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COHOMOLOGY OPERATIONS IN SMITH THEORY*

ALFRED AEPPLI and YOSHIO AKIYAMA

If the action of Z, =}1,h, h? ..., h?=1} on the p-fold cartesian product
X< X><.. XX (p a prime, X a cellular complex, k (%, , @, , ..., &) = (o,
Xy y Ty y ey Xp—1)) 18 studied in Smith theory, the Steenrod operations appear
in a natural way in some crucial formulas (which we call the Thom-Bott
formulas). This has been noticed by R. Thom in [8]. Then R. Bott [1], Wu
Wen-Tsiin [9, 11], M. Nakaoka [4] and others developed the theory further,
in particular M. Nakaoka used Smith theory to establish the axioma-
tic characterization of the Steenrod operations, and Wu Wen-Tsiin gave
applications to imbedding and immersion problems.

Here we develop the theory of the Steenrod operations again, com-
pletely inside Smith theory. For this purpose, we give a brief introduction
into Smith theory in § 1 (based on the action of Z, on a complex E), and
we generalize it in § 2: we consider all powers ¢, k =1, 2, ..., p — 1, instead
of confining our attention only to t =1 — h#t and s =1 4 h* 4 ... 4 h¥?—1 =
= t?—1 (mod. p). We define the ¢* -special cohomology groups *H (with coef-
ficients in Z,) and the generalized Smith operations u; and »; which are
represented by cup products with the Wu classes u, = u (1) and »,=»(1)
(up to a constant factor, c¢f. Proposition 2.13). This more general version
of the Smith theory turns out to be the adequate instrument to play on.
The notions and propositions in standard Smith theory find their natural
counterparts in the generalized framework, and the generalized theory is
used in an essential way in the following §’s.

§ 3 deals with the case of the p-cyclic action on the p-fold product
E=X>< X .. X as described above. The d;-image *N" = ¢f —* gt (#, 4)
(0x = k—th Smith coboundary, 4 = diagonal in F) which is contained in
FH"™(H, 4) is written as a direct sum I *@; H»—*A (Thom direct sum de-
composition, Theorem 3.14 and Proposition 3.15; *p; is a suitable compo-
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742 A. Arpprr and Y. Agrvama : Oohomology

gition of coboundary operators). This leads in §4 to a canonical represen-
tation of yra?(@eH"X,a?=a@ a Q... Qac H™ X < ... X X, yi induced
by t*) which is the content of the Thom-Bott formulas (Theorem 4.21).
At the same time the existence and axiomatic characterization of the Steenrod
operations is established. Finally, the Adem relations are proved in § 5,
again inside Smith theory. For the completeness of the Adem relations, cf.
the book [7] by Steenrod and Epstein. [7] contains the axiom system for
the Steenrod operations which we adopt in the sequel, and [7] may be
considered as a general reference source for cohomology operations over
the coefficients Z, .

There are various extensions of the theory that are not treated here,
e. g. cohomology operations over any abelian group as coefficients or even
more generally over a sheaf of abelian groups. Furthermore, we do not men-
tion any geometric applications; we refer again to [7] for some theorems
in homotopy theory, or especially to [9] for imbedding and non-imbed-
ding theorems proved with the help of Smith theory and Steenrod opera-
tions.

§ 1. Introduction to Smith Theory.

In this § we state and prove a few basic results of standard Smith
theory — called « standard» in contrast with « generalized » Smith theory
which will be discussed in § 2. A more extensive exposition of standard
Smith theory can be found in [2], [5, 4] and [9, Chapter II]

Let F be a topological space with a deck transformation h: E — E of
period p,i.e., we assume that the maps h*: B — F are homeomorphisms
without fixed point, for k¥ =1,2,...,p —1, and that h?is the identity map 1
of F onto itself. Then G =}1,h,h? ..., h?~1} is said to act on F as a deck
transformation group. In the sequel, we assume that (F, @) is simplicial,
i. e. B is a simplicial complex and A is a simplicial map, so that G is a
group of simplicial maps, and simplicial homology and cohomology theory
applies. In more general cases, one can use cellular or singular theory. The
coefficient domain for cochains and cohomology groups will always be
G =2 Z, unless otherwise stated.

The map h: E— E induces a cochain map h*: ¥ B — O* F and a
chain map hy : Oy E— Cy E. We introduce the following notation :

§ =1 h* 4 (W42} ... - (W¥)»—1: C* B — O* B,

t=1—ht:0t E— O,
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where 1: C*¥ E— C* E denotes the identity map. s and ¢t are cochain maps
of C* E into itself. If p=— 2, note that ¢ ==s. We denote these cochain maps

by ¢ and E, agreeing that ¢ may stand for s,Z for t or vice versa, but that
the meaning of ¢ and E shall remain fixed in any given discussion. Note
that pp = go =1 — (h#)? = 0. Hence we have:

LeEMMA 1.1. 95 = QZ) = 0.

We denote the orbit space of E under G > Z, by E,,i. e, E,= E/G.
A simplex ¢ of K, is then viewed as the set {o, ko, k%, ..., h?—1g). If for

each o of E, a cell o of E is chosen, then the set F of cells ¢ thus chosen
will be called a fundamental domain of E under G.

LEMMA 1.2. ker o = im o.

ProoOF. By (1.1) it is clear that im Ec ker o. We will prove the other
inclusion in each of the following two cases.

CASE 1. o= .
Suppose a cochain « € C" F is in ker ¢. Then u = h#* u, so that u (6)=wu (hy o)==
=u (hft o)=w.=1u (h#’—l o), for any n-simplex ¢ of E. Let F be a fundamen-
tal domain of F for G+ Define an n-cochain v by

u (o), for n-simplex o in F
v(0) =
0, otherwise.

Then we see that v = sv. Hence, ker ¢c im s.

CASE 2. 9 =3.
Suppose that a cochain « of C* E is in ker s, i. e., su = (1 4 h* 4 ... 4

»—1
+ (#*)?~1)u = 0. Then I u(hio):(), for any n-simplex ¢ of E. Define
=0

p—1
an n-cochain v by the formula v (hic) = X wu(kjo), for an m-simplex o in
=i

p—1
the fundamental domain F. Then (tv)o =v (o) — v (hyo)= X u (h; o) —
j=0

-1 )

—jz u (h# o) = u (o), for any n simplex of F. Hence tv = u, which shows that
=1

ker sc im ¢. Q. E.D.

DEFINITION. The g-special cohomology group of E, denoted by ¢H* E,
is defined to be H* (ker p). _
By (1.2),°H* E —= H* (ker o) = H*(im p).
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Let n: E— E, be the natural projection of E onto its orbit space
E,= E/G. The following lemma describes the relation between ¢-special
cohomology and the ordinary cohomology groups.

LeEMMA 1.3;. The projection n:E — E, induces an isomorphism =*:
H*E,—'H* E.

ProoF. First, we observe that n*:C* E,— C* E is a monomorphism.
This is easily seen from the formula

n* (2 gi0) = 3 (g:8) o1

where ¢;€ G, 2 g.-;i € C* E,,and o.-E';i is a gimplex in a fundamental domain F.

Secondly, we show that n* C* By =ker ¢ By the above formula it is
immediate that n#(C* Ej)c im 8 = ker¢. On the other hand if a cochain u
is in kert, then by (1.2)u is written as u = s (2 g;0;) where o; is a simplex

i

in a fundamental domain F and g¢;€ @. Let o: be the simplex of K, such
that ;= (0;, ko, h? 6;y v , h?=10;). Then =* (2 ¢;0;) = w. Thus, =# (0% Ep) >
i

S kert.

Therefore n* defines an isomorphism =*: C* E, > ker ¢. Since the
coboundary operation 6 commutes with n*, the map n*: C* E 2 ker ¢ indu-
ces an isomorphism =" : H* (E)) & tH* (B). Q.E. D,

In view of (1.3) we will identify the two groups H*E, and ‘H* E.

The description of the relation between s-special cohomology groups
and the ordinary cohomology groups is more complicated. Let @, G =
=G0 GPD..5EH G be the p-fold direct sum of ¢ X Z, with itself and let
EB;’, G denote its subgroup consisting of all elements (g,, gy, ..., 05) € Py G

} 4 —_
such that 3 g;= 0 in G. Define a map n* : *C* (F; G)=ker s — C* (B,; D, 6)
i=1
as follows. Choose a fundamental domain F of E, then any element x of
2 R
*C% (F; @) will be written as =3 3 ¢, h/ o; where the o s are in F and
i j=1
» r
04€@G. Also so =3 3 ( 2z gik) hioi= 0 since « is an element of *!C* (E; Q),
i j=1 \k=1
p — ~o ~s
which implies X gy=0 for all i. Set =* (#) = 2(gi1, gizy - , §ip) 0i Where o;
k=1 i
are simplexes of E, such that no¢=;'. . It is obvious that =* x is in O (B, ;

@y G). Moreover, it can be easily shown that n*is an isomorphism. Let
0%: Ct (B, ; @g G)— C¢ (B ; 692, @) be the coboundary operator given by
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the relation 8° = z# o § o (#)~! where & is the ordinary coboundary opera-
tor. Then &°a* =an* § (n#)~! n* = n* 5. Hence we have the following lemma :

LEmMMA 1.3;. Let @, G be the p-fold direct sum of G 7, and PJ @

F 4
be its subgroup consisting of all elements (g, , gy, ..., gp) Such that X ¢; =
=1

= 0. Let n*:°C* (B; @) — C% (B, ; BY G) be defined as above. Then =* indu-
ces an isomorphism

7 H* (B; @)— H* (B, ; Oy @)
REMARK., Let p = 2. Then s and ¢ are the same maps; and (1.3;) and
(1.3,) imply that ’
H* (By; Z,) 2 H* (E ; Z,) X2 *H* (E ; Z,).
Notice that D Z, > 7, .
‘We have the following short exact sequence of cochain maps of co-
chain complexes :

[
0 — ker g—e——> O’*E——Q—Hm 0—0

where ¢, is the inclusion map. Hence, by the Kelley-Pitcher theorem it
induces the following exact triangle:

/\

eH*E = H* (ker g) *(im o) = ¢H"E,
‘59

where y, and f, are induced by ¢ and ¢, respectively, and 0o i eH™ B —
—>¢HAn+1 F is ‘the Smith coboundary operator given by 4, [ox]) = [dx] for
all [px] in efg"E and n=20,1,2,... & denotes the ordinary coboundary

operator. Notice that any element of ¢eH"F takes the form [ox], and that
[6x] is in eH "+ E because [¢ dx] = [8 ox] = 0. This leads us to the following
proposition,

7
PROPOSITION 1.4 (Richardson-Smith). For the fibration (G — B —— E)
described earlier, there are the following exact triangles :

11, Annali della Scuola Norm. Sup. - Pisa.
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(1) When p =2,
H*E

7

Be Yo

/

H’Eo *__ H*Eo
o

0

where y, and By are induced by ¢ :C* E — im g and the inclusion map ¢, : ker p —
— C* B, respectively, and 6y,: H"E,— H"' B, is the Smith coboundary
operation 8, = 8, = 6 .

(2) When p is an odd prime, we have two exact triangles

fH’E H*E
Bs Vs and Bt \Y:
SH*E H*E M »
(——6—- 0 H*'E, ¢— ____ ‘H*E,
s &

where y, and B, are induced by o and ¢, , respectively, and &, is the Smith
coboundary operator defined before.

Until now we have always assumed that the map h has no fixed points
and we did not consider invariant sets in E. We shall relativize the
preceding absolute situation in the following two cases.

CASE 1. The group G 2 Z, acts on the space F leaving a subset L of
E invariant under G (not necessarily pointwise), acting on EF — L as a
deck transformation group. We assume that everything is simplicial. Let B,
and L, denote the orbit spaces of ¥ and L, respectively, under @ ; i.e.
By=FE/G and L,= L/@, where L,C E,.

LeMMA 1.5. In Case 1, consider the maps Q,_é : C¥ (B, L)— C*(E, L).
Then ker ¢ = im g.

REMARK, t=1—h* and 8 =1 4 h* + ... 4 (h¥)»~1 make sense both
in the absolute and the relativized cases. Hence we use o and o again for
the relativized cases, as their meaning should be clear from the context.

The proof of (1.5) is similar to the proof of (1.2).
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DEFINITION. The relativized o-cochain group ¢C*(H, L) is defined to be
ker o, where o: C*(E,L) — C*(E,L). In view of (1.4) ¢C* (B, L) =
ker p = im p-

DEFINITION. The relativized o-special cohomology group ¢H #(H,L) is
defined to be H* (ker g), where o: C¥ (B, L)— C*(H, L) is the relativized
map of Case 1.

As in the absolute case, the short exact sequence

L -
0 —> eC# (B, T) —> C#(H, L) —— ¢0# (B, L) — 0
induces the exact triangle
_H* (B, L)

ﬁe Ye

/

eH*(B,L) eH* (B, L).
de

Also, the map (z|g—r)*: C*(H,, L)) —'C*(H, L) is an isomorphism and
yields an isomorphism =*: H*(E,, L, — ‘H*(E, L). Hence (1.4) has the
following counterpart.

PROPOSITTION 1.6. In the relativized Case 1, where (E, L)/G = (E,, L),
we have the following exact triangles:
(1) When p = 2,

H* (B, L)

Bo Yo

/

H* (B, Ly) 46—" H* (B, L)
0

where y, and Bare induced by the maps ¢ = o=1- h#: (B, L)— ¢C* (B, L)
and ¢, = 3: eC* (B, L) — C* (B, E), respectively, and 6,: H" (B,, L, —
— H™+1(E,, L,) i the Smith coboundary operator, n=20,1,2,....
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(2) When p is and odd prime, we have the two exact triangles

H*(E, L) H*(E, L)
/ﬂa Vs and /ﬂz 14
“H*(E, I) «— H*(By, L) H* By, L) . *H*(E L)
O, 5,

where By, y, and 8, are similarly defined as in (1).

CASE 2. In the second case of relativization, the group G 27, acts
on E leaving a subset L of E pointwise fixed and @ is a deck transformation
group on F — L. Let E, and L, be the orbit spaces of ¥ and I, respec-
tively, under G. Then, L = L,c E,.

LeMMA 1.7. In Case 2,

im (8 | O* E) = ker (t | 0% (B, L))
and
im (t| O* B) = ker (s | O* (B, L)

REMARK, In Case 2, where L is pointwise fixed under G we have the
maps
8 |g4 5t C* BE— O*(E, L)

and
t|oh gt O E— O¥(E, L)
as well as
8 ]0#(E,L): C# (B, L)— C*(E, L)
and
t Io# (B, L) 1 OF (E’ I’) — Of (E’ L)'

Hence the statement of (1.7) makes sense, and its proof is similar to that
of (1.2).
‘We have the following short exact sequence

[} Q .
> O*E >1m(g’0#E)-——>0

0 — ker (0 |4 )
which leads to

PROPOSITION 1.8. In the relativized Case 2, where (H, L)/G = (E,,L),
we have the following exact triangles:
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H*E

B 7

/

H*B, ¢ _ H*(EK,L)
o

where y; and By are induced by
0:0*E —im (¢ | 0% B) = ker (¢ | C* (¥, L)) and

to: ker (o | C* E)— O%, respectively, and &, is the Smith coboundary
operator.
(2) When p is an odd prime, we have the two exact triangles :

’H*E fH*E'
8 \r 8 "
/ . and /
s * * *
HE M1 D 5 5 @
8 5;

where Po, yo and 6y are similarly defined as before in the obvious manner.

Hereafter, unless we explicity mention otherwise, our statements will
be concerned with Case 1, i. e. (F,, L,) = (E, L)/G. We can reduce a state-
ment to the absolute situation by letting L = (/J. Moreover, since Case 2
is a special subcase of Case 1, it is enough to treat Case 1.

DEFINITION. Let &,: C%(E, L)— C%(H, L) be the map defined by &, =1
(identity) and & = t?—2.

LEMMA 1.9. §, 0 =s.

p—1 — )
PROOF. If ¢ =1t, then {it = P2t =1tr"1= 3 (—1) (P i 1) (¥ = s

=0
because (p -1—1)

(— 1) mod p. If o =2, & 8 =13, Hence £,0=28. Q. E.D.’
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COROLLARY 1.10. L
Seo=obe=¢&0=0¢;.

The proof is immediate from (1.9) as o and &, commute.

LemMMA 1.11. &, induces the switching homomorphism
g*:¢H* (B, L)— ¢H* (B, L).

PRrOOF. Let o = 8. Choose an arbitrary element [«] of ‘H*(E, L). Then
tu = u — h¥u = 0; hence u = h* w. Thus, s (§;u) = su = u -+ h* u + (B*)® u
e = (B¥)P—1 4 = pu = 0, which implies that [&u]= &) [u] is an element of
SH* H, i. e. & .*H* (B, L)— *H* (B, L).

Next, let ¢ =t. Let [¢] be any element of *H* (E, L), so that sv=0.
Since 0 = sy = t#—1v = tt?—2 vy = t£,v, we conclude that &v is a ¢ cocycle

and hence £#[v] is an element of ‘H* (H, L). Q. E. D.
LEMMA 1.12.
0, if p is an odd prime
(1) 5;8 =
s, if p=2.

0: ‘H*(H,L)— tH*(E, L), if p is an odd prime
(2 &&=

1: ‘H*(B,L)—'H*(B, L), if p=2.

PROOF. (1) Suppose p is an odd prime. Then &; 8 = 1?2 {#—1 = {29—3 = 0,
because 2p —3 >p. If p=2, &8 =§1t =135 by (1.9).

(2) Let [sx] be an element of ‘H* (K, L). Then & &F [sx] = [t?—2 sa] =

= [t%#—3 2] = 0 if p is an odd prime. When p = 2, [£*&F sa] = [sx] is obvious.

Q. E. D.

LEMMA 1.13. The switching homomorphisms and the Smith coboundary
operators commute, i. e.

£ 0, =0, &3 eH* (B, L)— eH* (B, L),
PROOF. Let [ou] be an element of ¢H* (B, L). Then
£ 8, [ou] = £ [6u] by the definition of &,
= [&5 Ou]
= [0 &5 u]



Operations in Smith Theory 751
=& o &
= 0 [&; ou]
= 0z [§o 0u] Dby (1.10)
= &, & [ou].
Hence £ 8, = 0;&5. Q. E. D.
Now we are going to define two operators u and », called Smith

operations, which will play an important role in the later §’s.

DEFINITION.
= §; 6;: H* (¥, , L)) — H*t*(E,, L)

v=0,¢: H* (B,, L)) — H*' (B, L,).

Since H*(E,, L) and *H*(E, L) are identified by =n*, we can also think of
u and » as maps from ‘H*(E, L) to ‘*H* (B, L) with degrees 2 and 1, res-
pectively.

LeMmaA 1.14. (1) 4 and » commute.
0 if p is an odd prime
(2) ¥? =
pif p=2.
PROOF. (1) uy = 6;8,6,&¥ by definition
= §:0,6f §; Dby (1.13)
= 6,07 8:6; Dby (1.13)
=vu by definition.
(2) Let p be an odd prime, then
2 = 8, &5 6, &F Dby definition
= 8,;0,&F & Dby (1.13)

=0 by (1.12.2).
If p==2, v2= 5,8, 8%F = 0,0, =p Dby (1.12.2). Q. E.D.
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LeMMA 1.15. Given any element [u] of H*(E,, L,), there exist cochains
%, v, and o* such that v € O*+ (B, L), i = 0,1, 2 ; u = s0°, 600 = tvl, dv! = g0?,
v [u] = [sv!] and u[u] = [sv?]. :

PROOF. Since [u] is in tH* (B, L)X H* (B, , L), u is t-cocyle, i. e. u = sv°
for some cochain v° in C*(H, L). Now 6, [u] = §,[sv°] =[6v°] is an element
of *H*+! (B, L) which implies that dv° = tv! for some (k -} 1)-cochain »' of
C++1(H, L). The class &, [tv'] = [0v!] belongs to !H*+2(H, L), hence dv' is a
t-cocycle. In particular, dv! is in im s, i. e., dv! = sv® with ? € O%+2 (H, L).

Finally, » [u] = 8, &5 [sv°] = £ 0, [sv°] by (1.13)

= £F [00"]
= {t [0v']
= [sv!] Dby (1.9),
and u [u] = &, 8, [sv°] = &, [6v°] = & [tv!] = [dv1] = [sv?]. Q.E.D.

CoROLLARY 1.16. Let 1 denote the class of H® (Ey — L) (X ‘H° (E — L))
given by the 0-cocycle which is 1 on every vertex. Then there exist cocha-
ins ¢ in O°(F— L), i=0,1,2, such that 1= s8c% d¢® = t¢!, d¢! = sc?,
vo=» (1) =[sc!] and p,= u(1) = [sc].

The notation u,= u (1) and »,=» (1) will be frequently used in the
sequel. They are called the Wu classes of the fibration (Z, — F — L —
— By — Ly}

LEMMA 1.17 (Wu). For any cochain # of C* (X, L) and for any ¢-cochain
Yy, we have s(x Uy)=(s#) Uy and t(xuUy) = (tx) U ¥.
PRrooOF. Since y is a ¢-cochain, y = (h#¥)/y for any j.
r—1 . »—1 ) ) »—1
s@uy) =3 M) (@uy)= Z W) eyht)y= 3 MWiasyy=@6r)uy;
j=0 =0 j=0
and
twuy)=ayy—ht@uy)=2vy—Mauhty=wyy —RWa)uy=(x)uy.
Q. E. D.

ProrosiTioN 1.18. For any element [x] of H* (E,, L,), we have the fol-
lowing properties of p and v : ‘

1 plx) = pyu =]
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and
(2) v [2] = %y U [2].

PRroOF. By (1.16), there exist cochains ¢! in O%(E — L) such that
o = [8¢*] and », = [sc'] with the rest of the properties stated there. Therefore,

ple]l=un[1uyx where 1€ C°(E — L)
= u[s8c® y ] by (1.16)
=pfs(ua)] by (1.17)
= 0;[6(c°U )] Dby the definition of u = 8,9,
= 6;[(6c®) u ®] since éx =0
=8ty ua] by (1.16)
=4 [t(ctux) by (1.17)
=[d (o' u )]
=[(dcl)ux]  because dx =0
= [(s¢®) u @] by (1.16)
= p, U [2].

Also

vizl=vr[lua]=7»[s®) Uua]=Ed:[s(cPU)]=¢F[0(PUa)]=

= £F[(8c®) U @] = &F[¢ (¢! U @)] = [ (¢') U @)] =[(s¢') U ] = », U []. Q.E.D.

REMARK. Although u, is an element of H?(E, — L,), the cup product
with [#]€ H*(E,, L)) 2 H* (B, L) yields an element u,u[«z] of H* (E,, L.
A similar statement applies to », and »,u[x].

Suppose that G X2 Z, acts on spaces E’ and E’’ as a deck transforma-
tion group of prime period p, i. e., we assume there exist fixed point free
homeomorphism &’: B’ — B’ and b’/ : B’ — B’/ of prime period p.

Then we also have a homeomorphism &’ X< A’/ : E’ X E” — B’ X< B’’

on the product space. Clearly A’ >< h’ has the period p. Denote the orbit
spaces of B/, B’ and E’ < E’’ by E;,E; and (E' < E’’),, respectively.

JT
We have coverings {G— B — B}, (¢ —E"'—Ey} and (G —E X B’ —
(B’ < B’"),}. Define a map h:(E X< E’),— (B’ <X E’), by
h(m, (@ X a')) =m, (W & < a’’).
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h induces a covering {G — (B’ XX B’’), —fg—> B, < Ey}. Let w»j,pu; be the
Wu classes for Ej;»',uy be the Wu classes for Ey'; and »,,u, be the
Wau classes for By >< Ey. The fallowing lemma describes the relation be-
tween vy, g, and ¥, uo, ¥, Mo’

LEMMA 1.19.

1) ro=»nQ@1+1Qw, and
@) pe=m@l—1Qu

PRrOOF. Let [1] be the class of H(E; < Hy') given by the 0-cocycle 1
which is 1 et every vertex. Then, nf af (1) = 1g < 15~€ C° (B’ X< E’’), where
1z and 1g~ are the 0-cocycles which take the value 1 everywhere. By (1.16),
there are cochains ¢, ¢! and ¢® such that o'€ O (E’), 1z = 18" ¢% dc® = t’ ¢!,
8ot = 38" c* vy=1[8'cl], and uy=/[s’c*] where ¢’ =1— (k%) and 8’ =14
+ (W'#) 4+ (W#)2 4 ... + (W'#)P=1, Similarly there are cochains ° »! and v?
such that '€ O'(B’), 1g» = 8"/ 00, 800 = ¢/’ vl, dv! = 8’/ v% vy’ =[8’" '] and
Ho' = [8’/ v*] where ' and s’/ are defined by ¢’/ =1 — (h"#) and s’ =14
+ (B"#) 4 (A7#2 4 ... - (W HP1, Let t,8: CF (B < B’),) — C* (B’ <X E”'),)
be defined as ¢t =1 — h* and s =1+ h* 4 ... 4 (h¥)?—1, Then,

7§ (1) = (=f)~! n} 7} (1)

= (7#)~! (15 X 1g7)

= (nf)~1 (17 X< 8”7 20)

= (n})7! (1p- X (0° + B"* 00 + ... + (A"H)P~120)]

= () {1+ (B XB)F 4 o - (B X< B7)#) 2= (1 XX 20))
= (n#)" 1 af (1p- X ")

= (1g' X %)

= (8" ¢® X )= {(1 +W"* + ... + (A¥)?=1) ¢%) X %)

= (1 4 h¥ + ... 4 (1#)?=7) (° >< %)

= 8 (c® < %),

where (...)p denotes the cochain (..) in the orbit space B = (E’ X E”),.
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We can assume that the simplexes appearing in (1z/>< % are all in a
fundamental domain F.

(1) vo = EF O,[1] = £ 8,[n§ 1] = &} 8y[# (¢° X v0)s]
= §F[8 (¢ < v°)3]

= &7 [(80° X ¥)z+ (0° X 80°)5]

= & [(t' o X P)p+ (0 X 7 h)p]

— [&F (¢ o > 0%)p+ (&F (¢° < 77 o1))g]

— [((€5 ¥ ot) X %)z + (&8 ¢) < ¢ o))

=[(8" ¢" X 0% + (1 — W¥#)P2 6" < 1" v!) 5]
oot =T

et o) anrfeer)
— |0 o o (<o fu— (P Tt

LT )

= [(s’ ot 5 W5 (co < (W ¢ {1 - (p e+

T )

= [(&” ot > 90)5+ (60 > (W7H? ()71 o]
= [(¢” ¢* > 0%)5+ (¢ X (W42 8" v1)s]
= [(# 6 X )51 (¢0 < (877 01))5] = [(% > 2%)z 4 (0° < 4],

which can be identified with (» Q1+ 1 Q »y') of H! (Ej < HY).
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@) o = 8:8,[1] =

= 8, [(t’ ¢t X ¥+ (c® < t”’ v')g] by part (1)

= 8e[t (¢! X %)+ (¢° X v!)p— (c® XX ¥ vt)g]

= &:[t (0! X )5+ (1 — (W'¥#)?=1) ¢ < v)g]

= [8(0" X 05+ 8 (1 4 1* 4 ... 4 (9)2=2) &0 5 o)

=[(8" ¢ X )p— (¢! X " v)p+ (1 + I'* + ... + R*)?~2)¢ ¢! X v')p+
(L W s (W9)2=2) 60 < 87 07)s),

Now

— (¢t X ¥ o)p+ (1 + h% 4 oo + @HP) ' ! X 0)p

= — (o X " o5+ ([(1 — (W97~ o!) < v!)5

= —(c! <Xt v)g+ (¢! Xt v)p=0

and

(L4 ¥ ..+ (BH)P-2) ° < 8" ¥)p

= (0 X 87 (L4 (5421 o (W74) 02) 5

= (0 <X (— 8" *))p

= — (¢ < 8"/ v*)p.

Hence,

po=1[(8" 6@ X v0)p— (¢® < 8" v7) ]

— [8(6% X )5 — (¢ 3 (1 4 K" + e + (17%)2-1) 02)5]

= [8(c® X W)p— (1 -+ 1"* 4 ... 4 (B'#)P~1) ® < 07)]

== [8 (¢® X v%)p— 8 (c® < 2*)g]

= [n#(c® > W — ¢ > %) where o€ CF(E;) and o€ O (BY).

Hence under the isomorphism of nf, u, can be identified with [‘(\;2 X 0 —
— & < 7?]. Now, po==1[8" ), uy' =[8"" v*], 1z =8’ ¢°] and 1gs=1[s"’ v°] are

identified with [(’;], [+, [36] and [5"], respectively.
Hence uy= @ 1 —1 @ uy under the identification. Q.E.D.
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Our final remark in this § is concerned with the naturality of the
Smith operations. Suppose that @ > Z, acts as a deck transformation group

on E and F with generators h and h. Let B, and E, be the orbit spaces
under G of F and 1—41, respectively, giving rise to two coverings {G —-

7T —_ T —_ —
E——E,} and {¢d — E—— E,}. Suppose further, that a map f: B — FE is
compatible with the action of @, i.e., assume that the map f induces

fo: Ey— B, satisfiying f, n = af.

PRrOPOSITION 1.20. Let the Smith operations on E, be u,» and let them
be uv on Hy. Then these operations commute with f*: H* E,— H* B,, i.e.,
& w=pf and fi* v = of . '

Proor. It is enough to prove the commutativity of the following
diagrams at the center :

8.0
H* By~ tH* B— 5 tH* B H* B,

e e e Qe

H*ﬁog‘H*ET‘H*ﬁgH*E,
tUs
and

&té
H*B,~H* B3 H* B H* B,

Tfo" Tf* Tf" Tf&‘

H"‘Eog‘H*E—E?‘H*EgH*E—O.
t Ys

Let [su]€ tH* E, then by (1.15) there exist cochains v!, v® in C* F such
that du == tv! and vt = sv?.

Hence,
8Os f* [su] = 0,8, [ f# su] = 8, s [sf*u] = S, [8f*u] = &;[f#u] =
= 8,[f¥ 0] = &, [f # '] = [0/ *#v!] = [f¥ v'] = f* [s0%] = f* . 0, [su],

which implies the commutativity of the first diagram and the commutati-
vity fo* u = ufs*. The other part of the proof is similar. Q. E.D.
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COROLLARY 1.22. Let »,,u, be the Wu classes for (G — E — E},
and », , 1, be theWu class for (G—> B — H,). Then f* v, = v, and fo* uy = poe

REMARK. It is easily seen that the naturality of the Smith operations
holds also for the relativized cases.

§ 2. Generalized Smith Theory.

In this § we will generalize the standard Smith theory by considering
t,t%,..,t?~1 =g and by taking every pair (¢&,¢?—*) into account instead
of (¢,8) or (s,t). We will see that almost all the statements in the standard
Smith theory can be reformulated in the generalized framework.

Let G = (1,h, 1% ..., h?~1} act as a deck transformation group on E,
and F, be the orbit space of F under G. Assume that F and E, are
simplicial complexes and % is simplicial. Just as in § 1, we denote the in-
duced cochain map of C* E into C* E by h*,i. e, h*: Ct B — C* H. As was
stated before, the coefficient domain is always G = Z, where p is prime.

Let t* = (1 — h¥)*: O* H— C% B, for k= 0,1, 2, ...,p. Notice that ¢t =
=Ltl=ttr1=3s=1-4 h* + ... 4 (B*)?~land t?=0. t?~1==3s follows

from the formula (p z_ 1)5 (— 1) mod p» when p is prime.

LeEmMMA 2.1, For any k =0,1,..,p;tktr—*F=0.
PRrOOF. tk tr—*=tPr=1— (h*)7=0.
LemMMA 2.2. For any k=0, 1,2,...,p, ker t* =im ¢r—*,

PROOF. By (2.1) we have im t?~*C ker ¢*. Hence we will show the other
inclusion, i. e., im t»~*2 ker t*. The proof is by induction on k. By (1.2)
the inclusion above is true for k¥ = 1. Suppose that it holds for k =1, 2, ..., r.
Let w be in ker¢+!, then ¢4 =1¢"tu= 0; hence by the induction
hypothesis with k = r, we can write tu = {?~"v for some v in C* E. There-
fore, t(u — t?—"—19)= 0. Again by the induction hypothesis with k=1,
% — tP—r—1y = tP—1y for some cochain w of O* E. Hence, u = t?—""1v |
+ tp—1 = (p—+)(v J-t" w) is a cochain in im ¢»— 0+, i e, im t»—C-H1 D
D ker ¢+, This proves (2.2) for k=1,2,..,p — 1. For k=0 and k= p,
the proof is immediate. Q. E. D.

REMARK, (2.2) can also be shown as follows : Let G & Z, = {1, k, k%, ...
weyh?71}: E— F act on E freely. Let Aq be the group ring of Z, over Z,
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80 that Agacts on C* E, i.e. Ag: C*t E— Ot E. (1, k% (k)% ..., (A¥)?~1} and
{1,¢, ¢ ..., t?~1} are bases for Ag. Hence every element a of Aghas a
unique representation a = 2 a) (k) = 2‘ at* where al), a9 € Z, . Let E,=
i=0 =0
= F /@, and F be a fundamental domain. Then for any x of C+#E there
r—1
exist unique xjs in Of F and unique yis in O*F such that # = I hiw; =
=0
r—1
= 3 t'y;. Hence im t?»~* c ker . On the other hand, if » is in ker ¢*, then
=0
r—1 »—1
o=ttt 3 tiy;=— 3 t"* y;= 0 with unique representation. Thus, y, =y, =
=0 i=0
= . =Yps— aDd x=1tP"Fy, ; 4+ .. 4 tP1y, ; €im tP~F,

DEFINITION. In a manner analogous to that of § 1, we define the ¢*-
special cohomology group, denoted by *H* B, to be H™* (ker t¥).

By virtue of (2.2), *kH* B = H* (im ¢»—*%),

We can describe the additive cohomology group *H* E — S *H™ E

m

with the help of local coefficients over E, . The p-sheeted covering {Z, — F —
—> B,} induces the locally trivial sheaf (or coefficient bundle) 3= {F —
— B — B,} with the stalk (or fiber) F= Z, @ ... D Z, = (Z,)®» where the
topology of F is discrete. G &2 Z, acts on F by hp(®,, ..., ¥p) = (Tp , Xy 5 eery Lp—y)
after convenient ordering of the coordinates in F = (Z,)?, and the map
tpg=1— hp:F— F is compatible with the action of G. Hence, {7 induces
an action ¢z: B—> B on the total space B of . Let B = ker t, = (F} —

—> By — E,} be the subsheaf of 3 given by By = ker tk = (x|« E B, thw =
= 0}. Notice that B, = {0 — B, — B}, B, = {2, — B —+E0} and %p =PB.

LEMMA 2.3. (1)*H* B > H* (B, ; WBx). In particular, "H*E = 0, ' H* B
S H*E,,and " H*E H*E

(2) rank Fy =1k (i. e., F; 2 (Z,)¥, dim F, = k).

PROOF. (1) This is immediate from *H* B = H* (ker t") > H* (E,;ker tt) =
= H"* (Eo ) %k)-
(2) ker t: = im t2—* analogously to (2.2). Hence, rank F; =
== dim (ker )= d1m (im tl’—") Clearly, (2)is truefork=0,1,p—1, p. Assume (2)
for k=0,1,...,r and fork=p, p —1, ..., p—r. Then rank ¢! =dim(im #7})=
= dim (im tg(im p) = dim (im tx (ker t2=7)) = dim (ker tg,"') — dim (ker tg) =
(p —r)—1=p —(r 4 1), by the induction hypothesis with ¥ = » and k =1.
Therefore, rank F,;; = p — rank ¢;f' = r 4 1, and rank Fp_(qy) =
dim (ker t2- V) = dim (im #H) = p — (r 4 1). Q.E.D.
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REMARK. The cup product induces a ring structure in *H*E X H* E,
and in PH* E> H* E; but, in general, not in *H* E for 2 <k << p — 1.
Cf. the formula for ¢*(a ub) used in the proof of Proposition 2.13.

We have the following short exact sequence :

i t*
0 — ker t* ——C¥  —— im t*— 0.
Hence, by (2.2) and by the definition of the t*-special cohomology *H*, the
Richardson-Smith exact sequences (1.4) generalize for t* as follows :

PROPOSITION 2.4, For the p-sheeted covering {Z,— E — E}, there is
the exact triangle

H*P
B Ve
/
*H*F «— " *H"E
Ox

for each k =1,2,...,p — 1. Here y; is induced by t*¥, By is induced by y ,
and &8y is the k-th Smith coboundary operation defined by O [t* ] = [dx] for
any element [t* x] in P—*H* H.

(Notice that [0x] is in *H* E, § is the ordinary coboundary operation).

REMARK. When p = 2,(2.4) reduces itself to the part (1) of (1.4).
We discuss two relativized cases as we did in § 1. They are :

CASE 1. The group G X2 Z,acts on F leaving a subset L of F inva-
riant (not necessarily pointwise) and its action on F — L is free.

CASE 2. The group G X2 Z, leaves a subset L of E pointwise fixed and
acts on # — L as a deck transformation group.

In either case, for simplicity we assume that L is a simplicial subcom-
plex of the complex E. The notation is the same as that of § 1.

PROPOSITION 2.5. In Case 1 where (E, L)/G = (B, L), there is the exact

triangle
g H*(E, L)

2N

HA B L) e PTHNE D)

Ok
Jor each k=1,2,..,p — 1.
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REMARE. Relativized t*-special cohomology groups *H* (E, L) are de-
fined to be H* (ker t*) where t*:C* (H,L)—> 0% (E, L) are the relativized
cochain maps of Case 1. The proof of (2.5) is the same as in the standard
Smith theory and is omitted here. Also notice that when p = 2, (2.5) is

reduced to the part (1) of (1.6). The maps fi, y» and J; are defined in the
obvious manner as in (2.4).

LEMMA 2.6. In Case 2, we have
im (t2—*| O* B) = ker (t* | C* (E, L)).

The proof is immediate.
The short exact sequences

¢ t*
0 —> ker (t*| O* B)——> 0% B —— im (*| 0* B)— 0

entail the following proposition, just as in § 1.

ProPOSITION 2.7. In Case 2 where (E, L)/G = (E,, L), there is the ex-
act triangle

/ H*E
Bi Vi
/
BB e PHHN(B, D)
Ok

for each k= 1,2, ..,p —1; where B, yi and d; are defined in the obvious
manner as before.

DEerFINITION. For each k k=1,2,..,p — 1, we define a map &:
C* (B, L)— O* (E, L) by & =t?~*=1, The above definition holds also for
the obsolute case where L = (. Note that &, = §=17—2 and £, = &=
=1 where £ and &, are defined in § 1.

LeMma 2.8.
Gttt =ttg =8 4 trF=trF =3
for all k=1,2,..,p — 1.

12, Annali della Scuola Norm. Sup. - Pisa.
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PrOOF. This follows immediately from the definition of & .

LemMA 2.9. The map & induces the switching homomorphism
& »—k*g* (B, L)— *H* (B, L), for each k=1, 2, ... ,p — 1.

PROOF. If [4] is an element of »—*H* (B, L), then by definition t»—*u=0.
Hence, t* & u=t*tr—F—1y=t*—1 (t#—* y) = 0, which implies that &¥[u]=
= [& u] is an element of *H* (E, L). Q. E. D.

LEMMA 2.10.

@) ektp_k=0,f0rlékép’=p_2'1'

(@) Bl et =0,for l<k<p—2.

PROOF. (1) & tP—% = tp—k—1¢r—Fk — ¢2p—2k—1,
Since % varies from 1 to p’, 2 — 2k —1=2p — 2p’ — 1 =p.
Hence, & tP—* = 0.
(2) EX&p_x:*H* (B, L)— *H*(E, L). Let [t?~*x] be an element of
E@* (B, L). Then & &p—x[t?—* 2] = [tp—*—1¢*—1 ¢2—F 5] = [t?»—*—2 x] = 0 because
2p —k—2=2p— (p — 2) — 2 =p. Recall that any element of *H* (E, L)
is of the form [t?—*x] for some cochain x. Hence & & = 0 on *H* (B, L),
for1=k=p—2 Q. E. D.

LEMMA 2.11. &8y =0 &gk, for k=1,2,...,p — 1.

PROOF. As usual let [t?—*u] be an arbitrary element of *H* (E, L). Then,
EE Sp—i [17~% u] = £F [0u] = [& Oul=[0&x ul= Oy [t* &x 4] = S [Ep—s tP—% 0] =
= 0 &p—x [t?* u]. Hence, &F dp—ir = 0k &p—x: *H* (B, L)— *H* (B, L), for
l1<<hkh<p—1. Q. E. D.

We now introduce the generalized Smith operations u, and »,, and
state a few results about them.

DEFINITION. The generalized Smith operations u, and », are defined
to be
p, = O Op—y : *H 9 (B, L) — *H+2(E, L)
and
v, =0 & *H (B, L)—*H ¢+ (B, L), ’

where k=1,2,...,p —1 and ¢ is a (non negative) integer.
‘When p = 2, they become

u =92 :tHY(B, L) — tHe+ (B, L)
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and
v=20,:'HY(E, L) —‘Ht1 (B, L)

where J, is the operator introduced in the part (1) of (1.6).
As we remarked earlier in § 1, we identify H* (E,, L,) and ‘H* (E, L) under

a*, and hence we can view u, and », as maps from H*E,, L) into itself.

LEMMA 2.12. (1) Meve=wux, for 1=k<=p—1

0, for1=<k=p—2and p=3

2 v
u, for p =2,

PROOF. (1) ptrvi = O Op—r Ok Ep—i by definition
=0 0p it Sz by (211)
=08, 8% 10 dpx by (2.11)
= Vg Uk .
(2) Let p = 3. Then,
v: =0k E5—x Ok Ep—i by definition
= 0 p—r bk épr by (2.11)
=0 by the part (2) of (2.10).
REMARK. The map ¢ : im ¢* — im $*+" induces a map y, 5 : H* (im t*) =
=r—*H*(E, L) — *~*+H* (B, L) = H* (im t*+"). If k = 0, clearly y, , = y,.
When k- r = p, the short exact sequence '
0 — ker (¢ | im t¥) — im ¢* ——-:—> im ¢+ — 0

induces the exact cohomology triangle

"H*(E, L)

N\

p— (k) H* (B, L) ¢ P—tH* (B, L)
/4

Ky
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This can be verified by showing that ker (¢ |im t¥) = ker (¢" | C* (B, L))
when k 4 r << p, 8o that H* (ker ¢" | im t*) = H™* (ker ¢" | C* (B, L)) ="H* (E, L).
Recall that (1.18) in §1 says that the action of the Smith operations
p and » (i. e, of u, and », in generalized Smith theory) is expressed by
the cup product with the elements u, and »,, the Wu classes. We want
to prove analogous statements in generalized Smith theory for all u; and
v, k=1,2,..,p — 1. Let us begin with some preliminary considerations.
For any cochains ¢ and b in CO* (E, L),

t(@Ub)=(1—"h*)(aud)
=ayb—nhtayhtd
=1—mMaubtau@dl—2)d—1Q —h¥)ay (1l —h*)b
=taybdb-+auth—tauyth.
We will write this equality as
t@ud)=(@ul+1ut—tut)(aud),

where (h’ yh’’)(a U b) means h’ a y b’/ b for cochain maps »’, b’/ : C* (B, L) —
— C#* (B, L). Therefore, in general

tFlaub)=@Cul+1ut—tutk(aubd)

= [5 (’f)(— 1Ful 4 1utp— (tuty
i=0 \ ¥

(@ud)

[f (’f ) (—1f % (" i ") (B~ u t9) (B t*’)] (@ud)

i=0 \ ¢ j=0
E ki (Ek\ (k— s
=[22 (—1)'(.)( , 1)(t"-"ut‘+f) (@ U d),
=0 j=0 ? ]

k k—i —_—
tauyb)=3 = (—1)‘(7f) (k . J)t"—fauﬁwb,

=0 j=0 v J

for any integer k.
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In (1.17), we observed that t(x Uy)= (fx)uy for any cochain & and

t-cochain y, so that t* (wyy)= (*x)uy, for k=1,2,..,p — 1. Hence, for
any [z] in *H* (B, L), u, u [+] and »,u [«] are elements in *H* (E, L).

PROPOSITION 2.13. For any element [x] of *H*(E,L) and for k=
=1,2,..,p —1, the following relations hold :

(1) pe[2] = pou [],
and

(2) kv [x] =y U [2] (3. e, v [0] = kP2 v U [].

Notice that by the remark preceding the proposition (2.13), the state-
ment above makes sense.

ProoF. By (1.16), there are cochains ¢° and ¢! such that 1 = sc,
0c® = tet, py = p (1) = [d¢!] and », =» (1) = [scl].

(1) pyu [2]
= [d¢'] u [2]

= [0 (c¢* u )] because éz = 0

= Jy [t (c*u )]

E k—i .
— & [z > (_1).-(’“)(’0]_ ')tk—foxutfw].

=0 j=0 1

Since [x] is an element of *H™* (K, L), ¢ « = 0 for r = k. Hence,

k=1 k—i—1 BN (e — i .
/‘oU[w]=5k[.Z' 2 (—1)‘(i)< j )tk—fciutc#w

=0 j=0

k—1 k—i—1 .
= 0 [ > 3 (—1y (7:) (k j @) =1 §¢0  tiH w]

=0 j=0
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k—1 k—i—1 — 3
= O [(5 > 3 (=1 (k> (k i "’) tE—i—1 g0 y ¢+ xl

i=0 j=0 v

k—1 k—i—1 —_
= O 6p—k [tp—k > > (_ 1).‘ (’:) (k J ") th—i—1 @0 u i+ x} (1)

=0 j=0

—1 p—i—1 i
= [”z () (73 Yot oy e o] (i)

=0 j=0 1

The last equality can be checked by applying the general formula for
k—1 k—i—1 k k—i
t* (a U b) repeatedly and summing, or by replacing 5~ 3 in (i) by 2 X

=0 j=0 1=0 j=0
(since t*&x = 0 for r = k) and by remarking that (i) looks like the sum
for t*¥(c® y ) with t*——1¢0 instead of t*—7 % (ii) is the expansion of t? (c° U )
with ¢#—7¢® replaced by ¢#—/—1¢0 Therefore

Mo U [2]
p—1 p—i—1 —1
[2 3 (—=1) (p ) (p , z) tp—i—1¢0 y ¢t w]
=0 j=0 g J
Loty ; ; P
=pn, |2 (J) tP—i—1 ¢0 Utfx] because (i)=0 modpforl<=i<p—1
j=0

= [t*71 Py a]
= p, [sc® U] = p, [1 U #] = p, [2].

(2) Let [«] be an element of *H*(H, L). Then w»yulz]=7»(1)uz]=
=[sclya]=[tr 1t ya]=[tP2tct U] =[t?"2dc Ua] = [0 (1?2 U )] =
k k—i — 3
= 8 [tF (22 c® y x)] = O [ Z 3 (—1y (k) (k . z) th=itr—2 o0 y it x| , where
J

i=0 j=0
2yt =0 if k—j+p—2=por i+j=k ie, j=<k—2
or ¢+ j = k. Hence, there is only one term left for ¢ =0, j = k — 1. There-

fOI‘G, Yo U [w] = 0 [(k _k_ 1) tr—1 g0 (0] t—1 .Z‘] =kdy [800 Ugk—1 w]=k6k [1 U ge—1 w] =

= ko [t*! ®] = kO &%—x [#] = kri[2]. Since k?~1 =1 mod p by Fermat’s
theorem, we also have »[x] = k?~2y, U [2]. Q. E. D.
Notice that (2.13) reduces to (1.18) when &k = 1.

COROLLARY 2.14. For k=1,2,...,p — 1, we have

1) p[2] = p, (1) U [«],
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and
(2) m[a] = (1) u[a]

where u,(1)=p, and », (1) =k??y, are elements of ‘H 2(F — L) and
tH1(E — L), respectively. }

The corollary (2.14) can be proved directly starting with (2.12) and
going through arguments as in [5, i, pp. 7-9]; in particular, (1.15) has analo-
gues for a pair (&%, t2—F).,

Proposition 2.13 (1) and the exact cohomology triangles which
appeared in the Remark after Lemma 2.12 lead to a commutative diagram

"H*(E, L)
—(k / | ,ur\ k Iy *
P e g 1) »—k[* (E, L)
Vi, r l
Hp — (ktr) "H* (E, L) Mp—k
p— () I * (E, L) p—kT* (E, Il))
h Yk, r

for k=10,1,..,p —land k4 r = p, i. e. {,} induces endomorphisms of
degree 2 of the exact triangles above. An analogous statement holds for
{vt}, the induced endomorphisms being of degree 1.

§3. The Thom Direct Sum Decomposition for a p-cyclic Product.

In this §, we consider the case of the p-cyclic product of a simplicial
or OW-complex and establish the Thom decomposition theorem (3.14) and
(8.15) which says that the image *N" = é,?—*H"—1(H, 4) in *H" (E, 4) is a
direct sum of groups (6x 8p—x)0x H*—%~1 A and (8 8p—r)x 0x H"~2%—1 A, where
t and j range over suitable sets of integers. The number 1, which will be
introduced in (3.5) will play an important role in the formulation of the
Thom-Bott formulas and in the proof of the Cartan relations in § 4.

Many of the lemmas we introduce in this § to establish the direct sum
representation as well as the Thom decomposition theorem itself are applied
later in the development leading to the Thom-Bott formulas.
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Let X be a finite simplicial or CW-complexe, and F = X X< ... X X = X?
be the p-fold cartesian product of X (with the product topology). Define
a homeomorphism h:E — E by h(®,, ... ,2p) = (¥p, &, , ..., Bp—;) for an ele-
ment (%, ,...,%p) of E. Then the group G ={1,h,...,h?"} > Z, acts on E
leaving the diagonal A4 of E pointwise fixed. 4 is homeomorphic to X. This
is clearly a special case of the relativized Case 2 considered in the previous §.
The map & induces a cochain map h*: C*¥ E — C* E on the cochain group
of E. In this § the coefficient domain will be always the cyclic p-group
G & Z, unless otherwise stated. Whenever possible, we use the notations
of §2, e. g.

t=1—h*, t: = (1 — k¥, tr—1 =38 =14 k¥ 4 ... + (h¥)?1, etc.

Recall that in the case where (E, 4)/G = (E,, 4), we have the following
Richardson-Smith exact sequences by (2.5) and (2.7):

5
o> H (B, A)— 5 =R H " (B, d)— s KHH (B, A) P gen (B, A) —> ...
and
vk Sk B
o> H () — Ly vk g (B, 4)—2s kEnbr (B) 2y Bvbr (B) — ...,

for k=1,2,..,p — 1. y and y; are induced by t*; B, and B are induced
naturally ; and & and d; are the generalized Smith coboundary operations.
We also have the following diagram :

kHn (E) = H (im t*—* U 4)

b

_ H"(E) —— H"(4)
'*/ \
H™ (E, 4) i Ok H"t1(E, 4)

}'\;> Or /ﬂ"

P—kH"(E, 4) —_ kH n+1(E, 4)

lo;, ljz

K+ (B) = HH (im 7% U 4)

~

for k=1,2,..,p — 1.
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i‘k ’I‘*

oo —> H" (B, 4) —— H"(B) —— H™ (4) — H™ (B, 4) — ..

is the exact sequence for the cohomology groups of the pair (E, 4), and

0
oo —> H™ (im t7% U 4) —> H" (A)—s ¥H+1 (B, A) — HoH (im t2-% u A) —> ...
is the sequence obtained from the short exact sequence of cochain complexes
0 — WO 0¥ (B, 4)— ®O0* (B) — C%(4) — 0

and hence it is exact. Here *)C* E denotes the kernel of ¢*: C* E — C* E
and ®C* (B, 4) denotes the kernel of t*: C*(H, L)— O*(H, L). Hence rows
and columns of the diagram are exact. 0 is naturally induced by 6;. When
p =2, we just write 0,= 0, = 0.

LEMMA 3.1. The above diagram is anticommutative at the center and
commutative everywhere else, for ¥ =1,2,..,p—1 if p=3. If p=2
then the diagram is commutative everywhere.

ProOF. Commutativity outside the center of the diagram is immediate.
‘We prove the anti-commutativity at the center when p = 3. Let [«] be an
arbitrary element of H™F ; then u is written as « = v 4 w where v € C*(E, 4)
and w € O 4. Hence, (0, r™* -+ 8 yi) [u] = [0 w + 8 t* v] = [6w + dv] =[du] =0,
which implies that 6;r* 4 6 yi = 0.

It is clear that anticommutativity and commutativity are the same for
Z,. Q. E. D.

The map t*: C* B — C* E induces (t*: H*E — H*E and (i%): H*E —
— H*(E, 4) on the cohomology groups. The induced maps are given by :

(¥ = Bp—r jo—x yi: H*E— H* B
and

(t¥) = Bp—r v : H*E — H™(E, A).
(t)* and () will be denoted by ¢* and ?,' respectively, Then (t*)* = (t*)* and
(t?~1)* = s*. Moreover, for any class 2, ®2,Q..Q 2 in H*E, we have

Qe Q=40 Q% —%Q5Q - Qu®z,
=" Q Q) — ) 2%Q%Q .. % & 2)



770 A. AxprLr and Y. Axrvama : Oohomology
and
Q- QuH=26Q - Qu+4Q4Q - Qun-1+4-10%R%Q
w®@% a2+ i +2,Q02%Q..QR4 Q2.
Similar relations hold for the actions of (57").
NoTATION. For € H" X, let 2? =2@ 2@ ... Qzc H™ H.

LEMMA 3.2. Let n be a positive integer. For any z in H* X, y;,22 =0
implies that 2#» = 0 in H™ E, for any prime p = 2.

ProoF. First, we consider the case where n = dim X. Since y;2? = 0,
by Richardson-Smith exactness, there is an element » in *H"? E such that
2? = fiu. By a dimension argument, both y,_;: H™ E— *H" (B, 4) and
Jje:*H" (B, A)— *H™ E are epimorphic. Hence, u € *H"* F = j¥ H" (B, A) =
=j¥yp— H™ B, i. e., 2?2 = By u = Brjt yp—r y = (t?—%)*y, for some y in H"? E.
Let y be written as y = 22, ® ... @2, (by the Kiinneth formula). Then
(t>—** y does not contain any nonzero term of the form 2?. Since 2? =
= (t»—%*y, the only possible explanation is 2? =0 in H™ K.

Second, suppose that 0 <<n <dim X, Let X® be the n-skeleton of
X, E® = X® > ... < X be the p-fold cartesian product of X®, A be
the diagonal set of E®™ and g: X — X be the inclusion map. Notice that
the superscript n does not tell the dimension of E®™ whereas it does for
X @™, Then we have the following commutative diagram :

HwE —rsertEm (@, 4)

(g >< oo X 9)* l 1 (g X oo X 9)0—

Hrr Fn) _}lk_> =k ne (B , A™)

where (9 < ... <X ¢)*: H* E— H* E™ ig induced by the map (g9 X< ... X g):
E® — F and (¢ X ... X g)p—i:?*H" (B, A) —?—*H™(E™, A®) is defined
in the obvious way. Hence, y;2? = 0 implies that 0 = (g XX ... X @)p—k i 2P =
= 7k (g X 0o X g)* 22 = y}, (9* 2)? by the commutativity of the above diagram.
Thus, (9*2)?==0 in H" (E™) because y;: H"? (E™)—r—kH " (Fn), A®) ig
monomorphic on elements of the form z?, by the argument in the preceding
paragraph. The map ¢g*: H®» X — H» X™ is a monomorphism. Therefore,
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(GXwXgH:H"XQ ... @ H* X)— H™ E™ iz a monomorphism by
the Kiinneth isomorphism theorem. This implies that 2? =0 in H™ E.

Q. E. D.
LeEMMA 3.3 Let » > 0. Then
(1) (tr—%* H" B = f, *H"E
and
@) Tr—* Hn B = pi *H" (E, 4),

for k=1,2,..,p—1.

PRrOOF. (1) By the definition of (¢#—*)*, we have (t?—** H"F c g; *H" E.
Hence, we need only prove the other inclusion.

First suppose that = is divisible by p, say n = pm for some m. Let
x be an element of f; *H" E. Then (t*)*x = fy_rjs—k yt® =10, because y; fi, =0
by Richardson-Smith exactness. Hence

= X zf mod im (¢7—**
= (2 #)? mod im (t2—P)*

Now y;# =0 implies that y; (3 2)?=0. By (3.2), (2 #)?=0, i. e. # is in
i ‘
the image of the map (t»—**: H*FH — H"H.
Secondly, suppose that » is not divisible by p. Then (*)* # = 0 implies
that « is in (¢7—** H*E, because there is no term of the form z? in the

expression of .
* s

r (]
(2) Since H*E —— H"A — H"*+1 (B, A)—— H"t' F is exact (coho-
mology sequence for (E, 4)) and r* is epimorphic, we see that ¢* is a mono-
morphism. The commutativity of the following diagram

.

%
V™ (B, 4)— s H B

ﬂkl |

?

and part (1) imply that im (i* B) = im (Bi j¥) c im ff = im (¢#—%* = im (B; j}
yp—k) = 1im(i* B ;). Hence, im (i* fr) = im (i* fi y',—z) 80 that i* (im f) =
= ¢* (im B¢ yp—x). Since 4* is a monomorphism the desired result follows.

Q. E.D.
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The following lemma is a key step in proving the Thom direct sum
decomposition.

DEFINITION. Let #> 0 and 1 <%k < p — 1. Define *N»= *N" (E, 4) a8
Ox P—*H"1(H, A).
Clearly *N* is a subgroup of *H" (B, A).

LeEMMA 3.4. Let » be a positive integer, then
EN® = §,, p—EkN -1 -+ 6y H»1 A4,
PRrOOF. Let  be an element of *N™, u is written as u = dy v, for some
v in P—kH"—1(H, 4). By (3.3.2), there is an element z in H"~1FE such that

Bo—k ¥V = ('t\"“) 2. Let y = v — yi2. y is in »~*H"—1(E, 4) and moreover, f,_y =

=Bpt¥ — Bo—i Yk ® = Pp—i v — (ﬁ) 2 = 0. Therefore, y is an element of
p—kNn-1 —= §, 1 *H"2 (B, 4) by Richardson-Smith exactness. Write y =
= 8p—r w, for some w in *H"!(E, d). Then u = dxv = o (y } yi2) =
=0k Y + Ok yi 2 = Ok (Op—r w) — Or v* 2z, where the last equality follows from

(3.1). Hence,
EN® < 8 p—*N»—1 4 6, H"1 A,

Since * is an epimorphism,
6k p—k N n—1 + gk Hr1 4
cOp P *N*" 14 G r* H"1 E
c 8 PEN1 4 6 7;; H»1F

c O (P—EN=1 4 r—kHn—Y B, A)) c KN (B, A).
. Q. E. D.
Later in this chapter it will be observed that the decomposition of (3.4)
is direct and that repeated use of (3.4) yields the Thom direct sum decom-
position theorem (3.14).

—1
. Let a

LEMMA 3.5 Let >0 and o =np’ — 1 ifp§3,1"=p

be any class of H"»S". Then there is a nonzero element A of Z, 2 G such

that
Ayp—raP=pu2 b Op_raif p = 3.

Moreover, in case p = 3,1 depends only on n and p, i. e. 1 is independent
of the choice of a in H”8"and of the choice of k, 1 =k =<p — 1.
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If p =2, we have
yb a® = 0y~ Oa.

PROOF. First we assume p=3. Let X = 8", F = X7 be the p-fold
cartesian product of X, and 4 be the diagonal of E. We apply (3.4) repea-
tedly to the above situation to get

EN W = §, p—EN -1 _I_ 0, Nn—1 4
= §; P—FkNnr—1 because H"P—14 =0
= O (Op—i N ™2 + 0,_, H"2—24)

= O Op_y, kN2

= (61; 6p_k)“ Ok (619_]; kN'”-l— Op_k H”A)
= ,u,z+1 ENn 4 Py O Op—i H™ 8™

Next we will show that *N*==0 as follows:

kEN® = 8 p—EN"—1 | 0, H"—1 8" by (3.4)
= § PHEN "1 because H"—1 8" =0
= Ok (Bp—i N2 - 0,4 H"=2 §") by (3.4)
= O Op_i FN "2

= 0k Op—r O PEN 8

= (8 Bp_p)? kN

(8k Op—r)™ 18z 2~ %N ifn=2m >0

B 3 (Ok Bp—p)™ EN'1 if n=2m 41
( (3 8™ *H® (B, 4) it n=2m

B ? (8 Op—r)™ O P~ EH O (B, A) if n=2m-1

= 0, because *H (E,4)=0 for any k=1,2, ...,p — 1.
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Therefore, combining the two results we get
KN™ = ps 6,6, , H"S".
On the other hand,
* Br yp—r a?
= Bijk yp—rx@? (see the diagram in the proof of (3.3.2))
= (t»—**a? Dby the definition of (t2—*)*
=0;

hence B yp—r a? = 0 because i* is a monomorphism as we saw in the proof
of (3.3.2). By Richardson-Smith exactness, f; yp—ra?= 0 implies that y,;a?
is in EN"™ = §; (»—*H"—1 (E, A)). Hence, there exists an element m in Z, such
that

’ P — a
Yoy GP=mu; 8,0, ,a

by what we proved in the preceding paragraph.
m is nonzero because m = 0 would mean y, ja? =0 and hence a?=
=0 by (3.2).
Let a, be the fundamental cohomology class of H"”S8™ and m, be the
number corresponding to a, in the formula
Yp—kaf=m us 6, 6, a.

Let a be any class of H*8"., Then a = ja, for some j in Z, and
Yp—k @7 = yp_i (j a)?
=j?yp-ral
=j yp—kal? (by Fermat’s theorem)
= jm, u3 8,60, @,

= My 450, 6,_; @

This implies that m = m, and hence m is independent of the choice of
a in H"S",
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To show the independence of m from %, 1 <%k <p — 1, we write

r a
raf=mus 8 _,0a

=mp:_ 5, 0 ™a where e =a®1Q® ... ®1

11

=—mps_ 8, 8y a by (31

-1

—_ 1. 4
- m:u;-l_-] 7;"’

=—mUpu)lHuyia Dby (2.13).
Then, for k¥ =2,3,..., p — 1, we have
Vi QP =) 17t P
= — my1e-1 (Upg)*H Uyt a)

= —m (U )™ty kvt @ by (1.17)
= —mup)mtuyia

=—mptly q by (2.13.1)
=mu;d,0, ,a;

and, thus, m is independent of k. For 1, we set A =m™1.
Finally, if p = 2 it is clear that a similar argument holds with 1 =1,

and we have
7o a2 = 6"~ fa. Q. E.D

We shall write A = 4,, to indicate that 1 depends exclusively on the
dimension » of the cohomology class used in defining it (if p = 3). 4, will
be determined later up to the sign (cf. Corollary 4.19 and the remark
succeeding it).

Since (t¥)* (t»—*) = 0, we define the group *QL*H by ker (¢*)*/im (¢7—%)*,
for k=1,2,..,p — 1. Then the following lemma characterizes this group.

LEMMA 3.6. Let » > 0 and let X be a finite simplicial or C W-complex.
(1) The map # : H*X— *Q{ "2 H, defined by 5 (a) = [a?] = the class of
a? mod im (¢?—%*, is an isomorphism, and
(2) *}"E = 0 if r is not divisible by p.
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PRrOOF. It is obvious that % is well-defined.
(1) First we show that # is a monomorphism. Let 5 (a) = 0. Then
a? is in the image of (t#—*)* i.e. a? = (t»~**»x for some class ¥ in H™ E.
Hence, yi a? = yi (t*~5*x = yi Bi. ji 7p—x ® = 0 by exactness. By (3.2), a? = 0.
Secondly, to prove that % is an epimorphism, let ¥y be an arbitrary
element of *G("» B. Then (#)*y =0 by construction, so y =327 mod
1

im (¢#—*)* by an argument in the proof of (3.3). Thus, y = (2 2)? mod im (¢#-%)*,
e, y=rn (‘2 2,).

(2) Let y be an element of *H" H,p +r. (¢*)* y = 0 by the definition
of ¥G¢r B. This implies that y is an element of im (¢?—** because » is not
divisible by p. Q. E. D.

Lemma 3.6 implies that H"X 2 *¥¢nr F and *9f* H = 0, for all k =
=1,2,..,p—1 and for any integer r which is not divisible by p, i.e.

kQ¢* B does not depend on k. So hereafter we shall omit &k and just write
Q¢* E for *9¢* B.

DEFINITION. We define a map y}_x: X" E — *H " (B, 4) by yp—i[a?] =
= yp—ra? where [a?] = 5 (a).

Then we get the following lemma :

LeMMA 3.7. Let n >0 and « =np’ — 1, if p = 3. Then
(1) ¥p—k : H?H —*H"? (B, 4) is a monomorphism for all k= 1,2,...
weyp—1, and
(2) if dim X = n, the following diagram is commutative :

HrA=H"X n Qtrr (B)

4

Mk 61 Bp In Yo -k
*H (B, 4)

where 1, is the number defined in (3.5).
(3) In particular, when p = 2, the map y§: W E — tH" (B, 4) is a
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monomorphism ; and the diagram

H*X » G (EB)

&' 7

tH™ (E, A)
is commutative if dim X = n.

ProOF. (1) By (3.2) yp—i [a?]=yp—ra? =0 would imply that a? =0
and [a?] =9 (a) = 0.

(2) The proof is done by going into the sample spaces 8™ and (8*)*.

Let K be the p-fold cartesian product of the m-sphere S* and let Ax be its

diagonal set. The meaning of F and 4 are as usual, i. e. = X?and 4 =

= diag B. Since dim X=mn,H*X=0 for i=n -+ 1. Hence, by Hopf’s

theorem, H"X = [X, 8"]/p* [X, 8"] (H™(X; Z) X [X, 8"}, p*: H" (X ; Z) —

— H™(X ; Z) induced by multiplication by p, Z —?——> Z), and this isomor-
phism is natural in the sense that for a given element # of H™ X, there
exists a corresponding map f: X — S* such that f*a =« where a is the
fundamental class of H" 8", Then we have the following commutative diagram :

awE) 7, mgw(K 4x) 2P g
(f X Xf)*l l(fxm <)t lf“
H™ (E) > Ew(H,4) <——— H" X
VYo—k ‘ ;w;, 61¢ (I
Hence
/‘z ak ep—k 2

=lu'1‘: aIc op—kf:

=(f X X[flyp3d,0, ,a by the commutativity of the above
diagram
= In(f X e X P ppra? by (3.5)

= A Pp—ik(f X .. X f*a? Dby the commutativity of the above diagram

13. Annals della Scuola Norm. Sup. - Pisa.
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= ln yp—i(f* 0)?
= An ¥p—k ¥ = Ly yp—r [?]
= I Vo—k 1%, which proves (2).
(3) is proved by a similar argument. Q. E. D.

COROLLARY 3.8. u36, 0, ,: H" X —*H™ (E,4) and &;~16: H* X —
— tH?"(H, 4) are monomorphisms, where dim X=%">0 and a =np’ — 1

(o is defined if p is an odd prime).

ProoF. It is immediate from (3.6.1) and (3.7). Q. E. D.

Lemma (3.7) and its corollary (3.8) can be applied to the = skeleton
X™ of X when dim X >>n, as we did in the proof of (3.2). Then the diagram

7
x = > (B
g’
n
>
Ho X s Gfrp (E(ﬂ))
M O Op _ i \ / Anyp—
kF[np ( B | A0
Mr ok s An 7;-— k
\ e y
¥ grne (B, 4

is commutative everywhere except around the exterior triangle (see (3.2)
for notations).

Let v € H™ X. If u2 é, 0,_,® =0 then ug 0,0, 4 (g* @) = (g >< oo X gNEMLo
00 0p—r & =0 so that g*# =0 by (3.8). Then # =0 since g¢g* is a mono-
morphism. Also if yf_xynx =0, then yp_ix7n (9*x) = (9 X< .. X 9)¥ vp—r =0
which means that ¢* « = 0 by (3.8) and hence » = 0. Analogous discussions
hold for the case p = 2. Thus we have shown the following corollary :
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COROLLARY 3.9. The maps

yp—xn : H* X — *H"?(E, 4)
and
ped, 0, H* X — *H" (B, 4)

k “p—k

are monomorphic for all k=1,2,...,p—1, 28>0, p=3 and for any
complex X. If p = 2, the maps

y&n: Hn X — tH? (B, A)
and
00 '0: H" X —'H™ (B, 4)

are monomorphie, for » > 0 and for any complex X.

Note also that 8¢ ' 6 — »"~' @ because » = §, when p = 2.

Let (@) = (@g, @y« , Au(p—1)—1)) b6 a collection of elements a; € H"+* X
for 0 <i<n(p —1)—1. Such a n(p — 1)-tuple (a;) shall be called a
system.

PROPOSITION 3.10. Let n > 0, and a =mnp’ — 1 if p = 3.
(1) In case p = 3, define

Y =Y (@) = Ok @n(p—1)—1 + Ok Op—k Gn(p—1)—2 +
+ (8% Op—1) Ok @n (p—1)—3 + +or =+ (Or Op—1)® Ok Op—r @,

where (a;) = (@gy @y y oer ) Gn(p—1)—1) 18 a system. If y belongs to y,_, H™ H,
then y is of the form

Y= ln Yp—rt a?

where 1, is the number defined and characterized in (3.5).
(2) Let p= 2.

Ify=y (@) =0 an_y +08,0 @z +...4 8,7  0a,, where (&) =gy Gy er yln—1),
8 in yo H® B, then y is of the form

y=y,a.

ProOF. (1) Let X™ be the n-skeleton of X, E® = (X®)P == X ™) ¢
X o X X® be the p-fold cartesian product of X®, A® be the diagonal
set of EMand g: X® c X be the inclusion map as in the proof of (3.2).
¢*: H* X — H™ (X () i monomorphic. Define a homomorphism ZJ}': Qe (B)—>
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— Gt (E™) by /g\* [ar] = [(¢* @)?). Let f=¢gX .. < g: E®™ — B,

f* H*E— H*E®™
and
JE = (95X o X ) : KH* (B, 4) — *H* (B ®, A)

be defined in the obvious manner. Then the following diagram is commu-
tative :

!

*
o (X)—s 9w (B) 2225 vipe (5, 4) 27 e ()

lg" i?;" : 1fz? lf *

o)
H (X)) —— Qfr2 (B®) ——— ¥ H™ (™), A®)<—— H"?(E™),
" Yok Yr—k

Py
Here ¢* ¢* and y;_; are monomorphisms, g* being a monomorphism by-

construction, ?‘ being a monomorphism by the commutativity 5 9" =?‘n

with # isomorphism, and y,_; being a monomorphism by (3.9); » is an

igomorphism by (3.6.1); and yp: H®?(E®™) — *H™ (E™, A™) is an
! '

—_ —k
epimorphism because the sequence H"™ (E("))—Q—E) ke (E®), A™) 2=

7~k gt F) = 0 is exact. Hence, f#:*H" (H, d) — *H"? (B"™, A™) is
monomorphic on yy—p %" (E). Now, ‘

Y = Ik (Oran(p—1—1 -+« 4 (Ok Op—1)* Ok Op—s @)

= (Ok Op—i)* 81 Op—r g™ @, by naturality

= n y5—r [(9" a)?] by (3.7.2)

=1, y;'_k;* [a®] by the definition of g;;
= A, f% 7p_i[0f] by the commutativity

of the above diagram

J— * 0 P
- A’nfk yp—lc L)

i.e. fely—2,7, a8 =0.
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Since y is in yp—x H" E by assumption, we can write y as

y= '11. 7;—/: “’5 + 7;_], 2 (zﬁ ® vee ® z‘p)

»
where X (dim z,-j) = np.
j=1
It suffices to show that y,_x(3 2, @) ... @ 2;,) =0. Since ji0; =0 and
Bij% 6y = B 6,= 0 Dby the Richardson-Smith exact sequence, we have
Brj%y = 0. Hence,

0=4, 557y s®+ B, G5 7p s (T2 Qe @ 2)
=P ap 4 (P (2 20 Q) o @ 21,)
=@tr"*32,Q..Q %y

which implies that
Z2Q..Q %, = 2P - image of (¢*y*, and

that yp—x 3 2;, @ ... @ 2, = yp—r 2? by Richardson-Smith exactness. Thus, we
have shown that

Yy= ln 7;—10 “&” + 71,.1—k L2

Now, f*y=24, f} v,_, @} implies that f.Fy _ 2P =f*y}  [¢?]=0. As we
observed earlier, f# is monomorphic on y;_i (9% E). Hence, we get
Vo wlttl =17, _,2? =0, l.e, y=1y,  a?.

(2) is similar to (1). Q. E. D.

PROPOSITION 3. 11. Let x be an element of *H™ (H, A). If x belongs
to (yp—x H™ (H, A)) nkN"2, then x belongs to yp_y (K" E), for any prime p.

ProOOF. We proceed just as in the proof of (3.10). Since x is in
Yot H"? (B, 4), Wwe have & = yp_p2? + yps 2 i @ .. Q 2, (2 X ... @ 2,
mixed). # is also in ¥N7?, so that fB; ji« =0. This implies that 3 z; @
R...Q %, €image of @* and ypx (22, Q.. Q #,) = 0. Therefore, x=
= yp—r 2P = yp—i [27] Q. E. D.

PROPOSITION 3.12. (Uniqueness). Let n be a positive integer and & be
an integer, 1L <k <p—1. For any a in H®X, there exists at most one
system (@) = (@g , @y , eoey A (p—1)—1) SUCh that ay=a, ;€ H*X and y=
= An yp—1 0P where y =y (a;) s the ewpression in Proposition 3.10.
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Proor. Suppose that we have distinet systems (a;) aud (b;) such that
ay="by=a, a;, b; € H*+* X and y (a;) = y (b)) = An yp—ra?. Let ¢;= a; — b; and
m = min {i|¢;==0}. Then clearly 1=m =n(p —1)—1, and

Y (6:) = Ok e (p—1)—1 + Ok Op—ic On (p—1)—2 + o0 + (O Op—1)* Ok Op—1c 6o = 0,
where o = np’ — 1 as usual. Let

i If0=i=n(p—1)—1—m
Oy =

0 ifn(p—1)—m=i=(n-+m)(p—1)—1.

(€) = (Cmy Omt1 +er 5 Cn(p—1)—1) Oy wor » 0) i8 & SyStem such that ¢, € H™m+i X,
‘We shall consider the following two cases:

CASE A. m is odd.
Let

Y1 == Op—k Ontm) (p—1) ~1 1 Op—k Ok Ontm) (p—1) —2 + +o +

Th F (Bp—i SR)mAM =18, 4 B0 .
en

Y1 = (Op—k Or)™P~12 8y (Bk Cn (p—1) = +++ =+ (O Op—r)* Ok Bp—x Co)
= (Op—r Or)™P—D2 9,y (¢:) = 0.
Hence y, = 0 €im y;.

By (3.10) 0 =y, = Am 7k ¢ = A 7} ¢, which implies that ¢Z =0 by
(3.2) and that ¢, = 0 contradicting our assumption e,, 5= 0.

CASE B. m is even.
Let

Yp = Ok Cutm) (p—1)—1 + Ok Opi Cntm) (p—1) —2 + oo +
+ (6}; 6p_k)(n+m)p'—l Or Gp_k?(, .

Then
Yo = (O Sp—r)™ y (¢;) = 0, as in Case A.

Hence, 0 =y, = A, ¥p—t 03=Am yp—z ¢, Which again implies that ¢ = 0
by (3.2) and that ¢, = 0 contradicting ¢,, 5= 0. Q. E. D.
(3.12) should be properly interpreted for p = 2.
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Although the following result was stated and proved in the proof of
(3.5) for X = 8™, we restate if for an arbitrary complex X.

LEmmA 3.13. Let » be a positive integer. For any class a in H" X,
yia? i in P—ENTP,

PRrROOF. Since * fy—i vk a? = fp_rjp—ryvia? = (t"*a? =0 and * is a
monomorphism, B, yz a? = 0. Thus, y; a? belongs to ker f,_; = im d,_=
= P—EN"p, Q. E.D.

Now we state and prove the main theorem of this §.

THEOREM 3.14. (Thom direct sum decomposition for p =3). Let n >0
and k=1,2,...,p — 1. We have the following direct sum decomposition of ¥*N»:
(1) If m = rp — 2q, for integers v and q such that 0 =< 2q <p, then

N = 0, H* 14+ 63 Op— H" 2 A + 61 8p—1 6 H"3 4
—]— . -l— (% 5p_k)rp’—q—l Ok Gp_k H™ A.

(2) If n=1rp — (29 + 1), for some r and q such that 0 < 2q + 1 <p,
then

EN® = @, H*1 A + O Op_k H 2 A+ §; 6p—k 0 H"3 4
+ oo (2 5p_k)rp’—q—1 0, H” A.
Notice that » = min {j | n/p = j}.

PRrooOF. First, we prove the directness of the decomposition. Suppose that
0 #y—1 -+ Ok 91;_]‘,- Lp—s -I- e = (Ok 6p_k)rp’—-q—1 Ox Gp_k , =0

where ;€ H* A, for r < i < n — 1. Denote the left hand side of the above
equation by z. Apply (0 d,—1)? to z and get (0 p—x)? 2 = 0. Now, (5 Op—r)?2
is an element of dimension rp and is of the form given in Proposition 3.10,
hence %, ; = 2, 5 = ... = 2,= 0 by (3.10) and (3.12). This proves the di-
rectness of the decomposition of part (1). For the directness of part (2), the
argument is similar; we have to apply (Sp—« 0x)? dp—r instead of (x dp—x)?.

Now we prove the equalities of (1) and (2) by induction on n. Let
n =1, Then *N! =4, ?~*H° (B, 4) = 0 because ?~*HO(H, 4) =0 for all k.
Algo, 0, H' A= 0, * H'E = 6, y1 HO B < 6;, P~ *H° (B, 4) =0 by (3.1) and

H*

by the exactness of H° F —r—-—> H°A— 0. Hence, (1) and (2) hold and both
gides are zero. Assume that they hold for 1,2,...,n. We shall prove them

for n 4+ 1 by considering the following two cases.
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CASE A. n is not divisible by p.

By (3.4), *N"t1 =0, H" 4+ 6, »~*N". By the induction hypothesis,
r—kNn will be decomposed into the direct sum of groups by (1) or (2). Hence,
(1) and (2) follow for n - 1.

CASE B. n is divisible by p.
Let n = rp. Again by (3.4) and by the induction hypothesis, we have

an+1 — ok H?» A + 5k p——an
= [0 H" A+ 8 0p_ H ' A + ... + (85 8pi)?'—1 83 Opy H™H1 A]
—+ (0% 6p_k)"1)' 6 Hr A,

Since min {j€Z|n 4 1/p =j}=r-+ 1, we have to express the elements
of (0x Op—1)® 0y H* A as linear combinations of elements in the bracket. Let
a€ H" A. By (3.13), yta? is in #~*N’?, By induction hypothesis and by
(8.10) and (3.12), there exists uniquely determined elements a,_;,d,—3,...,a,
such that a;€ H'A4, a, = @ and

Ar P 0P = Op_g Ay + Op—i Ok Gn—2 + Op—k O Op—i An—g + oo +

+ (51,._.]; 6k)rp’—1 6p_k 0: a, .
Hence,

Ar Ok 7k @ == O (Op—k Gn—1 + o = (Op—r OkYP™ Opi A1) + (Ok Op—2)®' O @,
which implies that
(8 Op—i)? B 6 = — (A, O ™ a? -+ 6 Op—g Gp— + 0o +
(Ok Op—r)®' 1 Ok Op— Gpy1) . Q. E.D.
Similarly, for p = 2 we have the following decomposition :

PROPOSITION 3.15. (Thom direct sum decomposition for p = 2). Let n > 0.
If n = 2r, then

tNn = OH" " A+ 8,0H" 24+ ..+ 6, 0H 4
=0H" 1A+ v9H" 2 A+ ... 4 »—10H" 4

i8 a direct sum decomposition. If n = 2r — 1, then
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tN? = QH™ 1 A 4 8, 0H 2 A + ... + 8, 0H' 4

=0H" 144+ v0H" 24+ ... 4»—26H" 4
18 direct.

PRroOF is immediate by interpreting (3.14) in a proper way.

§ 4. Steenrod Powers and the Thom-Bott Formulas.

The Thom direct sum decomposition of *N*(p = 3) and of ‘N™(p=2)
leads to representations of y;a? and of yoa? which give rise to the Steen-
rod cohomology operations PI;': H™ — Hm+2i(p—1) gnd S¢': H™ — H™1,
The Steenrod powers (for p = 3) or the Steenrod squares (p = 2) appear
in the direct summands of the Thom decomposition for y;a? or y;a? The
existence of the Steenrod operations will be shown by proving the Steenrod-
Epstein axioms for the appropriate parts in the direct summands of the
Thom decomposition. The crucial step is the proof of the Cartan formula.
Uniqueness (or axiomatic characterization) is proved again by making use
of the Thom direct sum decomposition. This has been done already by
Nakaoka [4]. The final theorem in this §, Theorem 4.21, sums up the con-
nection between Smith theory and Steenrod operations by giving the Thom-
Bott formulas in their general setting.

The following proposition is immediate from (3.12), (3.13), (3.14) and (3.15).

PROPOSITION 4.1. Let n > 0. Let a =np’ — 1 and 1=k=p—1 14
p=3. Let a be an element in H™ X. Then :

(1) For p = 3, there is a unique system (a{¥)= (al¥, a(l"),...,a;k() p—1)—1)
such that a{¥ € H™+ X, al) = a and

G K
Ao Vpmto @7 = By, @Sl p—1y —1 + O Bp—i Al p—1)—2 - O Opic O A4 p—1)—2 +
vee = (81 Op—1)* Ox; Bp—1; (¥ .

(2) For p =2, there is a unique system (as)==(ag, ..., 0n—;) 8UcCh
that a;€ H*t' X, ay = a and

740 = 0an_y + 8, 0n_y + ... + 87" 0a,

=00a,—; + Y0an—3+ ... ++""104qa,.
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LEMMA 4.2. Let (af®) be the system in (4.1.1). Then

(1) a;k()p__l) iy =0, for2=k=p—1;
and
(2) al % p—1) 2% af? )( p—l) =2 T T “;12;3-)1)—2-'

where 1 < i < np’.

PROOF. Ay 75 a2 = Ay 71,1 4 @F = Py, 5—1 (05 @S} p—y) —1 =+ 0 0c @) p—1y—2 +
v = (85 80)% 6,9,@%1)) by (4.1.1). Now we have

Y1, k—1 (05 6!)':_1 0, 0; ag%p—l) —2i = V1, k—1 ,u:):ll 050, 7% x

(= “mp—l)—zs R1Q..R1)

= —V1,k—1 /";:11 030yt @

= — V1,k—1 M;—l e w

= — y1,p—1 (Vo) Uyt @

= — (U Uys, -1yt @

= — (Up) ' Uy

= — Wyt Op—t Ok Yk ®

= (Op—1 Or)" ! Op—ic Oral )(p——l) —2i)
and for k= 2,3,..., p— 1 we have

Y1, k-1 (06 ist)t 0, aﬁ.] )( p—1) — (2i—1)

— i * 7
= y1,k—1 Hp—1 Os7" @

— Y1, k-1 Hp—1 0s7s &

= — y1, k=1 Pp—1 0:£7 70 0’

= —’1,k—1 ,“;—1 & Seyi o’

= — (Upo) U(y1, k-1 &5 Oeyi @)

=0 because &¥d,y;a’ is written

by (3.1)

by (2.13.1)

by (1.17)

(@ = all{p—1) - pi-) Q1@ . @ 1)

by (2.8)
by (2.11)
by (2.13.1)

as [tP—1z] for some 2z and hence
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Y1,5—1 &5 Op it & = y1,5—1 [tP~1 2] = [tP1k—22] = 0. Therefore,
T vie 07 = By O @8l p—1) 2 4 (Bp— &) Sp—i O Allp—ny—s + o +-
(3p—1 81" Op—r O af’,
which implies (1) and (2) by (4.1.1.). Q. E.D.
Let § be the Bockstein homomorphism associated with the short exact
sequence
0—>2Z,—>Zp—2Z,—0

defined for absolute and relative cohomology.

LEMMA 4.3. For any prime p = 2, we have

(1) fy = p — vf: tH" (B, 4) — tH"t2 (H, 4).
2) Bu = up: tH" (B, ) — tH™ (B, A).
(3) BO.= — 0,8: H* A — tH+ (B, d) = H™2 (,, ).

(4) Ot ye a? = fysa?, for a€ H* X,

ProoF. (1) By (1.15) and (1.16), there are cochains ¢!, ¢* on B — 4
such that de! = s¢?, uy = p (1) = [3¢?] and », =» (1) = [sc!]. Since g (v)) =
= f [s¢!] = [de!]=[s¢*]=p,, We have fvx = f (vyuz)=fryur — »,u Bz =
= o U® — v, U = ux — »px, for any € H* X,

(2) Buw = (uyuax)=Puur-p,upe=_7Fv ur-+ u,upr=p,upr=pupe,
for all x € H* X, because §? = 0.

(3) We have 0— Z, ——l—> Zigs J—) Z, — 0 where A(n)= np and
p(m)==m. This induces coefficient maps 1; and u; in the short exact
sequences

A
0—> CF (4} Z)—2> 0% (43 Zp) —2 0% (45 2,) — 0,
Ay o M
0— C¥ (B, d;Zy)—— 0% (By, 4;Z,)—— C* (B, 45 Z,)—> 0.
Let 3 be the ordinary coboundary operator on (E,, 4) over Z, or Zy . The

map 8 over Z, induces 6;: H* A— H* (B, 4). Let § : C% (Y ;Zys) — C% (Y ; Zy)
be the ordinary coboundary operator over Z, for any space Y.
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Let [#] be a class in H"(4;Z,). « can also be viewed as an
element of C"(4;Z,) and wx€C"(4;Z,) is a preimage of x€0™(4;Z,)
under uy . By definition g[#] =[A;~'0x] where « is regarded as an element
of O™ (A3 Zp) so that we can apply 6. Hence, 0,8 [¢] = 0,[33" dx] = [31;7" da] =
— [47' 3 6a] by naturality. On the other hand, f6;[s] = f [3x] = [1;" & d.].
Here again d'» is viewed as an element of ¢+ (Bo 5 43 Zp), 80 that 6(3'90)
makes sense.

Hence, it is enough to show 88 =—036. Let s? = [@g .o Op], 8711 =
={[a, ... ap ay4,] be simplexes of 4, and 8?12 = [a,. .... ap Ay Apys] be a sim-
plex in E, — 4. Then

8352 =6 {(— 1)?H1[ay. ... . ap apy5] + others)
= (— 1) (— 1)?¥2 [y .... . ap Gp}2 Ap14] + others

= —[@y . .... Op Qpyq Gpyq] -+ others
= g#+2 4 others,
whereas 3 8s? = 4§ {(— 1)p+1 gp+L L others)
= (— 1)P+1 (— 1)»+2 gr+2 | others
= — g?+2 | others.
This is true for any s? < s?+1€4 and s?+1 < 5212 € (B, — A). If s? < st grt2
with s? € 4 and s?t1, s?+2¢ (B — 4) or with s?, s#+1, s7+2¢€ A, then in both

cases 84 (s?) and 53(31’) do not have the term s?+% obtained through s»+1,

This exhausts every case, and 8 = — 0.
(4) Let @ be in H*X and let ¢ be a cocycle representing a. Then
a=[c] and a? =[¢ X .. X ¢c]€ H* E.
Seyt aP=0;[t (¢ X< .. < c)]=1[6u] and PBy;a?=F[s(c X .. X ¢)] = [6u]
imply (4) where u€ C* (B, 4) with tu =1t (c ><X ¢ X< ... < ¢) (hence su=s(c<
XX X 0))

REMARK. For p = 2, (4.3) becomes
(1Y pr =22+
(2) pr2=19%p
3) B6 =068
(4) vy, a® = By, a®

and the proof is similar.
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REMARK 2. (4.3.3) is a special case of the following remark. Let
0— C¢’"— C— ¢’/ — 0 be an exact sequence of free chain complexes, and
0— @ — @ — G’ — 0 an exact sequence of modules (over a commutative
ring R). Then the commutative diagram of R-modules

0 0 0

} ¥ !

0+>0QRF >0QE —0"QE —0

4 } }

0>0QREG -0QREG —-0"QRGE —0

+ - !

050 QR6 >R & — Q& —0

! ! !

0 0 0

with exact rows and columns induces the anti-commutative diagram
H, (0" @ 6")—> H,(0' @ 6"
s Ik
H,(0"® )% H,(0' @ &)

(cf. Proposition 2.1 of Cartan-Eilenberg’s Homological Algebra, p. 56),
4,8 = — fo,, where 5, is the boundary homomorphism (belonging to
0— 0/’— C— ¢’ —0) and f the Bockstein homomorphism for 0 — G’ —>
—> G — @’ —> 0. A similar statement holds in cohomology.

By (4.2.2) we may write ag‘()p_l)_m. as @, , . o for 1=k=p—1
Similarly, in view of (4.2.1), ag() p—1)—(ai—) WAy be written as a, . .. ..

LEMMA 4.4, Let p= 3. Then, An(p—1)—(2i—1) == ﬁa,,( p—1)—2i » for all i,
1=i=np’.

PROOF, Let oo = np’ — 1 and a € H™ X. Then,
ln 6t yi a?

= 63 (93 aﬂ(p_l)—l + e + (63 5t)" 63 9; “o) by (4.1.1)
= 90, tn(p—1)—1 + WBs Gn(p—1)—2 + - 4 p* 1 Brag .
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On the other hand,

An 6; 7; ap
== Ay Bys a? by (4.3.4)
= ,3 (6; 93 a,,(p_l)_.z + .ee + (6t 63)“ 6; 93 axo) by (4.2.1)

= B (¥0¢ n(p—1)—2 + ... + p*¥8;0y)
= (1 — ¥B) O @uip—1)—2 + p (pt — ¥B) O tnip—1)—s + o + p* (u— ) Or g
by (4.3.1) and (4.3.2)

= 90 ¢ (Bn(p—1)—2) + UOttn(p—1)—2 + . + u* ¥0:(Bag) + pot Ora,

by (4.3.3).
Hence, by comparison of these two expressions, we have

0¢ tn p—1)—1 + 1 V01 Gnp—1)—s + .. + p*r0iay
= 0 (Ban(p—11—2) + # ¥t (Banp—1)—y) + . + 2 v0:(Bay).
By (3.14), we see that dn(p—1)—@i—1) = Ban(p—1)—2, for 1 =i =np’. Q.E.D.

LEMMA 4.5. Let p=2, and (a;)=(ay,a,,.., an—;) be the system
characterized by (4.1.2). Then, agy; = fay, for 0 = 2¢ =n — 2. Hence, in
particular, fasy, = 0.

PrRoOF. Suppose that » is even > 0.

vy (@@ a)=»(0a,—1 + 0 @y + ... + »""1 0ay)

n .
= 3 »0a,_;.
i=1

Also
vy (a @ a) = Byo (@ @ a)
= B (0an—1 + ... + "1 Oay)
= 0fan— + (0* 4 »p) Oan—2 + v? 0fan—3

+ 22 (02 + ¥B) 0an—y + ... + "2 (0® + ¥P) Ba
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= (0 (Ban—2) + »* Ban—y + 3 0 (Ban_y) + »* Oan—y + ...+ "1 0 (Bar) +
+ 7 Bay) + {6 (Ban—1) + +* 0 (Ban—s) + ¥* 0 (Ban—s) + ... + "2 6 (Ba,)}.

Now let us look at the second term of the sum in the last equality. We
want to show that fa,_, = fa,_; = ...= fa, = 0. Apply » to the sum to get

20 (Ban—s) + #° 0 (Ban_s) + ... + 71 6 (Bay),

which is the expansion of the system

(@) = (@g y o y Wn) = (O, /3“1 y 0, Bag ..., 0, ﬁan—la 0).
Therefore,

v0 (Ban—y) + 2 0 (Ban—s) + ... + »"1 6 (fa,) = (0 @) 0) = 0.
By uniqueness, fa, = flay = . .= fa,_; = 0. Hence, we see that
yo (@ Q) a)
= ¥0ay—y + v* Bap—s + ... + +" Oa,

= 90 (fan—s) + »* 6a"—2 4 ... 4 " Oay,

which entails a,—; = fan—z, @p—3 = far—4, ... and a, = fa,. Thus the state-
ment is true for even n. For odd =, a similar discussion will show the
same result. Q. E. D.

Combining what we have shown we state the following proposition.

PROPOSITION 4.6. Let n > 0.
(1) Let « =np’ — 1 and p = 3. For any given class a of H™X),
there exists a unique system (to;) = (Ag, Ay, Qg 5 «0ry Baq) SUch that ay=a and
aq; € H™H2% (X)), which satisfies the following relations:

ln 7; a? = Eo lu;:; (93 /3 + 63 9t)a2i
= —2_,(; (U ,uo)“-i V] (Osﬁaz.- — Mo U }/Z 52@'),
and if k=2,3,..,p—1, then

o
! N —1
}un Yk a? = 2 ,u;_;c 6p_k Gk Ay

1=
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= — Z(upup)*~H Ui ax
i=0
vhere az = (a5 @1 Q) ... ® 1) € H*+*%(E) and A, is the number introduced
and characterized in (3.5).
(2) Let p = 2. Then there exists a unique system (o) = (@, gy oer 5 Op_y)
such that ay= a,a; € H™* X, ay11 = fay;, and

n—1
(@@ a)= 3 »—i-10a;

=0

n—1

= 'E:o (Vv Uy (as @ 1).

PRrROOF. (1) The first equality for A, y: a? follows from (4.1.1) and (4.4).
Since d, 0; ag; = 8,0, 7* ag; = — 0,8, 7; s = — pp_y ¥4 @ , the second equality
for 1, y:a? follows from (2.13.1). Also the first equality for A,y:a?,
2=<k=<p—1, is immediate from (4.1.1) and (4;2). The second equality for
An 7 a? follows directly from (2.13.1).

(2) The first equality is directly coming from (4.1.2), and the rest
is a routine manipulation due to (2.13.2). Q. E. D.

REMARK. The relations in (4.6.1) are not in final form. Their revised
forms which will be given later are known as the Thom-Bott formulas.

Our next aim is to show the Cartan formula for the system defined in
(4.6). For this purpose, we make a few preliminary computations.

In (4.6), let Bag; = azy, . Then ﬂ@ = a_z—-,_; by the naturality of 8, where
4i=0Q1®..® 1. We have :

6, fax

= 0, @91

=0, r* ‘K-I-l

= — 8, 7s i1 by (3.1)
= — & & ¥t Ay by (2.8)

— VYp—1 }'5 A2i41
= v, U Pt Qai1 by (2.13.2)

—
=) Uyt foni .
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Therefore, for any a € H™ X where m > 0, we see that

=0

Am 7; a? = 23 (v ,“o)a-i U (0, fag; — Mo U P “_21) by (4.6) .

o

= 3 (Up) U Uyt f— g U i) au

=0

= — 3 (Up) MUyl ag + 3 (U pg) *FUng Uy fan
=0

=0

when p =3 and o = mp’ — 1. And if p = 2, then
n—1
ro(a @ a)= E‘o(u yo)" Uy (4 Q1) by (4.6.2)

]
=‘i (Ur % uyg (a @ 1)
=]
-_—_-izo(u Y E Uy B (an @ 1)
with B (a1 ® 1) = 0.

The preceding formulas will be needed later in the proof of the Cartan
formula.

Let m and » be positive integers. Let a€¢ H™ X, be H™ X. If p = 3,
18t o=mp’ —1, t=mnp’ — 1 and a« = (m 4+ n) p’ — 1, Finally, letc=aub.

DEFINITION. (1) Let ¢ and j be integers. Let p = 3. Define ay by
0 ifi<Oorifi>o+1
Ay ={((ua)? ifi=o0-4+1
the uniquely determined element in (4.6) if 0 <1 =<o¢.
(2) When p = 2, we define
[0 ifi<<Oorifi>n
a={(ava) ifi=n
the uniquely determined element in (4.6), if 0 < i < n —1.

14, Annali della Scuola Norm. Sup. - Pisa.
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Make a similar definition for by and ¢y, when p = 3, and for b;, ¢, when
p=2.

PROPOSITION 4.7. Let p = 3, then

(1) egr=(aUb)yy= 3 ay Uby (Cartan formula),
i+j=r
and
(2) dngn = (— 1)™ Ly An.
If p= 2, then

3) e,=(aud)y= 3 a;ub;.
i—l—}:i‘
PrOOF. Let p = 3, and let

A=23 3 (Up)H—" vy (ay vby)
r=0 i+j=r

— 3 3 (U Uuwy Uyt B (a Ubsy)

r=0 i1}j=r
We will show that A = — A, 4, yi (a? u b?).

A=23 3(Upu)H—I uyi(ay uby)

1=0 j=0

+ A0 2 (U =5 Uyl (a0 b?)
=0

+ Am Z (0 o)1 vy (@20 byj)

— 3 3 (Upp) Uwy Uyt B (an U by)

=0 j=0

— A 3 (U )" Uy U B (agi U bP)
=0

N lmfo(u po~Iury Uy B (a? uby).
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Let

(4

T = 10 2 (U po)H1= Ui (ag U b?)
1=0

— In 3 (U1 U vy Uy} (@i U )

1=0

= 1p 3 (U ptg)" 1= U y} (@i U bP)
=0

— In 2 (U )" 0 %, U 7} (Bags U )

=0

o

= 1 3 (U )" 1= U (y} @g; U DP - ag; U p; b — p} ags Uy} b?)

=

— A Z (U g~ U U (yi fagi U BP - Bagi Uy} bP — y; fagi U y; b)
=0

= — A An (Pt AP) U BP — Ay Ay a? U (yt bP) + A Ay (yi aP) U (y: D?)

+ A Ana? u(y; b?) 4 4, EO((U ,uo)o-l-l_i u ‘;; — (v ﬂo)a—i Ury U 13“—21—) U (y¢ b?)

= — A Anyt(@? U bP?) 4 Ay Ay a? U (p; bP)
+ a2 (U p) i agi — (U )" U vy U fazy) v (y; 7).

Set also

T e

IIT=Apn 2 (U .U'o)l'H—j Uyt (a? U by)
J=0

T

— m _Eo(u HoV—I U vy Uyl B (aP U by).
Jj=

Then, just as in the calculation for I, we get

I = — Ay An 73 (@P U DP) + Am Ay (7} a2) U b2

+ Am (7t @) U 3 (U pro) 1 0 bay — (0 ) U v U D).
J=0

795
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Hence,
A=1+TIT4+ 3 3 (p) = Uy (az Uby)
=0 j=0
— 3 3 () ury uyi f(anuby)
=0 j=0

= — 24 A y¢ (&P U D?) + A An (vt @7) UDP + Am Ay 42 U (y; b?)

+ 3 3 (Upe U (i (g by) — (74 a2) U (Bag) — @iV ¥ byy)

=0 j=0

T

— 3 3 (U g U(ys Blani VDo) — (i Gz ) U Dy — (Ba)U (v byj)

$=0 j=0
— (— 1)™ (y agi) U(Bbgy) — (— 1™ agsu (vi B byy))

= — 2 An 7t (@P UDP) - Ay A (yt aP) UDP + Ay Ay @ U(y; bP)

— 3 3 (pgt 0 (y) age) U (i yy)
i=0 j=0

c

4 3 3 (Upp)Tuwg u(yi B ax) Uyt by)

§=0 j=0
F— 1 3 2 Ot o vl @) (i D)
= — 2 An 7t (@2 UD?) + Ay An (y: aP) UD? + Ay Ap @ u(p: b?)
—(Z wrorti=roty T — 2 ©mr-ton o8 @)
u (g i uliEg) — o u(r m))
because (Vr,)? =0

= — O A 74 (@PUDP) - L Ay (yt aPU P 4-aPu y; bP —y; aP Uy bP)

= — 2mAn 7t (aP UDP) - Ay Ay y: (a? UDP) = — Ay Ay ¥t (@ UDP).
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Hence, A = — AmAn7i (@2 UD?) a0 Ay dn 7t (@PUDBP)=— 3 3 (U po)*H~"
r=0 t-j=r
Uyt (@mby) + 3 3 (Upg " U Uyi(axudy). By (3.10) and by the exi-
r=0 i4+j=r

stence and uniqueness of the representation of (4.6.1), the right hand side
in the last formula is Ay4n y: (@ Ub)?. Hence

Amgn P (@UD)P = Ay Ay yt (a? UDP)

and (aub)y, = 3 ayub,;. Since (a Ub)P=(—1)""*?(a?ub?)=(— 1)mn?’ (aPu b?),
ij=r
we See that
Angn = (— 1)y’ 2 An

This proves (1) and (2).
For (3), let p = 2.
m~+n—1 [E—
Let A= =X 3 (uyy*t™ " uys(a;ud;). Then
r=0 itj=r
m—1 n—1 . —_
A= 2 2 (U ‘Vo)"+m—‘_-7U}'(') (a.-ub,-)

1=0 j=0

m—1

4+ 3 (Ur™ uph(aiubd?)
=0

n—1 —_
+ 3 (uvg)*Iuyg (aPuby).
j=0

Now
m—1 X I
I= 3 (Uvy™iuyf(a;ub?
1=0
m—1 A —_— J— po—
= 3 Uyt u(pf asub® + a;uyg b3 yo asv 9 b7)
=0
m—1 . )
= y; a? VD? 4 ( 3 (uyg™iu a,-) uyg b 4 yoa® uyg b
i=0

and similarly

n—1 J—
II = a? uyf b2 - yo a® uyo b® + 7o a?u (12 (U wo)n— Ub,-).
=
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Hence
m—1 n—1 i -
A=I1+1II4 z z (uwg)mtn=i=F up; (a;u b;)

=0 j=0

= a? Uy b® 4 pp a? ub?

i=0

n—1 — m—1 i
+ yoatu (/2‘ (Uwor—d Ubj) + ( 3 (Upgy™tu a,-) Uy, b?
=0

m—1 n—1

+ 3 3 (vt vy by + vo v b+ 7o aiuyo by)
i=0 j=0
= a? uyy b® + po a? ub? 4 y; a® uyy b?
= }I") (a2 U b2)
= o (@ lJb)2

Hence, (aub),= 2 a;ub; when p = 2.
t-j=r

DEFINITION. Let ¢ be an integer.
(1) When p =3, D;: H™(X; Z,) — H™¥(X; 2,), m = 0, is defi-

ned by )
g foSi=Za

Dia={inua)yr ifi=mp’'=a-+1

0 otherwise.

When m =0, D°a=a and D'a = 0, for ¢=0.
(2) When p = 2, Df: H™(X; Z,)— H™+ (X ; Z,),m = 0, is defined by

fo<ism—1

a5
Dia={qua ifi=m
0 otherwise.

For a€ H'(X;Z,), D°a=1a and Dia =0 if i =0,

PROPOSITION 4.8. The operators D,", and D' defined above have the fol-

lowing properties ;
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(1) 1)2, and D° are both identity maps.
(2) D;, and D are additive homomorphisms.

(3) D;, and D' are natwral.
(4) The Cartan formulas hold, 1. e.,

Di(avb)= 3Dy au Db, when p=3;
j=0
and

Di(avb)= 3 DiJauDib, when p=2.
j=0

(8) When p =2, D* =B, where B is the Bockstein homomorphism as-
sociated with the evact sequence

0—Zy—> Zy— Zy—> 0.

PRroOF. (1) is immediate from the definition.

(2) Let @ and b be arbitrary elements in H™ X, whith m > 0. Then,
for p=3,7i(a+ b2 =7i(@+ b Q.. @@+ b)=ria?+y b? + y;2, for
some z € f; ((H™ E). Hence y; f; = 0 implies that y; (¢ + b)? = yt a? | y; b2,
which in turn implies that D;, is a homorphism for each i =0, 1, 2, ...
(and hence for any integer ¢). When m = 0, (2) is trivial.

‘When p = 2, the proof is exactly the same as above.

(3) Naturality of D} and D' follows from the naturality of ), u, »,
0¢y y0,0, and 6. Hence f* D;=D:,f* and f* Di= Dif* for any map
J: X — Y. (Of course, for f*: H*Y — H* X the proper coefficient domain
(Zp or Z,) has to be taken).

(4) We have already proved the Cartan formulas in (4.7).

(5) follows from (4.5) which says @y, = fag;. In particular, D!'a =
= a, = fa. Q. E. D.

‘We extend the cohomology operations
D, H™(X ; Z,)— H™™ (X; Z,) and D1 H™(X; Z,) — H™ (X; Z,)

canonically to the relative cohomology groups for any pair (X, Y) via

reduced cohomology groups and H (X, Y)gﬁ' (X/Y). See [7, pp. 122-124].
Properties (1), (2), (3), (4) and (5) of Proposition 4.8 hold in the relative cases,

D,: H™X, Y ; Zy)— H™* (X, Y; Z,) and D' : H™(X, Y; Z,)— H™ (X, Y; Z,).
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COROLLARY 4.9 (Bwxistence of Steenrod Squares). Let p = 2. Then
(1) For all integers 4, there is a natural transformation of functors
which is a homomorphism

Di: H»(X, Y)— H™ (X, Y), n= 0.
(2) I° =1.
(8) If dim @ =n, D*a = (Va)® = a va.
(4) If i >dima, D'a =0. D=0 for i <O.
(6) Cartan formula :

Di(aud) = D'—f auDIb.
1_0

(6) D! is the Bockstein homomorphism g of the coefficient sequence
0—2Z,— 72— Z,— 0.

(6) is known to follow from (1),(2),(3),(4) and (5). The properties (1)
through (6) are taken from [11;pp. 1-2]. Hence (4.9) implies the existence
of a cohomology operator satisfying the Steenrod-Epstein axioms when p =
We set S¢' = D¢. To show the existence of « Steenrod powers » for Z, , p = 3,
we need a further investigation of the D;’ s.

LEMMA 4.10. Let (X, Y) be a finite pair and let 6 : H» Y — H™t1 (X, Y)
be the coboundary operator. Then

D, 6 = 6D, and 8¢ = 8¢*6.

ProOOF. This can be shown with the help of Proposition 4.8 and Co-
rollary 4.9 in exactly the same way as in [7; pp. 2,3].

Or present aim is to prove divisibility, i. e. Dj, = 0 unless ¢ = 0 mod
(p — 1), p = 3. For this purpose, we first introduce the universal example,
Write the (2n - 1)-spere 82"t1 ag i(2,,2, .., 25) | %€ C, 2‘ 2; 2;=1{ Define
an action of G = (1, h, k?, ..., h?~ 1} Z,,p = 3, on gl by h(2gy 2,y ey 2p)

27t
=€P (2,2, ,..,2) The action of @ on §2"*1 induces the orbit space L*t+1 =
= §¥t1/@, called the (2n+ 1)-dimensional lens space for Z,,p = 3. This

induces a bundle (a p-sheeted covering) {Z, — §*+1 — LZ"t!}. Define S =
=\ 8§27+l and Ly = U, L' with weak topologies induced by {S§2*+1)
== n=

and (L2't), respectively.
The Z,bundle {Z, — 8 — L;’} is universal for the fiber Z,.
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Similarly, when p = 2, we can define the antipodal map h: S —> 8" for
n =0, so the group G = {1,h} 2 Z, acts on S*. It is well known that

{Z, — 82— P}, where P> = L; is the infinite-dimensional real projective
space, is the universal object for Z, fibrations.

LEMMA 4.11.

(1) Let u, and », be the Wu classes for the covering {Z, — §° —
— L}, p = 3. Then

H?%* (L) X Z, is generated by (u u,),
and

H*+1 (L)) Z, is generated by (uuy)uw,, for all i =0,1,2,...
(2) H* (Po)~ Z, [¥ol:

PROOF. (1) Since H (L;’) = Z,, we restrict ourselves to a positive inte-
ger n and show first that H"(L, )X Z,. By Richardson-Smith exactness
(1.4), we have the following two exact sequences :

Vs . Os Bs
we —> 0 —— H" (L") ——*H "1 (§°) —— 0 — ...

Be

8
e 0y SR (§o0) oy L (L)t 5 0 >

and

because H™ (8°) = 0, for n = 1. Hence,
H™(Ly) 2 *H"+1(8°) and *H"(8%) = H»+1 (L)

which imply that H!(L;)~ H%-1(L,) and *H! (8°) = H%(L,) for j=1.
Therefore, it is enough to show that H! (L, )™ Z, and *H* (8°) = Z, . Again
by the Richardson-Smith exact sequence, we have

\ 8
HO (8%) s 7O (L) —y +H* (%) — 0
and

)
HO(§%) —4 5 $HO () —~y H (LF) —> 0.

Clearly y,: H(8°) — H°(L,’) and y,: H (8*)— ¢+H° (§*) are zero maps. By
exactness, it follows that &,: H(L,)—*H ! (8) and d,: *H® (§<) — H1! (Ly)
are isomorphisms. Since H(Ly)X2 Z, and *H° (§°) > Z,, we see that
HY (8°) X H' (Ly') X2 Zy .
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By (1.14.2),(u»)? = #?(1)=0. In the proof of (4.3.1) we showed
that u, = f»,. Also we observed that the J,’s are isomorphisms. Hence
(Upg)! = (8¢05)7 (1) F=0 for all j=0,1,2,... Similarly (ugy)/ur, =0, for
all j. Thus we have (1), i. . H* (L, ; Z,) is the tensor product of the ex-
terior algebra in », and the polynomial algebra in u,= f»,.

(2) is well-known, and is proved in Z, Smith theory similarly to (1).
Q.E.D.

REMARK. In [7; p. 68], (4.11.1) is proved in a different manner using

a cell decomposition of L,” . See also [9; chapter II, § 2] and « Seminar on
Transformation Groups» (by A. Borel), Annals of Mathematics Studies Num-
ber 46, where more general cases are treated.

With the help of (1.19) and (4.11) we prove the following proposition
due to Wu [10]:

PROPOSITION 4.12 (Wu).
(1) When p = 3,

o vy if 1=
Dyv, =
0 i 130,
and
po if i =0

Dypg={dy (Wpa)? if i=p— 1
0 otherwise,

where vy =v (1) and uy==pu (1) are the Wu classes in H* (B, — A).
(2) When p =2,

v, if i=0
B¢ vo={vUr, =, fi=1
0 otherwise

where v, and u, are similarly defined as in (1) with Z, coefficients.

PROOF. (1) We use the universal example {Z, — §°— L,°}. Because
of (4.11), we have
D} vo = i (U o) U,
and
Dy prg = mi (U o)1,
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for some n; and m; in Z,, p=3. By the naturality and universality of L,
the above relationships hold in general for the same n; and m; and with
U, and », in appropriate Z,-coverings. Now by (1.19), the Wu classes for

Ly X L, are

@1 +1Q v and Q@1 —1 Q) p-

Let Dp = 3 D, =1+ D, + D%+ ..., then the Cartan farmula D (a ub) =
=l

= Da uDb is known to be equivalent to D (a Q) b) = Da @) Db. See [7; p. 2]
for its proof. Hence

Dy, @1+ 1 Q)
= D) @1+ 1Q® (D)
= mi (U o) 7)) @ 1 + 1 1 Q) (U o) Uw).
On the other hand
Dy @1+ 1Qv)=m(u @1 —1Q@ ) vy @1+ 1 Q%)
=n{Upf @1+ (— LR Ua)+ ) vy @1+ 1Q® %)
= m {((U o) Upe) @ 1 + (— 1)1 @ (U o) U,) + other terms).

Hence n; must be zero so that the two expressions for D} (v, @ 1 + 1 & »,)
become equal when ¢ > 0. It is clear that m,=1.
Similarly, we have '

D;(/"0®1_1@,“o)
= (Dp 1t @1 — 1 ® D} 1o

=m; (U ) @1 — mi1 @ (U pp)t?,
and also

D;(/‘o®1 —1Q o) =mi(uy @1 — 1 Q pe)t
= mi {(U o) @ 1 4 (— 1)1 @ (u p)+' 4 other terms)

which equals m; {(U uo) 1 Q) 1 — 1 Q) (U up)itt} if and only if i=0o0r i=p—1.
Hence m;= 0 for i 5= 0, p — 1. By definition, my =1 and my_; = 4,.
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(2) When p =2, 8¢°v,=1» and Sqlv,=fv, = p, =»,u» by (4.9).
S¢*v, =0 unless i = 0,1, by definition. Q.E.D.

LEMMA 4.13. D):H' X — H'** X is zero for i > 0 and p = 3.

ProoOF. Every l-cohomology class in X is induced by a map f:X—
~> K (Zy31) = L, where K (Z,;1) denotes the Eilemberg-McLane space of
type (Z,;1). By writing the homotopy exact sequence for the covering
{Zy — 8% — L}, we easily see that Ly = K (Zp;1). By (4.12) and natura-
lity of D, , we have Dj z = D f"‘vo)—f Dyo—O for all z€ H'(X).

Q. E.D.

REMARK. The proof of (4.13) does not work for p =2 and (4.13) is
false for p = 2.

As a consequence of (4.12) and (4.8.4), the following proposition holds
for the operations »D} : H™(E,— Ly)— H™ Y8, — L), uD} : H™(By— L) —>
— Hmt2t2 (B, — L) for p = 3, and »Sq¢*: H™ (By — L) — H™++1(B, — L)
when p = 2.

PROPOSITION 4.14. Let p = 3, then

(1) »D; = Dj » and

<i>

(2) uD Z' A )J =1 _D‘—f(P—l) P

where (i) = | ——| = ma n]né—l——— .
r—1 »—1
If p =2, then

(3) »8¢t = 3 v/ S¢i—iv.

4=0

PRrOOP. (1) Let v, = » (1) as usual. Then

D}, v = D} (v, U ) by (2.13.2)
i . .
=3D7vuDlx by the Cartan formula
jm=0
=y, uDjx by (4.17)

i
=vDyx.
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(2) For any x€ H™(E, — L,) we have

Dy px = Dy (u, U @) by (2.13.1)
r
=3 D, o U & by the Cartan formula
j=0

= poU Dy w 41y (U pe)?u Dy~ P Vg by (4.12)
= (uDjy + Ay p* Dy,
i.e. Dy u= uDy -+ 4, u? Dy~ ?~ . Hence
pDp = Dy p — Iy u” D7
=D p — Ay p* 7 (uDy ")

=Dy u— b u" ™ (D5 p— by p? DY)

=Dy o+ (—d) w7 Dy o (= ) W DY

=j‘5‘:(_ 1)? p o= pisie=1
(3) Now, let p = 2. Then
8q" vr = 8q" vy U ) = v, U 8¢" + (Uvy)Pu S 1w
= (v8q" + +»* 8¢ ) w, i. e.

Sq" v = »8¢* + »*> Sg" 1.
Hence
v8¢* = S¢iv -} »* S¢—1

=8¢’y + » (8¢°~' » + »* 8¢—2)
= 8¢'v + v S¢*—1 v + »® S¢gi—2

=jé'ovf Sq7 . Q. E. D.



806 A. ArpprLr and Y. Arivama : Oohomology

PROPOSITION 4.15 (Divistbility by p — 1). Let p = 3. Then D:, =0 if
10 mod (p — 1).

PROOF. Let D: H™ — H™* for m = 0. Suppose that i = o+ 1 =mp’.
Then for a€ H™ X, we have D;a= et @ = Ap, (U @)® by definition. If
D;u:}: 0, then m must be even because if dim ¢ =m is odd, we would
have (U@)?P = —(va)? and (Ua)?=0. Let m = 2m’. Then = mp’' =
m (p—1)=0 mod (p —1). So Djt'=0 if i=a -+ 150 mod (p—1).
Suppose that 1 =< ¢ < a. In this case, we apply induction from above on
m == dim a, where a € H™ X, Assume that X is a finite-dimensional CW-com-
plex. The statement is trivial for m > dim X. By (4.6), we can write

Amysab = Z',u“ lretD 0= — Z‘Iu“"'l i ’D a
=0 1=0
because r* az. = ag; = D a, r*a=a and the naturahty of Dp imply that
r* D @ _—D a. Since Dp is natural, y,D = Dp ys. Hence 1, y; a? =

——Z' p P DY yia. Assume that (4.15) is true for all # with dimx >
=0

> dimae=m. 1f i5£0 mod (p — 1), then i—j(p —1)5£0 mod (p —1)
for j=0,1,...,¢{i) and hence D:,"j(’”_l) (u vs a) = 0 by induction hypothesis.
By (4.14), u 1)"’“”—" yia =0. Consequently, u*T' " Diyia=0 if i5£0
mod (p — 1) where a =mp’ — 1, i.e. u**»0,Dya=0 if iZ=0 mod (p —1).
The uniqueness of the representation implies that 1):, a=0, for i5£0
mod (p — 1).

We have, therefore, proved (4.15) for the category of finite-dimensional
CW-complexes ; but by the limit procedure of J. Milnor [3], the proof extends
to the category of all C W-complexes. Q. E. D.

Now we are ready to show the existence and uniqueness of the Steen-
rod cohomology operations. Proposition 4.15 suggests that we define opera-

tions Pj—-l—l 1)’(""1) H™ — g™t for m = 0.

THEOREM 4.16. (Hwxistence of the Steenrod powers for Z,). The operations
P, =3P,=1-+4 P} 4 P} + ... are the Steenrod powers over Z, ,p=3, i.e.
they fulfill the Steenrod amioms [7, p. 76]:

1) Py: H™ — H™#*D 45 an additive homomorphism which is natu-
ral for all i and m = 0.

(2) Pp=1.
(8) If dim @ = 2m, then Pp" a = (va)? .
(4) If 2 > dima or j <0, then Pla= 0.
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(8) The Cartan formula holds, t.e. for any two cohomology classes a
and b,

Piaub)= 3 P auPib.

J=0

ReEMARK. For p =2, we already proved the existence of Steenrod
squares S¢° in (4.9).

PRrOOF. (1) and (2) are immediate from (4.8).
(3)-If dim @ = 2m, then P,"a = Agn Dy "™ 0 = I3 ham (Va)? = (ua)? .
(4) is immediate from the definition of Pj .

(5) Py(aubd)

= 15" D"V (aubd)

= A} P _Dg'—f)(p—l) a UDIJ;(p—l)b by (4.8)

=0

=15 3 g Py auly Plb
j=0
) . s
= 3 25" A3 doj Py auP)b
=0

= 3 P, auP}b,

J=0
becaunse Ay dyj = (— 1A= 2, (i—j) +25 = Ags bY (4.7.2). Q. E. D,

Next we want to prove the uniqueness of the Steenrod powers and
squares. Before we proceed, the following lemma is needed.

LEMMA 4.17. Let P~*N™ = §,_y ¥*H™ 1 (H, 4) as usual. If m is not di-
vigible by p, é; is monomorphic on #—¥N™ .,

PRrOOF. Let v be an arbitrary element in ?—*N™ ,k Agsume that é;v=0.
Then by exactness and by the relation p, = y;i*, we see that v =1y, y =
= yi, i*y, for some y in H™ (B, 4). Since fy—j 0p—r =10, 0 = By = fp—p 7k iy =
= (?f‘) y. Hence i*y = (t#—*)* 2z for some 2 € H™ F because m is not divisible
by p. Since yi fi =0, we finally see that v =y} i*y= yj (¢?~5)* 2=y} B j% yr—r?
=0, Q.E.D.
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THEOREM 4.18. (1) The operation Pp = Z' P is uniquely characterized by
the properties (1), (2), (3), (4) and (8) in Theorem 4.16.
(2) The operation 8q = Z Sq* is wuniquely characterized by the pro-
=0
perties (1), (2), (8) (4) and (5) in Corollary 4.9.
PrOOF. (1) By (2), (3) and (4) of Theorem 4.16, we see that
Ho if i=0
Piug={(up)? if i=1
0 otherwise,
and
vy if 1=0

Ply,=
) ]
0 if i==0.

By (5), the Cartan formula, the relations P y =»P, and Py u= uPp + p? P,
follow just as in the proof of (4.14). Repeated use of Ppu= uPy+ u? Pt
gives

,uPi =j§) (— l)fluf(P—l) P;—j,u
as in (4.14.2).
Let z be a class in H* E where E = X?, and let (E, 4)/Z, = (H,, 4)

as usual. For any ¢ = 2, we see that
8s(Uys 2)7 = Ss(ys 2 U(UPs 2)07Y)
= 87:(2u (Uy) A7) by (1.17)
=0 by exactness.
Hence u(uy,2)? =0 if ¢ = 2. In particular, if we let 2= i=a@1Q ..
® 1€ H™ B, then u(uysa) =0, for ¢ = 2. Define
m/2 if m is even

l= 1
" mA1 e mis odd.

By the preceding argument, ,uP:" ' 7}5 = 0, because if dima=m = 2m’
then Py yia = p(Uys a)p =0, and if dima =m = 2m’ — 1 then m < 2m’
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implies that uP," (yia) = 0, by (4) of (4.16). Hence,
m P 1 , —_ , _
2 (=)W PP T pie) = uPy (i) =0, i.e.
=0

by setting i = m’— j we get

3 (— 1) um=9(p=1y0, Pja =0

=0

by (4.10) and P,ﬁ = vP,f . Now we consider the following two cases.

CASE A. m is even.
m = 2m’. Then o +1=m’(p — 1) and {a) =m’ — 1. Also,

m’

S (— 1y u™ 0D 0, Pia

<a> . . . ! ’
p 3 (=1 p g, Prat (— 1) w0 Pl a= 0.

=0

Il

, <a> . .
We have 0, Py a = »0;(ua)? = 0. Hence ux =0, where = 5 (—1)'u*— =10
i=0
0»8, P, a. By (4.17), therefore 8,2 =0. Hence, by Richardson-Smith exactness,
x is in the image y,(H™? (E, 4)) < y, (H™? E). This implies that & = 4,, ys a?
<a>

by (3.10), i. €. 4, 75 =3 (— 1)‘ ,u“_"(p—l) 0, P; a. The uniqueness of the re-

1=0

presentation of y, a? implies that the P;’ s are uniquely determined.

CAsE B. m is odd.
We have m=2m’ — 1, a+1=mp’ =m’(p—1)—p’ and {a ) =m'— 1.
‘We start from

m’ . , .
3 (— 1)‘ ,ll,(m —1) (p—1) 0, P’: a=0

=0
which we proved earlier. The above equation is rewritten as

L, <o> C .
pt 3 (— 1)t l)vetPl:a=0

=0

because p’ +1+4a—i(p—)=p’+14m' (p—1)—p'—1 —i(p—1)=
=m’(p —1) —i(p—1)=(m’ —i)(p — 1) and because P," a =0 as 2m’ >
> dim a = m = 2m’ — 1. Hence,

, <a> T i B o
() W 3 (— 1) P00, Py a 4 P 0,0 = 0.

=1

15. Anneli della Scuola Norm. Sup. Pisa.
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By (4.6) and (4.15)
Loigpe= 3 oD i (r—1)
m}’sa = 2 Ill« 1’9¢.Dp a/,

i=0

<a> . .
P 0o =lnysaf — = it 0, D;o(p—l) a.

i=1

Therefore,

l"’p/+1+a v9t a
<a> .
= Am pP 1 y; aP — pp'tl s pue—ie=1 g, D;,(p—l) @

i=1

<a> .
— e— ﬂp,+l Zu' Iua—i(P—l) "’95 D;,(p_]) a

i=1

because uPtly,aP = ut' 8, &y ab = — uP 8, 9, r* a¥ = — u?' yH; (Va)p = 0.
Substituting the above expression for u?+!+240,a in (i), we see that

<a> . . .
prHt 3 pe—i=1 90, (— 1) Py a — D,*™V a)
=1
— 3y m—i) (p—D) ‘pl P(p-1) )
= 3 =1 30, (— 1) Py & — D, a)=20.
i=]
Notice that != dim (— 1)' Ppa— Dy~ a)=m -+ 2 (p — 1). Apply u?®—2-2'

to the above equation to get

<a> ) (1 —0) ! { ‘ i (p—
3 pmmo @0+ e=20=r' g (1) pigq — DIV g) =0,

i=1

Notice that (m’ — i) (p—1) +p(p—2)—p' = lp’.—— 1 —i(p —1). By (3.2)
and (3.10), (— 1) Pya=D,*""a and hence the P, a’s are uniquely deter-

mined. Also 1, = — 1.
(2) Let p = 2. By (2), (3) and (4) of Corollary 4.9, we get

) for i=0

B¢ vy={wyup,, for i=1
0, for §==0,1.
i

By (5) of (4.9) we also have »S¢'= I »/ S¢*9» just as in (4.14.3). Let

j=0
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a€H™ (X3 7Z,) and a = a® 1, then
3 Lg y

v8q™ (v a) = 3 o Sqm~ivyia

Ins

X

= 3 iS¢ Oa by (3.1) and i=m —j

i=0
= 3 v '08¢'a by (4.10)
i=0
m—1

=9y 3 y1-i08¢'a + 68¢™ a

1=0

m—1 . .
=y 3 v1-ig8q¢ia.
=0

Now, we have 08¢ma=10(aua)=0 and »8™ (yia)=» (y)a uy)a) =

— — — — m—1
=0, (yoa Uyya) =20y y,(@VUy,a)=0.Hence » X ym1-%9 Sgia = 0, i.e.

=0
m—1 m—1
S ym=1-19 8¢*a € im y, cim y;. By (3.10.2), 3 »™—1—0 8¢a = y; (a Q) a).
=0 =0
The uniqueness of the representation of y;(a @ a) implies that the Sg¢'’s
are uniquely determined. Q. E. D.
COROLLARY 4.19. Let p = 3. Then
lgm = (— 1)m .
PROOF. The relation Amqn, = (— 1)™¥'},, 1, of (4.7) implies
T mn—1p’ m
(% A = (— 1)z Ay )
and
lgm = A;” .
In the proof of (4.18), we noticed 1, = — 1. Hence
dom = (— 1)™, Q.E.D.
REMARK. () and 1, = — 1 yield 1, = — 1= (— I lf, hence 1; =

(— 1P+l = (p’1,? since (p — 1)! = — 1 mod p (Wilson’s theorem). Thus
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A, = = p’!. Furthermore, (¥) implies A, -+ 2, = 0 if m =1 mod 4, n =
3 mod 4.

A careful analysis of the proof of (4.8) reveals the following :

() We did not use the requirement that Sqi and P,f are additive
homomorphisms.

() For p = 3, the Cartan formula was used for a ub with glim a2,
as (5) in (4.16) was only used to prove the commutativity of P, with the
coboundary operator 6, and in the case were a = u, or a = ;.

(¢) When p = 2, a similar discussion holds as in (b) above.

(@) We can start with a homomorphism D:, : Hm— H™t2 with (1),
(2), (3), (4), (B). Then, by proving first the divisibility (4.15), we get P,f .
Notice that in this case D,f, must be an additive homomorphism.
Hence, we have the following theorem :

THEOREM 4.20. The following axiom systems uniquely characterize the
Steenrod powers P, for Z, and the Steenrod Squares 8¢ for Z,.

(1) A1: Pj: H™— H™ ¥ ® Vs o natural transformation.
A2: P)=1.
A 3: If dim a = 2m, then Py a = (ua)® -
A4: If dima <2 or j <0, Pla=0.

A 5: Cartan formula: for any two cohomology classes a and b such
that dim a = 2,

P (aub)= 2 Py auPib.
When p = 2, =
A 1: 8¢': H™— H™1 is a natural transformation of homology functors.
A2 8¢°=1.
A 3’: If dim a = m, then S¢™ a =ava.
A4 : If dim a<<j or j <0, S¢¢a=0.

A Db’ Cartan formula: for any two cohomology classes a and b over Z,
such that dim a =1,

S¢i(aud)= X 8¢t~ auSqsb.
J=0
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@ K 1: DiH™ 5 g™ s an additive homomorphism which is
natural.

K 2: Dy=1.

K 3:If i =mp’, then Dya = (va)®
Kd4:Ifi>mp’ or i< 0, Dya=0.
K 5: The Cartan formula holds, 4. e.,

Di@ub)= 3 D57 auDjb.

j=0
K 6: (Notation) Pj= Dy*~",
The following theorem is immediate from what we have shown :

THEOREM 4.21 (Main Theorem : Thom-Bott formulas). Let a € H™(X),
m > 0.

(1) Let p =3, a =mp’— 1, (@:[pi

1] and 2=<k=<p—1. Then

there is a unique representation for y;a? and ypaP:

<a> N .
Imyia?r = 3 (— 1)/ u3=i® 0,8+ 6,0, P a

J=0

<a> N p—
= 3 (= 1 p) 70y Bla
j=0

b3 j a—j (p—1) i
+ 2 (— 1) (up) PuvyuyifPy a
J=0

and
<a>

Inviar= 3 (—1)7 g4V 8, 4 0, P a
Jmay

<a> ; : e
=j§0(_ 1)J+1 (u Iuo)a*l'l j(p_l)UY;g PJ}’ a,

where Pl: H™ — H m+2%(P=Y gre the Steenrod powers for Z,, p = 3. Moreover,
when k=1p — 1, we have

<a> . . o
Imyiar = 3 (—1) w7 ¥ V9, Pla.
Jj=0
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(2) Let p = 2. Then

m—1
ve®@a)= 1= 8¢/ a

J=0

m—1
=3 Ur)™ I upi Sei(a®1)

§=0

is the unique representation for yo(a Q) a).

§ 5. The Adem Relations.

The Adem relations are known to follow from the axioms of cohomo-
logy operations described in (4.9) and (4.16). In this §, however, we shall
prove them in the framework of Smith theory.

LEMmA 5.1. Let B be a sum of compositions of P,‘; and Bockstein ho-
momorphism B for 0 — Z, — Z,s— Z, — 0 (or of S¢). Let {n;} be a sequence
of positive integers strictly increasing with j. If R=0 on H" for all j,
then R =0.

PROOF [7;p. 114]. Let X be a space. Suppose that R=0 on H".
Then for v € H™~1 X and v € H! §!, we have 0 = R (u ) v) = (Ru) @ v. Hence
Ru=0 and R=0 on H"1 X, Q. E. D.

m m
LEMMA 5.2. Let p be a prime, and let a =3 a;p* and b =3 b; p* with

k=0 =0
0 éd{,b;é_p — 1. Then

b m (b,
(2) )

PROOF (cf. [7]; pp. 5-6). Since (1 + )2 =1 + 22, (1 + )" = 1+ 27,

m . m b . )
Hence (1 4 «)) = IT (1 FatYi=I 3 ({;‘) #*?' mod p. The coefficient of
i=0

=0 4y

=

2a~pi N b . oL s m bi
x® = =" is 0l But from the above equation, it is also I . Q.E.D.
=0 i
First, let us concentrate ourselves on the case where p = 2 and show
the Adem relations for the Steenrod squares Sg¢'.
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LemMmA 5.3. Let ¥ and » be integers, » = 0. Then

Sgk v = 3 ('f)wf St

jzo\J
where » = J, is the Smith operation for Z,.

Proor. We use induction on 7. If r =1
k ) .
8¢* vae = Sq¥ (vyua) = 2 Sgi vy uSgk—x =
1=0
= v, USg* & + vour, uSEE—1 & = (v Sg* + »* Sg*) a,

which proves the formula for » = 1. When r = 0 it is trivial. Suppose
that the formula is true for », 0 = r = m. Then,

Sq* ymtl = (8g% »™) v

=3 (”‘) ymH Sgh—i »

j=zo \J
== (m) ym (nSgh— - ¥ Sgh—i-1)
j=o \J
=3 ("f),,m+1+f 8¢ 4 3 (m ),.m+1+f Sai—j
izo\J izt \J—1
= 3 (m + 1) ymtiH gk, Q. E. D.
=0\ J

LeEMMA 5.4. Let @ and b be integers, a« = 1, and let

o Jor w1\ fih
A=z(2’+2bi “ 1)("2 il). Then, A = 0 mod 2.
=1 -

1/\0
mod 2. Assume that A = 0 for all b and for 1,2,..,a — 1. We will
prove the formula for a. In the proof, we shall make use of the following
relation (congruence mod 2):

ProOF. We use induction on a. When a=1, 4 = (2b> (b) =2b=0
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0 if m is even and = is odd

) (1)=1/15]
7]

(1) Let @ = 2a, and b = 2b, . Then

otherwise.

4 22@ 2i 4 4b, — 2a, — 1\ (i 4 2b, — 1
o i 2a, — i

=1

§1<2i+4b1.—2a,—1)(i+2b1—1)+

= 1 20, — 1
ieven
2 (24 4 4b, — 2a, —
+_z'(‘+ 12 1)
=1 v
+ odd
_ (24 4b, — 20, — 1) (i + 2, — 1
—i=1 'i 2“1—'1:

1 even

@ (43 + 4b, — %, — 1 (2i—|—2b‘—1
2i 2a, — 24

=1

_ 4 (2i+2b,.—a1-1) (i+b1—.1)

i—1 i a,—1i

= 0, by induction hypothesis.

(2) Let a = 2a, 41 and b = 2b, . Then,

A 2a12-|-1 (2i+4b1 rzai _.2) (i--|-2b1 — 1)

20, +1—1

i=1

=1 1 2(1'1-]—1——1:

1 even

=2a§-l (2i+ 40, — 2a, — 2) (i-l- 2, — 1)+

2atl (29 4 4b, — 2a, — 2
_l_‘f'l( + ‘i 1

$odd

(i+2b1—1

)

2a, — ¢ )

i+ 20, —1
20, +1—4¢

)

by (*)

by (x)
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20 (9] | 4b, —2a1——9 i+ 2, — 1
b

._1( )(2“14'1—'. v ()
teven
_ % (44 4b, — 20, — 2) (2i 425, — 1
= 24 2a, +1 — 2i

o (2@-{-21)1—(»‘—1 i4+b —1 by ()
—j=1 1 a:i—i y

= 0 by induction hypothesis.

20, +1 (94 —
(8) Let a = 2a, + 1 and b = 2b, + 1. Then A = X (®+4l;1 2%).
=1

i+ 2b, i+ 20, o
) = f
(2% —I—l—z) If © is even( o 41— ) 0 mod 2, and if ¢ is odd

(20 + 4’;‘ - 2“‘) =0 mod 2. Hence 4 = 0.
(4) Let a = 2a, and b = 2b, 4 1. Then

A= 22“,1(2i+4b1—i-2a1+1>(z+2b)

i=1 2a;, — 1

(2z—|-4b —2a1+1)(@+2b)+ 22m(2i-|-4b1

20, — 1

— 2a, + 1) (i + 2b1)

‘=] 1 2a1 —1

=1
t even © odd

a;

-

(41 + 4b — 2a1 + 1) (2@ + 2b1> + § (4i—|—4b1—-2a1—1) (2i+2b1—1>

R AP
S R |
Ry e I T S GARS

_3 (2i+2b1-——a1—1) (i-{—bi—l)
=1

i a, — i

+2(2z+2b@ 1)(;4-__1;;:1)_'_

=1
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o (2] 4 2b, —a, — 1\ (i4b, — 1
S G [

i=1

-5 (2i+2b1'—-a,_1)(i+bi_._1)

i=1 ? ai—@
o (194 2b, —a, — 1\ | (2i+2b, —a, —1\) (i +b, — 1
+i£1i( t )+( t—1 ai—i——l

=1

_3 (2i+2b1.—a1—1)(i—|-b1—.1)

i a, —14

- (2i-|—2;)1—a1>(i—|-b1—1)

i=1 a,—1—1

a1 /0 _ . 1
= 3 (2@ + 2?‘ a,) (@ + b ) by induction hypothesis

¢ a, —1—1

i=1

]

a—1 ) ¢ —_ . J— i —
> (2' + 26 — (@, — 1) 1) (("H" 1.)=0, by induction hypothesis.

ay,—1)—1
Q. E. D.

i=1

LeEMMA 5.5. Let a, b be integers, « = 1, and let j be a nonnegative
integer. Then

“221(2i+2b—a—1)<i—|—b——1—j

i a—1i—2

)EO mod 2.

=1

PrOOF. By induction on a. Let a = 1, then the formula can be easily
checked :

i fo PN
A=z (BFD=2 (=15 _ 5 0ds, for all j= 0
i=1 i 1—1—2

and for any b. Suppose that the formula is true for 1, 2,..,a —1, j=0,
and for allb, We shall prove it for a. If j = 0, then A == 0 follows from (5.4).
Hence we assume j = 1. Then

A=a3‘2f(2i+2b.—a_1)(i_l_b_1__j)

=1 ? a/—’i—'2j

_ a’;f"(zi + 2V —a’ — 1) (i +v—1— j')

il i a’ —i— 9’
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where ¢/ =a — 2,0’ =b—1 and j'=j—1=0
(note a’ — 2j’ = a — 2j),
hence A = 0, by induction hypothesis. Q. E. D.

THEOREM 5.6. The Steenrod squares Sq* for Z, satisfy the Adem relations,
i. e, for 0 <a < 2b,

[a/2] b—1—j
AR S“Sb=2‘( )
(AR) C8 =2 4y

) Sq*tv—i 8qi .

ProoF. Let X be a space and let x€ H™(X;Z,), m >0, m odd. By
(4.21.2) we have the representation

m—1
@@ a)= 3 ym-1—08¢ x.

=0
Hence,
m—1
Sat 70 @) = 8yt (2, vmic+ o8¢ 2)
=0
m—1 m—1
= 3 »y1-08¢' Sgx + I (m + 14 i)y 08¢'x by (5.8)
=0 =0
m—1 m—2
= 3 ym-1-i98¢' Sg*x + I (m i 2)ym-1-98¢ iy
=0 =1
m—1
= 3 v 19 (8¢t 8¢* + (1 + 4) S¢tY) o because m is odd.
=0
Since

Sqt yo(w®x)=yo(Sq1x®w—|—w®8’q1w)=yot*(6’q1w®w)=0,

we get
m—1
2 ym1=40 (8g! 8¢° + (1 +9) 8¢+ 2 = 0.

=0
By the Thom direct decomposition, we have
8¢ 8¢* = (1 + i) S¢*+!

on H™X, where m is odd > 0. By (5.1) Sq! S¢! = (1 -} 1) S¢*+1. This proves
(AR) for a=1 and b=1¢> 0.

Suppose that (AR) holds for ¥ =1,2,..,a — 1 and for suitable b’s
satisfying the inequality 2b>>%k > 0. We shall show (AR) for k¥ = a and
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b such that 2b > a. Since S¢®~1y;(x @ x) = 0 as before, we have

m—1
0 = Sg2—1 3 ym—1—igSgix

1=0
m—1

=3 3 (’” "7_1—’) ym—1—i+ 9 §g2—1—F Sgi by (5.3).

i=0 j=0

Let n be chosen such that 2b << 2" and let m = 2» + b. Then the above
equation becomes

—1 2b—1 R —_—1
mZ > (zn + 0 . 1 z) ym—1—i+f 9 §q2—1—F St ¢ — 0.
i=0 j=0 J
n—1
If0<i<b—1, then 2 +b—1—i=2"4+ 3 @;2° witha;=0orl,
i=0
n—1 n —
and j= 2 b;2! with b;=0 or 1 because j=2b—1<2". Hence, (2 +b. 1 z)=

i=0 Y

=(b";—’ mod 2 by (5.2), when 0 <i <b—1.
n —_ — n . n—1
I ieb then (2 +b—1 @)__:(2 1)=(1+2+: +2 )=

n—1 1 ‘7 J )
=2 (b*'):lm"d 2, again by (5.2).
Let ¢ = b+ 1. Then, (2 +”j—1—@) (2 +b—1—zj! (2" 4 b—i—j) _

—b)( —b — 1—
= (i+) Jotj—b—D..(0+ (if n is sufficiently large) =
j !
=(® +'; - b) mod 2.
Hence, we have

blo=l=ip—1 — 1 o
0= 2 ( ) m—1—i-+j SQZb—l—] Sq! x
i=0 j=0 .7

+ 21)2—1 ym—1—i+ 9 Sg2v—1—i Sgb &

J=0

—1 2—1 5 | i __

+ mZ‘l P (‘ +‘7. b) ym—1=+j §S¢2—1—5 Sqf .
i=b+41 j=0 J

In the above equation, the dimension of the cohomology class is 2m 4 2b — 1,

and the exponents of » are bounded by m -4 b — 2 so that the above ex-

pression is in the Thom direct sum decomposition range of (N 2m+2—1, Hence,
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corresponding to »mtb—9—2  we have

b=t b—1—14
2 (b—a—1—|—i

t=0

) Sqa—|—b—i Sq‘lw + Sqa qu x +

m_1 (2i—a—1

2 b—a—14i

) SqH— 8¢f @ = 0.
i=b+1

This equality shows that it is enough to prove that

m—1 2% —a—1
= at+b—i Soi g = O,
? i=§+1<b——a—1+i)sq Sgx =0
Now,
o (FA—a—1\
Qj_i_zz_i(2b—a,——1_|_i)‘8q Sgitb e

- > (2@ + 2b t— @ — 1) 8qo—i Sgi+b x

i=1
_ s Z<2z—|—2b.—a—1) (@—I—bfl—.J)Sqa-M—f,s’qjx
i=1j=0 1 a—1i1—2

by induection hypothesis

s [0 g .
5 ( 5 (m + 2 —a 1) (g +b—1 J)) Sqatv—i 8¢t w
J

i=1 1 o — i — 2

=0 by (5.5). Q. E.D.

Now let us prove the Adem relations for p = 3. First we generalize
(5.4).

LeEMMA 5.7. Let a and b be integers and p be a prime. Set

el (et

i=1
Then A = 0 mod p.

REMARK. If p = 2, (5.7) reduces to (5.4).
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PROOF. (a) Suppose b =10"p. Let a =a’p -+ o’/ and ¢ =jp 4 i, where
0=<a”, i, <p. If "’ <i, <p, then

(p — 1)(i + b) — 1\ _ [multiple Ofp-l-(p-—io—l))
( a—1 )_ (multiple of p+ (p + a" — iy)

= (i p—ip—1)
= (integer) (p +a— io) =0 mod p,

because p — iy — 1 < p+ a”" —i,.
If 1 =i,=a"<p, then

(pi—]—pb —a — 1) multiple of p + (p — a”" — 1)

- (multiple of p 4 (p — iy )

i(p—1)

. p_all_l)
= (inte er( . =0
(integer) p—i,

mod p, because p —a” — 1 < p — i,. Hence,

A=E(Pi+1’b—a—1)((p—1)(i—|—b)-—1)

izl i(p—1) a—i

=0
=”Zm+w~—w—1(p—nu+wﬁ—1(p—3

= Gy LA
1y pj+pb’—a’—1)((p—l)(j+b')—1) "
g (P @ —j -0

It is easy to check directly that A = 0 mod p for a =< 1. Hence by induc-
tion on @, A = 0 because a’ < a in (¥).

(b) Suppose b is arbitrary. Then

0— g’(pi + p (pb) — (ap) — 1) ((p—l)(bp+i)— 1) by (a)

=1 i(p—1) (ap) — i
_ “(pj+pb—a—1)((p—1)(b+j)—1)
=\ Jj@—=1 a—j ’

which shows (5.7). Q. E. D.
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v _ & ; (P84 pb—a—1) (p—1)(i+b)—1),
CoroLLARY b5.8. Let A_.fl (— 1) ( ip—1) ) ( 0 i ),

then A = 0 mod p.

ProoF. It is the same as that of (5.7), noting that (— 1)) = (— 1)r =
(— 1)HHh = (—1)J for i, = 0. Q. E.D.

COROLLARY b.9. For any j = 0,

) A=E(ip+pb—a_1)((p_l)(b_l_i_j)_l

ip—1 a—i—pj )=°m°dp’

i=1

~ s qift+pb—a—1 ((p—l)(b—l—i—j)——l):
e L | L Sl 0 mod2-

ProoF. (1) If j =0, A =0 by (5.7). Suppose j = 1.

A___E(ip+pb'—a’—1)((10——1)(11’+i—i’)—1)
i=1 i(p—1) o —i—pj’

where a’ =a —p, b’ =0—1 and j =j—1=0.
After finitely many steps as above, j decreases to 0 and the situation
reduces to (5.7).
(2) Similar proof. Q. E. D.

THEOREM 5.10. If a < pb, then

(A1) Pepb — '3 (— 1o ((1’ — D —4)— 1) pato—i pi.
J=0 a—1p)

PROOF. Let € H™ X, m >0, a=mp’ — 1, {a) = [a/p — 1]. The
Thom-Bott formula (Theorem 4.21) for y, says

<a>
Am Vs P =3 (— 1) po—ie—1) 0, Pt .

=0

Applying Pr>—1 u to both sides of the above equation, we see that

0=3 X(—1y (mp B 1)) ym®'——ie—1) @, PPo—1—f Pi g

i=0 j=0 J

(this is justified by Lemma 1 in [5 ,vi]). By specifying m=2 (1 + p + p*+... +
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~+ p*—1 4 b) for some large =,

0— §>Z (_ 1); (pn —1 + (bj_ 1) (p - 1)) lumpr_(i_ﬁ(p—l) 0, Pri—1—j Pig.
=0 j

‘We check that

if 0<i<b—1

((b—i)(pj— 1)—1)

(p"—1+(bj——i)(p—1))= (— 1)) d i
(—1)f ((i__ b)(pj_ 1 'H) if > b
Therefore,
151 5 (— 1y ((b — i) (p - 1)—1 ) = (=0=1) »g, PPV—1-j Pi g
§=0 j=0 J

4+ 3 (—1)pH ”mp’—(b—ixp—l) 90, PPo—1—j Pb g
j

_I_ S 3(— 1)b+j ((1' - b) (p _ 1) +.7) lump'—(i~i)(p—1) v, Prv—1—j pig
i=b41 5 J

= 0.
The dimension of the above cohomology class is mp 424 2(pb—1)(p —1)=

=p(m + 2 pb — 2 — 2b) | 4, and everything is in the direct sum decomposi-
tion range. Letting j =i — k, we have

b—1 2 _ .
> 2(_ l)l ((b @)(_p kl) 1 ) ‘ump’—k(p—-l) ‘I’Gt Prb—1—itk Pig
=0 k v —

_I,_ > (_ l)k 'ump'—k(p—l ”ot _Ppb—l—b+k Pb @x
k

+ > > (—I)H"' _k((i - b)(p - 1) + i— k) Iump’—k(p—-l) ,,gt Pprb—1—itk Pix
i=b4+1 K t—1

=0,

Let k= b+ 2 — pb. Then

vl (= (=) =1\ ~
‘_i(—l)( i—b—24pb )P1+b Pig 4 (— 1)p+2—0b Pt Pog

) (t—0b)(p—1)+i+pb—2—0> R
— 1)i—2—pd 1-}-b—i —_
’Z{H( 1) ( itpb—2—b P Py =0.
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Now
b-1 JO—D(p—1) =1\ o
ifo(“”( i—b—2+4pb )P P
b—1 —_ A — 1) —
=5 (P T DT e
=0 _@p
_ b(p—1)—1 PLed 4
1
=(bp —b—1) Pty
= — 0 +1) P,
and .
. (i-—b)(p—l)-|—i+pb—2—b) A
— 1)t—2—p) PlHv—i Pigp—
sg%‘-u( 1 p( i+ pb—b—2 okl

(B ) o

because pb — p < pb — 2 when p = 3. Hence P! P’= (b 1) P+’ which
is (A1) for a = 1. Now we assume that (Al) is true for 1,2,...,a —1
and prove it for a. Let k=a + b 4+ 1 — pb. Then

bil ( 1); (b (P Pa+b—l PI x + — 1)a+b+1—-pb Ps Pb g
=0 b—a +_pb —1

e (G b(p—D+i—a—b—14pb\ ., .\ o
e§+1( 1) ( i—a—b—1-4pdb pe Pla

_ (O —=D)(p—1)—1\  p i p
—.io(_l)( A )P+b Pix
(%)

—1)+i—
— 1)e+1 pa pb 1)e+1+d+4 a+b—i Pt .
+(—1) P x+@zb+1( ) (@ L 1 o )P Pip=0

Thus, it suffices to show the third term in the above equation vanishes.

i(p—1)+1
— 1)e14040 a-+-b—i
igbz-‘l-l( 1) (@—a—-—b—-1+ b P Pa

—_ 3 (— et [P(P— +i—a—14pb) ,, b+ g
igx( b ( i—a—1-4pb PP

16. Annali della Scuola Norm. Sup. Pisa.
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= % (— 1)a+1+i(@p—ljpb —e— 1) Pa—i pbti g

i=1 @(_p_l)
—(— 1)t 1\ (1 e ip—l—pb—a-—-l).
(— 1P 2 3 (—1(-1) (et
. ((p—l)(b +.i _‘7:) - 1)) Patv—i Pi g by induction hypothesis
a—i—pj
— ()i ip-l—pb—a—]).
fz( 1 (a‘gl( i(p—1)
(P =00+ 1 —0)—1\\ porsi pjn_
( oi g ))P+b iPig=0 by (5.9). Q.E.D.

REMARK. If we assume (A1), then (5.7) is its easy consequence. In
the expression (») in the proof of (5.10), we see ‘that

fi(p—1)Fi—a—1 L

— 1)et1ltoti a+b—3 P8 g
an Y ( i—a—b—14pp JET TP =0 (modp)
by (Al); i.e.,

5 (@p —|—.pb —a— 1) ((p—l)(b‘i".l _.7) —1)> Potb=ipPigp= 0.
i=1 ip—1) e

When a = 0, clearly 4 =2 (W —{.—pb = 1) ((p —1)(1)-.*—1_‘.7)—_1)
i=1 i(p —1) a—1r—p)

Assume A = 0 for <a. Then, for j = 1

@z

j=0

(§=0)

ip+pb—a—1\((p—1) b+ i —j)—1
é( i(p—1) )( a—1t—pj )
= (ip+pb'—a'—1)(<p—1)<b'+i—j'>—1) '
=1 i(p—1) o —i—pj’

(in the same notation as in the proof of (5.7))
= 0 by assumption.

Hence, only the term corresponding to j = 0 is left in (x); i. e,

(éx (ip —I—if)zb) - Z)_ 1) ((p B li(b_—t - 1)) Potd g =0 for all &

which implies (5.7).
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Let x€ H™ X, m > 0 ; let « = mp” — 1, (&) = [«/p — 1]. By Thom-Bott,

<a>
Inyeab =3 (— 1) us={®=D (0,6 + 4,6, P*a.
=0
Let y = 0:(Am y;2P), then

<a>

y= 5 (— 1)} ps=5@=1 (40, f 4 p) Pizc =0.
=0

LEMMA 5.11. Let 1€ Z+; then

<a>+41 . i oa—r(p—1) ;
ly — a-+ (1—1) (p—1) r i—r
Ply =20 iﬁ; Fp—1 r£0( 1 ( l4+r—i )BSP PET® +

; r “+1—T(p—1) i—r pr i
+7__2.;(_1)( by >6,9,P PxE....O.

ProOF. See [5,vii], Lemma 1, pp. 3-6.
Specify m = 2 (p™ + b) and ! = pb where n is large. Then,

LEMMA 5.12.

<a>-1 . b—1 (b _ 7.) (p . 1) —1 .
Ly = a+ (I—1) (p—1) — 1) i—r r
Py 6‘»‘50 Ho=1 irfo( 1)( i—b—rp—1 )9'P PP @ +

; i— i _ ’I‘p—'—b—i T r
+ (O et 3 1)b+l(bp+r—i>9’P pP" w 4

; (P =+ O —1)(p—1)
+ 3 A

PRrOOF. Directly from (5.11) and from the relation

)639;P"—’P'w§= 0.

r=(

P e
J— —1
(— 1)b+r+i (Zf; i 2 : :) for r>b. Q. E. D.

LEMMA 5.13. Let

<a>Hl § ntl __ pn J— J—
v (P PrO—) (P =1\ it it pr
pv= 3 X (—1) ( bp+r—i W v0, P*—" P 2.

=0 r=0
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Then
1) wp=0
<ar>$i d
(2) By = S pp1 2 2=

g (b — ) (p— 1 . .
.(1’ 1;10'_"'_ G—nis )) pati=) 6= (3,6, + 6, ) P~ Pra

= 0.

<a>+1 )
@) by =0 pp1 = /,L;‘l_'{‘—')(lﬂ—l) °
=0

r=0

. bgl (_ 1),, ((bi'__'r)b({,—‘;pl)) 00 ﬁPi_r Prx +

: s (TP H O —i—1 i_
T e

+ 5 (— 1),(19”“ —p+O—r(p—1)

t—r pr —_
r=0 bp+r—i )5:9¢P Pragt =0.

ProoF. For (1): See [b, vi], Lemma 4, pp. 4-5.
For (2): See [, vii], pp. 7,8.
For (3): Enough to observe

for r < b

(s
0

for r=10>

(p”+1 —pF+Ob—n(— 1)) _
bp+r—1i

(— 1)pr+i ("Pb;i‘r‘ "y 1) for > b.
Q. E. D.

dim By = 2p"t! + 2bp? + 3 and dim P'y = 2pnt! 4 2bp® + 1.
Hence the following sum makes sense.

<a>-1 )
P =pp1 Py — By = 5tﬂp—1l Z gty 9s{Y3ew] =0
=0
where

 — o3t 1\ (b—lr)(p—'l)_l i—r r
o= = =2y (G0 TN T prpr

_ i i (TP + b—1 i—r r
+ (— 1)+ pi-b gPb r=zb~+1(_ 1)+ (bp iy 1:)P gPr+
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bt A® =7 (P—=1)\ i, b
—r_fo(—l)( i —b—rp )‘BP P

s . rp-l—b—i—l) .
. __1b+; . Pt r pr.,
r=§+1( ) ( bp+r—1 p

It is easy to check {Y}i(#) = 0 for i = b. Since dim & = 2p"+' 4 2bp® +
-+ 3 and p = 3, Proposition 3.10 and Lemma 4.17 imply

<

a>+1 . ,
'.5:) Mgil(l—i) ®-1) g, (Y}‘-x = l2p”+2bp 7t ({Y}b )P = 0.

By directness of the decomposition,
{Y}; (@) = 0 for all i and X € H™ X.
Hence {Y};= 0 for all 1.

THEOREM 5.14. P? and f satisfy the Adem relations (A2):
(A2) If o = pb, then

[a/p] —_ —_
PapP = 3 (—1)utr ((p h@ ")) pPatv—r pr
r=0 a — pr
[(a—1)/p] p—10B—7r—1
— 1)e+r-1 +b— r
,fo =1 ( a—pr —1 )Pa TP

PROOF (by induction on a). Let ¢ = b + 1, and calculate {¥},41 to
get (easy calculation)

0 = (T )o4s = BEPHL = Pt gPY 4 P41 B,

so that P! pPb= pgPo+1 4 PO+l B, This equation is (A2) for a = 1.
Assume (A2) holds for 1, 2, .., a — 1. Then for a we have

0= {Y}ots
. [(a—1)/p1 , b — ’I‘) (p — 1)—1 +b—r r
_rfo (-—1)( “—1rp—1 )pa P

+ (— 19 Pepp?

el (=7 (p—1)
+2 (_1)+1( a—rp

) pputi—rpr |
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41y a}b ( p—a )Pa+b—rﬁpr

r=bp1 \bp +7r —a — b

ats ™ —a—1
— 41 a+b—r r
T r=§+1 (bp+r—a—b)ﬂp g

o |pa [P atr (b —r) (p—1) atb—r pr
= (=1 [Pﬂwa—i(—lH( L0 Y) s p

S e ((b —nNp—1~ 1) Ppati—r ﬁPr}
r=0 e !

a+b " —a w—a—1
_1\e at-b—r r__ +bo—r pr
T ”,:ill(bpw—a—b)l) PP (bp+r—a—b)‘”’“ 7}

Therefore, it suffices to show

E= a}b [( ™w—a ) Patb—r BPr — ( P —a— )ﬂpa-}-b-r Pr] =0,

r=bp1 [\Op +7r—a—D bp + r —

Now
e P LT
él ((bj(pf‘)_l_’ ) )Pa,—r BPU H( (o —|(—;)£ e 1) gPa—r potr

s _ O+nrp—a\(0+r—j(p—1)—1 i ppi
— 1)a—r+§—1 a-+b—,
+rflf( 1 ( r(p—1) )( a—r—1—ypj )P ik

s (C+7np—a—1
—0 3 rp—1)—1

r=1

)P“—' P™r by induction hypothesis.

The middle term in the above sum is 0, as it is equal to

1 (P —a—1 P—1)0+r—j—1 b R
7! 1)“{,51( 1)( r(p—1) )( o —r—pj )}PH"BP]
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which is 0 by (5.9). a’ = a — 1. Hence & = 8 3 (— 1)*+/ Q; P¢+—i Pi, where
j

Q=3 (— 1)r(bp+rp—w)((b+r—j)(p—1))

=1 r(p—1) a—1r—pj
—Z = ((b ;IZ M ' et l) ((b =) (rp__';jl) - 1) by (5.10)
o e s e i BT
+(—1y (bl’ '1;’(‘1;:0;') - 1) ((b + Ta’—-J-.) fﬁIL-ij — 1)
—(—1y (bp +/(’1; - 0{) - 1) ((b +r=d) :'p—_;)jl) - 1)
+ (PR T TR T o metw vy )

Q. E. D.
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