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SOME RESULTS ON THE EXTENSION OF ANALYTIC
ENTITIES DEFINED OUT OF A COMPACT (*)

by C. BÀNICÀ and O. STÀNÀSILÀ

Introduction.

In this paper, some results on the cohomology with compact supports
of analytic coherent sheaves are given. The main facts were obtained in

the period april june 1969 and were presented at the Seminar on analytic
spaces - Bucharest, september 1969.

In § 1 we give two duality theorems on Stein manifolds, which are
essentially used in the proof we give for the topological characterisation of
the depth of an analytic coherent sheaf on a Stein space (§ 2).

In § 3 some applications are given : relative to Hartogs and Cousin

problems, relative to the boundary of a Stein space and the category of

analytic coherent sheaves defined around the boundary of a Stein space.
The theorems (1.3) and (2.1, i) are proved (in a slightly different form) in

[15], th. (2.8), th. (2.13). We have obtained them independently and in ano-
ther way, first passing by the theorem (1.1). we want to mention that R.
Harvey’s results proceed ours.

The statement of the theorems (2.4) and (c. 3.2), which have been at

the origin of this work, were suggested to us by A. Grothendieck during
his visit in 1969 to Bucharest. We are very grateful to him, and to A.
Andreotti for their help and encouragement.

1. Two results on the duality for coherent sheaves on Stein manifolds.

We first recall some known facts [9], which will be used in this paper.
Let X be a topological space. A family 0 of closed subset of g is called

Pervenuto alla Redazione il 27 Giugno 1970.
(*) A part of this work was done during the author’s visit at the Institut of Mathe-

matics Pisa (as invited by C. N, R.),
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a family of supports if any subset of an element of 0 is also in 0 and
the union of two elements of 0 is in 0. In this paper, only paracompact
spaces will be considered and 0 is taken as one of the following families

of the space : the family of all closed sets, of all compact sets or that of
all closed sets contained in a given compact.

Let iF be a sheaf of abelian groups on X and 7~ (X, be the sub-

group of F(X, consisting of all sections whose support is thus,
a functor (X, J) is obtained. Its derived functors are denothed by
Hj (.~’, . ) and they could be calculated by means of flabby resolntions. If
.~ is paracompact and 0 is the family of all compacts of X, then one ob-
tains H) (..L¥’.) (the cohomology groups with compact supports). Clearly, there
are isomorphisms 8~ (X, lim H, ( D~, where the direct limit is over

u

the open sets of any exhaustion of X. If 4Y is the family of the closed
subset of a compact K c X, X paracompact, then the corresponding derived
functors are called cohomology groups with supports in .I~ and are denoted

by HK (~, · ). It is easy to verify the isomorphisms H~ (X, CJ) N lim Hi 
K

where the direct limit is taken over any exhaustion with compacts of X.

Now, let (X, 0) be a ringed space and 0 a family of supports. For
any two Ox -Modules 9, g, we put 
and thus, we obtain a functor whose derived functors are called the Egt’s

with supports in ø, If 97 is a locally free of finite rank (3

Module, then r ø (X, Homo g)) a2 To ), and an isomorphism

Extø, 0 (:1, so induced. As usual 97 stands for the
dual HomO (:1, Õ) of 9.

We now recall the definition of functors Ext ; let Ext. g) be the
sheaf associated to the where U is an

arbitrary open set of X. If (X, Õ) is a complex space and Coh X (i. e.
two analytic coherent sheaves on X), then it is easily seen that for any

q 0, Extb (CJ, ) is a coherent 0-Module and Extg  Extb (‘x , rJx),- z 

for any point x E X.

Let iF, Q, 9l be three 0-Modules over an arbitrary ringed space (X, C~).
For any two families of supports 0, 1J!, the composition of homomorhisms
defines a linear map Q) (g, cy) --~ 0 (c;;, cy),
which induces a canonical map between Ext’s with supports, by Yoneda’s
method of calculus of Egt’s. Let It and J 

° 

be injective resolutions of 97

and g and f J’) be the complex given by j ==
00 

’ ’

- II and whose differential is given by the formula
p=0 

~
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The canonical map J °) - J.) induces a isomorphism
to cohomology J °)) cU Ext$ ~ (7, @). be an injective
resolution of the third 0-Module ge. The composition of homomorphisms
gives rise to a morphism

which is compatible with the differentials. Thus, for 0, the fol-

lowing bilinear maps are obtained : ~) X (g, 9~) 2013~
-+ on , ) For the duality results of this paragraph, we shall
consider 0 = the family of all compact sets of a locally compact space and

familly of all closed sets of the space. In this case, we have the

following bilinear maps, which are called Yoneda’s maps :

The first result of this section is the following :

TiaEop.Em (1.1) : Let (X, 0) be a Stein manifold of dimension nand cc~

the sheaf of of differential forms af type (n, 0) on X with holomorphic
coefficients. Then for any 9 E Coh X and for any integer q ~ 0, E 0 (X; m)
has a structure 0./ Fréchet space, zvhose topological dual is algebrically iso-
morphic to .gq (X, 

We first prove the following :

LE1vIMA ( 1.2) : Let (X, 0) be a Stein spa,ce and Coh X. Then the

canonical map is an isomorphism, for

PROOF. Acoording to [9], [11], there is a spectral sequence which con-

verges to Ext* (; 9, (j), with .gp (X, Extb (7, )). But every O.
Module ) is coherent, hence by theorem B, .E2’ q = 0 for any
~ &#x3E; 1. Since the spectral sequence is degenerate the lemma follows.

This lemma allows us to consider a topology of Fr6chet space on every
Ext% (X ; ~, ~). Particulary, the topological structure asserted in theorem

(1.1) is obtained in this way.
In what follows, all considered complex spaces are not necessarily

reduced.

9. dnnaii della Scuola Sup. Pisa.
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THE PROOF OF THE THEOREM (1.1). We have C bilinear Yoneda’s maps
Ext~ (X ; 0, CJ) X Exto-q (X ; J, w) - Ext) (X ; 0, w). Since Ext~ (.X; Ô, 
~ g~ and Ext) (X; 0, cu) (X, o))y we then obtain a (t-bilinear

map H~ (X, ~ ) X (X ; J, w) - H; (X, w) for any q ~ U, and by com-
position with the «trace» J?~(~o))2013~C (defined by an integral, by using
a resolution of w with sheaves of germs of differential forms with coeffi-

cients distributions), the following G linear maps are obtained :

For a cohomology-class E Hcq (X, ), we denote by .L its image by the

map (1). Let be an exhaustion with relatively compact Stein open
sets of X, such that the restrictions .1’(X, 0) -+ F (U,. , O) are dense. Then
the restrictions are also dense, for any 9E Coh X.
(This fact will be applied for the sheaves For any integer q, there
is a canonical isomorphism lim Hcq  ) (X, ), hence for any

-
r

there exist an integer r and a cohomology class q E Hcq (Ur, iF)
so that Im (q) = ~ and the following diagram is commntative :

By lemma (1.1) and by the considered topologies, the horizontal arrow is

continuous. We shall now prove that the maps L~ are continuous for any
~. By the above remark we can suppose the existence of an exact sequence
of the form :

If q = n, then we have the exact sequence Or) - ~) --~
-+ Hcn+l (X, ~ ) = 0 (the last cohomology group is null, because it can be

calculated by means of Dolbeault resolution of O, tensored by ~. Here
we apply a result on flatness due to Malgrange, [17]). Let 7 E H/ (X, be

an element such that Im (q) = ~. In the commutative diagram :
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the horizontal arrow is continuous and the map L1’J is continuous, since the
integral is so [21]. Therefore, Z; is continuous for q = n. In the general

case, we proced by induction on q (q  n). Let 17 E (X, ~) be the image
of ~ by the boundary morphism. We then have the following commutative
diagram :

From (2) one obtains the exact sequence Egt~ q-1 (X; ~, w)--~Ext~ g(X; ~, w)--~
But (Or, OJ) = 0 (all its stalks vanish), hence

by lemma (1.2) the horizontal arrow from the diagram (3) is a strict surje-
ctive map. The induction assumption then implies the continuouity of .L~ .
Therefore, the map (1) gives rise to a G.linear map :

where the right hand means topological dual. We shall prove that this map
is an isomorphism. If 7 is locally free of finite rank, this fact is well-

known, [21].
According to lemma (1 .2), the maps 1

are all dense, hence the canonical maps

are injective. If L : J, m) - G is a continuous linear form, then
there are a constant and a compact Kc.X such 

for any s E Exto-q (X; , w) = ’ ( ( , w)). In this inequality, PK is
the seminorm « sup » given by K and by a suitable surjective map over a

K

Stein open set containing K, Or --~ Egtn-q ( ~, (For convenience, we have
omitted to design the consideration of such a surjection by an index). It

is easily to be seen that .L is factorized by any ~, cu), where
K is a Stein open set of X. Thus, the map (5) is also surjective, that

is an isomorphism. By virtue of the isomorphisms lim Hq 
---+
r

it is clear that we have only to prove the isomorphism (4) for Ur, therefore
we can suppose c:J admits a finite resolution with locally free of finite rank
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sheaves. By induction on the length of the resolution, we are reduced to

prove that, whenever 0 --~ ~-~ ~-~ ~ --~ 0 is an exact sequence of ana-

lytic coherent sheaves on X and the theorem holds for y then same

is true for W. Or, we have the following exact cohomology sequences :

The maps of the second sequence are topological homomorphisms (for they
are obtained by (1.2) from the sequence associated to the functor Ext).

Hence, a new exact sequence of (I-vectorial spaces is obtained for topolo-
gical duals and our assertion is a consequence of the lemma of the five

homomorphisms. This completes the proof of theorem (1.1).
We now give a more precise results than (1.1).

THEOREM (1.3) : Let (X, () be a Stein manij’old of di1nension n, K c X
a holomorphically-convex compact and co the sheaf of germs of’ differential
forms of type (n, 0) with holomorphic Then, for any 9 E Coh X
and for any q 2 0, Extöq (K; c:f, w) ha,s a structure of LF-space, whose to-

pological dual is algebrically isomorphic to ~’).
For proving this, we need two preliminary lemmas :

LEMMA (1.4) : Let (X, (~) be a Stein space, g e X a holomorphically-
convex compact and J, ~E Coh X. Then, for any integer q ~:&#x3E; 0, there is a

canonical isomorphism

PROOF. The canonical morphism (71, -~ Extb IK 
is an isomorphism : we could prove this either passing to stalks or calcu-

lating functor Ext by means of a resolution - on a neighbourhood of K
- for y with locally free sheaves, the existence of such a resolution being
assured by theorems A and B. Then, the morphism asserted in the state-

ment is given by the morphism I K) 2013~ Ext¿, j~
induced by passing from a presheaf to its associated sheaf.

By [9~ , [11] there is a spectral sequence with 

(y ] K ) ) = H" (K, ( iF, ~)) which converges to Ext~ (K; CJ, ~).
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Since Extb ( ~~ (]) is a coherent then theorem B shows that the

spectral sequence degenerates and the lemma is immediate.
Lemma (1.4) gives the possibility to define a topology of LF space on

every Exth (K ; ) (C16]), and particularly to deduce the topology asserted
in the statement of the theorem (1.3).

(1.5) : Let X be a paracoinpact topological space with a countable
base, K C X a compact, 9 a sheaf of abelian groups on X and q &#x3E; 0 an in-
teger. Then the canonical morphism Hq -+ lim H9 (X B V, ’)

of-
v ::) K, V open

is arc epi1norphism for any q and an isomorphism for any q =f= 1; moreover,
if the restrictions -+ U, 9) are surjective for any open U

belonging to a foundamental system of neighbourhood,s of K, then that morphism
is an isomorphism for q =1 too.

PROOF. We consider a soft resolution on K of the sheaf F 
0 1 X BB K - 9No -+ crrl2 - ... ; this resolution permits us to cal-
culate the gronps H’ K, and U, 9), where U is a neigh-
bouhood of K. ()ne eall choose a countable fundamental system of neigh-
bourhoods of .g and the lemma will result by an elementary reaso-

ning on projective systems, from the following commutative diagram in
which all maps ~ TTr+1, - IT,., are surjective (i---,-O, 

For case q = 1 it suffices to use the surjectivity of the maps
which fact results by assumption.

THE PROOF OF THE THEOREM (1.3). There is a canonical morphism :
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Since K is holomorphically.convex, the projective limit can be conside-
red over a countable fundamental system of Stein neihbourhoods of g. By

(1.1), every C linear space ( Il ; :1, w) has a structure of Fréchet

space, for which the topological dual is algebraically isomorphic to .gq ( U, :1)
by an isomorphism compatible with the maps induced by inclusions V c U.
We then obtain a natural isomorphism

The last isomorphism follows by lemmas (1.4), (1.2) and by definition
of considered topologies. By composition of this isomorphism with the map
(1) we obtain the following functorial in 9 morphism

which is compatible with the coboundaries, for any exact short sequence.
We first prove that (2) is an isomorphism for any F locally free and for
this, it suffices to show that (1) is an isomorphism; or, the case i = 0 is

trivial and for i =1 we can write the exact sequences:

noting that the map is surjective (lim is

u U
to be considered countably indexed). For i ~ 2 we consider the following
exact sequences :

If dim X = 1, then these sequences show that HKq (X, J) = Ba ( U, ~) = 0
(q&#x3E;2). If dim X¿ 2, then the maps -~ J) are surjective
(their cokernels are HeI (U, :1), which are null ([21~ and the conclusion fol-
lows by (1.5) and theorem B. 

’

Let us prove now the isomorphism (2) for any 9 E Coh X; we consider
a finite resolution of 9 on a neighbourhood of g with locally free of finite
rank sheaves. This resolution could be considered on K itself, replacing X
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by a neighbourhood of K and noting that the invariants of the statement

are not changed. The proof of this theorem is to be completed as in the

end of the proof of (1.1).

REAMARKS. a) The duality theorem for analytic coherent sheaves on
complex manifolds ([21], [17], [23]) gives, in some conditions, a duality bet-
ween B q (X, 9) and (X; ~, co). If X is a Stein manifold, then

Extb, c (~; J, = 0 for any q  dim X. We have established the theorems

(1.1), (1.3) having in mind the results from the following section.
b) From the proof of (1.3), it is clear that this theorem also holds

for any complex manifold and for any compact g e X, which admits a

foundamental system of Stein neighbourhoods. Such a compact we shall
call a Stein compact.

To finish with this section we give some consequences of the above
theorems.

COROLLARY (1.6) : Let (X, 0) be a complex manifold of dimension n,
9E Coh X and x a point of X. For any integer q &#x3E; 0, the topological dual

of the analytic module Ex tn-q (~x , considered with the canonical topology
deduced from the u7ziform convergence of germs [16], is algebrically isomorphic
to .~x (X, 9) - (H; = (X, J) are cohomology groups of 9 with sup-
ports zrc ~x~).

The proof is immediate from theorem (1.3) applied to a Stein neigh-
bourhood of x, taking .g = ~x~.

COROLLARY (1.7) : Let X be a Stein space, .g e X a holomorphically
convex compact and 9 E Coh X. The the canonical morphism HK :f) -7
-7 lim H/ (U, J) is an isomorphism for any integer q -,&#x3E; 0.

V &#x3E; K, U open

PROOF. If X is a Stein manifold, then this morphism is exactly the
isomorphism (1) from the proof of (1.3). In the general case, the problem
concerns only the neighbourhood of .g; thus we can suppose sup 

0153eX

and we are immediately reduced to the case of a numerical space, (by a
suitable closed immersion, i. e. embedding, [26]), that is to the case of ma-
nifolds.

COROLLARY (1.8) : In the same hypothesis as in (1.7), the canonical

morphism iF) -7 Hq (X, J) is injective, for any q ~ 0.
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PROOF. In the case X is a Stein manifold, the theorem (1.1)~ (1.3)
give us the following canonical isomorphism: Hcq (X, N (Extö-q (X; CJ, w))’,
HJr (X, 7) ~ (K; y, Since cu) = Extö-q (7, ill))

the corollary is immediate for

the restrictions r (X, H ) ----&#x3E; are dense for any qe E Coh X. In the
case of a general Stein space, we choose an exhaustion ( Ur)r~~ with relati-

vely compact Stein open sets of X, containing K. We have Hq (X, :1) =
= :1) and we are first reduced to the case sup  oo

----&#x3E; x E X
r

and then by a closed immersion to the case of manifolds.

COROLLARY (1.9) : Suppose (X, 0) a Stein space, U e X a Stein open
set such that the restriction map dense. Then for any
:1 E Coh X and for any 0, the natural maps Hcq ( U, ~ ) --~ Hcq (X, :1)
are injective.

PROOF. If is a holomorphically-convex compact in U, then the

hypothesis (U, X) to be a Runge pair implied that 2T is holomorphically
convex in X. We have H/ ( U? ~) = lim where lim is taken over

K

all holomorphically-convex compacts of U. Since we

can apply the preceeding corollary.

2. A topological characterisation of the depth of an analytic coherent
sheaf on a Stein space.

In this section, some theorems on the depth of an analytic coherent
sheaf on a complex space are given. We first recall some results of com-
mutative Algebra which will be necessary in the following.

Let A be a noetherian local ring, m its maximal ideal, k = Alm the
residual field and 111 a finitely generated A-module. A finite sequence of

t-i

elements such that every Xi is a nonzerodivisor in Xj M
- 

J=1
is called M regular. The by definition the integer 
= sup (r there is an M regular sequence having r elements). 
one takes prof A (M) = cxJ). In [1], [12], [22] the following facts are proved :

- 

- all maximal M-regular sequences have the same length, equal to
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- if A is a regular ring of dimension n and q a natural number,
then we have q  prof A if and only if ExtA (M, A) = 0 for any 

- if A-+ B is a finite local morphism of noetherian local ring, then
for any finitely generated B-module N, profB (N ) = profa (N )

- if A is a normal noetherian local ring and dim (A) &#x3E; 2, then

prof  (A) &#x3E; 2.
A noetherian local ring A for which profa (A) = dim (A) is called a

Cohen-Macauley ring.
For the algebraic affine case is well-known ([12]) the following chara-

cterisation of the depth in terms of some relative cohomological invariants:
« Let A be a noetherian local ring, m its maximal ideal, M a finitely-gene-
rated A-module and N &#x3E; 0 an integer. Let X = Spec A, Y = Iiii) the unique
closed point of X, U Y an 7 the sheaf on X associated to M. Then
the following assertions are equivalent :

1 ) 

2) the natural morphism Hq (X, 7) ~ Hq (U, 7) is injective for q = N
and bijective for any q  N

We shall prove an analytic analogous result, in which the unique clo-
sed point of Spec A is replaced, for a Stein space, by the boundary on the
space and the invariants H~ are replaced by He..

In the algebraic case, the following result also holds: « Keeping the
above notations, if A is a factor-ring of a regular local ring, then the fol-

lowing assertion are equivalent:
1) prof (Jz) ~ N + 1 - dim (x~, for any x (m)
2) are A-modules of finite length, for 

In the complex case, we shall give a similar result, in which the first

assertion is replaced by tbe following: for all points of
the complementary of a compact and in the assertion 2, we put H,* instead
of Hi.

Let now (X, Ox) be a complex space and 7 E Coh X. We shall use the
notation inf profo (c:Jx1, introduced in [1]. We shall often writex 

,

prof 9 instead of The first result we prove is the following :

THEOREM (2.1): Let (X, 0) be a Stein space, K c X a holomorphically-
convex compact, 9 E Cob X and N ~ 0 an integer. Then :

(i) N -[-1 for any x E K if and only if = 0 for
any q -- N.
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(ii) there is a neighbourhood U of K 8uch that ~:&#x3E; N + 1 for
any x E U E K if and only if spaces HK (X, y) are finite dimensional,
for any q  N.

PROOF. (i) We first suppose X a Stein manifold of dimension n. By
(1.3), (1.4) and theorem A we have the following sequence of equivalent
assertion : Hf (X, ~’) = 0 ==&#x3E; (..g ~ 9~) = 0 -&#x3E; (g m)z = 0
for any (~’x , cox) = 0 for any x E K. Since is a regular
local ring of dimension n and cox - 0., , the theorem is an immediate con-

sequence of the characterisation of the depth of a finitely generated module
over the regular local ring 0~ in terms of Extôx ( ., Õz), that we already
recalled.

For the general case, we may replace X by a relatively compact Stein
... 

i
neighbourhood of K and suppose that a closed immersion does

exist, with p suitable. The image .g’ of .g by i is a holomorphically-convex
compact in (¡p. If we denote ~~‘ = i~ (9), then obviously Hk(X, ~) N
HKq~ (C-", 9-*) and prof = prof (~;~x~) for any x E X. Therefore, we are
reduced to the nonsingular case.

(ii) The proof is similar, noting that for the sheaves Ext we have

to apply the following simple lemma:

LEMMA (2.2): Let X be a Stein spa,ce, a compact and cff E Coh X.
Then dim r(K, Qt)  oo if and only if there is a neighbourhood U of K
such that 9lx = 0 for any x E U B K.

PROOF. Let U be a neighbourhood of g and suppose gex = 0 for any
then a finite set, By

the « Nullstellensatz », every stalk 9t,,, ’ is annihilated by a power of the
p

maximal ideal mxi, hence dim oo. But 9() = H therefore
- 

t 
;=i 

’

00.

Conversely, for any point x E -~ we consider the ideal m (x) of the ring
I1 (X, which corresponds to x. The hypothesis dim r (X, 9l)  oo im-
plies the existence of a number r such that m (x)r r (X, = m. (xt+1. ·

ge) _ ... , hence m Hx = gex =... (by theorem A) and Krull’s
- -

theorem gives m" = 0. Therefore, the stalks of g{ in the points of K

are annihilated by suitable powers of the corresponding maximal ideal and
this property also holds in the points of a neighbourhood of K, where
Supp 9~ is discrete. We can find an open U with the required property, by
a suitable restriction of that neighbourhood.
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COROLLARY (2.3): Let X be a complex space, x E X and 9E (Joh X. Then
the following assertions hold :

(i) N + 1 if and only if = 0 for any q ~ N.
(ii) There is a neighbourhood U of x such that &#x3E; N + 1 for

any y E U B (z) if and only if Hxq (X, y) are finite-dimensional for any q  N.

For proving this, it suffices to apply the theorem for a Stein neighbour-
hood of x, taking .g = 

REMARKS. a) From the proof of the theorem (2·1), it is clear that this

theorem also holds for an arbitrary complex space and .g a Stein compact.
b) By use of the long cohomology sequence, it is easy to show that

the condition (i) of the theorem (2.1) is equivalent to the following: for
any open- set U containing K, the maps Hq (U, F) - Hq (U B K, y) are
bijective, for any q  N - 1. In this way, the corollary (2.3) (i) is exactly
the theorem 1.1 from [24], which thus receives another proof. The corollary
(2.3) (ii) is a particular case of a deep result of Trautmann [25], in which
the set Ix) is replaced by an analytic subset and the depth, by the depth
relative to that analytic set.

c) Without any difficulties, one shows that the condition (ii) of the
theorem (2.1) is still equivalent to the following : 
for any 1  q S N + 1 and the kernel and the cokernel of the restriction

map r (X, J) -~ are finite- dimensional.

We now give some global results relative to the depth of a coherent
Module.

THEOREM (2.4) : Let (~, (~) be a Stein space, 9 E Coh X and N -~:_&#x3E; 0 an

integer. Then the following assertion are equivalent :

b) .HK (~, ~ ) = 0 for any holomorphically-convex compact K c X and
for any q:5,- N (one can replac8 such compacts by the points of X).

PROOF. The equivalence (a) -&#x3E; (b) is immediate from theorem (2.1 )

(i). Then, we have the isomorphisms Hcq (X, ~ lim HK (X, 9), where the
-+
K

direct limit is taken over all holomorphically convex compacts (which are

sufficiently large). By (1.8) the equivalence of the conditions (b), (c) will re-
sult immediately from these isomorphisms.

REMARK. We can deduce the following fact for an arbitrary complex

space X and yeCohJT: if and only if 7) = 0 for
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any q  N and for any Stein open set IT of X (it suffices to consider Stein

open sets sufficiently small). These two conditions are still equivalent to
each of the following ones :

- Extg (k (x), y) = 0 for any q S N and for any x E X (k (x) stands
for the coherent sheaf concentrated on x, whose stalk is the field k (x) _

G)
- for any relatively compact Stein open set UcX, the maps Hq(X, J) -
(’ B U, ) are injective for q = N and bijective for q - 2013 1.

(Only the definitions, the theorem (2.4) for II and the cohomology se-

quence relative to the pair (U, X) are to be used for proving all these

equivalences).
We now give an extension of the implication (a) &#x3E; (c) :

PROPOSITION (2.5) : Let X be a complex space having a covering with

c + 1 Stein open sets. For any 9 E Coh X such that ~ N -~-1 and
for Hcq (X, y) == 0.

For the proof of this proposition, we preceed by induction on c, by
means of the following lemma, which provides a result of Mayer-Victoris
type ([1], pg. 251, where is considered the general case of the families of
arbitrary supports; here we give - in the particular case of compact
supports - another proof):

LEMMA (2.6): Let X be a paracompact space and 9 a sheaf of abelian
groups on X. is an union of two open subset U, V, then we have an

exact cohomology sequence:

PROOF. For any flabby sheaf 9 on X, we clearly have the exact se-
0

quence: 0 - rc ( U n ~, ~) -~ r~ ( U, ~) ® r~ ( Y, ~) -~ r~ (.~, ~l ), where the
first morphism is deduced from the diagonal map and the second is the

map 0 : (s, t) -+ 8 - t (in both of them, one utilies the trivial extension of
sections). We now prove the surjectivity of 0. Let and .g =

-= Supp v, a compact subset of X. We consider the compact sets Kt =
= Kn (X B U), K2 = K n (X B V), K, n g2 = z and we can suppose them
nonempty (otherwise, one immediately finds a preimage of v). Let Ut, U2
be neighbourhoods of Kl, .g2 such that U1 n U2 = o and define
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This is a section of 9 on the open set U2. hence there is
a section which extends it (9 is supposed flabby). Obviously,
s’luEFc(U,9) and we put It is easily to be

seen and si - s2 = v, therefore 0 s2) = v.
If 9° is a flabtsy resolution of 9, then we have an exact sequence of

complexes 0 - I’c V, 9°) ( 1T, (V, -~ ~’~ (X, 9°) -+ 0,
whence the locked for exact sequence.

As a consequence of (2.5) we have:

COROLLARY (2.7): Zet (X, O) be a compact com lex space, n = Pro.f (0)
(i. e., dih X in notation from [1]). Then X cannot be covered by less than

gi + 1 Stein open sets.

If we suppose the contrary, then there results (X, 0) = 1’(X, 0) = 0,
a contradiction.

REMARKS. a) For a compact complex manifold (X, 0) we have dim (X) --
hence such a manifold cannot be covered by less than 

Stein open sets. This conclusion could be also obtained directly from the
usual relations Mayer-Victotis [1] and the duality between and

(X, c,~).
The corollary (2.7) is also applyable to normal compact complex spaces

of dimension :2: 2 : it is impossible to cover such a space by two Stein

open sets.

b) Given a compact complex manifold V, in [2] is denoted by d(V)
the minimal number of Stein open sets by which V can be covered. In the
same paper, the following is proved:  If M) is a family of deforma-
tions of compact complex manifold, then d (Vt) is an upper
semicontinuous function of t for 

If we similary denote by d (X) the minimal number of Stein open sets
by which X can be covered, then the corollary (2.7) shows that d (X ) ¿

THEOREM (2.8): Let X be a Stein N &#x3E; 0 an integer.
Then the following statements take place :

(i) there is a set A c X such that ¿ N -~- 1 if and
only if spaces H~ (X, are finite -dimensional ,f’or any q!!~~ N.

(ii) the following assertion are equivalent :
a) there is a discrete set A c X such that &#x3E; N -~-1.
b) the linear spaces HqK (X, ’Y) are finite dimensional for any q 

and for any holomorphically convex compact K c X.
c) the linear spaces Hq (X, are of at most countable dimension for

any q  N.
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Before giving the proof of this theorem, we need two simple lemmas :

LEMMA (2.9): If X is a Stein space and c-ffe Coh X, then dima F(X, g{)  00

~f and only if is a finite set.

This lemma can proved similary to (2.2) or by use of a result from

[7], as follows : if dima r (X, CJ)  oo, then the F(X, 0)-module

and its submodule g{) are noetherian, hence Stein algebra
r(X, cy) is noetherian, that is Supp c-M = Supp is a

finite set.

LEMMA (2.10): Let (X, 0) be a Stein space and W E Coh X. The topolo-
gical dual of Fréchet space W) has at most countable dimensiorc over C
if and only if discrete set.

PROOF. Let be an exhaustion of .X by relatively compact Stein
open sets, such that the restrictions 1~ (~, C~) --~ r ( ~Ir , 0) are all dense. If

Supp g[ is discrete, then the preceeding lemma shows that every 
is finite-dimensional. But and an implication

-
r

is proved. 
Conversely, by (2.9) it suf6ces to prove that for

any r. Or, let a Stein open set so that the restriction r U, 
--~ is dense and K be a holomorphically-convex compact containing
U. For a Stein neighbourhood of K and for a surjection Or --&#x3E; Q£ on it,

-

one can define a seminorm p = « sup » and we denote by the
K

completion of 1’(X, (0) in the topology given by p. g[) is a

Banach space and, since the map 9~)2013~~’(~ g{) is dense, the map

(T (.g, ~))’ - (F (X, g[))’ is injective. (1~ (g, ~))’ is a Banach space and by

hypothesis it has a finite dimension, therefore dim 1’(g, K)  oo. Since

the natural map W) is dense, there result dim a -P(Ul  00

and this completes the proof.

THE PROOF OF THE THEOREM (2.8). (i) Let us first consider the spe-
cial case X manifold. Let A c X be a finite set such that 

~ N -~-1. By the characterisation of the depth of finitely generated modules
over regular local rings we have wx) = 0 for any and
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q S N, hence hence Supp

a finite set. By (1.2) and (2.9), Extö-q (X; 9~, w) = Extõq (9, w)) is a
C linear space of finite dimension and the conclusion results from (1.1).

For the other implication we make an inverse reasoning, again using
(2.9).

Let now X be a Stein space of finite embedding dimension, i. e.

~ 

a suitable closed imersion. If we put

and we are immediately reduced to the
first considered case.

Finally, let X be an arbitrary space. If A is a finite set such

that &#x3E; ~ + 1, then for any relatively compact Stein open set
~T including A, we have the isomorphisms

where is a suitable imersion. (We have used here (1.1) for

en u and iu (~ ~~. It is not difficult to note that the invariants which appear
in that product are independent on the imersion iu. (If x E U, then

by the corollary (1.6)). For any two relatively compact Stein open sets in-

cluding A, the canonical are isomorphisms
for and the conclusion is immediate from the above considered

case of embeddable Stein spaces.
We are now proving the converse assertion of (i). Let A -

If U is a relatively compact Stein open set of X,
.then A n U is a finite set. Let be an exhaustion of X by relatively
compact Stein open sets.

Obviously, ( ) ’" lim 7) and as =

/r
= A f1 ,.. , whenewer the maps Hcq ( Ur , 7) ~) are iso-
morphisms for q  N. Thus, A is a finite set and the assertion (i) of (2.8)
is completely proved.

In what concerns the assertion (ii), it could be proved by a similar

reasoning, by means of (2.10).
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REMARKS. a) In the poiuts x E A (where A is the set from (2.8) (ii)),
we assert the following supplementary property :

(*) For any prime ideal p E Spec p # ProfCOx)p ((9) &#x3E; N + 1 -
--- dim Indeed, the problem is local, so we can first suppose X a clo-

sed subspace of a Stein manifold and immediately, we are reduced to the
case X a Stein manifold. Since Ext (9y Wy) = 0 for q  N and for any
y sufficiently near x, then by «Nullstellensatz» a power of mx annihilates

Ôx), for any q  N. Then the support (in Spec of the module

(~c ~ contains at most the point hence for any p E Spec 

p~~., ExtÖ:q (~x , Ext(O;)p = 0 for any q ~ N.
The proporty (*) then results from the caracterisation of the depth of

a regular local ring in terms of Ext.

Conversely, if the property (*) holds for any x E X, then a discrete set
does exist, such that For, it suffices to con-

sider lK a n-dimensional Stein manifold, in which case the condition (*)
exhibits that for any

with p E Spec Oa? arbitrary ~ .

Since a power of nlz annihilates OJx), y the sheaves

0 (£E, m) (q m N) have their supports discrete, etc.

According to [12], the property (~) is also equivalent to the fact that

for any q  N, all Ox-modules Hi (C:x) have a finite length (where 
stands for the cohomology goup of Spec Oa; relative to the closed set (m-1).

b) If 7 is an analytic coherent sheaf on X, ~ is a coherent Ideal

such that and Snpp is finite (resp : discrete), then
the sheaf gg: verifies the condition of the theorem (2.8). The same theorem
could be applied for those 7 E Coh X for which out of

a compact set.

3. Applications.

The application given in (a), (b), (c) do justify the following principle :
on a Stein space « can be not taken into account &#x3E;&#x3E; a relatively compact
Stein open set (resp: a Stein compact), whewever the depth is sufficiently
large. On the other hand, from (d) one can deduce the following: on a
compact complex space and in suitable conditions on the depth, a Stein
open set (resp: a Stein compact) » can be not taken into account ».
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(a) Interpretation of the depth in small dimensions : Hartogs and Cou-
sin type results.

The first two corollaries we give, eharacterise the analytic coherent
sheaves (on Stein space) having their depth greater than one or two.

COROLLARY (a.3.1) : Let X be a Stein space We ha-ve

l’ if and only if any section of £F) coith a compact support
is null.

PROOF. By theorem

COROLLARY (a.3.2) : Let X be a Stein space Then the

following assertion are equivalent :

b) for any relatively cornpact Stein open set the restriction

the restriction

PROOF. It suffices to apply the theorem (2.4) by using the following
exact sequences :

The implications (a) -&#x3E; (b;, (a) ==:&#x3E; (c) are more general: if ~ is an

arbitrary compelx space, U (( X (resp : K c X) a Stein open set (resp: a
Stein compact) and Prof (~ ~ ~) ~ 2 (resp : Prof h 2), then the map

(resp : r (X, ~ ) --~ (X B .~’, ~ )) is surjective.
The corollary which follows is a Hartogs type result.

COROLLARY (a.3.3): Suppose X a Stein space, K c X a holomorphically-
convex c01npact and 9E Coh X. Then the canonical map r(X, -+ K, ~ )
is bijecti’ve if and only if Prof ~ 2 for any x E K.

The proof is immediate by theorem (2.1) (i).

REMARKS. a) The corollaries (a.3.2), (a.3.3) can be applied for the stru-
ctural sheaf of a normal space of dimension &#x3E; 2 (resp : normal space of

dimension ¿ 2, in the points of K). One can also consider the case of the
complex spaces having their stalks Cohen-Macauley rings of dimension b 2.

10. Annati delta Scuola Norm. Sup. Pisa.
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b) If K is an arbitrary compact of a Stein space and &#x3E; 2,
then by (a.3.3) one can deduce that there is a compact -g’ such that for

any section a unique section s’ E r (X,F ) does exist so

that 8’ = S (one takes .g’ _ -g). In this way, the corollary
(a.3.3) can be interpreted in terms of the boundary ah’ of X. We denote
by CJ) = lim 1’ (IT, 7), where lim is taken over all neighbourhoods

- -
u

U of the boundary (open sets with a compact complementary). Thus, we
can obtaine the following result: if .~ is a Stein space and YE Coh X such
that 2, then the canonical map is an iso-

morphism. We thus obtain a generalisation of [13], Ch. VII, D. 5.

The following applications deal with Cousin problems and they are
consequences of the results from § 2, for Nh 3. For the case of manifolds

they are proved in [20].
First, we formulate Cousin problems for spaces (non necessarily redu-

ced). Let (X, 0) be a complex space. For any open we denote

is a nonzerodivisor in for any x E U). Clearly, Su
is a multiplicative system and a presheaf (quotient ring
with denominators in Su) is so obtained. The associated sheaf 9£ is called
the sheaf of germs of meromorphic section on X. It is easily to be seen
that we have a canonical inclusion of sheaves 0 c If ax E Oa: is a non-

zerodivisor, then by multiplication with it, an injective morphism Oa; -+ Oa:
is so defined. If is a section whose germ in x is sx , then the

s

0 lu is injective in x and since 0 is coherent, there is a

neighbourhood V c: U of x, such that the restriction 0 Iv --~ 0 Iv is also

injective. Therefore, By this remark, it is immediate that the

stalk is canonically identified with the total ring of quotient of In

the particular case X reduced, we have Su = does not va-

nish on any nonempty open subset of v ~ and we just obtain the definition
of 9X given in the book « An Introduction to the theory of analytic spaces &#x3E;&#x3E;

by R. Narasimhan, Springer, 1966.
Cousin problems are to be formulated exactly as in the case of mani-

folds. The additive (resp: multiplicative) problem consists in giving condi-
tions of surjectivity for the canonical map r (X, (resp :
I- (X, -+ I’ (, (As usual O. (resp : stands for the subs-

heaf of 0 (resp : 9N) of all invertible sections).

COROLLARY (a.3.4): Let X be a Stein space, K C X a holomorphically-
convex compact. If Prof (Ox) ~ 3 for any x E K, then Cousin additive problem
has a solution K. If moreover, Z) = 0, then Cousin

multiplicative problem is soluble on K.
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PROOF. We have aD exact sequence

and the first stetement of the

corollary is immediate from the exact sequence

_ _ 

, - a.

of integers and the second arrow is 99 |---&#x3E; Therefore,--’ ", ,

and the conclusion is immediate from another exact sequences -,

COROLLARY (a.3.5) : Let X bc a Stein space and a Stein open
set such that Prof (0 f u ) ~ 3. Then the Cousin additive problem has a solution
on X B U. Moreover, if H2 u, Z) = 0, then the same is true for the
multiplicative problem.

The proof is similar to the preceeding.

REMARK. It is clear that (a.3.4), (a.3.5) also hold for ~ arbitrary, but
H (X, 0) = 0. In (a.3.4) we must only suppose .K a Stein compact.

Elements of T(X, are called Cartier divisors on X. For a section

E T(X, we denote by (m) the image of m by the canonical map
r (x, -+ 

COROLLARY (a.3.6): In the same hypothesis as in (a.3.4) (resp : (a.3.5)),
we suppose all stalks of X factorial rings. Then any meromorphic section m
on (resp : X B U) can be extended to a meromorphic section on X.

PROOF. We can suppose and let D = (m) be the as-
sociated divisor on Since ~’ is a factorial space, on the multiplica-
tive group 9X*/O*) (whose composition law is additively denoted), an

order relation can be introduced, such that every divisor D is decomposable
in two positive divisors, D = D+ - D_. By (a.3.4), let f, 
be such that ( f ) = D+ , (g) = D_ ; since D+, D- are positive divisors,
then f, g are holomorphic sections. By (a.3.3), there are 

such that and it is clear that F, G do not vanish
on any nonempty open set, that is F, and moreover, extends

m. A similar proof for the other case.

(b) Some topological consequences for the boundary of a Stein space.
A complex space (X, 0) is called connected to the boundary if for any

compact g c X, the complement in X", K of the union of all relatively
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compact components is connected ([13], Ch. VII, D). We also
recall the notion of a germ of an analytic set to the boundary: it is a

pair (U, S), where U is a neighbourhood of the boundary (i. e. XB U is
compact) and S a closed analytic subset of U. We shall identify two such
pairs (U1 , ( U2, S2) whenever a neighbourhood of the boundary U e Ui n U2
does exist such that 81 fl IT = 82 n U. Let a. be the germ defined by any
neighbourhood of the boundary.

We call a complex space (X, 0) irreducible to the boundary if OX can-

not be written as an union of two proper germs. (Unions, intersections,
etc. of germs of analytic sets to the boundary are naturally defined). Any
such a space is connected to the boundary. Indeed, for any compact K, we
shall have X = K U (U Y;) U (U Ua), where are the connected compo-

i a

nents K, Vi those relatively compact and U« those relatively non
compact. For any compact K’ n K and for any a, 

hence, from the definition of the irredudibility, the set of x’s is reduced to

a single element.

COROLLARY (b.3.1): Let (X, 0) be a connected Stein space such that

Prof (C)) ~ 2. Then X is connected to the boundary.

PROOF. Let K be an arbitrary compact and X = .g U (U Vi) U (U U«) as
I a

- -

above. Since for any a, K n Ua =F sj, it suffices to show is

connected and then will result that the set of a’ s is reduced to a single
-

element. Indeed, by corollary (a.3.3), the natural map -r(X, 0)
is an isomorphism and our assertion is then a consequence of the following
general fact :

LEMMA (b.3.2) : A ringed space in local rings (A, C~) is connected if and
only if 0) cannot be represented as a product of unitary commutative

rings.

PnooF. If we write X = U U V, where U, V are disjoint nonempty
open sets, then r (~, C~) = f ( U, ~) X 1’ ( Y, ~). For the other implication,
suppose O) = A X B (A, B-rings). Let U = (x E =t= 0 for at least
an element f of A 1, V = # 0 for at least an element g of B).
As usual, for a section we have denoted by f (x) its image by
the composition map the maximal ideal

of Oa?). The condition f (x) ~ 0 means that is the germ of f in x is

invertible; therefore U, V are open sets. Since the unit section can be writ-
ten 1= e1-~- e2 , e2 E B, then for any x E .g we cannot have simulta-
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neously e1 (x) = e2 (x) = 0, hence X = U U V. On the other hand, u f1 v = z
and lemma follows.

The following corollary extends [13], ch VII, D. 2,

COROLLARY (b.3.3) : Let X be an irreducible Stein space of dimension
&#x3E; 2. Then X is irreducible to the boundary and particulary, connected to the
boundary.

PROOF. It suffices to probe that for any holomorphi cally- convex com-

pact ~’ c X, X B .g is an irreducible space. Let .~’ be the normalisation of
X and K’ be the inverse image of .g by the projection morphism. The
space .~’ verifies the conditions of the preceeding corollary and .~’ is ho-

lomorphically-convex, therefore X’ B .g’ is connected. The conclusion is im-

mediate if we note that X’ B .~’ is the normalisation K.

The following statement give some other connections between Stein

spaces and their boundaries.

COROLLARY (b.3.4): Let X, Y be two complex spaces.

(i) If Y is a Stein space and Prof (0y) ~:&#x3E; 1, then the natural map
Hom is injective. means naturally
lim Hom (U, Y), U an arbitrary neighbourhood of the boundary of X).
u

(ii) If Y is a Stein space and ~ 2, then the natural map
Hom (X, Y) -~ Hom (aX, a Y ) is bijective.

PROOF. (i) Let Y ) be such where U is

a neighbourhood of ax. We could suppose Tl = K be holomorphically-
convex. We then have a commutative canonical diagram :

The first vertical arrow is an isomorphism ([7]). The second horizontal arrow
is injective, as the map I’ (X, Ox) --~ T(XE K, has this property (by
(a.3.1)). Therefore, 99 = y.

For proving (ii), the above diagram and corollary (a.3.4) 0 are
to be used.
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COROLLARY (b.3.5): Suppose X, Y two irreducible Stein spaees, each of
them of depth &#x3E; 2. If their boundaries are isomorphic, then the spaces them-

selves are isomorphic.

PROOF. Let U V c Y be two neighbourhoods of the boundaries
and 99: U ~ V an isomorphism between them. By the preceeding corollary,
there are maps f : X --~ Y, G : Y -+ X and U’ c X, V’ c Y neighbourhoods
of a Y respectively, such that lu’ , G = cp-l 1 v, (one can suppose
U’ c 1I, V’ c V). Then G o F = id on the nonempty open set U’ f1 ( V’)
and since X is irreducible, G oF = id on X (~ can be embedded in a nu-

merical space and G oF is then identified with a system of holomorphic func-
tions, etc.). Similary, Fo G = id on Y and this completes the proof.

REMARK. For Stein manifolds of dimension h 2, this corollary was
proved in [8] and [18].

(c) The category of analytic coherent sheaves defined around the boundary
of a Stein space.

Let (~~ Õ) be a complex space. We shall consider pairs (U, where

U is a neighbourhood of the boundary of X and 7E Coh U. Two such pairs
( Ui , ‘~,), ( U2 , ~2), for which there is a neighbourhood of the boundary
U e U2 such that 9i ju = 72 ju are to be identified. The equivalence
classes define a cathegory - the morphisms are naturally defined - called
the category of analytic coherent sheaves around the boundary of X (or
category of germs of analytic coherent sheaves defiried to infinity) and we
shall denote it by Coh ag. The restriction of sheaves provides a functor

aX: Coh aX.
We shortly recall some definitions. A functor F : C- D between to

arbitrary categories is called faithful (resp : faithfully full) if for any two

objects M, N of C, the map Homo (M, N) -+ HomD (F (M), F (N)), g~ -+ F (gJ)
is injective (resp : bijective). The functor .~ is called essentially surjective if

any object of D is isomorphic to the image by F of an object of C.
Before giving the main result, we prove an useful lemma :

LEMMA (c.3.1) : Let A be a noetherian local ring and M, N two ,finitely
generated 

PROOF, (i) Let a E m (the maximal ideal of A) be a nonzerodivisor in

a

N. The multiplication with a in is then injective, hence the
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map Hom (1’Vh a) : Hom (M, N) - Hom (M, N) is also injective. But it coinci-
des with the multiplication with a in the A-module HomA (M, N).

(ii) Let a2) be a N.regular sequence of two elements of m. The

gives the exact sequence

at
whence a natu-

ral injective map HomA (M, HomA (M, N ) --~ HomA. (M, Njat N) is dedu-

ced. The conclusion is then immediate from the following commutative
diagram, y in which the two horizontal and the second vertical arrows are

injective :

THEOREM (c.3.2) : Let X be a Stein space. Then the restriction functor
 a X : Coh X -&#x3E; Coh aX has the following properties :

(i) is faithul on the sheaves of depth ~ 1
(ii) is faithfully fult on the sheaves of depth &#x3E; 2

(iii) is essentially surjective on the sheaves of depth ~ 3.
The properties (i), (ii) are direct consequences of the following more precise
result :

THEOREM (c.3.2) (i), (ii) : Let (X, 0) be a Stein space, K c X a holoP1or.

phically-convex conapact and Coh X.

then the canonical map

then the canonical map

PROOF. We consider the coherent 0-Module IW = Homo (9, By the

preceeding lemma and the isomorphism Homo, (% , if Prof (q) ¿ 1
(resp: Prof (@) h 2) in the points of K, then 1 (resp : Prof &#x3E; 2)
for any x E K. We have the exact sequence 0 -~ ~’K (X, ge) -~ 
-~ -~ Hk (X, g{) -~ ... and since -r Hom = Hom, the theorem
follows by virtue of (2.1) 

-

Property (iii) of (c.3.2) result from a more precise fact, which is essen-
tially a consequence of [24], th. 3.1.
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THEOREM (c.3.2) (iii) : Let X be a Stein space, K c X a holomorphical-
ly-convex c01npact and 9 E Coh K). If Prof ÔX ( ~x) &#x3E; 3 for any x E X suf-
ficiently near to K, then there is an unique sheaf 9~ E Coh X such that

PROOF. The uniqueness of the sheaves of depth ~ 2 (in the points of

.g) which extend 9, follows immediately by the prececding theorem. For
the proof of the existence, since g has a fundamental system of Stein neigh-
bourhoods, we can suppose Prof (9~):;&#x3E; 3. For a moment, let us suppose that
there is a sequence of compacts Ti:D K, which converges to K, a sequence
-

of coherent Ox-Modules of depth &#x3E; 2 and a sequence of isomorphisms
-

For each pair (i, j) and for each holomorphically COll-

vex compact L which contains Ti U Tj I; are holomorphic convex hulls
-

of Tj), we have an isomorphism $71 o Ix IX BL ; by virtue of
- -

the preceeding theorem, we obtain an isomorphism $ij : 7j 4 9i. Since all

bijective maps from (c.3.2.ii) are functorial~ one easily sees that ~~~ does not

depend on L and for any triplet (i, j, k) the compatibility relations =1,
-

Ejk Eki == 1 take place. In this way, one obta,ins the looked for sheaf y.
-

It remains only to prove the existence of such sequences (T;), 
{~;). Let V be a neighbourhood of g, U c V a relatively compact Stein

neighbohrhood of K, 4Y : U - ~n a suitable closed imersion, [26]. 4T (.~) = L
is a compact in en and we can find a real number e &#x3E; 0 such that .L c Be
(euclidian ball centered in origin of radius e). We denote T = 4Y-1 (B~,) with
e’ &#x3E; Lo. T is a compact set and obviously, g c T c U.

Let now q be the direct image of 9 by closed imersion .g--&#x3E;

--&#x3E; (tn B Z ; this is an analytic coherent sheaf on having a depth
greater than 3. According to [24], th. 3.1, 4.1, there is an analytic coherent
- - -

sheaf g on en such that Prof 2 and · The 

E Coh U and it is isomorphic to 7 We can glue  (G) and
to each other and thus, one obtains a coherent Ox - Module, isomor-

phic (on X B T) with 7 and having its depth &#x3E; 2 on X B T. According
to [24], th. 4.1 we can modify this sheaf in the points of depth c 1 (the
set of these points is a closed analytic subset contained in T, hence finite).

Finally, an analytic coherent sheaf 9T is obtained and we have 
-

2. This completes the proof.

(d) Some applications to c01npact complex spaces.
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THEOREM (d.3.1) : Let X be a compact analytic Y c X a closed

set such that X B Y is a Stein open set and 9 E Coh X. Then in order that

Prof (~ ~g~ y) &#x3E; N + 1, it is necessary and sufficient that the canonical map
Hq (X, CJ) -+ Hq (y, g Iy) to be bijective for q S N - 1 and injective for q = N.

PROOF. Let 0 --~ ~ --~ em. be a soft resolution of 9; then we have an
exact sequence of complexes 0 -+ 
where the first arrow is given by the trivial extension of sections. Thus,
one obtains the exact cofomolog.y sequence :

and the conclusion is immediate by (2.4).
We denote by Coh Y the category of germs of analytic coherent shea-

ves defined on Y : the objects of this category are classes (under an obvious
equivalence relation) of analytic coherent sheaves defines on neighbourhood
of Y. The restriction of sheaves defines a functor .1: Coh X- Coh Y.

THEOREM (d.3.2) : Let X be a compact space, Y c X a closed subset such
that X ‘~ Y is a Stein open set. The functor .1: Coh X -+ Coh Y has the fol-
lowing properties :

is faithful on the sheaves of depth "I
is faithfully-full on the sheaves of depth

I is essentially surjecti,ve on the sheaves of Coh Y of depth ;

PROOF. (i) Let be two sheaves of depth &#x3E; 1 on XE Y
and gcp, y E Hom (F , G ) be such that (p = tp Iy. Then there is a neighbourhood
U of Y so By (c.3.2) (i) applied to Stein space XE Y, to
the and to the holomorphi c- convex hull (in X B Y)
of the compact XE Y, we obtain e = 11’. The assertion (ii), (iii) could be
similary proved by utilisation of (c.3.2) (ii), (iii).

COROLLARY (d.3.3): Let X be a compact complex space and Y a closed
subset of X such that X B Y is a Stein open set. If ~&#x3E; 2 for any
x E X B Y, then X is a connected if and only if Y is connected.

PROOF. By (d.3.1), the canonical map O) - T(Y, Ô) is bijective
and the assertion is immediate from (b.3.2).
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REMARK. Similar statements can be given by replacing Y by the com-
plement of a Stein compact: one can consider, for istance, the case X is a
projective space and Y the complement of a holomorphically convex compact
in an affine cart.

In8titut of Mathematio8
Buohare8t

Added in proof :

1. The topogical characterisation of depth was firstly given by Y. T.
Siu (using gap-sheaves), Com. Math., 21 (1969), 52-58.

2. We may add at the References, now, the following: J. P. Ramis

et G. Ruget, Publ. Math. 1. H. E. S., 38 (1970), 77-91 (where, beside the

duality theorem of [19], one proves too a duality concerning the invariants
He (X, ), and of which theorem (1.1) is a particular case).
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