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OESARI-WEIERSTRASS SURFACE INTEGRALS
AND LOWER k-AREA

J. C. BREOKENRIDGE

This paper contains a discussion on existence, representation, and con-

vergence theorems for Cesari-Weierstrass integrals over continuous lc-dimen-
sional parametric surfaces in n-space. Theorems of this type were first pro-
ved by Cesari [3] for 2-dimensional surfaces in 3-space. The present theo-
rems extend those of Cesari and are, for the most part, consequences of
the general theory of quasi additive set functions. This theory was formu-
lated by Cesari [6], [7] and has been further developed by Nishiura [14],
Warner [18], ( 19], and the author [1].

We consider surfaces having finite lower k area in the sense of Rad6

[16] or, equivalently, finite Ge6cze k-area in the sense of Cesari [5]. After
summarizing a few definitions and well known results in Section 1, we

turn, in Section 2, to various hypotheses under which C-W integrals and,
more generally, quasi additive set functions are currently being introduced
in surface area theory. It is shown that these hypotheses all lead to the

lower k-area functional and, more generally, to equivalent C-W integrals.
The size of the class of surfaces to which each hypothesis applies varies,
however, and it is shown that the class recently introduced by
Nishiura [15] is the largest. In particular, R* (k, n) contains the class T * (k, n)
which leads to the Geocze k-area. The Geocze and low~er k~areas coincide,
of course, for surfaces in T* (Ic, n), and when k S 2 or k = n every surface
of finite lc-area belongs to T ~‘ (k, n).

In Section 3 we show that C-W integrals over a surface in R* (k, n)
can be represented as Lebesgue integrals with respect to an area measure
and Radon-Nikodym derivatives induced by the surface. The measure, R N

derivatives, and representation coincide with those studied in [4], [8], [14],

Pervenuto alia Redazione il 10 settembre 1970.
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[10], and [2] in case the surface belongs to T* (k, n). The area measure has
been further studied by Nishiura [15] for surfaces in R’~ (k, n).

R* (k, n) has been characterized by Nishiura [15] as the class of surfaces
of finite k-area which satisfy the author’s significant cylindrical condition

([2]). This characterization is independent of any quasi additivity hypothe-
sis. Further information including an additional characterization of 
is given in Section 4.

Representations of C-W integrals as Lebesgue integrals with respect to

Lebesgue measure and generalized Jacobians are proved in Section 5 for
AC surfaces in R*(k,n). These extend a representation proved by Cesari

[3] for 2.dimensional A C surfaces in 3-space. The present proof uses the

representation of Section 3 together with a new result showing an equiva-
lence between the R-N derivatives and the generalized Jacobians for AC
surfaces.

In Section 6 we prove a number of convergence theorems for C-W in-

tegrals corresponding to a sequence of surfaces in R* (k, n) converging to a
given surface in R~‘ (k, n). These are all special cases of a general conver-

gence theorem proved by Warner for C-W integrals in an abstract setting.
Included are extensions of a well known convergence theorem of Cesari

[3] and a theorem concerning the weak convergence of current-valued mea-
sures. An alternate proof of the latter theorem has also been given by
Gariepy [10] for surfaces in 

1. Preliminaries.

We denote by E° and E* the interior and frontier, respectively, y of a
set E in the Euclidean k space Ek, and the k.dimensional Lebesgue
measure. The Euclidean norm is denoted [ and, unless indicated other-

wise, we set a-~-- = ( I a ± a)/2 for any real number a.
By a polyhedral region we mean the compact point set R covered by a

strongly connected k-complex situated in R is said to be simple if

k =1 or if k &#x3E; 2 and Ek - R is connected. A finite union F = U R of

nonoverlapping polyhedral regions R is called a figure if FO = U R°, and a
nonempty set A in Ek is said to be admissible if A is either open or open
in a homeomorph of a figure. By a we mean a nonempty connected

open set in ~~ .
Let T be a continuous mapping from an admissible set A in Ek into
1 !::~, k - n ; such a mapping is said to belong to the class T (k, n)..If

then T is said to be flat and to belong to the class T (k, k). The
restriction of T to an arbitrary subset lVl of A will be denoted by (T, M).
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We shall denote by I any polyhedral region contained in A or any
bounded domain whose closure is contained in A, and by D = [I] any finite
system of nonoverlapping sets of this type. If we set s (1, M) = 1
or 0 according as I is or is not contained in M.

We assume first that T is flat. 0 (x, T, I ) will denote the topological
index of a point x in the range space Ek of T relative to (T, I ). As a

function of x, this index is integer valued, constant on each component of
and vanishes on T (I ) and on T (I*). Further properties

are given in [5] and [17].
For each the multiplicity function

where the supremum is taken over all systems D, is lower semicontinuous

in x, and the integral

is called the (essential) total variation of (T,111 ). Multiplicity functions

N± ~x~ T, M) are defined by replacing 0 by 0± in (1), and positive and ne-
gative variations Y ± (T, M) are defined by replacing N by N + in (2). Lk-
equivalent multiplicity functions, and hence the same variations, arise if

the supremum in (1) is restricted to systems of polyhedral or simple poly-
hedral regions ([13]).

The equality N = N ~ -~- N - holds for almost all x in Ek ; thus

V (T, M) == p + (T, M) -[- V - (T, M). If M is admissible, then V (T, M) coin-
cides with the Lebesgue and Gebeze k-areas of (T, M) ([5], [13], [14]).

1.1. PROPOSITION ([5], [13]). Let T be flat and let A.

invading
00

(C) V (T, M) :~~! I V (T, lVli) for any sequence of nonoverlapping sets
i=l

whose union is contined in equality holds if the are open and

their union is M.

These properties hold also for V t .

4. Annali della Scuola Norrrt. Sup. Pisa.
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Property (d) holds also if the supremum is restricted to systems D ot

simple polyhedral regions.
Suppose now that It is convenient to denote by Tr,

r == 1... m = n , the flat mappings Tr = Pr T : A -- Exr obtained by com-k

posing T with the usual orthogonal projections Pr of En onto its k-dimen-

sional coordinate planes Ekr . We shall write and in

place of V (Tr, M) and V ± (I’,. , M).
The lower k-area of (T, M), M CA, is defined as

In view of (1.1) and the fact that domains may be invaded by polyhedral
regions, we may restrict the supremum to range over all systems D of po-
lyhedral regions. If T is flat, then 

The functional R also satisfies the properties in (1.1). Also,

for each r = 1, ... , in and Me A. Note that by (1.1) it suffices to prove the
second inequality in (3) for any set I, and in this case the inequality is a

simple consequence of the definition.
T is said to be B V if R (T, A)  co. By (3), T is B ~ iff the flat map-

ping Tr, r =1 ~ ... ~ are all B V. If T is B Y, then the relative variations

and the integrals

are defined and finite for each set M and L

2. Quasi additivity classes.

Let be B V, and let z (T, ~ ) z = (z1, ... , z~ ), m = ~2 , beB /c/
any vector function satisfying z+ (T, 1) ~ Vr (T~ 1) for each set I and each
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r ==- 1~ ... , in. For each system D we define a mesh

We have 0  3 (z, T, D)  oo, and if 6 (z, T, D) = 0 for some system D,
then z (T, I ) is the zero vector for every set of the type I.

We shall say that T belongs to the quasi additivity class T (z, k, n) iff

T is B V and infD d (z, T~ D) = 0. Applying this definition to the Hat map-
pings Tr, we see that Tr belongs to the class iff T~. is BY and

the mesh

can be made arbitrarily small. Note that if T E then Tr E T (zr, k, k)
for each r.

Special notations are reserved for classes corresponding to the functions
CV (T, .) and u (.T, .). Following [14] and [15], we say that iii

T E T (flfl, k, n) and that T E T* (k, rc) iff T E T (u, lc, n) and 6 (u, T, D) can be

made arbitrarily small for systems D of simple polyhedral regions. Classes

R~ (k? k) and T* (k, k) are defined analogously for B V flat mappings. Note

that if T E R* (k, n), can be made arbitrarily small for

systems D of polyhedral regions.

2.1. THEOREM. Let and let H" be the k-dimensional
Hausdorff measure on En. If k  2, or k = n, or .Hn +1 [T (A °)] = 0, then

T E T* (k, n). Moreover, if T E T (z, k, n) for any function z as above, then
T E R* (k, n).

The first statement is proved in [5], [12], [13]. To prove the second,
we observe that

and



428

where we have written Z in place of Z . These inequalities imply that
IED

T, D)  2 6 (z, T, D) for each system D.
The following theorem shows that if then the function

z (T, .) is quasi additive in the sense of Cesari, and that the functionals

Yr, CVr, C)J, and Rare Burkill-Cesari integrals. (See [6], [1]).

2.2. THEOREM. Let and let Me A. Then

all limits being taken as 6 (z, T, D) - 0. Moreover, if E &#x3E; 0 and Do = [I]
is any system with b (z, T, Do)  then there exists A = À (E, DO) &#x3E; 0

such that the quasi additivity relations

bold for every system D = [JJ J with 6 (z, T, D)  ~.

The theorem may be proved by using simple modifications in Nishiura’s

proof ([ 14]) for mappings in T ~ (k, n). Observe first that (a) -&#x3E; (b) -&#x3E; (e) -&#x3E; (d).
The implication (a) -&#x3E; (e) and the final statement of the theorem are

obtained by replacing u by z in the proofs of [14, 5.7, 5.9]. To prove (a),

we observe that N (ae, Tr, A) dx whenever

for all I E D, and then proceed as in the proof of [14, 5.4].
Applying (2.2) to the mappings Tr, we see that the limits in (a)-(c)

may be taken as the smaller mesh 6 (~, Tr , D) tends to zero ; relations

(qa) also hold for z,r (T, .) and this mesh. We also remark that it follows

from (e) that R (T, l1f) coincides with the Gebeze k-area (see [5], [13], [14])
V (T, if) whenever T E T* (k, n).
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Assume now that T E T (z, k, n), that is a non-negative function

satisfying inf [b (z, T, D) + e (D)] = 0, and that S : = S (,w), is a
D

transformation from A into a metric space K such that

for each system 1). Let denote the unit sphere
in Em, and let f : g E1, a = f ( p, q), be a real valued function

satisfying the conditions

( f1) : f is bounded and uniformly continuous on K X 
( f2) : ,~(~, tq) = for all 

of a parametric integrand. In view of (2.2), the following theorem of Cesari
[6] holds.

2.3. THEOREM. Under the above conditions, the Cesari Veierstrass integral

exists and is finite as 3 (z, T, D) + e (~) ~ 0, and its value is independent
of the choice of points wi E I.

We may, in particular, take S = T, K = T (A), (! = 0, and consider

the integral [ f (T~ z), A] whenever T E T (z, k, it). The u), A] ]

has been studied in [3], [5], [8], [14] for T E T* (k, n).

2.4. REMARK. If e is of the form

then for each e ) 0 there exists n &#x3E; 0 depending only on E, on an upper

bound for R (T, A), and on f, such that if 6 (z, T, D) + 0 (D)  q, then

I (wj), z (T, I )]  8 for all choices of wi E I. If T isf IED 

flat, then the term R (T, A) -  1 is already incorporated in
IED

6 (z, T, 1)) and may be omitted from ~o. See [6].

3. Induced ineasures.

Let T E T (k, n). In addition to the meshes of the preceding section, it

is convenient to define
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6 (zr, T, D) = max (diameter

whenever Tr is B V and zr, satisfies zr (T, I ) for each set of

the type I.

By a C01nponent of constancy for T we mean a component of T-1 (x)
for some x E T (A) ; a compact component of constancy will be termed an
m. m. c. (maximal model continuum). be the topology of

all sets open in A which are unions of components of constancy for 1’,
and let t denote the interior operator for this topology.

3.1. PROPOSITION. Let T E T (k, n).
(a) R (T, Mt) = R (1’, M) for every Me A ; analogous statements hold

for Vr and vt.
(b) If G E 9, then where the supremum is

taken over all G’ in 9 whose 9-closure is contained in G ; analogous
statements hold for Yr and Yr±.

(c) The set functions Vr (T, .) and .) are countably subaddi-

tive on the topology 9 provided 1r is B V and the T, D) can
be made arbitrarily small; i if T62~(~~ then R (Z; · ) is also countably
subadditive on 9.

The proofs are analogous to those of [14, 6.4 - 6.9].
A) be the a-algebra generated by the topology 9. Four

each set B in 03, define

,u (T, B) = inf R ( T, G ), ,ur (T, B) = inf Yr (’1’, G), (T, B) = inf Yr ( 7’, G),

where the infima are taken over all sets G in 9 (T, A) containing B. If

T is B V, we may also define

These set functions agree with the corresponding areas on the sets of

9(T, A).

3.2. THEOREM. If is BV T, D) can be made arbitrarily
small. then ftr and p.;- are finite regular measures and

Y = 11+ - /1.- is a Jordan decomposition. If T E R* (k, n), then ,u is also a

finite regular measure is the total variation of Y, and each

"1’ is absolutely continuous with respect to fl; moreover, if Or = and

0 = (01 , ... , the ) 0! =1 p.a.e, in A. Finally, if T E T (z, k, n), then
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under the hypotheses of (2.3) the w E A, is p-inte-
grable on A, and

The theorem is an immediate consequence of (2.2), (3.1), and the

theory of quasi additive set functions (see [7], [1]). Various forms of the

theorem have been studied in [4], [5], [8], [14], [2], and [10].
In Section 6 we shall use the following variant of Theorem 3.2. Let

Tr be B V and suppose that the -~- jo (D) can be made
arbitrarily small. Let S : A --~ g satisfy

max (diameter

for each system D, and let ~f : g X E1 -~ E1 satisfy the conditions and

( f2) with m == 1. Since 6 (zr, D) (zr ~ 1’7 D), an application of Theo-
rem 2.3 to the mapping I’ r shows that the integral

exists as 8 (zr , T, D) + e (D) - 0. The theorems of [7] and 1 ] guarantee,
further, that the function f [8 (w), dVr/dftr (w)] is ,ur-integrable on A, and that

wbere vr and flr are the signed measure and measure of (3.2).

3.3. THEOREM. If and the above conditions hold, then

PROOF. In view of (3.2), the obvious absolute continuity relations, ( f2),
and the chain rule for Radon-Nikodym derivatives, we have, upon setting
Or = dVr/dflr and ’YJr = 
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4. The significant cylindrical condition.

Let T E T (k; n) be B V. Then, by (2.1), each flat mapping Tr belongs
to the class R* (k, k) and, in view of (3.2), induces a measure

on the a algebra 03 (Tr , A) generated by the topology 9 (Tr ,A) of all sets

open in A which are unions of components of constancy for Tr. Note that

A) and 9(Tr, A) are in general coarser than the corresponding fami-
lies 03 (T, A) thus need not be the same at the mea-

sure considered in the preceding section.
A set X in cl’3 (Tr, A) is said to be sign(ficant (or essential) for Tr if

(a) IA (Tr , (Tr , A), and (b) Lk [Tr (B n X )] = 0 for every set B in

03 (Tr , A) satisfying p (Tr , B) = 0.
Suppose ~r is significant for Tr , and let Wr denote the union of all

m.m.c.s g for Tr such that and g is not an m.m.c. for T. T is said

to satisfy the significant cylindrical condition if W,.) = 0 for each

r =1, ... , m. This definition clearly does not depend on the choice of signi-
ficant sets X..

We may rephrase the preceding condition in terms of Lk and the to-

pological index as follows. Let A2r denote the union of all m.m.c.s g for

1’r such that g e A° and such that for each open set U with g e Uc A

there exists a simple polyhedral region I with U and 0 

Tr, I ) ± 0. Then A2r is significant for Tr (see [2]). Since Lk (E) = 0 implies
p, (Tr , Tr 1 (E)) = 0 for any Borel set E C Ekr (see [2]), we conclude that,
with Wr defined relative to A2r as above, T satisfies the significant cylin-
drical condition iff Lk [Tr (Wr)] = 0 for each r =1, ... , m.

We remark that the significant cylindrical condition is implied by the
global cylindrical condition of Cesari [5, 16.10] ; this latter condition is sati-
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sfied by all B V mappings in T (2, n), but not by all mappings in T* (k, n)
with 2  (see [12]).

4.1. THEOREM. Let T E T (k, n) be B Y. Then T E -R* (k, n) iff T satisfies

the significant cylindrical condition.
The necessity of the condition is proved in [2] for mappings in T* (k, n) ;

a modification the proof applies to the class R* it). The sufficiency of the

condition, as well as an alternate proof of its necessity, is due to Nishiura [15].
A combination of (4.1) and [2, 6.iv] yields the following theorem.

m 

4.2. THEOREM. Let TET (k,n) be BV, and let M= U Å2r’ If 
r=l

= 0, then Further, if z =1 -[- 1, then T E R (Ic, k --1 ) iff

Lk+l [T (M)] = 0.

5. A C mappings.

We shall assume throughout this section that the mapping T E T (k, n)
is B V.

We say that T is AC provided (a) .R (T, I) _ R (T, Ij) for every
j

polyhedral region I c A and every finite subdivision of I into nonoverlap-
ping polyhedral regions and (b) for each E &#x3E; 0 there exists q &#x3E; 0 such

that Z, R (T, I )  E for every system D of polyhedral regions satisfying
IED

These two conditions are independent [5, p. 216].
IED

For each r M7 let denote the union of all m.m.c.ii g for

Tr such that g e A2r and g is a single point. As in the 2-dimensional case
m

([4, p. 229]), A3r is a Borel set. Let A3 =rUlA3r . Each point of A3 is an
r=1

m. m. c. for at least one of the mappings Tr, 7 and hence also an m. m. c.

for T. Thus each Borel subset of Â3 belongs to the a algebra 03 (T, A).
For w E A, let Q denote a k-cube with faces parallel to the coordinate

hyperplanes of Ek and with w E Q°. Define

provided w E A3r and these limits exist and are finite ; set D0 (w) = 0 other
wise, and set Dt - J = (J1, ..., Jm). Jr is called the generalized
Jacobian of Tr .
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5.1. REMARK. As in the 2-dimensional case [5, p. 4291, .Lk-equivalent
derivatives result from using (4) at all points WEAO for which the limits

exist and are finite. Under the present definition, the derivatives D/ and J
are not only Borel measurable on A, but also measurable relative to the

a-algebra Cf3 (T, A).

5.2. THEOREM. Let T E T (k, n) be B V-
(a) The inequalities

hold for every set Q’ open in A. Equality holds for G = A in (5) iff Tr is

AC. If Tr is A C, then equality holds in (5), (6), and

for every (~ open in A.

(b) The mappings Tr , r = 1 , ... , m, are all A C iff T is A C and be-

longs to the class R* (k, n).
(c) The inequality 

-

holds for every set (~ open in A. If T E R* (k, n), then equality holds for

G = A in (8) iff T is AC and, in this case, equality holds in (8) for every
C~ open in A.

PROOF. In view of (1.1) and the fact that the derivatives vanish on

A - A° , it suffices to prove (a) for the case in which A is an open set.

Since Tr E R~ (k, k), (a) in this case is an immediate consequence of (2.2),
(5,1), and [1, 3.3].

If the mappings Tr are all AC, then T satisfies the significant cylin-
drical condition by [2, 6.iv]; hence T E R* (k, n) by (4.1). Statement (b) is

now a consequence of (2.2) and [1, 3.4].
In view of (1.1), (2.2), and the fact that J vanishes on A - it

suffice-s to prove (c) for the case in which A is an open set. Inequality (8)
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follows from (3) and~ standard differentiation theorems (see [5, 27.5]). The

remaining parts of (c) follow from (2.2), (5.1), and ~1, 3.6~. This completes
the proof.

Alternate proofs of (a) are given in [5] and [17]. Parts (b) and (c) extend
to higher dimensions results of [5, p. 445] for B y mappings in T (2,3).

5.3. REMARK. If T is B Y and the mappings Tr all possess weak total

differentials (in the sense of [17]) Lx-a.e, in A°, then J coincides .Lk-a.e. in

A° with the vector j = ( ji , ..., jm) of ordinary Jacobians of the mappings
Tr ( [17, p. 351]). (We assume here that the spaces Ek and .Ekr are oriented

by the ordering of their cartesian coordinates). Thus, under additional diffe-
rentiability hypotheses, (5.2) yields conditions sufficient for B (7"P A) to be
the value of the classical k-area integral.

5.4 THEOREM. If T is AC and belongs to the class R* (k, n), then J=

= 8 1 J I Lk-a.e. in A, where 8 is the vector of Radon-Nikodym derivatives

defined in (3.2).

PROOF. Let Åk denote the restriction of Zk to the a algebra Cf3 (T, A).
Then Ak = .Lk on the Borel subsets of A3 , J vanishes on A - A3 , and by
(3.2) and (5.2) we have

for every set (~ in 9 (T, A). It follows that

for every set B in Cf3 (7’, A). Similarly,

for every B in 03 (T, A). Thus

a.e, in A by (9), (10), (3.2), and the chain rule for Radon-Nikodym
derivatives. Since Ik = Zk on the Borel subsets of A3 and J ( = 0 on A -
A3 , we conclude that J = 8 1 J Lk - a.e. in A.
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5.5 THEOREM. In addition to the hypotheses of (2.3), assume that

T is A C. Then

If, in addition, the mappings Tr all possess weak total differentials Ek - a.e.

in A°, then

Analogous statements hold under the conditions of (3.3).

PROOF. The second statement follows from the first by (5.3) To prove
the first, we use (3.2), condition ( f2)~ and (5.4) to obtain

This theorem extends a representation theorem of Cesari [3] for the

integral relative to BY and A C mappings in T (2? 3).
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6. Convergence theorems.

We shall assume throughout this section that T,: En , i = 1, 2, ... ,
is a sequence of mappings in T (k, n) converging to the mapping T. This

means that the admissible sets Ai invade A and that

The functionals R, and v0 are known to be lower semicontinuous
with respect to this convergence: and similarly

for Vr and We shall further assume that the mappings T and Ti all
belong to the class R~ (k, n). To shorten notations, we shall write CV =
= (C)91 , ... , and (I), = 

... , in place of I )

We shall first state a special case of Warner’s convergence theorem

~19, 3.ii] for abstract Cesari-Weierstrass integrals Let S and Si be transfor-
mations from A and Ai, respectively, into a metric space .g such that

where d is the metric of K. Given a system ~D = [I], let

where in the second line we consider only systems of sets whose closures
are contained in We assume that the non-negative functions e, (2i and
the transformations S, S, are chosen so that

where in the second lines of (13) and (14) we again consider only systems
of sets whose closures are contained in Ai. Finally, let f : .g X Em - E1
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satisfy conditions ( f1) and (f2). Then the integrals Jff (S, A] and 

Ai], which are defined relative to 4 and Lli, respectively, exist by
Theorem 2.3.

6.1. THEOREM. In addition to the above assumptions, suppose that
for each 8 &#x3E; 0 there exists a system D and an integer N such that

(a) the closure of each I E D is contained in Ai for all i h N,
(b) d (D)  d2 (D)  E for all i ¿ N,
(c) Z  s for all i &#x3E; N.

IED

Then

provided R (T, A) = lim R A;).
i -00

In view of hypothesis (b), Remark 2.4, and the fact that the k areas
R (T, A) and R ( ~ ~ , Ai~ are uniformly bounded, D and N may be chosen
such that

for all i ~ N and all choices of 1.

It will be convenient to state explicitly the following variant of (6.1).
Let 8 and Si satisfy (11) and let X E1 -+ E1 satisfy and ( f2) with
m = 1. Replace (12) by

and assume and S, Si are chosen so that (13) and (14) hold relative

to the meshes (12)’. Then, as noted in (3.3), the integrals [ f (S, 
and exist relative to these meshes.

6.2. THEOREM. In addition to these assumptions, suppose that for each
E &#x3E; 0 there exists a system D and an integer N such that

(a) the closure of each I E D is contained in Ai for all i ~ N,
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Then

provided Vr (T, A) = lim Vr (Ti, Ai).
i --&#x3E; 00

Theorem 6.2 is also a special case of Warner’s convergence theorem.

Since the k areas Yr (T, A) and V,. (.Ti, Ai) are uniformly bounded, .D and
N can be chosen so that inequalities analogous to those in (15) are satisfied

6.3. REMARK. In the mappings Ti are all quasi linear, then the hypo-
thesis R (Ti ~ Ai) - R (T, A) in(6.1) implies that R (T, A) equals the Lebesgue
k-area L (T, A) of T. While only the inequality R C L is known for arbi-
trary mappings in T (k, n), equality has been established in the following
important cases : k =1 as is well known ; (k, n) = (2, 3) [5] ; k = n [14] ; k = 2
or (T (A)] = 0 if A is a polyhedral region [10].

In the remainder of this section we shall discuss some important spe-
cial cases of Theorems 6.1 and 6.2. The following two propositions will be
needed.

6.4. PROPOSITION. If the mappings I’- are all AC, and if R (T, A) =
--- lim R (Ti, Ai), then Yr (T, A) = lim Vr (Ti, Ai) for each r 

The proof is similar to that of [5, 9.9] and is valid if the mapping
T is simply assumed to be B Y and the mappings Ti are B Y and AC.

Moreover, the AC hypothesis on the mappings Ti may be dropped if R
coincides with L for all mappings concerned (cf. [5, 24.3]).

6.5. PROPOSITION. If lim and D is any system
i-;oo

such that the closure of each I E D is contained in A°, then

PROOF. Since the sets Ai invade A and the sets I E D have compact
closures, the closure of each IE D is contained in A2 for all sufficiently
large i. Let s ] 0 be given, and let N be the number of sets I in D. By
the lower semicontinuity of we have
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for all I E D and all sufficiently large i. Since C)Jr = Vr - Vr and Vr = Vr +
+ we have

for all sufficiently large i. The proof is completed by letting ~2013~ oo.

In the following theorem we take ~ to be a subset of En containing
the sets 7’ (A) and Ti (Ai), and we assume that f : K X Em - El satisfies

and ( f2). It is convenient to denote

where ~c = f~ (T, · ) and are the measures induced by T and

Zi in (3.2).

6.6. THEOREM. and the mappings Ti are
i

all A C, theu I ( f, T, A) = limbec I ( f, Ti, Ai).

PROOF. We take S = Ti, and use the meshes (12) with o =
0. Then (11) and (14) clearly hold, and (13) holds by (2.2). Let ~ &#x3E; 0

be given, and let rj satisfy 0  r~  s. With the help of (l.l ) and (2.2) we
choose a system D = [I] such that L1 (D)  q and the closure of each I E D
is contained in A°. Since ~(T~j~)2013~J~(T~JL). we may use (6.4) and (6.5)
to find an N such that
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(iii) the closure of each I E D is contained in Ai, y

for all i ~ N and each r =1, ... , m. By (11) we may also assume that

(v) max (diameter Ti (I ) : I E D)  2~

for all i :~&#x3E; N. Thus

and

for all 

To complete the proof we choose q such that (6 + 2m) n and refer

to Theorems 6.1 and 3.2.

If R = .L for all mappings concerned, then the Ti need not be assumed
AC in the preceding theorem.

In the following variant of (6.6) we again take .g to be a subset of

containing the sets T (A) and Ti (Ai), but now assume that f : .g X Ei -+ .Ei
satisfies (/1) and (f2) with m = 1. We fix r and consider the integrals

5. Annali della Scuola Norm. Sup. di Pisa.
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6.7. THEOREM. If Yr (T, A) = lim Vr (Ti, Ai), then Ir (f, T, A) _
 - cx&#x3E;

- lim Ir ( f, Ti, Ai).
i

PROOF. We again take S = T, Si = Ta, and Lo = (!i = 0, but now use
the meshes 11 and Ai of (12)’ ; conditions (13) and (14) hold relative to these
meshes, and we proceed as in the proof of (6.6) to produce a system D
and an integer N such that (ii)-(vi) hold. The proof is completed by refe-
rences to Theorems 6.2 and 3.3.

For the remainder of this section we shall assume that the set A is

compact and that

is a monotone-light factorization of T with middle space r (see [5]). r is
compact and may be metrized so that

diameter  diameter T (I )

for each set I. We shall take g’ to be a subset of En containing the sets

T (A) and Ti (Ai), and shall take K=rXK’.
For the next theorem, satisfy and ( f2), and

denote

6.8. THEOREM. If the mappings T, are all AC, and 
--~ R (T, A) as I - 00, then I (f, mp, T, A) as 

PROOF. We take ~=(~~T)~ and use the meshes (12)

with e (D) = (li (D) == max (diameter T (I ) : I E D~. Then (11) and (14) hold,
and (13) holds for the mesh 4.



443

To show that (13) holds for let i be fixed and let 8 &#x3E; 0 be given.
By (2.2) there is a system D = [J] of nonoverlapping polyhedral regions
J c Ai such that

Thus

and analogous relations hold for Vr. Since Ti is A C, we may subdivide
each region J E D into a finite number of nonoverlapping polyhedral regions
J’ such that an analogous relation holds for

il c ~’

each Vr by (5.2). Since the mapping T is uniformly continuous on the

union of the sets J E D, we may require that diameter T (J’)  sl2 for each
of the sets J’. With the help of (2.2), it is easily seen that each mapping
(Ti , J’) belongs to the class R* (k, n). Thus in each J’ there exists a sy-
stem Dj, = [I] of nonoverlapping polyhedral regions I such that

where is the total number of sets J’. Let J be the system of
all sets corresponding to the various sets J’. Then

Also,

and an analogous relation holds for each Vr. Thus and (13)
holds for di .
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The hypotheses of Theorem 6.1 may now be verified as in the proof
of (6.7), and the proof is completed by a reference to Theorem 3.2.

In the following variant of (6.8) we assume that f : sati-

sfies (fl) and ( f2) with m = 1. For fixed r we denote

6.9. THEOREM. If the mappings Tir are all AC, and if 

--~ Vr (’11, A) as i ---~ oo, then Ir (f, mT, Ti, Ai) -+ Ir (f, mp, Z’, A) as i -+ oo.

PROOF. Take S, S2, e, and ei as in the proof of (6.8). Conditions (11),
(13), and (14) are verified with respect to the meshes (12)’ as in (6.8), the
hypotheses of (6.2) are verified as in (6.7), and the proof is completed by
a reference to (3.3).

As an application of (6.9), suppose that the mappings Ti are all A C
and that Vr (.Ti , Ai) -~ ~r (T, A) as i --~ oo for each r =1, ... , m. For each
continuous real valued function 1p on 1-’, and each C °° vector valued function
g = (9’1 , ... , on let

where the dot denotes the Euclidean inner product. Setting

we see that these integrals are sums of integrals of the type discussed in

(6.9). Moreover, if Rre identify (p with the differential k-form ,

and 0 with the k-vector where (e~, ... ~ em3 and ~e1, ... ~ em) are
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the standard bases for the spaces of k-covectors and k-vectors, respectively,
on .E~~ , then 1’# and are current-valued measures (see [9], [10], [11]) on
the middle space of T. Note that if Ti is smooth or quasi linear, then in
view of (5.5),

and so Ti# is the usual current-valued measure induced by Ti on the middle
space of T. As a consequence of (6.9) we have the following theorem.

6.10. THEOREM. If the mappings Ti are all AC, and if ~’r (Ti, Ai)
- Vr (T, A) as i -+ oo for each r = .12... , m, then T2# converges weakly to
T#, i. e., Ti# (y~, ~) -+ T# (y, ~) for each 1p and q as above.

REMARKS. Theorems 6.1 and 6.2 can be rephrased in terms of any
vector function z of the type discussed in Section 2 provided the mappings
T and Zi belong to the quasi additivity class T (x, k, n).

Proofs of Theorems 6.6-6.10 can also be based on the vector function

u provided the mappings T and .Ti belong to the class T (u, k, n) ; the only
major change required is the replacement of (6.5) by an approximation
theorem of Gariepy [10].

Theorem 6.6 was proved by Cesari [3] in the form 

[ f (T, u), A~ for BV mappings in T (2, 3). Another proof of (6.10) has

been given by Gariepy [10] for the case in which the Ti are quasi linear
or smooth and T E T* (k, n). Other forms of (6.10) as well as its implications
are discussed in [9], [10], and [11].
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