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ON THE CONVERSION OF BINARY ALGEBRAS
INTO SEMI-PRIMAL ALGEBRAS

D. JAMES SAMUELSON

As a generalization of the concept of functional completeness, Foster
and Pixley [4] introduced the notion of semi-primality and developed a
structure theory in this extended realm which subsumed that obtained in
the primal case [1;2]. In order to enrich the scope of applicability of this
extended theory, the construction of classes of semi-primal algebras of as
comprehensive a nature as possible is fundamental. Recent results along
these lines have been obtained for the important subeclass of subprimal
algebras. The following theorem was proved by Moore and Yaqub [5]: sup-
pose (B; <) is a finite, associative binary algebra which contains a nilpotent
element 7 = 0 and an invertible element 2 =< 1; then there exists a permu-
tation, N, on B such that (B; ><,N) is a regular subprimal algebra. In the
present communication we obtain a generalization of this result: the asso-
ciativity requirement is dropped and the nilpotent-unit condition is replaced
by a weaker power assumption on the elements of B. Moreover, it is shown
that every finite binary algebra can be converted into a singular subprimal
algebra by the addition of a single binary operation to the species.

1. Preliminaries.
We collect several of the concepts which will be used subsequently into
DEFINITION 1.1. Let U = (A 3 (JosSiy ooy Sfayr)acp) be an algebra of
species S =(ry, ¥y e ;¥a,..Jacg Where each primitive operation f, is a

mapping A" —» A of finitary rank 7, =0. If r, =0 we set A"*={(}} and
call f, a nullary operation.

Pervenuto alla Redazione il 23 Aprile 1970.
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(1°) An A-function is any set theoretic mapping f(&;,...,&n—;) of A
into A for any integer n = 0.

(29 If (fy, f1yesSyr-)ycs I8 a sequence of A-functions of species
_AS—‘, B <4, and f7=f, whenever y < f, then the algebra U — (A ;(f_0 ,f_, 5 voe
. f_, ) ee)y<s) 18 called a conversion of U from species S to §.

(3% An 8 expression is any indeterminate symbol &,,&,,... or any
formal composition of these indeterminate symbols via the primitive opera-
tion symbols f, of .

(4% We say an A-fanction f(&,,...,&.—1) i8 S-expressible provided
there exists an S-expression D (£,...,En—;) such that D (£, ..., &) =
= f(&yy ey &n) for all &;,...,&—; in A. In particular, an element a¢ in A4
is said to be S-expressible if there exists a unary S-expression A, (§,) such
that A4, (&) =a for all &, in A.

(6% An A-funetion f(&,, ..., &—1) is said to be conservative if for each
subalgebra 3 = (B; Q) of U and sequence of elements b, ..., b, of B, it
follows that f(by, ..., ba—) € B also.

(6% The algebra U is said to be primal (respectively, semi-primal) if
A is a finite set of at least two elements and every A-function (respectively,
every conservative A-function) is S-expressible.

(79 We say that 9 is a subprimal algebra if it is a semiprimal al-
gebra which possesses exactly one proper (3£ <) subalgebra U* = (4*; Q)
called the core of W. If A* contains at least two elements, U/ is said to be
a regular subprimal ; otherwise, it is called a singular subprimal.

(8% If U is subprimal and a € AN\ A* then a is said to be ex expres-
sible provided there exists an S-expression I, (¢, such that I, (&)=a for
all &, in AN\ 4*.

(9°) The algebra U is said to possess a frame [0,1,><,N] if there
exists elements 0,1 in 4 (0 2 1) and A-functions < (binary) and N (unary)
such that

D) 0xE=¢,,<0=0,1 & =¢X1=¢; (all & in A);
(i) & >< &, and &' are S-expressible;

(iii) &) is a permutation of 4 with 0" =1;

(iv) 0 and 1 are S-expressible.

(10% We say Q¢ possesses a singular coupling [0, <, T; 1,19 if it
possesses elements 0,1 with 0521 and two binary A-functions >, T such
that (i) above holds in addition to

(v) 0 is S-expressible;
(vi) & < &, and &, T &, are S expressible;
(vil) 0 TE)=§,T0 = £ (all & in A4);
(viii) there exists 1° in 4 such that 1 71°=1°T1=0.



of binary algebras into semi-primal algebras 251

(11°% If U contains distinct elements 0,1 satisfying (i) above, then
the characteristic function of an element a in A, denoted by 4, (&), is the
unary A-function satisfying

’1 if {(g=ua
6a(§0)=‘
[0 if & 5<a.

The following results from the literature are important in the sequel.
For any set A we use | A | to denote the cardinality of A.

THEOREM 1.1. (Foster and Pixley [4]). An algebra U = (A ; 2) of species
S is a regular subprimal if and only if
(@ 3<]|4|<o0;
(b) U possesses a unique proper (£ U) subalgebra U* = (A*; Q) and
| 4% | =2;
(¢) U possesses a frame;
(d) for each a€ A, the characteristic function O, (&,) is S-expressible ;
(6) there exists an a € AN A* which is ex-expressible.

THEOREM 1.2. (Foster and Pixley [4]). An algebra U = (A; £2) of species
S is a singular subprimal if and only if
(@ 2<<|4| < oo
(b) U possesses a unique proper (£ W) subalgebra U* = (A*; Q) and
| A*[=1;
(¢) U possesses a singular coupling ;
(d) for each a¢ A*, the characteristic function 0, (£,) is S-expressidle;
() there exists an element a € AN A* which is ex-expressible.

DEFINITION 1.2. A binary algebra is an algebra 93 = (B ; <) of species
8 = (2) which contains elements 0,1 (0 3% 1) such that

0 & =¢§ X<0=0,1x¢=¢§x1=¢§, (all & in B).
The element 0 is called the null of <3; the element 1 is called the identity.

THEOREM 1.3. (Foster [3]). Let B = (B; <) be a finite binary algebra
with null 0 and identity 1. Then there exists a cyclic permutation, N, on B
such that (B;><,N) is primal. Moreover, if B~ G, <X G, (where G, is the
two-element binary algebra), then " can further be chosen to satisfy 07 = 1.

THEOREM 1.4. (Moore and Yaqub [5]). Suppose (B; ) is a finite binary
algebra with null 0 and identity 1 in which | B|=3. Let B*={0,1} and
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let N be a permutation on B of the form N = (0,1)(b,,...,bn) where B=
= {0,1,b, ,..,bn}. Suppose (B*;><,N) is the unique proper subalgebra of
(B3>, N). If for some b;€ B\ B*, the characteristic function &, (&) is (><, N)-
expressible, then (B ; ><,N) is a regular subprimal algebra with core (B*; ><,N).

In order to simplify the work of § 2 and § 3 we introduce the con-
venient.

NorarioN 1.1, If (B; Q) is an algebra, f is a unary B-function, and s
is a positive integer, we define

JOE) =S f(f(&)..), s iterations.
In particular, if £} is a permutation on B, we define
£ = (. (NN ...)", s iterations;

5},” is defined similarly, where £V denotes the inverse of &0,
Observe that if &) is a permutation on a finite set B and 5},’ is its

inverse, then there exists an integer s such that &J* = (l,’ . Hence, any
(0, Y)-expression is simply a (N)-expression.

2. Regular Subprimal Conversion.

From Theorem 1.1 we see that with each regular subprimal algebra
B = (B; Q) is associated a frame [0,1, < ,Nn] and hence a finite binary
algebra (B; <) having 0 as null and 1 as identity. It seems interesting,
therefore, to pose the following converse problem: for what type of finite
binary algebra (B; <) with null 0 and identity 1 is it possible to convert
(Bj; x) into a regular subprimal algebra (B;><,N) of species § = (2, 1) for
which [0,1, <, N] is a frame? That a solution is not universally possible is
a consequence of

THEOREM 2.1. For each integer m =3 there exists a hinary algebra
(B3 <) of order n such that no permutation, N, on B renders (B; ><,N) a
subprimal algebra.

ProOF. Let B ={0,1,b,,.., b, be a set of at least three elements.
Define a binary operation, ><, on B by

0Xb=bx0=0,1XxXb=>bx1=25b (each b in B);
(21)
bi < bj == buin(s, j Whenever 1<+,j << m.
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Let " be a permutation on B. Then N can be written as a product of
disjoint cycles. From (2.1) it follows that each such cycle is a subalgebra of
B = def = (B; ><,n). Hence, 3 has either zero or at least two proper
(s B) subalgebras according as N is or is not eyclic on B. In either case,
it follows that )3 is not subprimal.

The next theorem provides a positive result.

THEOREM 2.2. Let (B; <) be a finite binary algebra with null 0 and
identity 1 where | B| = 4. Suppose there exists a unary (><)-expression, p (&),
and an element B € B\ {0, 1} such that

(a) p(B) =0 and

(D) p (&) is mot identically 0 on B\ {0, 1}.
Then there exists a permutation, N, on B such that (B ;< ,N) is a regular
subprimal algebra with frame [0, 1, >, N].

REMARKS. Note that the operation > on B is assumed to be neither
associative nor commutative and that p (§,) is just a power of &, under
some fixed association. Throughout the proof, «,-a, or juxtaposition a, a, will
freely be used in lieu of @, >< a,, and whenever no association of the pro-
duct of three or more terms is explicitly denoted, the product will be
assumed to be associated from the left, although in most, if not all, situa-
tions, any association of the terms will do, i.e.a, ..a, will be understood
to mean (... (a; < ag) X a3 ...) X @y .

PROOF. Let By = B \ {0, 1} and define subsets NUl, UlJ of B, (i,j =1)
inductively by

NW={beB,|p(b)=0}; Ull={beB;|p(d)=1};
(2.2) NitHl = (peB,|p (b)€ NEl} for i =>1;
Ulitll = (be B, | p (b) € UL} for j =>1.

Since B is finite, there exist values »,s of i,j, respectively, such that
NIl X Ubls£ (), N =X if ¢ > r, and U = (J if j > s. Thus,

B=1{0,1,0,,..500BycsBasyiseey?e

r . 3 5
where {a, ..., %) = U NGB By y ..oy Ba) =--=ju1 Uty and {y;, ..., y} = By\\
1= =
N0y y ooy @ey By yooey Ba). Clearly, p (yi) € {yyy .y 7e) for 1 <<k <e. Let (see

3. Annali della Scuola Norm. Sup. Pisa.
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Notation 1.1)
(2.3) K (&) = def = p® (£), w = max |r, s}.
From (2.2) it follows immediately that

50 if §=0, oy ,...,

K (&) = .

[1if & =1, B,,.., a3
Ky €lyy,yrey 1<k<e.

The existence of the permutation, ", will now be shown by considering
geveral cases. In each case, the regular subprimality of (B; ><, n) will follow
either from Theorem 1.1 or Theorem 1.4. By assumption, ¢ = 1.

Case 1 (¢c=d=1, ¢=20). In this instance, B = {0,1,«,,f,]. Since
p(e,)=0 and p(8) =1,ai ¢ (1, o) and fi =B, . If «f =0, let

n=(0,1, 0‘1) (ﬂi)

Then, 8p, (&) = p (&) < p (£)), the element f, is ex-expressed by Iy (£) =
=¢,, {0,1,«,} is the unique proper subalgebra of (B;><,n), 9, (&) =

= p (& [P (85, €)M, 0a, (&) = 8, (€0, 8, (£9) = &, (¢7)), and [0,1,><,"] is a
frame (see Theorem 1.1).
If a2=4, let
N=1(0,1)(a, B)

Then, d,, (£,) = p (& p (¢)]") (see Theorem 1.4).
Case 2 (=1, c+d=3,e=0). Let
M= (0,1)(0t; ey ey ByyeeyBa)

If d = 2, then dg, (&) =K(£0)K(£f,’)... K(E;’d”l), whereas, if ¢ = 2, then
8a (£o) = [K (&) [K ()" ... [K (€0 .

Case 3 (¢ =2,d=1,e=1). Let
(2.4) 0= (0, 1) (0ty yerey Goy ByyoeeyBas Vyseeny Ve)

and I=1{1,...,¢}. Among the K (y;) = def =y, , k€ I, there exists a maxi-
mum subseript ty =1, k€I. Let s, be the smallest positive even integer
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such that [K (i)™ € oy, ap). If g, (&) =K([K(§o)]n‘l) and I, ={kel|g,(yx) 0},

then
%1 it & =1,p,,..,pa

0 if & =0,0,,.., 0, ¥k

91 (§o) (k€INI));

91 (k) E{pyyeerve)y EEIL.

Among the g, (y;) = def =y, , k€I, there exists a maximum subscript
vy, =0, k€I . Let s, be the smallest positive even integer such that

l9, (}’k”)]n"s fog s ap). If gy (&0) = K ([g, (Eo)Jn"’) and I, = (k€I |g2 (ve) == 0},
then

9y (&) =

1 if §0=1;,81""7ﬁd
(ke I\ I,);

0 if £0=0,oc1,...,0¢c,?k

9z (7i) € {71"'°7?’e]7kEI2'

After a finite number of steps, the above process leads to an integer m

for which I,, = (5. It then follows that g, (&) = def = K ([gm_, (£)]"™) is
a (<, N)expression and

L if §=1,8,..,fa
gm (&) =

0 if £ =0,y 0cyPyyeeeyPer
Thus, 8a, (£)) = [gm (E6)]" [gm (EG)]" wve [gm (EUe+=—1)]" .

Case 4 (d=>2,e=1). Let " be defined on B as in (2.4). We proceed
similarly to Case 3. Among the K (y;) =def =y, , ke I =def = {1, ..., ¢},
there exists a minimum subsecript & <<%, k€l Let s, be the smallest
positive even integer such that [K (y))" € {Ba1, fa). If g, (&) = def =
= K ([K (&)]") and I, = (k€ I|g, (ys) 5= 1}, then

0 if §0=0,a1,...,ac
gi($0)= . (kEI\Ii);
1 if Eo=1,ﬁ1;"'9ﬂd77"

gy (v) € {71’---7')’e}’ kel .

Among the subscripts of the g, (yx) = def = y,,, k€I, , there exists a mini-
mum subsecript v- << v, k€I, . Let s, be the smallest positive even integer
such that [g, (yer)]"€ (Baz1, Ba). If g5 (&) = def = K ([g, (¢p)]") and I, =
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= (k€I | g, (ys) 5 1}, then
0 if & =0,0,..,0
92(50)2 . (kEI\Iz);
1t & =18, Ba, 7
9o (v) € {7g9 e s Vel B € 1.
Continue this process for m steps, until I, = (. Then g, (§,) = def
= K ([gm—1 (EO)]U"'") is a (>, M-expression and

if & =0,a,,.,a

0
gm('fo)’: .
1 if & =1,8 s Bas sy Yer

It follows immediately that 8, (£) = gm (&) g (&) v g (8)2F1) .
Case 5 (c=d=1,¢e=1).

Case 5(a) (K is 1 —1 on {y,,..,7.}). By assumption, there exists a
positive integer N such that K(¥)(&)) is the identity on y,,...,y.. Thus,
[0 if £, =0,a,

KW (&) =§ 1 if &=1,3
( ye if So=y,1k<e.
Let N be defined on B by
n=(0,1) (0‘1,}'1 y Biy Vo s e Ve)-

If ¢ is odd, let g, (£)) = KW)([KW)(&))]M), g, (&) = K™ ([g, (£p)]M), ..., and
ge(&g) = K ([go—y1 (§)]M). It is easy to check that

0 if & =0,0,, 9,5 Y
9. (&) =

1 if & =48,1.
Thus, 3,, (£) = [g¢(£) 1" (9 E 1" ... [ge(£))]" .

If e is even, let g, (&)= KN ([KM()]Y), ¢, (&) = K ([gy (&) 1Y), --
ooy Je—2 (‘So) = K®™)( [ye—a (50)]"l ). Then,
1 if &=10, a;, Vgy Yar-y Ve
Je—2 (Eo) == .
0 if & =1, By, 71y Vgy-rsVe1-

We have, 8,, (£,) = [ge—sz ()] [ge—2 (ED]" .
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Case 5(b) (K is not 1 —1 on {y,,..,7.}). In this case there exists
a y;¢ Range (K). Without loss of generality, assume that y, ¢ Range (K)
and K (y,) =y,. Let N be defined on B as in (2.4), let g, (£, = K ([K (&,)]Y),
let IT={(2,..,¢}, and let Iy = {k€I|g,(ys) == 1};

0 if £ =0,a

99 (‘Eo)=% . (kEI\Io);
1 if &=1,8,7n

9o (Y2) € {7'2 3 e 77e}’ kel,.

Among the g, (yx) = def =y, , k€I,, there exists a minimal subscript & .

Let s, be the smallest positive even integer such that [g, (vx)] € (8, , 74).
If g, (&) = g4 ([0 (60) ") and I, = [k € I, | g, (y2) = 1}, then

0 if £ =00

m@d=§ . keI I,);
1 if & =18, 71y 7

91 (70 € {pg s -y Vel kel, .

Continue this process, similarly to Case 4, until I, = (, defining succes-

sively ¢, (&)= 9,([9, (fo)]uag); ey 9m (E9) = 9 ([gm—l(‘fo)]usm) . Since I, = (),
the (<, N)-expression ¢, satisfies

0 if £ =0«
gm(fo)= .
z] lf EO=1,/31,7’"...,7¢.

Thus, 8,, (&) = g (£o) gm (50) - gm (&5°) .
Case 6 (c>2,d =0, ¢ =1). Define " on B by
(2.5) M= (0, 1) (0t) 5.ccp Ccy Pygeees Pe)
Let g, (&) = K ([K (&), I ={1,..,¢}, and I ;= (k€ I|g,(ys) 5= 0}. Then,
1 if &=0,0,,..,
9o (&) = . (keI Iy);
0 if EO = 1, Yk
90(71‘)5{71 PRI 76}7 kel,.

Among the g,(y:) = def =y, , k€I, , there exists a maximum subscript
tw =>1t,ke€I,. Let s, be the smallest positive even integer such that
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(90 (}’k')]mrlE {org 5 2]y leb g, (&) = K ([g, (Eo)]ns‘ ), and let I = (k€I,|g, (ys) = 0}.
Then

1 if Eu=10, 0, ..., a

g4 (Eo)"—:% (ICEI\I1);
0 lf E():—"l, Yk

9, (?’k)E{yiy--ﬂ?’e}y kel .

Similarly to Case 3, continue this process for m steps until I, = (), sue-
. . n
cessively defining g, (§)) = K ([g, (50)]"32), ey Im (&) = K ([gn—1 (&p)] m) where

1 if &=0,0,,..,0

gm(Eo)Z% .
0 if & =1,p4,..y 7.

Then 84, (&0) = gm (o) I () <. gm (E0°7) -

Case 7 (d = e = 0). In this case, B = (0,1, a,,..,0a) Let NU =
= (i1 y ey dinp) for i=1,...,r (see (2.2)). Since p (&) is not identically
0 on B, it follows that r = 2. Let

N = (09 1) (Ogq g ver 9 O3 (1) eemy Orly ooy ar,n(r))-

If n, +... + n, =2, then B={0,1,a,, , &y} where p(a,,)=0 and p(ay,) = ;.
In this case, let h, (£,) = [p (EM)]" and hy (&) = & [p? ([p (£x)]")]. Then,
Bar (&) = [P ([Py (g (§p)]M)]". Now assume that =, 4- ... 4+ n,=3. Consider
the unary (><,N)-expression g¢,(&,) = def = p® ([pr—N(&)]n). If n, 4 ... +
+ ny—y =2, then da, (§9) = 9o (£0) 90 (59) -9 (59"1 Footma =), Ifmy 4+
+ n,—, =1, then n, =2 and 6%’ wir) (&) ==[9, E 190 (53)]" 19 (E;’” -1y,

Case 8 (¢c = e =1, d = 0). In this case, B = {0,1, a, , y,} where p (a;)=0
and p (y,) =y, . Hence, y? 50 and a?¢ (1, 2. If y? £« , then let

N=(0,1, y,) ().

Tt is easy to verify that 8., (&)=p (£)]" [ (&)1 [P (&N]"; & (&) =9(p (&)
[p &y I" where g9 (&) = (&N & )u’, and that the conditions (a)-(e¢) of
Theorem 1.1 hold.

If a? =y , then let N be defined on B as in (2.5). Then da, (£,) = g, (93(&,))
where g, (£) = [ ([ 2 (6)]")IN and g, (£0) = (& [» (L2 (€)M D2
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If ?=a and a?=0, let
N=1(0,1, a,) (y,) -

Then 6, (£)) =p (%) and 8,, (&) = g(&,) g (&) g (€0") where g (&) == ([, (§,)]M)*
Again, conditions {a)-(¢) of Theorem 1.1 are easily verified.

Case 9 c=1,d=0,¢e=2, and K is 1 —1 on y,,...,%). Since K
is 1—1 on y,,..,7., there exists an integer N such that K¥)(£)) is the
identity on y,, ..., y.. Thus,

0 if & =00,
EME)y={1 if &=1
Yk if $0=7k,1gkge.

Case 9 (@) (¢ is even). Let N be defined on B as in (2.5) and let g, (£;) =

=K(N)\[K(N)(5o)]n )7 gg(‘fo) =K(N)([g1(£o) ]n )y g3 (Eo)=K(N)([92 (EO)]H )) "'795(50):—
— K®)([go1 (§,)]0). Then

0 if £0=]772r74)767'")70

[ge(EIN = . .
1 if &=0, 0,95 ,7%, 5 Ye—1-

We have, d,, (&) = [9.(60)1" [9.(6D)]".
Case 9 (b) (e is odd). Since p (y)€(y,,...,7,}, 7750, 1 <<t<e.
Case 9 (b) (i) (there exists a f, such that y?ﬂ:l, @, or where j>£¢ ).

Tet 0 be defined on B as in (2.5) and let g, (&), ..., 9.(§,) be defined as in
Case 9 (a). Then,

1 it & =0,0a;, 75, V4s-s Vet
9e(&p) = .

0 if §0=]7 Vs V3 s Ve

Now let h, (&) = K¥)(&y-g.(&)) and h;(&g) = K V) ([h—y (&) 1) for i=2,3, ...
e —1
R Rl Then
0 if £9 FZ Ve
2 7e if 50 = Ye—1-

If 3 =1, assume that t, = 2. Then §,,_ (&) =[h (&2 If 7s, = o, , assume
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that ¢y = 1. Then 6,,_, (&)= (K™ [([k (£&)]V)}])0. If y} =y,;,j = t,, assume
that y2 =7»,. Then 9d,,_, (§) = (KM [([k (£)]n[R(&)]n)V:])n.

Case 9 (b) (i) (y2=1y,, 1<<t=<"e¢). In this case either (I) there exist
ty, 8o (to 7= 8,) such that y, y, = o, or (I1) yeys= ay for 1 <<%, s<<e(t=s).
If (I) holds, let N be defined on B as in (2.5) and let & (£, be as in (2.6).
Assume that y, y; = «, . Then &, _ (&)= [K®) ([h(&)]V[h(&)]")]". Suppose
(I1) holds. Then B = def = {0,1,7,,..., 7.} is a finite binary algebra closed
under <. By Theorem 1.3, there exists a cyclic permutation *=(0,1,y,,...

ey P2,) O1 B such that (B; ), *) is primal (® being the restriction of >
to B). We can assume that ¢, =4, 1<<i<Ce, 80 that ~ =(0,1,y,, ..., %)
on B. Because of primality, the characteristic functions &, (&), 8, (&,) of
0, 1, respectively, in B are (&), *)-expressible. Define N on B by

= (07 1, Vi 78) (“i)

and let g, (§,), 9, (£,) be the (>, ")-expressions obtained from 50 (&) 51 (&),
respectively, by replacing each occurrence of (), * by <, N, respectively.
In B, then,*d,, (&) = [E™ )" [EWEMN . (B (M1 and 8, (&) =
=g, (&0): 9, ([0a, (6y)IN). The remaining conditions (a)-(¢) of Theorem 1.1 are
easily verified.

Case 10 (¢c=1,d=0, ¢e=>2, Kis not 1 —1 on p,, ..., ).

Case 10 (a) (there exist k,,k, with k, ==k, such that K (y;,)= K (y,) =yx,)-
Assume that K (y,)=K(y,)=y,. Let SM={y;| K (y)=1p,, 1<k <¢}
and 81 = {y;| K (yx) €801, 1 <<k <e] for t=2. Then there exists an
integer N such that SW¥1= (% but S = if ¢t > N. Assume that the y

N
are subscripted in such a fashion that {y,,.., y = 191 S, If K’ (&)=
= K@) (&), then

0 if §=0,0
K E)={1 if & =1
v i Eo =71y, ¥s5
K ({ps415 2 7o) € {ysg1soee s 7e)-

Define M on B as in (2.5).
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Case 10 (a) (i) (K’is 1 — 1 on yeyy, ..., 7). Let P be an integer for which
K" (§)) = def = K"P) (&) is the identity on ({y,4;,.., 7. Then, letting
9o (§o) = K" (K" (§)]V) and g, (&) = K’/ ([gr—1 (&))V) for r=1, .., e — s one
has

0 if & =0, oy, Pst1, Vstsy- . .
Ge—s (&o) = ) (if e — s is odd);
L oif & =1, pyyueyPsy Vokay Votay-o

1 if 50 =0, %y 9y VYs41y Va3 s eee
Go—s (&g) = (if e — s is even).
0 if 50 =1, Viseeo s Vsy Vst2 s Vstay ooo
Hence
Go—s (€0) Gos (E0) vor Gous (E51), if ¢ —s is odd
6;'3 (60) =

[ge—s (E™ [goes (EN™ oon [oes (B0,  if e — s is even.

Case 10 (a) (il) (K’ is mot 1 —1 on y,1,.., 7). Assume that y,y; ¢
¢ Range (K’). Let g, (&) = [K’ ([K’ (§)]V)]V. It is readly verified that

0 if £ =0, «,
9o (50) = .
1 if Ey=1, y,., 753

90 ({73+1 9 oeey ?'e]) c {7’:+1 9 eery ?’e—ly-

Let I={s+1,...,e}]. Among the subscripts ¢ arising from g, (y) = def = Ve
tel, let ¢,y be minimal and let s, be the smallest positive even integer
such that (y,, )Us' €{ys—1, s If g, (5)) =90([9 (50)]U") and I, = {teI|g, (y) =1},
then
0 if =0, a,
!h(fo)=% (keI I));
1 if So=1, yyy s 75y Vi

9: (7K € {78+1 yeeey 78—1}1 kel,.

Continue this process, similarly to Case 4, through m steps until I, = ¢,

. . u
successively defining g, (&) = go ([9; ("), -.- , gm (o) = o [gm—1 (£)] ™) Where
0 if =0, «,

gm(fo)=% .
1 if &=1, 75y 2e.

Then 3y, (&) = g (&) Im (&) v I (&0 ).
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Case 10 (b) (there does not exist k, , k, with k, <k, such that K (y,,)=
= K (yx,) = y1,). Since K is not 1 —1 on p,,.., 7. there exist pairwise
non-equal integers k, , k,, k; such that K (y,) = K (yi,) = yr, . Moreover, by
hypothesis, K (yx,) 7 px, -

Case 10 (b) (i) (yx, ¢ Range (K) or p; ¢ Range (K)). Assume that k, =1,
kg =2, and k, =e. Thus, K(y)= K (y,) =y, K(yo) 5% y., and either y, ¢
¢ Range (K) or p,¢ Range (K). Assume that y, ¢ Range(K). Also, assume
that the y; are subscripted so that {y, , ..., vs} = {yi | K (yx) = ., 1 << k<< ¢}.
Define N on B as in (2.5). Let I=/{s + 1,..,¢}. If g, (&) =[K (K (&MY,
then

0 if § =0, o,
9o (&) = %
1 if &=1, py.y 783

9o V) E{yy s ees Yema) if EKEL

Now let T'W = {yi| gy (yi) €{yyyeerrsly KET} and TU1 = {y| gy (ys) € T,
keI if r=2. Then there exists an integer R such that T'[Fl =2 (% but
T = if r > R. Let I, = (k€ I|gE+Y (y;) 5= 1}. Then

0 if £ =0, a
96 (&) = def = g{F+1) (&) = ‘ (keI Ip);
L if Ea=1, 7,y Vey 7k

' g0 (yx) € {78—!—1 PRI 76]9 kel,.

Among the subscripts of the y, = def = do (yx)y k€I, let ¢,y be minimal
and let s, be the smallest positive even integer such that [g, (yk:)]usl €
€ {¥s—1, 7s). Then, if g, (5)) = g0 (9o (fo)luh) and I, = {kel,|g,(ye) %1}, it
follows that

0 if £=0,
9y (69) = . (keI L);
1 if =1, pyyeey P8y ¥

9, (yr) € [73+1 y ey }’e}) kel .

Continue this process, similarly to Case 4, for m steps until I, = (7}, sue-

ceSSiVe]y deﬁning 92 (50) = g(; ([gi (&0)102,), sy Om (EO) = g(') ([gm_l (Eo)]u“m)_ Then
6}'3 ('50) = 0m (Eo) Im (5(‘)}) oo Im (E:')"e—l).
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Case 10 (b) (ii) (yx,, 7, € Range (K)). Assume that &k, =1, k, = 2, and
k; = 3, so that K (p,) = K (y;) =y, and K (y,)5= y,. Since K is not 1 — 1
on y,,...,7. there exists a y,¢ Range(K); assume that it is y,. If K(y.)=y,,
then Case 10 (b) (i) applies. So assume K (y,)><y,. Also, we may assume
that {yy, .., ys) = {yx| K(yx) =79,, 1 <<k <e}. Define " on B as in (2.5).
If I={1,s+4+ 1,84 2,..,¢} and g, (&) = [K (K (£)]Y)]" then

0 if £ =0, a,
9 (&) = .
1 if Eg=1, 75, , 75}

9o (Yr) € {72 y V3 yeeesy Vely KEL

Since y, ¢ Range (g,), similarly to Case 10 (b) (i), there exists an integer
R > 0 such that
0 if £ =0, a,
Jo (&) = def = g F+V) (§) = % (k€L Io);
1 if & =1, yg,u, 75 V&

Jo (yw) € {73+1 y ooy 78}, kel,,

where I, = {k€I|g{F+) (y;) 5= 1}. Among the subscripts of the y; = def=
= f, (yx), k€I,, let t,» be minimal and choose s, to be the smallest positive

even integer such that [ fo(yk,ﬂ“s. € {ys—1, ps). L&t £, (&) =1y ([So (50)]031). Con-
tinue this process for m steps until I, = (f, successively defining f, (£,) =

=Fo (Fy €Ny wevy Fon (&) = Fo ([ frmmr (fo)]Usm). Then, since
In= (k€| fm(ys) 1} =,

0 if & =0, a,
fm (‘Eo)—_'
?1 if So=1, 7;y0ey 7e

and 8,, () = fun (o) fin (80) wve fun (£6°71).

By applying now either Theorem 1.1 or Theorem 1.4 the permutation
n constructed in each case renders (B; ><, N) a regular subprimal algebra
with frame [0, 1, >, N]. This completes the proof.

REMARK. If in (@) and (b) of Theorem 2.2, 0 and 1 are consistently
interchanged, the resulting proposition is valid. Its proof is similar to the
work above, and involves interchanging the roles of ¢ and d, making minor
modifications case by case. This fact, then, in combination with Theorem
2.2, establishes the following



264 D. JaMes SAMUELSON : On the converston

THEOREM 2.3. (Principal Theorem on Regular Subprimal Conversion).
Let (B; <) be a finite binary algebra of ovder n =4 with null 0 and identity
1. Suppose there exists a unary (><)-expression, p(&)), and an element o€
€ B\_{0, 1} for which

(@) p(@)=0orpa)=1;
(b) p is not constant on B\_{0, 1}.
Then, there exists a permutation, N, on B such that (B; ><,N) i3 a regular
subprimal algebra with frame [0, 1, >, N].
‘We now show that (b) cannot be deleted from Theorem 2.3.

ExAmMPLE. Let (B;; <) be the binary algebra with the following mul-
tiplication table.

Since a?=0, 1<<i<3, any (<)expression, p (&), is identically 0 on
B; \_{0, 1}. If there is a permutation, 0, on B; for which (B;; ><,n) is a
regular subprimal with frame [0, 1, ><, N], then the core cannot contain
more than a single a;. The possible candidates for N are, therefore, of the
form

0= (0, 1) (&, aj, ax);

N = (0, 1) (@) (a5) (ax);
N = (0, 1) (a) (a, ax);
n = (0,1, a) (aj, az) ;

N = (0, 1, a;) (a;) (az).
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But, for any permutation of the first two types,
0—0, 1—1, a—aj, a&—>ay, ap— a;

is a non-identical automorphism of (B;; ><, N) while for permutations of the
last three types,

0—)0, 1—1, QG —> A;y A —> Gy A —> @

is a non-identical automorphism. Since a semi-primal has no non-identical
automorphisms [4 ; Theorem 3.3] no permutation, 7, on By renders (B;; <, M)
a regular subprimal with frame [0, 1, ><, N]. Similar remarks can be made
if we define a?==1, 1<<i< 3, and do not change the remaining entries
of the table.

3. Singular Subprimal Conversion.

From Theorem 1.2 it follows that with each singular subprimal algebra
B = (B; Q) is associated a singular coupling [0, <, 7; 1, 19] and hence a
finite binary algebra (B; ><) having 0 as null and 1 as identity. It seems
interesting then to inquire whether or not each finite binary algebra (B; X)
with null 0 and identity 1 can be converted into a singular subprimal al-
gebra (B; <, T) for which [0, <, T; 1,1° is a singular coupling, 1° being
some member of B. That this conversion can always be effected is a result of

THEOREM 3.1. Let (B; <) be a finite binary algebra with null 0 and
tdentity 1. Then there exists an element 1° in B and a binary operation £,T &,
definable on B such that (B; <, T) is a singular subprimal algebra with
singular coupling [0, <, T; 1, 1°).

PRrRoOF. For the 2-element binary algebra ({0, 1}; <) it is easily verified
that conditions (a)-(¢) of Theorem 1.2 hold if §,T &, is defined by 0 T§) =
=¢§,T0=¢, and 171 = 0. Let, then, B=1{0,1,b,, ..., b} be the base set
of a binary algebra of order m 4 2, where m = 1. Consider the cases (I)
m = 2 and (II) m = 1. For (I'), define 7' on B such that the following hold:

(iy 0T ¢, =¢,T0=¢&,, for each &, in B;

() 1T1=0b,, bTb, =by, ..., 0T b =1;
(iii) 170, =1, b,T by = b,T b3 = eo. = by T by = b, T1 = 1T b,, = 0;
(iv) &,T &, is defined arbitrarily for other &,, & in B.
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In case (II), define T on B by:
0T &= &,T0 =2¢, for each &, in B;

1T1=5b,, bTh =1;
1Tb, = b,T1 = 0.

In either case (I') or (II), let &) = £,T&,. If the characteristic function
0,(&p) is (<, T')-expressible then dy, (&), ..., 0v,, (5o)y I’y (&), and 0 are (><,T)-
expressible since

Sb (o) = 8, (ED)y Bs,_, (E)) = 8, (ED2), e, Oy, (6g) = 8, (60m);
Ty (&) = 8, (&) T by, (&g) T .oe T ds,, (&)
0 = 8, (&) X< &, (&)

In case (I), 8, (£,) = &T &}, while in case (II), 8, (£,) = &, (&,T &), or
ar (6059), according as b=0,1, or b, , respectively. In each case, it is
clear that {0} is the unique subalgehra of (B;><,T) and that [0, <, T;1, b,,]
is a singular coupling. The conditions (a)-(¢) of Theorem 1.2 are verified
and (B; <, T') is a singular subprimal algebra.
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