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REGULARITY RESULTS FOR NON-LINEAR ELLIPTIO
SYSTEMS IN TWO DIMENSIONS

JANA STARA, Praha

The purpose of this paper is to prove the regularity of the weak so-
lution of Dirichlet problem for non linear elliptic systems in two dimen-
sions. This problem is considered in the following form :

Let 2 be a bounded domain in Ey, v be a weak solution of the
system

S (= 1) Diai(x, Du(x) = fr(®); r=1,..m, Du = {D? tg}y—1, ... m

3] =<, 7] <%

with a boundary condition w, i. e.

0 0 0, Yrx
1) U= (UyyeryUm )y Ug==(Urye. ) Up); Up— U EW}" (Q);r=1,..,m
2) fZ (I'IZS ay (@, Du (x)) D @, (x)) — fr () @y () dz = 0
r=1 1 ®p

Q2

for every ¢, € ﬁ’k"" ().
The regularity means that u, belongs to O, , ,4(?2) for r=1,..,m.
This result was proved by
1. Ch, B. Morrey (1937) for N=2, m =1, » =1,k =2,
2. E. De Giorgi (1957) for N>=2, m =1, »,=1, k=2,
3. 0. A. LadyZenskaja - N. N. Uralceva (1959) for
N=2,m=1, ,=1,1 <k < oo,

4. Ch. B. Morrey (1960) N>=2, m =1, %, =1, 1 < k < oo,
5. J. Netas (1966) N=2, m=1, », =1, k=2,
6. J. Nedas (1967) N=2, m=1, %, =>1, 1 <k < oo.

Pervenuto alla Redasione il 23 Giugno 1970.
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In this paper, the regularity is proved for N=2, m =1, % =1, k=2.

For N > 2 there was proved a partial regularity (see Morrey, [12]) as
follows : for every £,,Q,c Q there exists an £, so that  is regular on
9, and the Lebesgue’s measure of 2, — Q, is equal to zero. A stronger
result concerning the Hausdorff measure of ), — £, and under weaker
conditions, was proved by B. Giusti, M. Miranda (see [7]). The regularity
in this case (N > 2) cannot be proved; there exist counter-examples (De
Giorgi [4], Giusti-Miranda [6]) of non-regular solutions of the equations with
coefficients analytical in u. For the present we do not know a counter-example
satisfying the stronger Morrey’s conditions of the growth of coefficients.

Let us put the problem considered here in the following way :

2 is a bounded domain in Ey with infinitely smooth boundary
69;?)= QU 0, N; are linear defferential operators with constant coef-
ficients.

m m
(0) Niu= ZNyup=3 3 @ipa D*u,5i=1,...,h.
r=1 r=1 |a| =<,
Let us denote &* =¢V'..E¥ s Npb= 3  aiy,&" and suppose
|a!=nr

rang N¢ =rang (N &)iey,...a = m

r=j, ..

for every £€ Ey; &=(0,...,0).
As a special case we may take

Niw= Nygu = D*u,
for every r=1,..,m;|a|< %.

The functions F;(x, &) (for ¢=1,..,h) are defined and continuous

with all their first derivatives on £ >< Hj (*) and are nonlinear with poly-
nomial growth (of the order ¥ — 1) in &.

h 1/2
Let us denote 6 = (1 + = |§,» |2) ;
i=1

R 12
Ou (x) = (1 + 2| Niu(x) |2)
i=1

(*) They are differentiable on £ >< E, and the derivatives may be continously extended

on -!5><Eh
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for
uE IIW]:'T(IQ); —a—?-_—ﬁ"'j.
j

r=1 d

Let us suppose that there exists ¢ > 0 such that for every x € ﬁ, EE By

n v :
(1) 2(|Fz’(w’ ‘S)l‘l‘ 2 l oF; (.%',E)‘)S 0’92—17
i=1 =1 | 0%
h
(2) 3 | Fy(, 8| < 0057,
i )=1
(3) Fij(w, &) = Fji (, §).

We shall consider a weak solution of the equation

3 (—Wl(zh aira D Fi (3, uvju(av)l,’-'-_l>)=i E (—W'(ﬁ tira D (w))

|a|=x, i=1 ’ i=1

for r =1, ..., m, which may be written in a divergent form

L 13
(L.1) j Z [Fi@, (N u @)f=) — £, (@) N () dw = 0.

‘We shall suppose that the operator on the left represents a monotone ope-
m m o !
rator from I7 V?’,’: () into (H W (Q)).
r=1 r==1
In Case A operators N; which consist only of their main parts, i.e.

Nou=23 2 @y, D*u,; i=1,,..,h

r=1|a|=1=x,

will be considered. In this case it is sufficient to suppose that
(4) there exist two positive constants y,,y, 8o that

h
O P 3 Fylw, & nim <y, 08 |y

$, j=1

— s
for every n € En, € Q, E€ By | P = 3 | n:|%
i=1
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Case B: Let us decompose N; in the main part N; and
N/=N;— N/

(the corresponding notation v/ = (v/y..., vy )5 0" = (v)"y.cc0p') ;0= (v",v"") € By ).
F;(x, v) are defined and continuous with all their first derivatives on
Q < By, The conditions of growth are the same as in A. Instead (4) let
us suppose
(4”) there exist C,, 0, positive so that

h 2h h 2k
3 Fi(r,0) (i + o) = O _21 |vi|*— Oy 2 2 Fyw,v) py(pi 4 i) >0

=1 =1 j=

Vu€Bpiu+0

(4’’) there exist two positive constants y, ,y, so that

k=2 s A =2 19
71 0y Mléiilﬁ’aj(%”)mméh% [7]

for every x€£; v€ Ey; n€ B .

(5) Suppose that for the regularity conditions (0) — (4) (in case A) or
(0) — (4”’) (in case B) are satisfied uniformly with regard to an orthonormal
transformation of a coordinate system in Hy.

(6) The right part f;€ W, (Q) for i =1, ..,k p> 2, the boundary
condition € W;T_H(Q) for r =1, ..., m, 17> max ( p, k).

§ 1 consists of some lemmas on L,estimates of solutions of the linear
equations. Lemma 1.4 gives such estimates for an equation with measurable
coefficients, whose bilinear form is the following

h
2 AijNi (1 Nj (28

Joi, j=1
°
(o]
Here A€ Lo (2);u,, 0, € Wy"(Q);r=1,..,m; for y,,7,>0 and every
ﬂEEh is
3
i) 71|’7|2£_%'_1Aij’7ﬂ?j£?’2|’7|2-

This condition is weaker than the usually required condition of ellipti-
city which, in this case, has the form

h m h m
iy X A.-,(z S i, 5‘;)(2 2 ajy Ef)zoz 2z | &R
i, j=1 =1 | a|=x, s=1 | f|=uxg r=1|a|=x,
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For example, for

o ou au ou.
N1u=3i2 8.:02 N, l-l— 2' ij=8:'j
is i) evidently satisfied,
&, ¢
NE — ( 1 2)
— &, &

is regular for non-vanishing &. But ii) has the form

<52—5?2+(el+5§2202 | & 2

i, j=1

and such constant O does not exist.

§ 2 contains some remarks on existence of solution and continuous
dependence on f and %, and a proof of the main theorem. A homotopy is
used there between a linear equation with constant coefficients with well-
known properties and the investigated non linear equation.

The proof is based on a priori estimate denoted as « property o« » of
the equation and having this form :

Let us suppose the solution u belongs to

1[[0 @ n Wyt (@), e n W, (Q).

m
Then % belongs to IT [V, rtl (£2)] and its norm is bounded by a constant which

r=1
depends only on f, u, .
Several cases of operators which possess the above property, are
investigated in § 3.
The author is indebted to Professor J. Netas for much valuable advice
concerning the paper.
lal

Not1ATIONS. D* denotes the partial derivative —a—a————-— where o =
0%y .o 8

= (&, ., %y); all a; are integers, non-negative numbers, la|= 2 .
=1
J— ] —_— —_
The functional spaces D (2), &(2), WS (Q), Wr(Q), C:(2), Ck .(2)
(with % integer, nonnegative, p =1, 0 << u<<1) are denoted as usually

(See for example [15]).
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Let u be a vector-function u = (w , v , Um)y % = (% 5 e0r , %m) With 2, =0,

integer for i=1,..,m. Then u€ W",(Q) [Vtc’),," (Q), C.(2), C., .(2)] means
that each w€ W,' (@) [W,* (Q), On (D), Cu;,u(@)] for i=1,...,m.

%» + 1 denotes the vector (%, 4+ 1,..., %, + 1), i.e. x4+ (1,..,1)- M =
= W5 (@Q)n 0, (D)

1. Properties of the operators N;.

‘We shall be concerned with linear differential equation which may be
written as follows :

=1 |a|=1=x,

h m
(1.2) A (u, 9) =]2 NouNiop= | 2 2 fra D*,.
=1
o]

N; consist only of their principal parts N, i.e.

(1.3) Niu= 23 32 @pq D%,

r=1 |a|=1x,

and satisfy condition (0), ¢, u€ Vf’z" (8), fra € Ly (20

LemmA 1.1: The linear differential operator given by (1.2) is uniformly
elliptic and strongly elliptic.

ProOF: (1,2) can be written in the form

A (u, ‘P)=/§l P 2 ly(u)= |2 @, I Dofs,
2

r=1 3 8=1 |a] =g
where u, @ € [D (Q)]" and fo, € W5 (Q),

k
bs (W) = 2 ( 2 Qira afisﬂ) Detbu, .

|a|=1x, \i=1

l/gl:“s
Let us denote for € Ey:

lrs (§) = 2 ( Zh' Qirg aieﬂ) goth,

|a|==x, \i=1

|ﬂl="3
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Now we shall prove the uniform ellipticity, i. e.

m
2 X
(1.4) det |1, (§)| = O &=t
and strong ellipticity, i. e.
m m 9 %
(1.5) S i) mini=C Z ||| &]™ for a positive C.
s, j=1 i=1

Let us denote N *Z the adjoint matrix to N& Then det |l,, (£)| = det | N*&. N¢ |
and so it is the Gramm’s determinant of column vectors of N *Z Therefore
it is equal to zero only in the case of linear dependence of column vectors
of N*% i.e. for £ =(0,...,0) and it is positive for non vanishing &.

The quadratic form in (1.5) is positively defined if and only if all the
main subdeterminants of its coefficients are positive (according to Silvestr’s
theorem). But they have the same form as det |, (&) ].

Let us suppose that for every n there exists a real vector &€ Hy;
& 3= (0, ..., 0) such that

1 22 #
det | Is (") [ << | &"| =
én
Let us consider the sequence {y™j_ ; #" =Te] We may choose a

convergent subsequence (let us denote also ™) such that
1) || =1; n=1,2,..

2) g —n for n-—>oco
1
3) 0<detllm(/'7n)|<7-

Then det |l (y)| = 0 for non vanishing vector » and that is a contradiction
with condition (0). In the same way (1.5) may be proved.

The equation (1.2) has a solution € Wc}’z‘ for f,,€ L,. Using the esti-
mates of Agmon, Douglis, Nirenberg (see [1]) and continuous dependence
on the right part, we see that u € Wt;; for f,,€L, and there exists ¢ > 0
so that

Il =0 5 2 1l
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The functions g; = N;u satisfy the egquation

h m
(1.6) 2 giNip = [2 2 fra D%y

=1 r=1 |a|=x,

for every ¢ €[D ()™ and there exists C > 0 so that

loley <0 2 5 | fullsy-

la] =2

That means that the right part of any equation may be written in the

h
form {3 ¢;-N;p and the L,norms of f and g are equivalent.
i=1

Next, let us write (1.2) in the form

h h
(1.7) fZ N;u N,Q’?:jz g,N,q?

=1 i=1

and let us interest in the dependence of the estimates of w on p.

LEMMA 1.2: Let ue€ 110/2" (£2) be a solution of (1.7), 2 < p << 2 + p. Then
there exists a positive constant O, (9) such that

=

h 2 \1P -2 /h »\1P
(1.8) (2 1wuig) < 0@ 7 (2 1000,
1= 1
PRrROOF : According to the foregoing remarks

h 1/2-40 h 1/2+¢
(2 1l )™ < 0,00 (2 Naliiz,)

From (1.7) we obtain immediately
h 5 \1/2 h 5 \112
(2 nwli)” < (2 1alz) "

The result follows according to the interpolation theorem of Riesz-Thorin
(see [22]).
LeEMMA 1.3: Let 1 < p << co; N; satisfy condition (0). Then

[¢]

h 1/p
(Z || Vi u H}-,"p(g,) is an equivalent norm in W, ().
i=1
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ProoF: For p =2 the result is an immediate consequence of Lemma
1.1. For p =2 we may use the method of J. Netas (see [14]), consisting
of applying the Lizorkin’s theorem on multiplicators (see [10]) to this spe-
cial case. F'(f) denotes the Fourier transformation of the function f¢ L,
(in the sense of distributions).

THEOREM 1 (Lizorkin): Let @ () be a function defined and continuous
with all its derivatives D°*® (x = (a;,..,a%y), a;=0 or 1) for every & ==
= (&, En); &F O for j=1,..,N.

Let all such derivatives satisfy condition

(1.9) |&Ded (&) | < M<<oco on {&; &0, j=1,..,N}

Then Tf=F-1 (D (§)-F(f)(§) is a linear and bounded mapping from
L, (Ey) into L, (Ey) for 1 <p < oo.

We shall use the equivalent norm in W, (Q);

m » \1/p
—_ 3 S a

» al|=
‘We obtain immediately

1.10 s Mez) <o
(.10 (Z1muin) < oluig.

On the contrary, we may suppose u €[D (2)]™. Using Fourier transform we
may write

FO=F M) (€)= 3 N &(— i) Flu) &)

Let us denote f=(f, .., n)y ® = (@4 sy Pm) With @;= (— )9 F (u;). Then
J=N.p. Moreover, let {4;] be set of all the determinants (m > m) of N§&.

For arbitrary & ==(0,..,0) there exists (at least one) 4, (§) 4= 0. Let
{4jre} e its subdeterminants of the orders (m — 1) < (m —1). (We may de-
fine 4j,, =0 if N,, does not belong to 4;). Let us write (from Cramer’s
rule)

h
2 Ajrefe

e=1
=T a

and also
h h

13
4 pp= 23 3 Ayl fo.

j=1 j=1 e=1
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h
But 3 4} & 0 for every £ == (0, ..., 0), therefore

j=1
Aok
2 2 didire]e
(1.11) tPr=]:—e—_7,——
3 4
j=1

It remains to prove the esiimate (1.5) for
i (&) diyy (£)- £
(1.12) b= DO e
3 45 )

j=1

where |a|=x,.

In the same way as in the proof of Lemma (1.1) it may be shown that

m

h 2 2 2 g
= 4= 01§
j=
Thus the assumptions of Theorem 1 are satisfied and hence

m 1/p h 1/p
(1.13) (z > | 1)au.~||£p) gO-(ZHMullfp) :
i=1

i=1 |a|=12x;

Let us now consider the equation

w1y [ 2 440 Nu@) Nip@as = [ 2 g500) Ny (o) e

i, j=1

o
where @, u€ Wy (2), gj€ L,(2) for j=1,...,h p =2 and A;€ Ly, (2) for
t,j=1,..,h Let us suppose
(1.15) Ay=Ag; i,j=1,..,h
and
h
71"7,23,51 Agnin;<yy|n[* for some y,,y, >0
i, j=
and every 7€ H,.

LEMMA 1.4: Let w€ W, be a solution of (1.14) with Ay satisfying
(1.15), 2 <<p << 2 -+ o. Then there exist two positive constants y;(g) > 1
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and y, (o) > 1 such that

-2 h v 1/p

(1.16) lullge=rorrat@ ™ ? < 2 ol
» t=1
for p satisfying )
1— % 4N -

(1.17) p<2|1—1log | —="2|/10gy,

17

Ve

173

Proo¥F : It is sufficient to prove (1.16) for A.-,-Eé(@) g:€C(Q) (4,) =
=1,..,h) as Lemma 1.4 is the easy corollary of continuous dependence

on A.'j, gi. o
Such a solution # € Wy is also a solution of

13

h 1 1 *
(1.18) f NiouNiop= | =X (aij—y—Aij)l\rjMM(p—I———— 2 gi-N;op.
i=1 P
Q2

. b =1
Q

‘We shall estimate the L,-norm of the first term on the right.

h
(2
i=1

A 1
> ((91‘]' —_— Aij) Nju
j=1 72

J =1
Q

h r\p’
?
= =1
(]_ 1||'Ilj||pr)

y h 1/2 h 1/2
< sup (1——‘)-[(2 |N,~u|2)-(2 [wj|2) <
h p\ V2 j=1 i=1

(J_ __Z_ll [l ‘Lp/) Q2

_2 3 1/p

1

g(l—ﬁ>.o ,,,('2 ||N,-u||},”p) .
Ve =1

Now, according to Lemma 1.2 we obtain

h 1/p
(1.19) ( 3 || Mow H,%’p) <
i=1

Let us denote y; (¢) = C- 0, (o), 74(0) = C, (o).

Y2 i=1

P\p L 1 .
} ) < sup [2 (Gij——Aij)Nj"'Wié
Lp 1 Ve

1/p
'p

-2 v\ [ S\, =2 1k »
< (C-C, (o) P(l——)(,z HN»-HIILP> + ¢, ”9)’—(.2 ||9i”L)
72 T=1 Y2 \i=1
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The p satisfying (1.17) satisfies also
A 1
(1.20) 7y p(x—zi—)g1__y—1.
Therefore it follows from (1.19)

L Ip 29 h \1/p
< 2 || Niu \|£p> =7, 1"_( 2| _(]i||}3p) :
i=1

i=1 71

o]
The equivalence of the norms in W, (2) (Lemma 1.3) implies the result.

§ 2.

The existence and unicity of the solution of (1.1) follows immediately
from a special case of the Lerray-Lions Theorem :

THREOREM 2. Let V be a reflexive Banach-space, A (v) a bounded ope-
rator from V to V’ which is weakly continuous from all finitely dimensio-
nal subspaces of ¥V to V’. (Let us denote (F, ¢) the value of the functional

F in the point ¢). Let the following assumptions be satisfied :

1) lim 4@ _
lell—e [l2]
2) A () is strictly monotone, i.e.

(A(@)— Ao —yw)>0 for p=y; g, peV.

Then A is a one-to-one mapping on V’ and A-! is a bounded mapping
from V’/ to V.
o
In our notation, there is V = Wy (2) and

h
(A (v), 9) = /.Zl F, (x, {NJ('P + ) (‘”)}Jh=l) N; g (v) da.
lQ 1=

The boundedness aund continuity is proved in [2], [20], [21] in the theo-
rem of Nemyckij’s operators. Conditions 1,2 follow immediately from assum-
ptions A, B (see [21], [16]). Moreover, we obtain 2) in the form

(A (g)— 47— )= Ol — v
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in case A and therefore A—! is a continuous mapping ; the solution depends
continuously on the right part and the boundary condition.
In the case B there is A—! only demi continuous, i.e. it is continuous

from the strong topology in (‘?V,:‘ ) into the weak topology in V(l)’k" (see [2],

(15}, [16). )
Let us denote 93 a bounded mapping from W = {u€ W', u — u € Wy}

into (V?’,ﬁ,‘)' such that 93 (v) = A (v — u,) and consider the following equation

h
(%(u),'/)=f.2ﬂ-Ni¢,

=1

o
where f;€ Ly, o€ Wi, ue W.
Let us say 93 has the property o if and only if f = (f,, ..., /s E[ W,
w=PB~1(f)€M implies ue W, ' and

| a1 << O )
| ||Wp+1 ||f||,W1;]h,

where C is bounded uniformely for k€<2, k,).

Let us denote

Fi (& 8) = &0 % i=1,..,h 2<<s<k
and

Fi(w, & t) = t-Fi(&, k) + (1 — t)-Fi(@, &); i=1,..,h0<<t<1.

Let us define
h
(B (), @) = [ PR LIS 7
22 1=

and

h
(B, ) = | 3 Fi(w, (Njulj_y, t)-Nigp

i=1

analogously to 3.

THEOREM 3 (ON REGULARITY): Let 93 satisfy A or B and let 93, Vs,
B: have property of.
Then there exists 93— and it is a bounded mapping from [WZ} (Q)]h into
n+t1
W, (£).
Using Sobolev embedding theorem, it follows immediately :

COROLLARY : Let # be a solution of (1.1), where 93 satisies 4 or B
and B, B,, B; have property of. Then u€ 0, ,(2) with u =1 — —;— and
” u llo,“”g O ”f” [W:’]h )~



176 JANA STARA : Regularity results

Proo¥: 93, satisfy conditions (0) — (4) or (0) — (4”) with s instead F.
Let us denote 7 the subset of s€¢2, %) such that for u€ B; " (f)

“u” "‘HSO ”f”[W 1y 3).

holds with O independent on s. P== @& for 2€P. (see results of Agmon,
Douglis, Nirenberg [1]). ? is closed:
Let s, € converge to s; B, (us,) =f then

(2.1) || s, “W;-l-l <0(|lf ||[W}1,]h)

and there exists a subsequence (let us denote it also u,) such that wu, — u,
in W). But such u, belongs to W, *' (use (2.1)), therefore it solves U, (u)=F

and according to «{
” u“”W;‘I'lé 0( ”f”[W; ]h)

P is open: Let s, € P; 9B~! be an inverse operator to ‘13, and

Cs (u) == By, (w) — By () + B, (us,)

then 93—1.0, is defined on

[e]
= [ue W, [ — [ upr << 15 0 — ug € Wy,
)

is weakly continuous on Y (see remarks before Theorem 3) and B~ (C,(V)) €
c Y for sufficiently small s —s,. According to Schauder’s fixed point
theorem (see [19]) there exists u € YV, u = B! Cy(u). Then W,(u) = B, (us,)
and according to o [[u] b < C. We may conclude ?=1(2,%k). All the

proceedings may be repeated for 93, which completes the proof.

Operators which satisfy .

THEOREM 4: Let N;be all the highest derivatives, i.e. Ny= N,, =
= D*u, for r =1, ..., m, |a| = x,, let I3 satisfy A. Then )3 has property .
The proof is based on the following two estimates

k—
165" 3y = € 1) JoulE!
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and
S e—2)

k—1
6 T

=ouyeulEs”, p>2

LA
They may be obtained in this way :

All first derivatives of u solve a linear equation with measurable coef-
ficients. In the interior of £ or in the directions « parallel with boundary
08 «it is sufficient to use the theorems about linear equations (see § 1)
or to choose suitable test-functions. In the normal directions, more precise
theorems about dual norms must be used.

To this purpose, the following description of boundary will be consi-
dered : [see [15]] a neighborhood of every point of 92 is described by an
infinitely differentiable function a which is defined on the cube

K= ;]a" | <r}; 2 = (@ ,.0,2y1); a@) =2y

N—1
and 2 o (O)\ = 0 in a corresponding coordinate system. The boundary
i=1 i

is covered by a finite number P of such systems.
Let us suppose

oa

V)= s | <ria@) <oy < a(x)+ rjc Q
U= {»;| ' | <rja@)—r<o, < d@)UinR= g

for every sufficiently small » and ¢ =1, ..., P. Let us denote v, the domain
with infinitely smooth boundary

— P .
V,cQ; '90 V,2Q for every r > 0.

In [13], the existence of the functions yi; ¢ =0,..,P y € (V)N
n O(V,f ) is proved, having the following properties :

1) yi=0on 2 -7V},
2) 90 is equivalent to o (x) = dist(z,9 V),
7l is equivalent to o; () = dist (¢, 8 (2 — V})); i=1,..., P,
3) | Dyl O:]yit—lel; i=0,1,.., P
In the next lemmas the right part f is supposed in [Wp’ (Qy]h;

K denotes max xux;.

=1, ..., m

12. Annali della Souola Norm. Sup. Pisa.
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LEMMA 3.1: Let w=B-1(f)€e M. Then

(3.1) f 6k < 0(f),

Q

2

= 0f).

3.2) 2K gk—2 Zh‘ g ’N o
(3. Yo" Pu “\oux

. i=1 l=1 l
Q

The constant C depends on || f]|| and does mnot depend on k€

€2, ko).

]
(W,1h

PROOF :

h
1) feﬁg0.§1+||uo||’;v,,+fz | No(u — ug) |t <<
a k Qt=1

A
< 014wy [ 2 Motu— o) (B, (M) —
Q 1=
— R (N
The last term on the left is equal to

h
2z Ni(uw — ug)-( fs — Fi(@, (Nyuo)) <

< O-{[ 1| Il,zy @ Il %o ”’;;k,‘,].[“ u||W; =+ || %, ||W:] }.

k % 1/k
jeug 01+02-(f9.,)
Q Q

fe.’igo.

Q

Then

and

2) Let us take g — %E[D(VO)]"» for ye[D (VO . Integrating in
4
parts (1.1), we find

u oF; h (3’M
ffi N"”'% o T2 o i Z%)
o)

h ;
=/2 a—f"Mw

1 j=1 i=1 00y
Q
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According to the assumptions on F; and N;, fi; this equation is satisfied

for all € W2 , thereby also for y = y% jg
1
ou h ofi  oF:
3.4 K 3 FyN 0w 2 — " ) s aw
(3.4 fyO ; 2 T b T pw ile (70 oxy) 6w, om + &
@

where R consists of the terms ai, Fi- D*uz DfuyyX with smooth an; || =

=+ 1; |8|<< .
Let us denote

]—f 2K, Qh—2y ¥ Nz(au

i= a.lz

From the ellipticity

ou ou
== | pK 2 F;-N;—N; — .
e J ‘)/- i) e j 8wl J ox

Let us estimate the right part of (3.4).
Now,
ou\ 8f;
K .
| [l ) = oty ([2

ou
. K a| 2T
< 0||f“[W21]" | “”WZ" + ( f;'g u,z;‘ }D (awt)
Q

. U, 2\ 1/2
P (7°K aw) ) =

)=

< 0,52+ 0,.

ou\ oI
A AN
U (y" 89”1) o
[}

<

ou .
< cof [orone- (55 ) o
Q

12
< C,-j'2. (]9"14) + C,.

Q

iii) } f}'({{ Qig* Fij Dy - Dby
2

<. [0"“2u-7g{-|1)“uk]-| Dby | <<
&

.a1/2, k/2
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Therefore, from i), ii) and iii) it follows
I 0" + Gy

which implies the boundedness of j.
Let us define on V, the derivatives « parallel with the boundary »,
i. e. the derivatives in the plane orthogonal to the direction

(___ dat  ddb aa 1) .

n ’ L ey T R ’
ox, 0%, OXN—-1

The index of the coordinate system will be omitted.

If o' = aiw -+ g—g 8% denotes such a derivative for I =1,.., N —1,
1 4] N

then the following conclusion is true:
O »>-+1 O x
(3.5) u € ‘/Vk n wg => du € ",k .

It allows us to prove the analogue of the foregoing lemma for ¢*. Let us
denote

h
H@u)= 3 N2 ).
i=]
LemMa 3.2: Let w= B! (f)€ M, then

(3.6) fyﬁK 2w H (u) << O (f).
Pl

ProoF¥: Let us take a test-function ¢ in (1.1) in the form ¢ = §'vy;
w€[D (V)]" . Then

h ~
[ 3 Fia, (Nj() Nedty = f 2 fi- Nooty
J =1 o =1
and

A A
[i§1 F; - 0" (N;yp) = [ 11f"31(Ni'I’)+(fi_Fi)'Ru
. = Q 1=

where E, involves the derivatives of y; up to the order x;. After integra-
ting in parts, there holds
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h h
3 Fy-Nig'u-Noy=| 2 8" fiNiy + (fi — Fi) By 4 Ni(y)- By,

t, j=1 =1
Q

where R, involves the derivatives of #; up to the order ;.
According to remark (3.5) we may take

<] ®
p =y 5 —u) e W,
and conclude

. 1 k
2 T

— | [2 M S — ) @i+ B+ B (i — B +
Q

h
+ 3 ByNesulBy — N 67l

where R, involves the derivatives of u; up to the order x;. The right part
may be estimated as in Lemma 3.1 and it implies j << O(f).

LEMMA 3.3: Let w= B~1(f)€M then

h
(3.7) I= f yiK - 62—dy. 3 N} (3'1) < 0(s)- V*
P i=1 OxN,

0(Q)

h
for sufficiently small s; V = H 14+ 3 | Niu|
=1

PrOOF : Let us denote a«, = (0,0, ..., %,), Ng u= D u,. We shall esti-
mate the Ly-norm of the functions

0
(3.8) gr = % {y2K . Fp, (, [N u (@)},

using the following theorem (see [14], [15]).
Let f€ W,f (£2); 1 entire, v entire, non-negative. Then

(3.9) ”f“W;(_Q) = 0f | aZ’ I Da-f“W;_”.m + ”fllwlf'”(m]'

| =o
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Let us set
p=2 1=0, v=2%x —1 for e > 1

and v =1, otherwise. The second case is quite analogous.

(3.10) ngHL,gCllalf_lIID“!}rHW + 1gr [l sl
1 —
= s | [aee|=
pe Wy Tillell=1 )

< 0| Fp, |z <

op
Q2

k
= 0| 9+tu|,< OV
Let us denote o, = (0,0, ..,% —1). Let a =, ; |a| =% — 1.

2) || Dogr | yyr, = Upa oo | =

£ l
q)sW' y e ll=1

= sup

LD
[ 2
Q

where |a’| =%, — 1; j== N. Then

a . i 2K,
“ D Ir |IW21_"‘r = Y H axj(ys Fﬁr)

2

- oF ay,
3 y, ax] —I— Z Fﬂrl Nl + ﬂr 7y
oa ou
C, 2 2K ek 2, 2 N
= g o+ ‘ " ’ 52+ 5 200) NL, +
Ja ou
su — (@) ||| y2K 0 N, —
+m’ eII(), 3%'( |17 : (MN) Ly

k
—=C.VE Lo,

where C(s) — 0 for s — 0,
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m - 1/2 iid a
3) (2 || D gy [0} =r ) = sup fZ Pr D g, | =
r=1 O #p—1 r=1
ope W, i Zlleplli=1"g
= sup ]Z Der q»,-yEKFﬂr‘ < sup fz Fg,-Ng (p- 73K)‘ +
r=1 r=1
Q n

*_ h h x_
+ov? ‘s.supH/Zfi-pr-yﬁK) +Uzm-N.-<<p-ny>/+0V2 K
i=1 i=1

2 Q i=p,

The first term is estimated by C||f ”[Wllh the second one has the same

form as 2).
Finally, from (3.10) and 1), 2), 3)

- 112 *
(3.11) (2 g ||%,) <OV o) I,
r=1

As in 2) all the terms

N

1/2
(fngQZ(k—Z) Ny (88: )) for I=8;r=1,...,m
2

k
may be estimated by cve ! —+ O (s) T2

. e mo_ o [ Ou _ o ou ou
J=/VEK9“" 2)“31 N, (--)S.[VEKG" Pu ZXFﬂrﬂ,Nﬁ,m'Nﬂsﬁé
o 2

DY r, 8=
< f
Q2

oF
+ "’J

0N

y2K su
,— k| 3 p, N2
Pr ay Ve 1544, P2t Say

2 02y Nﬁr (’f%v . §g

r=1

k
<ji(OVET 4 O (s) I12),

Therefore I << C(s)- V*—2 for sufficiently small s.
From these lemmas it follows immediately :

COROLLARY 3 4:

k
(3.12) [+t < OVE .
2
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L,estimates are based on the generalization of Meyer’s theorem.

LEMMA 3.5: Let u = P-1(f)eM. Then w = g;i . ygf is a weak solu-
'l

tion of

h h
(3.13) f.): Fy.N;w quv=f_2 i N; o,

j=1 i=1
i. e. this equation is satisfied for every ¢ €[D (£2)]™. The right part g;€ L,(2)
with
Yy kl2—1
19 ljg = €

PROOF : Analogously to the proof of (3,1) it may be written

S BN (‘9—“> Ny= |32 (h—F). N
i ij \owm iY== Fullrrs Ji j iy,
2

For w, y = yK.p we obtain
N h
/ 2> FijN,-w N}(p:
Jot =1

h h
j=1

0 .
0 =1 ral | <x,

+R

where C,; are smooth and E involves the terms

on 0

00w, ) By G + L (5 —

with |o| < 5 || << . _
The expression at N;p (let us denote it ¢;) may be estimated by
0.§6"—’u+ 6‘;}

1
1<<q<<oo and E,E L, with the corresponding norm.
R may be written in the form

;. According to corollary (3.4) 6% lu € L,(2) for every

m
R = 2 2 gra Da(Pr

1 |a|==x,

k
with || gra ||z, < ove according to the result of Nedas (see [17], [18]):
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Let
gEL(Q), 1<g<oo; 0<Z|l|<k—1,

hence there exist the functions g; such that

fDl<P'9=f S g¢ijDip for every @€ D(9Q).
|il=k
Q 2

Moreover,
ll9ille, < C-llg]lz,
where
1 1 k—|1|
—_ = — for (k—|l|)g<< N
7 =g ¥ 1t])g
and

1<p<oo for (k—|1]|)-¢=N.

Applying Lemma 1.4 with ';71 =7y, ’;72 =y, V*=2 to (3.13), we obtain
immediately

LEMMA 3.6: Let u€B—!(f)e M then there exist a constant y, > 0
and ¢ = 2 4 y; V2% such that pK.ue W +1 () and

2 k-1
(3.14) | 7K u ”Wq,,+1 < 0.V:2

LeMMA 3.7: Let u=3"1(f)€M then there exist a constant y; > 0
and ¢ =2 + y; V?~* such that yKue W, ' (Q) and

2 -2

(3.15) I yEu ”W"H < 0(r).- V2
q

ProOF : For w = yK §' (v — u;) we may use Lemma 1.4 analogously to
Lemmas 3.5, 3.6.

For the normal derivatives we obtain by repeating the estimates in
the proof of 3.3 for ¢ = 2 4 y,V 2% instead 2

d ou
ol (a‘x:v)

e

i=1

3
= C(r)-V?

L,

(k—2)

From (3.14), (3.15) it follows:
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COROLLARY 3.8:

)

3
(3.16) lo=tu 2= 0V**™ with q=2 4y, V2*.
q

LEMMA 3.9: Let u=8"'(f)€M. Then there exist p, > 2 such that
we Wit (Q) with

3.17 3
(3.17) Fell ot < O CIF Ny 200
which implies

| IIO%@ + 1w “W;+‘<g) <0

PROOF : From (3.12), (3.16)
k
— ]
|| 01w “ng = 0oV?

2 (k—2)
lostu|| . < OV?
Wq
hold for ¢ =2 + y, V2%,
Using the Riesz-Thorin interpolation theorem, we have

k
et < 0.y TEDT00(G)
Wpo

for

—a
—_— = —; a€(0,1).
P Ty )

Using embedding theorem (see [17], [18]) for N = 2:

1
1— —

k—1 Pp—1) k—1
(318) ||y, < 0-(Jr—5) -]l <
(V) 0

1
1—— k k
— b L _ Z -
g(J](pO 1) 0 -V(Za-H)(Z 1)-{—02-172 1

Do — 2

But

1 — k—2

1—p—g%(1—|—a75 V2—*) and %"——;go-v .

0 0o

Then
k k
_ =~ ) = —
I 9u||k_1 £C1V(2 1)(2+¢(2+n)+ 0,V? 1 )

C(Q)
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For

the inequality may be satisfied only for bounded V.

The proceedings of Lemmas (3.5)-(3.7) may be repeated with this result.
The coefficients in the equations (3.13) are continuous, the right parts be-
long to L,. According to the result of Agmon, Douglis, Nirenberg (see [1])
or Schechter (see [23]) w€ W, *" and its norm depends only on | £, | |-

This completes the proof of Theorem 4.

Only the dependence of the highest derivatives of w is important in
this proof and it allows us to prove, quite analogously and without chan-
ges, the following

THEOREM 5. Let N; be all the derivatives, i. e.

Niu= N, u=Du, for r=1,..,m; |a|<w;
let <3 satisfies B. Then 93 has property .

THEOREM 6. Let 93 satisfy A or B with h = m. Then 93 has property <.

PRrROOF. The proof in case B is a élight modification of case 4.
Lemmas (3.1), (3.2) may be proved without changes. Let us set

gr = MN%E @ira, 7,5 Fi (@, (Nju (@))); -

The estimates of L,-norms of g, are the same as in (3.3). The matrix

N (0, .r , 0, 1) = (@ira,).

=1..,m
r=1y..,m
is regular and
0
. 2K —_
h; 8-70N( F) = 2 Cr, 9, € L,
with
|| Bil|z, << CVER—1 4 O (s) I'V2.
But
1 ou ou
I < —. 2K gk—2y . 2‘ F;N;,— N; — =
= "1 J}” i, j=1 77 Gay T Sy
1 ou o F; oyK
— =2 N: — 92K )p. 978 ek __ @ 2P
0 w Ma.lfjv Yy hs orN Vs F‘ ox Ny

71
2
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and it is bounded as in (3.3). Analogously Lemma (3.7) is proved and this
completes the proof.

THEOREM 7. Let 9B salisfy 4 or B, k < 4. Then 93 has property o«

ProOOF. (3.1), (3.2) are proved in the same way. However, we are not
able, under these conditions, to obtain from (3.1), (3.2) a better estimate
for

f 0¥—2y | Deu, [2

Q
|a|=u,4+1, a==(0,0,..,% + 1)

than C(f)- V¥—2. Therefore,

with

o] 0 =< OV,

analogously
|| 6%=1u HWI — OVt
r

In Lemma (3.4) the boundedness of ¥V may be obtained only for k < 4.
The difficulties lie in the fact that for more precise estimate of

f 0¥—2y D%, a theorem on a very general class of multiplicators of the

Q2
form 6*—2u would be necessary — which is not known to us at present.
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