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ON THE CONVERSION OF BINARY ALGEBRAS
INTO SEMI-PRIMAL ALGEBRAS

D. JAMES SAMUELSON

As a generalization of the concept of functional completeness, Foster
and Pixley [4] introduced the notion of semi-primality and developed a

structure theory in this extended realm which subsumed that obtained in
the primal case [1 ; 2]. In order to enrich the scope of applicability of this
extended theory, y the construction of classes of semi-primal algebras of as
comprehensive a nature as possible is fundamental. Recent results along
these lines have been obtained for the important subclass of subprimal
algebras. The following theorem was proved by Moore and Yaqub [5]: sup-
pose (B ; X) is a finite, associative binary algebra which contains a nilpotent
element :5;6 0 and an invertible element z # 1; then there exists a permu-
tation, e , on B such that (B; X , n) is a regular subprimal algebra. In the
present communication we obtain a generalization of this result: the asso-

ciativity requirement is dropped and the nilpotent-unit condition is replaced
by a weaker power assumption on the elements of B. Moreover, it is shown

that every finite binary algebra can be converted into a singular subprimal
algebra by the addition of a single binary operation to the species.

1. Preliminaries.

We collect several of the concepts which will be used subsequently into

DEFINITION 1.1. Let ~C = (A ; ( fo , f1, ... , fa , ... ja~~) be an algebra of

species S = (1’0 , r1 , ... , ra , ..)a~,~ where each primitive operation fa is a

mapping of finitary rank ra h 0. If ra = 0 we set Ara = 101 and
call fa a nullary operation.

Pervenuto alla Redazione il 23 Aprile 1970.
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(1°) An A function is any set theoretic mapping f (~° , ... , ~~,_1) of An
into A for any integer n ~&#x3E; 0.

is a sequence of A.functions of species
- 11 . - . - - - -z- - = =

... , ...)Y~a) is called a conversion of CJ1 from species S to S.

(3°) An S expression is any indeterminate symbol ~° , ~1 ~ .., or any
formal composition of these indeterminate symbols via the primitive opera-
tion symbols fa of CJ1.

(4°) We say an A-function f (~° , ... , ~n-11 is S-expressible provided
there exists an (~° , ... , ~n_1) such that (;0 , --- , ~n-1) =

= f (~° , ... , ~n_1) for all ~° , ... , ~~_1 in A. In particular, an element a in A
is said to be S.expressible if there exists a unary S-egpression ($0) such
that Aa = a for all $0 in A.

(5°) An A-function f(03BE0 ... En1) is said to be conservative if for each

subalgebra C)3 = (B; D) of ~ and sequence of elements b° , ... , bn_i of B, it

follows that ... , ’I bn-1) E B also.

(6°) The algebra CJ1 is said to be primal (respectively, semi-primal) if
A is a finite set of at least two elements and every A-function (respectively,
every conservative A-function) is 

(7°) We say that CJ1 is a subprimal algebra if it is a semiprimal al-

gebra which possesses exactly one proper subalgebra T~~ == (A*; Q)
called the core of CJ1. If A~ contains at least two elements, CJ1 is said to be

a regular subprimal ; otherwise, it is called a singular subprimal.
(8°) If c2t is subprimal and a E AEA* then a is said to be ex expres-

sible provided there exists an S-expression 1’a (~0) such that (~°) = a for

all $0 in ABA~’.
(9°) The algebra CJ1 is said to possess a frame [0, 1, X , e~ if there

exists elements 0, 1 in A (0 # 1) and A-functions X (binary) and n (unary)
such that

(ii) E0 and n 0 are S-egpressible;
(iii) ~~ is a permutation of .A with on =1;
(iv) 0 and 1 are S.expressible.
(10°) We say 91 possesses a singular coupling 1,1°] if it

possesses elements 0, 1 with 0 ~ 1 and two binary A-functions X, T such
that (i) above holds in addition to

(v) 0 is S-expressible;
(vi) ~o X ~i and ~i are S expressible ;

(vii) 0 T ~° = $0 T 0 = $0 (all $0 in A);
(viii) there exists 1° in A such that 1 T 1° =1 ° T 1= 0.
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(11°) If cM contains distinct elements o, I satisfying (i) above, then
the characteristic function of an element a in A, denoted by 3a (~0), is the

unary A-function satisfying

The following results from the literature are important in the seq~uel.
For any set A we use I A I to denote the cardinality of A.

THEOREM 1.1. (Foster and Pixley [4]). An a,lgebra Cu = (A ; Q) of species
8 is a regular subprimal if and only if

(b) CJ1 possesses a ’unique proper c2l) subalgebra 91" = (A* ; Q) and

(c) CJ1 possesses a frame ;
(d) for each a E A, the characteristic function ba ($o) is S-expressible ;
(e) there exists an a E A ’,A 1&#x26; which is ex-expressible.

THEOREM 1.2. (Foster and Pixley [4]). An algebra CJ1 = (A; Q) of species
8 is a singular subprimal if and only if

(a) 
(b) CY possesses a unique proper (:5p4- subalgebra WI&#x26; = (A*; Q) and
|A|

(c) cypossesses a singular coupling ;
(d) for each a ~ A~‘ , the characteristic function 8a (~o) is 

(e) there exists an element which is ex-expressible.

DEFINITION 1.2. A binary algebra is an algebra cl3 = (B ; X) of species
8 -= (2) which contains elements 0,1 (0 ~ 1) such that

The element 0 is called the null of Cf3; the element 1 is called the identity.

THEOREM 1.3. (Foster [3]). Let 93 = (B ; X ) be a finite binary algebra
with null 0 and identity 1. Then there exists a cyclic permutation, fl , , on B
suclz that (B ; &#x3E;, n) is primal. Moreover, if ~3 g2 X g2 (where rJ2 is the

two-eleiiient binary algebra), then n can further be chosen to satisfy 0 n = 1.

THEOREM 1.4. (Moore and Yaqub (5]). Suppose (B ; X) is binary
algebra with null 0 and identity 1 in which B I ~:&#x3E; 3. Let B* = (0, 1) and
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let n be a permutation on B of the form n = (0, 1) ... , bm) where B =

= to, 1, ..., 7 bm]. Suppose (B* ; m , fl) is the unique proper subalgebra of
(B ; X , n). If for some bi E B~B~’ , the characteristic f2cnction (~a) is (X , n)-
expressible, then (B ; X , n) is a regular subprimal algebra with core (B* ; &#x3E;C , n).

In order to simplify the work of § 2 and § 3 we introduce the con-

venient.

NOTATION 1.1. If (B; Q) is an algebra, f is a unary B-function, and s
is a positive integer, vre define

s iterations.

In particular, if 6# is a permutation on B~ we define

s iterations ;

is defined similarly, where $I denotes the inverse of ~~ .
Observe that if ~n 0 is a permutation on a 6nite set .B and ~~ is its

inverse, then there exists an integer s such that ~n8 = 81 . Hence, any
(n , ") expression is simply a 

2. Regular Subprinud Conversion.

From Theorem 1.1 we see that with each regular subprimal algebra
Q3 = (B ; D) is associated a frame [0, 1, X, a] and hence a finite binary
algebra (B ; X) having 0 as null and 1 as identity. It seems interesting,
therefore, to pose the following converse problem: for what type of finite

binary algebra (B ; X ) with null 0 and identity 1 is it possible to convert
(B ; X) into a regular subprimal algebra (B ; X , ~) of species S = (2, 1 ) for
which [0, 1, X , c~ is a frame? That a solution is not universally possible is
a consequence of

THEOREM 2.1. For each integer 3 there exists a binary algebra
(B ~ X) of order n such that no permutation, n , on B renders (B ; X, n) a
subprimal algebra.

PROOF. Let B = ~0,1, be a set of at least three elements.

Define a binary operation, X, on B by

whenever
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Let n be a permutation on B. Then can be written as a product of

disjoint cycles. From (2.1 ) it follows that each such cycle is a subalgebra of

C)3 = def = (B; X , n). Hence, C)3 has either zero or at least two proper

subalgebras according as e is or is not cyclic on B. In either case,
it follows that C)3 is not subprimal.

The next theorem provides a positive result.

THEOREM 2.2. Let (B ; x) be a finite binary algebra ivith null 0 and

identity 1 where I B I &#x3E; 4. Suppose there exists a unary (X ).expression, p (E0),
and an szcch that

(a) p = 0 and

(b) p (~o) is not identically 0 on 11.
Then there exists a y such that (B ; X , o) is a regular
subprimal. algebra, witlv frame [0, 1, X, n].

REMARKS. Note that the operation x on B is assumed to be neither
associative nor commutative and that p ($0) is just a power of $0 under

some fixed association. Throughout the proof, or juxtaposition al a2 will
freely be used in lieu of a1 X a2 , and whenever no association of the pro-
duct of three or more terms is explicitly denoted, the product will be

assumed to be associated from the left, although in most, if not all, situa-

tions, any association of the terms will do, i.e. a, ... an will be understood

to mean

PROOF. Let Bo = B Bj0~ 1) and define subsets Ulil of Bo (tj ~ 1)
inductively by

Since B is finite, there exist values i respectively, such that

where and

3. dnnali della Scuola Norm. Sup. Pisa.
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Notation 1.1)

From (2.2) it follows immediately that

The existence of the permutation, n , will now be shown by considering
several cases. In each case, the regular subprimality of (B ; X , o) will follow
either from Theorem 1.1 or Theorem 1.4. By assumption, 

, Since

Then, ~~, (~o) = p (~o) X P (~~), the element Pi is ex-expressed by (~o) _

= 8~ , the unique proper subalgebra of (B ; X , n), ~~ (~o) =
= ~ (~o lP ~«1 (~o) = ð1 (~~2), bo (~o) (;~), and [0, 1, X, n] is a

frame (see Theorem 1.1).

Then, (see Theorem 1.4).

whereas,

and Among the lc E I, there exists a maxi.
mum subscript tk- h tk, k E I. Let st be the smallest positive even integer
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such that

then

Among the , there exists a maximum subscript
be the smallest positive even integer such that

After a finite number of steps, the above process leads to an integer m
for which Im = 0. It then follows that (

a (X, n) expression and

Thus,

Case 4 (d 2 2, e &#x3E; 1). Let n be defined on B as in (2.4). We proceed
similarly to Case 3. Among the 
there exists a minimum subscript tk, tk lc E I. Let s1 be the smallest

positive even integer such that E fld). If g, (~o) --- def =

Among the subscripts of the 91 (7k) = def = YVk’ I k E there exists a mini-

mum subscript Vk"!c-:-: vk , k E It. Let 82 be the smallest positive even integer
such that [g1 I fld-1 , fld ). If g2 (~0) = def = and I2 =--
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then

Continue this process for ni steps, until

= (~o)]u8m) is a (X, n)-expression and

It follows immediately that , I

Case 5 (a) (K is 1-1 on y1, ... , By assumption, there exists a

positive integer N such that K~~~ (~o) is the identity on yi , ... , 7 Ye - Thus,

Let n be defined on B by

It is easy to check that

Thus,

We have,
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Case J (b) (K is not 1 - 1 on y1, ... , ye ~ ). In this case there exists

a Range (K). Without loss of generality, assume that Range (..b~)
and K (y 1) = y2 . Let n be defined on B a~s in (2.4), let go (~o) = K ([.g (~O)]U2),
let 1= }2,..., e), and let Io = (k E I ~ 1);

Among the go (7k) = def = Io , there exists a minimal subscript tk~ .

Let 8i be the smallest positive even integer such that [go (rk,)]USl E 
If gi (~o) = go ([go (~o) and Ii = (k E 10 (yk) F4- 11, then

Continue this process, similarly to Case 4, until Im = 0, defining succes-
sively g2 ($0) = go ( ~91 ... , ($0) = 90 Since Im = y
the (X, n)-expression gm satisfies

Thus,

Among the go (yk) = def = y k E Io , there exists a maximum subscript

Let 81 be the smallest positive even integer such that
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Similarly to Case 3, continue this process for m steps until j

cessi vely defining

Then

is not identically

It is easy to verify that 6
and that the conditions (

then let n be defined on B as in
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and let

Then

Again, conditions of Theorem 1.1 are easily verified.

there exists an integer N such that .1’

Thus,

Case 9 (a) (e is even). Let n be defined on B as in (2.5) and let gi =

We have,

Ca,se 9 (b) (e is odd). Since

Case 9 (b) (i) (there exists a to such that where ,
Let fl be defined on B as in (2.5) and let ;
Case 9 (a). Then,

be defined as in

assume that to == 2. Then ( assume
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that

that

assume

, 3 1 2 Je-1 ,.,. , L B L ,- V’.J I. V/ i , -’ ,

Case 9 (b) (ii) (yt = y , 1 t C e). In this case either (I) there exist

to , so (to ~ so) such that rto yso = (Xi or (II) yt y, --X (Xt for 1 C t, s ~-, e (t ¥ s).
If (I) holds, let ° be defined on B as in (2.5) and let ~(~) be as in (2.6).
Assume that ~~=~. Then ($0) = [g~N~ ([h (~o)~~ [h (8~) ]n ) ]fl . Suppose
(II) holds. Then B = def = l1, ... , is a finite binary algebra closed
under X. By Theorem 1.3, there exists a cyclic 

... , yte ) on B such that (B ; ®, ") is primal ((~) being the restriction of X

to B). We can assume that ti = i, I e, so that ^ = (0, 1, y1, ... , ye)
on B. Because of primality, the characteristic functioias bo (o), as (o) of

0, 1, respectively, in B are ((~)~ A )-expressible. Define n on B by

and let ($) be the (m, fl)-expressions obtained from o (o), ð1 (o),
respectively, by replacing each occurrence by X, respectively.

In B, then, ’ ~«, (~o) = ~g~N~ (~o)]~ [g~N~ (~o ) ]o ... [g~N~ (~o e+1)~~ and ~o (~o) _
’~ 90 (~o)’ ~’1 ~ ~~«1 (~o) ]o ). The remaining conditions (a)-(e) of Theorem 1.1 are
easily verified.

Case 10 (a~) (there exist k2 with let jx k2 such that = 

Assume that Let 

and S ft] = (;’k K (yk) E 1  lc  e) for t &#x3E; 2. Then there exists an

integer N such that S IN =F 0 but S ~’~ = § if t &#x3E; N. Assume that the 7k
N

are subscripted in such a fashion that y1, ... , yS = U If g’ (o) =t=l

K (N) ($0), then

Define on B as in (2.5).
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Case Let P be an integer for which
Then, letting

Hence

Case 10 (a) (ii) (K’ is not 1 - 1 on y8+r ~ ... ~ y,). Assume that 

~ Range (K’). Let i It is readly verified that

Let Among the subscripts tk arising from go (7t) = def = 
t E l, let be minimal and let 81 be the smallest positive even integer
such that (
then

Continue this process, similarly to Case 4, through m steps until

successively defining

Then
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Case 10 (b) (there does not exist lei, k2 such that K (yk4) -
= K (7k,,) = 7k,)- Since .K is not 1 - 1 on y1, ... ~ 7, there exist pairwise
non-equal integers kl I k 2 lc3 such that K = K (Yk2) = y~~l , Moreover, by
hypothesis, K 

Case 10 (b) (i) Range (K) or Range ( )). Assume that k2 =1,
k3 = 2, e. Thus, = = 7e,, Ye, and either 71 q
~ Range (.g) or 72 q Range (K). Assume that Range (K). Also, assume
that the yk are subscripted so that {:
Define n on B as in (2.5). Let .

then

Nov let

Then there exists an integer R such that £ 
r

Then

Among the subscripts of the i’tk = def = g§ 10, let be minimal

and let 81 be the smallest positive even integer such that [g( E

E Then, if 91 (10) = 91 ([91 (10)]~~~) and ~ 1 ), it

follows that

Continue this process, similarly to Case 4, steps until Im = 0, sue-

cessively defining 1
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Case 10 (b) (ii) Assume that ~==3y and
k3 = 3, so _ .~ (Y3) = Y1 and K (Yi) =,p4- 71 - · Since .I~ is not 1-1

on y1, ..., yY there exists a assume that it is ye. 
then Case 10 (b) (i) applies. So assume .~ (ye~ ~ y1. Also, we may assume
that ~y2 ~ ... , ys~ _ ~yk 1~(yh) = y1 ~ Define n on B as in (2.5).

Since ys Range (gQ), similarly to Case 10 (b) (i), there exists an integer
.R &#x3E; 0 such that

where Io = I ~ (yk) ~ I ). Among’ the subscripts of the Ytk -= def =

_-- fo (yk), let tk, be minimal and choose 81 to be the smallest positive
even integer such that Con-

tinue this process for 1n steps until _ 0, successively defining fz (~o) =

and 6 11, (~0) = 1m (80) fm (~~ ) ... f m (~o e-1 )·
By applying now either Theorem 1.1 or Theorem 1.4 the permutation

~ constructed in each case renders (B ; X, ~) a regular subprimal algebra
with frame [0, 1, m , This completes the proof.

REMARK. If in (a) and (b) of Theorem 2.2, 0 and 1 are consistently
illterehanged, the resulting proposition is valid. Its proof is similar to the
work above, and involves interchanging the roles of c and d, making minor
modifications case by case. This fact, then, in combination with Theorem

2.2, establishes the following
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THEOREM 2.3. (Principal Theorem on Regular Subprinlal 
(B; X ) be a finite binary algebra of order n &#x3E; 4 with null 0 and identity

1. Suppose there exists a unary p (~o~, and an element a E

E B B to, 1) for which

(b) p is not constant on B B 
Then, there exists a permutation, n, on B such that (B ; X ~ n) is a regular
8ubpri1nal algebra witlz frame [0, 1, ~ , n].

We now show that (b) cannot be deleted from Theorem 2.3.

EXA-MPLE. Let (B5 ; X) be the binary algebra with the folloBving mul-
tiplication table.

Since a~ = 0, 1 ~ i :::;: 3, 2 any (x)-expression, p ($0), is identically 0 on

B5 B 10, 1 ). If there is a permutation, n , on B5 for which (B5 ; X?") is a
regular subprimal with frame [0, 1, X, n], then the core cannot contain

more than a single a; . The possible candidates for n are, therefore, of the
form
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But, I for any permutation of the first two types,

is a non-identical automorphism of (B ; Xy n) while for permutations of the
last three types,

is a non-identical automorphism. Since a semi-primal has no non-identical
automorphisms [4 ; Theorem 3.3] no permutatiod, , on B5 renders (B5; X o)
a regular subprimal with frame [0, 1, X, Similar remarks can be made

if we define af = 1, 1 C i C 3 and do not change the remaining entries
of the table.

3. Singular Subprilnal Conversion.

From Theorem 1.2 it follows that with each singular subprimal algebra
C)3 = (B ; D) is associated a singular coupling [0, x , T ; 1, 1 °] and hence a

finite binary algebra (B ; X ) having 0 as null and 1 as identity. It seems

interesting then to inquire whether or not each finite binary algebra (B ; X)
with null 0 and identity 1 can be converted into a singular subprimal al-

gebra (B ; x, T) for which [0, X, T ; 1-, 10] is a singular coupling, 10 being
some member of B. That this conversion can always be effected is a result of

THEOREM 3.1. Let (B ; X) be a finite binary algebra witla null 0 and
identity 1. Then there exists an element 10 in B and a binary operation 
definable on B 8uch that (B ; x, T) is a singular subprimal algebra with
8ingular coupling [0, X , T ; 1, 101.

PROOF. For the 2-element binary algebra (JO, 11; X) it is easily verified
that conditions (a)-(e) of Theorem 1.2 hold if ~°T ~~ is defined by 0 T$o
= $0 T 0 ~ $0 and 1T 1= 0. Let, then, B = (0,1, b1, ,.. , bm) be the base set
of a binary algebra of order m + 2, where 1n h 1. Consider the cases (I )

2 and (II ) m ~ 1. For (I), define T on B such that the following hold:

is defined arbitrarily for other $ , $ in B.
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define 1

In either case (I ) or (II ), let ~~ _ ~oT ~o . If the characteristic function

61 (80) is ( X , T)-expressible then bb, (E0), ---, br, (0) T1 ($0), and 0 are (x , T )-
expressible since

In case (1), 3~ ($~) = $~ T $# , while in case (II ), b~ (~o) _ ~o, (~oT ~o )2, or

~T(~o~), according as 0,1, or bi , respectively. In each case, it is

clear that is the unique subalgehra of and that 

is a singular coupling. The conditions (a)-(e) of Theorem 1.2 are verified

and (B; X , T) is a singular subprimal algebra.
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