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TRACES OF POTENTIALS ARISING

FROM TRANSLATION INVARIANT OPERATORS

by D. R. ADAMS

For a function u in the space (.En) (the usual Sobolev space of Ep
functions on Euclidean n-space En with distribution derivatives of orders

S a in Ir), it is possible to characterize the « restriction » or trace of it

(call it u*) to certain lower dimensional manifolds M provided their dimen-
sion d, satisfies d &#x3E; n - ap.

In this paper the characterization is given in terms of the Lebesgue or Lp
class of u*, where the norm of u* is taken with respect to an appropriate
measure p concentrated on M. In particular, it is known that d 

 1, then u* E Lr (M), 1 ~ r ~ - ap), when M is

« smooth » and u is the surface area measure on M. The usual procedure
for proving this is to first obtain the result for a subset of a d-dimensional

hyperplane in En and then extend via a change of variables to manifolds
which are diffeomorphic images of d-dimensional coordinate patches. In
such a method, the essence is to work coordinate wise, from .En down to

the hyperplane. This paper presents a new method for achieving this,
which in addition allows an extension of the trace result to sets l!~ of

fractional Hausdorff dimension d, 0  d :::;;: n.

Since every u E yYa p can be represented as a Bessel potential of an

Zp function (see (1~), we will consider functions u in the form of potentials
T (f), where f E Lp and T E S,, , S,, being the class of translation invarient

operators of smoothness a, a &#x3E; 0 (see section 1 for the definitions). Theorem
1 then states that for each class Sa there is a corresponding class of « ap-
propriate » measures ,u for which T (f) E Lp. (It), p* = dp/(n - 
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n - d  ap  n. Here the set .lVl is the support of p. When T is the Riesz

potential operator, Theorem 1 can be improved (Theorem 2). In this case,
the condition a E -pld is both necessary and sufficient for the map T:

.Lp -+ Lp. to be continuous.

The class of measures is closely related to the Hausdorff d-dimen-
sional measure by a well known theorem of 0. Frostman (see [3]). In
particular if Hd (M) &#x3E; 0, then there is a measure fl concentrated on M

such that u E and p fl 0.
Theorem 1 can also be viewed another way : if fto is given then the

condition - uo restricted to ~ belongs will be a sufficient

condition on .~ to insure that T ( f ) has a trace on M. For example7
if flo = Hd, d a positive integer, then any smooth compact manifold in .En
satisfies this condition.

T am grateful to G. Stampacchia for pointing out the result appearing
in the appendix of [9]. It is the forerunner of lemmas 1 and 2.

Section 1 contains the preliminaries and section 2, the statements and
proofs of the main results. In section 3, I have attempted to point out

relationships between Theorem 1 and various results appearing in the lite-

rature.

1. Preliminaries.

1.1. Let Ay denote the usual Banach space of all bounded Holder

continuous functions of exponent y &#x3E; 0 defined on JE~ (see for example [8]
for a precise definition). A linear transformation T which maps A. into

a &#x3E; 0, boundedly and which commutes with translations will be ter-

med a linear translation invarient operator of smoothness a and the class

of all such T will be denoted by Sa. Here we will be content to list the

various properties of T E Sa needed for this paper.
If T E Sa, then it is known (see [8]) that for 0  oc  1, T applied to

any smooth functioia f is given by T (

the kernel of T, satisfies

dy where

Q a constant independent of y. Here the symbol ... dx denotes integration
over En with respect to n-dimensional Lebesgue measure nln .
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Our main interest lies with the Riesz potential operator whose kernel
is ha (x) _ ~ and the Bessel potential operator Ja. In general,
J a is defined for all real a by : Ja is the mapping given by the convo-

lution with a tempered distribution and whose Fourier Transform is

(2n)-n/2 . (I + x ~2) a~2 , When a &#x3E; 0, the kernel of Ja is denoted by ga and

satisfies, in addition to (1) and (2)

Here Q is a constant independent of x. For additional properties of ga see [1].
A basic feature of the map J0 is the fact that it is a bicontinuous iso-

morphism of dY to Ay+o as long as y &#x3E; 0. From this, it easily follows
that for any 7 i. e. T commutes with J ~ .

1.2. By c)k we will understand the collection of all completions of

Borel measures on .En and by Ej those p for which total

variation of p  oo. We will use the Morrey space notation £1; d to denote
those ft E em for which

for all x E .E~ and all r h 0. Here 0  d ~ n I denotes the sum of

the positive and negative parts of a. A is a constant independent of x and r.
The notation 1I.llp will represent the usual Lebesgue p-norm, 1 --- _p - oo,

with respect to For any other measure the symbol 
will be used. Lp and .Lp (,u) will denote the corresponding Lebesgue func-

tion spaces. cmo denotes the measures with compact support.
The superscript « -~- &#x3E;&#x3E; is used to indicate the subclass of non-negative

elements. The letter Q will denote various constants, possibly not the same
constant in any one proof, whereas A, Ai , etc. will denote specific constants.

2. The main results.

2.1. The results of principal interest are Theorems 1 and 2 below

THEOREM 1 : For T E Sa and fl E there exists a constant Q such
that for all f in Lp,

provided Here and Q
is independent of f.
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REMARK 1 : Special cases of Theorem 1 are known, e. g. when 
it is the Theorem of Stein-Zygmund (see Section 2.4); when d an

integer, and T the Riesz potential operator, it ’becomes the imbedding
result of II’ in [5].

The program for proving Theorem 1 will be : (a) to establish necessary
and sufficient conditions on a non-negative Borel measure p in order that

the above inequality holds for the Riesz potential operator, (b) to show

then that Theorem 1 holds for the Bessel potential operator (using (3)),
and finally (c), to establish Theorem 1 for general T (using (b) and the

Theorem of Stein-Zygmund). Thus the main burden of the proof of The-
orem 1 is in establishing (a). This can be stated as follows :

THEOREM 2 : The necessary and sufficient condition for

to hold for all f E Lp, Q a constant independent of ,

2.2. The proof of the sufficiency for Theorem 2 involves an estimate

on the ftk where p’ = p/( p -1) and flk denotes p restric-
ted to K, a compact set in En of positive u measure. To obtain the

desired estimate, two main cases are considered, namely 1  p  2 and

~a &#x3E; 2. In the first case, hap * pK is estimated in the norm and then

in the Ep, norm (lemmas 1 and 2).
For the second case we note that

where . Hence it suffices to

estimate uK in the norm. To do this, observe that

Here VX ( f K, r) is given by (4), for a measure with density fK. In lem-

mas 3-5, estimates for the functions (y) and Yx ( f K, r) are obtained.

Finally, lemma 6 is the desired estimate on uK .
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PROOF: and altho the function Yx r)
0

is not in general continuous in r (for each fixed x), it is non decreasing
and left continuous. This formula follows from the defivitions of the

integrals involved.
’ 

Integrating by parts we get

whereas

The result now follovs by choosing

where . is the Riesz convolution constant,
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PROOF: 1 For can be handled by a trivial

modification) choose I then

Thus from Hölder’s inequality, we have

by the choice of I But

(7) and (8), together with lemma 1, now give the desired result.

LEMMA 3 :

for all x E and all

sphere in En .
area of the unit

PROOF’: Since p &#x3E; 2, Holder’s inequality gives

where

which never exceeds

since
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And

Since now

LEMMA 4 : For p &#x3E; 2 and

for

PROOF : Equivalently this lemma asserts that f K belongs to the Morrey

this to lemma 5).
For fixed x, we consider y such that , then

Let

and note :

(iii) For each fixed y,. ggy (p) is non-decreasing in e and left continuous.

using (i) and then integrating by parts.

14, Annali della Scuola Norm. StJp. Pi8a.
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Also note that Thus

With these estimates and (9) of lemma 3, the result follows.

LEMMA 5: 1 For

PROOF : In contrast to lemma 4, f K is no longer in a Morrey class,
but in a Holder class with exponent

Again with

the result now follows easily.
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LEMMA 6 : For p &#x3E; 2, there is a constant A6 independent of the set
K such that

Hence by

PROOF : case (1) 0  a  n - d : Integrating by parts in (6),

since by lemma 4, and is

Applying lemma 4 to I9 and lemma 3 to I1o, we have

and

The result follows taking

Applying lemma 5 to h1 and lemma 3 to 112’ we have

with the same choice of o.
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case (3) 0  a = n - d : This case is resolved by interpolating between
cases (1) and (2) as follows : choose pairs (ai , p) with 

1 but 0  n - d n. Let 08  1.
As before lra (x) = hao (x)1-B and upon applying Hblder’s inequa-

lity, we have 
-- -- - -- -

where Thus

Case (1) gives uo~ (x)  A6 p (K and case (2) gives ux (x) ~
Hence it is now clear that a finite constant A6

may be chosen with the required properties.

2.3. PROOF or THEOREM 2 : For the sufficiency, lemmas 2 and 6 are
used to show that for fixed Ct, the Riesz potential operator is of weak type
(Lp , Lp* (,u))~ when n - d  ap  n.

Now since lemmas 2 and 6 hold for all compact sets K, and the constants

A2 and A6 are independent to K, these estimates must also hold for K

replaced by Et, a Giset, since p is a Borel measure. Thus

or

We now apply the well known interpolation theorem of Marcinkiewicz to

deduce the strong type estimate required.
To prove the necessity, y we choose a particular Zp function, namely the

characteristic function of the ball Br 1 and

xo E En arbitrary. Denote this function by
other hand

On the
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Thus if ) is continuous. we immediately get

The proof of Theorem 2 is now complete. ,

REMARK 2 : It is interesting to note that the region in the ( p, a) plane
1  p  oo, 0 ~ x ~ for which the above result holds is the region
between the two hyperbolas ap = n - d and ap = n. It is possible to

« shift » this region to obtain a result of additional interest (see Remark 6).
Making the changes :

where

, denotes a measure with density f.

2.4. To see that Theorem 1 holds for ha replaced by ga, , it is only
necessary to combine (3) with Theorem 2.

Necessary and sufficient conditions on ,u for ga are possible only if the
variation of u is allowed to grow more rapidly at infinity.

PROOF OF THEOREM 1 : This extension of Theorem 2 can now be esta-

blished by applying the theorem of Stein-Zygmund [8]. This result may be
stated as follows :

THEOREM : If T E Sa, then there is a constant Q such that

for all f E Lp ; Q is independent of ,

For T E Sa, choose f satisfying - Note that

this is always possible since thus the

theorem of Stein-Zygmund yields

where q = np/[n - (a - Using Theorem 2 (which we now know is true
for the Bessel potential operators),
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where Hence

Note that the conditions 1  q  q*  oo are satisfied when 1  p  oo,
n - d  ap  n, and by the choice of fl.

REMARK 3 : It might be noted that if the more general interpolation
theorem of R. Hunt [4] had been used in place of the theorem of Marcin-

kiewicz, it would be possible to deduce that any T E Sa maps the Lorentz
space L ( p, q) continuously into L (p*, s) (PI), with q  s, the usual restric-

tions on a, p and d. In particular when q = s = oo, T maps weak-.Lp con-
tinuously into weak-Lp* (,a).

3. Related results.

3.1. We begin by giving potential versions of two classical trace

theorems.

THEOREM 3 : Let T E Sa and IA y then there is a constant Q such
that for all f E Lp

where max: ( Here At t denotes
the first difference ; Q is to be independent of f and t.

PROOF: The restrictions on r insure that the exponent of t ~ is always
positive and less than 1. It is easy to see that 

where k is the kernel of T.

We write T = (J-e · T ) · Je = where lca-e is the kernel of J-e .

T, 0 chosen to satisfy initially (it - d)/p  8  a. Then

since Here fz (y) denotes f (y - z). By the inequality of Min-
kowski and Theorem 1 , we have
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were Since

But 0 = n/p - d/r, hence the theorem follows.

is a compact mapping of Lp into

PROOF : Let be a bounded sequence in then there exists

a weakly convergent By (1) and (2) ka-e-!,,-+
in Zp locally, by the familiar Riesz compacteness criterion.

But since T ( f k) ~ ~’ ( f ) in p measure and thus using Theorem 1
the result follows by a standard argument.

3.2. We now consider a « dual &#x3E;&#x3E; to Theorem 1 and then apply it to

obtain an extension of a theorem of Campanato [2].

THEOREM 5 : Let T E Sa E then there is a constant Q such
that for all g E Lq ( /1),

were I Here Q is indepen~
dent of g.

the last inequality following from Theorem 1. The result now follows by
taking q = p’~’ and q = p’·

Let 1 t C 00, 0  1  n, denote the class of measures fl E

which are absolutely continuous with respect to ’Inn with density
f satisfying ·

THEOREM 6 : , then i where ’.
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PROOF : In Theorem 5, take g (X) = x2r (x), the characteristic function

of the ball

where ,u2r restricted to B2r (xo). The condition equi-
valent to n/(n - ex)  t  ~,/(~, - a).

It now remains to estimate the t-power of the variation over Br (xo) of
However, this quality is just the variation of t over

Br (xo) (h as in lemma 4) with xo playing the role of x and a  À.

The remaining integral is handled as before.

Finally, for any t in the interval [1, ~,/(~, - a)~ a simple interpolation
argument gives the result.

REMARK 4: The result of Campanato [2] can be stated as follows:

If n-Â, then f E £t; where ap  A,  Àp j(À - ap), and

His proof fails when p =1, which Theorem 6 now treats. Note, when
jp = l, it is possible to take o = t (2 - a).

KEMARK 5 : It might be interesting to find conditions on u for which
t = À/(Â. - a) is allowed in Theorem 6, for in general, it is known that It E
E 121; n-z is not sufficient. Indeed, if A = ap, then Â.j(À - a) = p’ and such

a ,~ does not even insure that locally (for this see [6]). From
the proof of Theorem 6, it appears that any condition on a which insures

~~ i ~ Qrn-B t = ~/(A - a) will be sufficient. Two such conditions are :

and

continuously,

is bounded on En.

The proofs require no new ideas.
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REMARK 6 : Finally, we observe that (10) is an extension of a theorem

of Stein and Weiss [7] - see in particular their Theorem B* in the case

p  q, which corresponds to our case p  e. The example referred to in

the above remark easily shows that no extension of this generality is pos-
sible when p -:- p*.
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