no such sequence can exist. We conclude

that the boundary points of Np which are in are bounded away
from p. Let T be the interior of 92. By the above remarks, T is an

open neighborhood of p.
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Let c II - ~ be any sequence converging to p. We may assume

that ( pn) C T. Since 0, ( pn) Thus c: £2 c F ~Nw].
Hence there exists c Nw such that Let be a sub-

sequence of which converges to w’ E Nw. Thus w’ (’B.j p. By assumption,
w’ = w.

COROLLARY 2.5. Let W be a neighborhood of 0 such that W cc U.

Suppose pEa tV and p co 0. Let ( pn) c a w - Cf¿ be a sequence converging
to ~. Then there exists w E W n 92 and a sequence c W - ~ conver-

ging to w with

PROOF. If 8p n W =F ø then we are finished as Corollary 2.3 gives the
neighborhoods required in Lemma 2.4 for the construction of such a sequence
converging to any given w E Sp Il ». If Sp tl W --. 0 then p has no associa-
tes in W other than 0. Nr is again given by Corollary 2.3. We may take

No to be any open neighborhood of 0 such thatyg fl Np = . We again
apply Lemma 2.4.

The proof of the Theorem is now immediate. Assume that ~’ is subflat.

Thus, by Lemma 2.1, every p E 92 is an associate of 0. Let IT be prepared
as above and W be any neighborhood of 19 such that W cc U. By a pre-
vious remark, it is enough to show that 0 is an isolated boundary point
of Suppose this is not the case. Then there exists a sequence

(an) e aF ~ W - such that for every n and ~ 0. Since

there is a sequence (p.) c=~[~201392] with

0, pn E c U - 92. By taking a subsequence we may
assume that converges to p E a W. Since a" -+ 0, F ( p) = e. Thus p E 92
and therefore is an associate of 0.

By Corollary 2.5 there is a sequence c W - ck with - w E W

and

But F is an open mapping near each w,,, . This is contrary E

E aF [ W - c)?]. Thus 0 is an isolated boundary point This

completes the proof of the theorem.
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3. Flatness and Subllatness.

In this section we wish to compare flatness properties of a mapping to
subflatness. As we will show, flatness alone can be of little hel pin proving
local openness theorems. However the similarity of the two properties gives
us hope that the algebraic and fanctorial tools of type used by Douady
[3,4] in the flat case can also be utilized in the subflat case.

We begin with a review of terms. All rings will be assumed to be

commutative with 1.

DEFINITION. An A-module .E is said to be A-flat if for any other A-

modules, ~" and F, such that

is exact, it follows that

is exact.

Note that, since ® is a right exact functor, E is A-flat if and only if
.E ® sends short exact sequences of A-modules into short exact sequences
of A-modules.

is exact, where a (x) = 2x. However, 1 ® a : Z2 @ Z -+ Z2 @ Z is the zero
mapping. This suggests that flatness and torsion might be related. Indeed,
there is a, strong tie between flatness and the « Tor » functor [1].

The following proposition [1] clarifies the meaning of flatness.

PROPOSITION 3.1. A necessary and sufficient condition for B to be a

flat A-module is the following: Every solution (Yk)lSkSn formed from elements
of E, of a homogeneous linear system of equations

with coefficients cki A, is a linear combination
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with coefficients bj E E of solutions (zjkhSkSn of (3.1) formed from elements

of A.

From now on (X, and (Y,Oy) will denote reduced, locally irreduci-
ble complex spaces.

DEFINITION. Let ’ : X -- Y be a holomorphic mapping and c5 an ana-
lytic sheaf on X. c5 is said to be F-flat at p E X if cSp is a flat F’" 

module. F is called a flat morphism if (X is -F-lat on X.

This ends our review.

Recall that the main observation which is needed to prove the 2 dimen-

sional local openness theorem is that a mapping is not locally open only if
there is a non-discrete analytic variety in the complement of the image set.

DEFINITION. Let I~’ : X --~ Y be a holomorphic mapping. F is said to
omit a variety at p E ~ if, for a sufficiently small open neighborhood, U, of

p, there is a non-discrete analytic subvariety T~ in a neighborhood S~ of

F (~) such that 
Our general .philosophy is that F is not locally open at p only if F

omits a variety at p. Of course the situation cannot be as simple as the
2-dimensional case in which there is only one possible interesting type of
set to omit, a 1-dimensional variety.

DEFINITION. Suppose F : ~-~ Y is a holomorphic mapping. F is said

to be subflat at p E X if for every prime ideal such that

dim F(jT)"&#x3E;0,

where (F* [I ]) denotes the ideal generated by F’~ [I] ] in 

We remark that in the 2-dimensional case this definition of subflatness

is the same as that in section 1.

CONJECTURE. Assume is a holomorphic mapping. Suppose
dim Xh dim Y and .F’ has generic maximal rank. Then, F is subflat at p if
and only if F is locally open at p.

Later on in this paper we will prove the «easy» direction of this

conjecture. In a forthcaming paper we will prove the conjecture under a

certain uniform semi-continuity assumption on the fiber dimension of .~ in

a neighborhood of p. We now prove that the conjecture makes sense on

the basis of previous heuristic remarks.

PROPOSITION 3.2. Let F : ~ --~ Y be a holomorphic mapping of generic
maximal rank. Then, F is subflat at p if and only if it does not omit a

variety at p.
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PROOF. We may assume that .~ and Y are subvarieties in open sets

of ~’~ and C- respectively. Assume that F = ( fi , ..., where each fi is

a holomorphic function on X. Furthermore we may suppose that is the

origin, y and fi (p) = 0 for i = 1, ... , m.

Suppose F omits a variety at Ðn. Let V be an irreducible component
of that variety at (9~ and I = (Hi’ ... , be the prime ideal of germs of

holomorphic functions on Y vanishing on V. By assumption dimem T~ &#x3E; 1. II
It is clear that

Thus by the Null stellensatz,

If F is snbslat at en there exist hij E and Ni E Z such that at every
point (Yt, ... , ym) E F [X]

Since dimen X ~~~ Y and F is of generic maximal rank, F [X] contains
au open subset of Y. Thus, (3.2) holds on all of Y. The right hand sides
of the in equations in (3.2) vanish simultaneously only at em. But the left
and sides vanish simultaneously on V. Since dime. this is absurd.

Thus F is not subflat at en.
Suppose F is not subflat at 0,,. Let I be a prime ideal which exhibits

this fact. Suppose I = ..., Hk). Thus there are germs xi E Ox, On and
HE such that

but the cannot be taken to be in If

at em then ..., g~) _ yi = 1. This is impossible, because (3.3) has
no solution in F* [Oy am]’ Thus

at @m . Hence there is an irreducible component, of V (I) such that

= N and dime. n V (g)) C N -1. By the usual dimension

arguments [13] there is a complex subspace P containing 0m such that
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Since dim8m Vi y

+ + 1, n P) ~ 1. Let V= vinp. 
= pn (Vi n v~ (~ )) _ ~ (19.).

Let U be a neighborhood of en such that (3.3) holds on U. For u E U,
implies F (u) E ( ). Thus Therefore F

omits V.
The following is the easy&#x3E;&#x3E; direction of the conjecture.

PROPOSITION 3.4. Let F : ~--~ Y be a holomorphic mapping which is

generically of maximal rank. If F is locally open at p then F is 8ubflat at ~.

PROOF. Suppose F is not subflat at p. Assume I = (Hi , ,.. , gk) is a

prime ideal which exhibits this. Then, for some we have

where xj E and [Z]. If F is locally open at then HE id loc (I ) =

_ ~~I = I, since I is prime. This is contrary to H o [I]. Thus .F’ is

not locally open at en.
We now procede with our comparison to flatness.

PROPOSITION 3.4. Let F : X--~ Y be a holomorphic mapping. Suppose
there is a coherent sheaf c5 on a neighborhood U of p E X such that cS is

F-flat at p. Suppose that the support of cS contains an open neighborhood
of p. Then F is subflat at p.

PROOF. Frisch [5,6] proves that the set of points in IT at which c5 is
F-flat is the complement of an analytic subvariety in U. Thus, since c5 is

Fflat at p, c5 is F-flat on a neighborhood of p, U’. We might as well as-

sume that supp U’.

Douady [3] proves, under the above assumptions, that F is an open

mapping on supp c5 n is F-flat at x). Thus F’ is an open mapping
on U’. In particular, F is locally open at p and Proposition 3.3 implies
F is subflat at p.

Note that F a flat morphism implies F is subflat follows easily from

Proposition 3.1. To see this let (g1, ... , Hk , c ©m and
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where E Ox, 8n’ By the flatness assumption

and

where zli E F* ali E Oy, 0. and

For some 1 (say I = 1), must be a unit. Thus for 1

satisfies

Since yi E F* [0]y ~’ is subflat.

Next we point out that flatness alone can be of little help in the cases
of real interest. For simplicity we restrict our remarks to mappings from

en to ~n .

DEFINITION. Let be a holomorphic mapping, where U is

an open set in (tn. A point a E ~l is said to be exceptional if dima La (~)~ 1.
It easily follows, as in the arguments of della Riccia [2], that if a is

exceptional then there is a neighborhood W of a such that (a) n U : F

is locally open at ui n To prove any kind of openness theorem

for F at a E ~T using the F-flatness of a coherent sheaf cS, supp c5 must

have interior. Since the support of a coherent sheaf is an analytic set,
supp c5 must contain an open neighborhood of a. If c5 is F.flat at a then

supp c5 n ju E U : c5 is F-flat at u) contains a neighborhood of a. Thus F is

an open mapping at a. Hence a is not an exceptional point. Thus flatness

alone is of little use at exceptional points.
In section 1 we gave an example of a map from G2 to G2 which is

locally open at an exceptional point. Since no coherent sheaf with support
on an open set can be F-flat at an exceptional point, this is a 2-dimensional
example of the converse of Proposition 3.4. being false. We conclude this

paper with an example of this phenomenon in Gn. This example is a gene-
ralization of an example of della Riccia [2].
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EXAMPLE. Let F: Gn - en be defined by F = ..., where

For n odd, F is locally open at en. For n even, F is not locally open at

Define .~’ : by PI (!í, for i =1, ..., n-1
and = X2 ... xn . For n even, F’ is locally open at en.

PROOF. We first consider F and n odd. Let Sr be the sphere with

radius r and center On in Let 0  8  1 and (yl , ... , yn) E S..n . Consider
the equations

These imply

Let s be the symmetric polynomial in k variables taken j at a time, s (ti , ...

i i

..., tk) = ¿til ti, ... tij. The last equation of (3.5) can be written
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Let x- be a solution of (3.6) with maximal absolute value and C a univer-
sal positive constant independent of s. Then xJ ~ C ~ B1/n and

Let

Averaging the above estimates and using the convexity of the square root,
we have

Note ..., = I ~, ... , for all complex numbers À..

Thus, for + ... + y,i-1 12 = r2, f (y1, ..., &#x3E; r. M, where ~1 is the
minimum of f on the unit sphere in ~’~-1. f = 0 if and only if Yi = ... _

= o. Thus M &#x3E; 0. Hence, on Ben n ( E’2 , It is
1 

easy to show that Thus (3.5) and these estimates prove that

1

(~~..~~)~B~~ the ball with center en and radius OE2. Hence F is lo-

cally open at 
If n is even then the term in (3.6) involving yn combines with one of

the symmetric polynomials in the other variables. In this case F is not

locally open. For example, when n = 4, the variety defined by (Yi - Y2 , Y4 --
- ( - Y1) Y1 , 2Y1 - is omitted. If we modify F by changing fn to j§§
where f~ (x1, ... , x~,) --- x1 x2 ... xn , then everything remains the same except
the last term of (3.6) is changed to Yn x~-3. Since n is even, there is no

combination with the terms involving the symmetric polynomials. Thus
the same arguments as the above go through and F’ is locally open at 6~ .
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