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COHOMOLOGY OPERATIONS IN SMITH THEORY*

ALFRED AEPPLI and YOSHIO AKIYAMA

If the action of Zp = h, h2, .. , on the p.fold cartesian product
.X x X x ... X X (p a prime, X a cellular complex, h x2 ~ ... , xp) = (Xp ,
xi , x2 , ... , is studied in Smith theory, the Steenrod operations appear
in a natural way in some crucial formulas (which we call the Thom-Bott
formulas). This has been noticed by R. Thom in [8]. Then R. Bott [1], Wu
Wen-Tsun [9, 11], M. Nakaoka [4] and others developed the theory further,
in particular M. Nakaoka used Smith theory to establish the axioma-

tic characterization of the Steenrod operations, and Wu Wen-Tsiin gave

applications to imbedding and immersion problems.
Here we develop the theory of the Steenrod operations again, com-

pletely inside Smith theory. For this purpose, we give a brief introduction
into Smith theory in § 1 (based on the action of Zp on a complex E), and
we generalize it in § 2 : we consider all powers = 11 2, ... , p -1, instead
of confining our attention only to t == 1 - h# and s =1-~- h# +... + ==

tP-1 (mod. p). We define the tk -special cohomology groups k.H’ (with coef-
ficients in Zp) and the generalized Smith operations ~Ck and Vk which are

represented by cup products with the Wu classes ,uo = p (1) and vo = v (1)
(up to a constant factor, cf. Proposition 2.13). This more general version
of the Smith theory turns out to be the adequate instrument to play on.
The notions and propositions in standard Smith theory find their natural

counterparts in the generalized framework, and the generalized theory is

used in an essential way in the following §’ s.
§ 3 deals with the case of the p-cyclic action on the p-fold product

... as described above. The bk-image = 6,-k (.E, A)
Smith coboundary, 4 = diagonal in E) which is contained in

kHn(E, J) is written as a direct sum I (Thom direct sum de-
composition, Theorem 3.14 and Proposition 3.15 ; is a suitable compo-

Pervenuto alla Redazione il 19 Giugno 1970.
(*) Work supported by NSF Grant GP-8691.
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sition of coboundary operators). This leads in § 4 to a canonical represen-
tation X X, yk induced
by tk) which is the content of the Thom-Bott formulas (Theorem 4.21).
At the same time the existence and axiomatic characterization of the Steenrod

operations is established. Finally, the Adem relations are proved in § 5,
again inside Smith theory. For the completeness of the Adem relations, cf.
the book [7] by Steenrod and Epstein. [7] contains the axiom system for

the Steenrod operations which we adopt in the sequel, and [7] may be

considered as a general reference source for cohomology operations over

the coefficients Zp .
There are various extensions of the theory that are not treated here,

e. g. cohomology operations over any abelian group as coefficients or even

more generally over a sheaf of abelian groups. Furthermore, we do not men-
tion any geometric applications ; we refer again to [7] for some theorems
in homotopy theory, or especially to [9] for imbedding and non-imbed-
ding theorems proved with the help of Smith theory and Steenrod opera-
tions.

§ 1. Introduction to Smith Theory.

In this § we state and prove a few basic results of standard Smith

theory - called « standard » in contrast with «generalized» Smith theory
which will be discussed in § 2. A more extensive exposition of standard
Smith theory can be found in [2], [5, i] and [9, Chapter II].

Let E be a topological space with a deck transformation h : .E -~ E of
period p, i. e., we assume that the maps hk : E - .~ are homeomorphisms
without fixed point, for k =1,2~ .,. , p -1, and that hp is the identity map 1
of E onto itself. Then G = 1 ~ h, h2, ... , h P-1 I is said to act on E as a deck

transformation group. In the sequel, we assume that (E~ (~) is simplicial,
i. e. E is a simplicial complex and h is a simplicial map, so that (~’ is a

group of simplicial maps, and simplicial homology and cohomology theory
applies. In more general cases, one can use cellular or singular theory. The
coefficienti domain for cochains and cohomology groups will always be

G N Z~, unless otherwise stated.
The map h : E - E induces a cochain map h# : C# E - C# E and a

chain map h# : C# E - C# E. We introduce the following notation:
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where 1 : C# .E --~ C# .E denotes the identity map. s and t are cochain maps
of C# E into itself. If p = 2, note that t = s. We denote these cochain maps

by e and 1-0, agreeing that e may stand for 8, e for t or vice versa, but that

the meaning of Lo and g shall remain fixed in any given discussion. Note

that ~OO = Log .-1- (h#)-" = 0. Hence we have :

LEMMA

We denote the orbit space of E under Eo , i. e., Eo = BIG.
A simplex W of Eo is then viewed as the set to, ho, h20,... , hP-1 oj. If for
each o of Eo a cell a of E is chosen, then the set F of cells o thus chosen
will be called a fundamental domain of E under G.

LEMMA 1.2, ker g = im e.

PROOF. By (1.1) it is clear that im ker ~O. We will prove the other

inclusion in each of the following two cases.

CASE 1. p = t.

Suppose a cochain u E C’~ E is in ker t. Then u = so that u (a) = u (h# o) _
= u (h2 0) =... = u a), for any n-simplex a of E. Let ~’ be a fundamen-
tal domain of .E for (~· Define an n-cochain 17 by

Then we see that u = sv. Hence, ker tc im s.

CASE 2. g = 8.

Suppose that a cochain u of on .E is in ker s, i. e., su = (1+ h# + ... +
p-1

+ (h#)p-1 ) u = 0. Then -v u (hi a) = 0, for any n-simplex a of .E. Define
j=o 

"

p-l
an n-cochain v by the formula = .~. U (hi a), for an n-simplex a in

" 
1=i 

0 
-

the fundamental domain F. Then = v

P-1 
,

-. U (hi a) = u (0), for any n simplex of E. Hence tv = u, which shows that
"

ker sc im t. Q. E. D.

DEFINITION. The p-special cohomology group of E, denoted by PH* jE7,
is defined to be H* (ker o). 

-

Bv (1.2), eH* E = H* (ker e) = Hff (im p).
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Let yr: E -&#x3E; Eo be the natural projection of E onto its orbit space

Eo = The following lemma describes the relation between t-special
cohomology and the ordinary cohomology groups.

LEMMA 1.3t . The projection induces an isomorphism 7l,"’:

tH* E.

PROOF. First, we observe that ~# : C# Eo -~ C# .E is a monomorphism.
This is easily seen from the formula

where gi E E C# Eo , and a; E oi is a simplex in a fundamental domain F.
i

Secondly, we show that n# 0# Eo = ker t. By the above formula it is

immediate that n# (C# E°)c im s = ker t. On the other hand if a cochain u

is in ker t, then by (1.2) u is written as u = where ai is a simplex
;

in a fundamental domain F and gi E G. Let be the simplex of .E° such

= jai, h2 ci, h P-1 ai). Then n# (Z = u. Thus, n# (C# EO) m
i

&#x3E; ker t.

Therefore n# defines an isomorphism C# ker t. Since the

coboundary operation 6 commutes with n# , I the map ~# : C# E° N ker t indu-
ces an isomorphism ,n* : H * (E0) = H* (-E). Q. E. D.

In view of (1.3t) we will identify the two groups and tH. .E.
The description of the relation between 8-special cohomology groups

and the ordinary cohomology groups is more complicated. Let ®r G =
= G EÐ G E9 ... EB G be the p-fold direct sum of with itself and let

G denote its subgroup consisting of all elements (g1, g2 , ... , gp) E ®p G
p -

such that I gi = 0 in G. Define a (E; G)-ker s - C# (Eo; eo G)p

as follows. Choose a fundamental domain F of E, then any element x of
p

8 C# (E ; G) will be written as x = ~ I gij where the are in F and
i j=1

p / p B 
.

G. Also sx = ¿ 1 ( 1 gik hj 01. = 0 since x is an element of 8C# (.E; G),
&#x3E; 

i j=1 k=1 / 
- _ _P - ~ ~

which implies I for all i. Set (x) = I ... , gip) 0, where 01.
k=1 I 

’ 

- -

are simplexes of .E° such that not It is obvious that is in C# (.E° ;
G). Moreover, it can be easily shown that a# is an isomorphism. Let

60 : C# (])0 G) -+ C# (E° ; ~p G) be the coboundary operator given by
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the relation b0 = n# 0 ð o (;#)-1 where b is the ordinary coboundary opera-
tor. Then b° n# = n# 3 (n#)-I n# =;# b. Hence we have the following lemma :

LEMMA 1.38. Let be the p-fold direct sum of and EB~ G
p

be its subgroup consisting of all elements (U1’ U2’ ... , Up) such that I g, _
i=1

= 0. Let ~# : sC# (E ; G) - C# (Eo ; ® p G) be defined as above. Then ~ indu-
ces an isomorphism

REMARK. Let p = 2. Then s and t are the same maps ; and (1.3t) and
(1.3,) imply that 

"

Notice that 

We have the following short exact sequence of cochain maps of co-

chain complexes :

where te is the inclusion map. Hence, by the Kelley-Pitcher theorem it

induces the following exact triangle:

where y. and f3e are induced by Lo and respectively, and 6. : iHnE-+
is ’the Smith coboundary operator given = [br] for

all [ex] in iH n B and n = 0, 1, 2, .... ~ denotes the ordinary coboundary

operator. Notice that any element of takes the form and that

is in eHn+l19 because [g 3r] _ [3 ox] = 0. This leads us to the following
proposition.

yr

PROPOSITION 1.4 (Richardson-Smith). I’or the ,fibration (G --&#x3E; E ----&#x3E;E0)
described earlier, there are the following exact triangles :

11. Annati della Scuola Norm. Sup. - 
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(1) When p = 2,

where ya and Po are induced by e : C# .E --~ im e and the inclusion map te : ker ~O -
--~ C# E, respectively, and 6 : HnEo --~ is the Smith coboundary
operation 80 ~ 6,, = ·

(2) When p is an odd prime, we haroe two exact triangles

and

where re and ~~ are induced by e and te’ respectively, and 6,, is the Smith

coboundary operator defined before.
Until now we have always assumed that the map h has no fixed points

and we did not consider invariant sets in E. We shall relativize the

preceding absolute situation in the following two cases.

CASE 1. The group acts on the space jE7 leaving a subset L of
jE7 invariant under G (not necessarily pointwise), acting on E - .L as a

deck transformation group. We assume that everything is simplicial. Let Eo
and .Lo denote the orbit spaces of E and L, respectively, under G ; i. e.

LIG, where Lo c Ea .

LEMMA 1.5. In Case 1, consider the C# (E, .L) -~ C# (.E, L).
Then ker p == im g.

REMARK. t = 1 - hi and s = 1 + h# + ... + (h#) p-1 make sense both

in the absolute and the relativized cases. Hence we use Lo and Lo again for
the relativized cases, as their meaning should be clear from the context.

The proof of (1.5) is similar to the proof of (1.2).
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DEFINITION. The relativized g-cochain group 90# (.E, L) is defined to be

ker e, C# (E, .L) -+ C# (E~ Z). In view of (1.4) (E, L) _
ker g = ·

DEFINITION. The relativized e-special cohomology group eHft(E, L) is

defined to be H # (ker e), C# (E, L) is the relativized

map of Case 1.

As in the absolute case, the short exact sequence

induces the exact triangle

Also, the map (n E_L)# : C# (.Eo, Lo) -+ tC~ (.E, L) is an isomorphism and

yields an isomorphism n*: H* (Eo , Lo) --~. (E, L). Hence (1.4) has the

following counterpart.

PROPOXITION 1.6. In the relativized Case 1, where (E, = (Eo, Lo),
we have the following exaot triangles :

(1) When p = 2,

where yo and floare induced by the maps e = o = 1 + h# : C# (E, L) --&#x3E;- (E, L)
and ce = Ie : (E, L) -+ C# (E, E), respectively, and Hn (Eo, Lo) -+
"~’ H n+l (Eo ~ Lo) is the Smith coboundary operator, n = 0, 1, 2, ....
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(2) is and odd prime, we have the two exact triangles

and

ye and 6. are similarly defined as in (1).

CASE 2. In the second case of relativization, the group Zp acts

on .E leaving a subset L of .E pointwise fixed and G is a deck transformation
group on .E - L. Let .Eo and Lo be the orbit spaces of E and L, respec-

tively, under G. Then, 

LEMMA 1.7. In Case 2,

and

REMARK. In Case 2, where .L is pointwise fixed under (~ we have the

maps 
-

and

as well as

and

Hence the statement of (1.7) makes sense, and its proof is similar to that

of (1.2).
We have the following short exact sequence

which leads to

PROPOSITION 1.8. In the relativized Cage 2, where (E, L)jG = (Bo L),
we have the following exact triangles :
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(1) } When p = 2

where Y" 0 and P’ 0 art induced by

and

to : ker (e C# , respectively, and 60’ is the Smith coboundary
operator.

(2) When p is an odd prime, we have the two exact triangles :

and

where P’ , Y’ and 8~ are similarly defined as before in the obvious manner.
Hereafter, unless we explicity mention otherwise, our statements will

be concerned with Case 1, y i. e. (.Eo , Lo) = (E, .L)/Q’. We can reduce a state-
ment to the absolute situation by letting .L = ~. Moreover, since Case 2

is a special subcase of Case 1, it is enough to treat Case 1.

DEFINITION. C# (B, L) -+ C# (E, Z) be the map defined by $s =1
(identity) and ~t = tp-2.

LEMMA 1.9. Ee ~O = s.

because mod p. If g = g, 8 s = s. Hence ;e o = s. Q. E. D. 
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COROLLARY 1.10.

The proof is immediate from (1.9) as g and $e commute.

LEMMA 1,11. ~~ induces the switching homomorphism

PROOF. Let g = s. Choose an arbitrary element [u] of tH* (E, L). Then
tu = u - h# u = 0; hence u = h# u. 
... + u = pu - 0, which implies that [8 u] = ,: [u] is an element of

8H * .E, i. e. ,:: (E, L) (E, ~).
Next, let e = t. Let [v] be any element of (E, Z), so that sv = 0.

Since 0 = sv = = ttp-2 V = we conclude that ~t v is a t cocycle
and hence ~~ ‘ [v] is an element of t.H ~ (.E, L). Q. E. D.

LEMMA 1.12.

PROOF. (1) Suppose p is an odd prime. Then ’t 8 = tp-1= t2p-3 = 0,
because 2p - 3 h p. If p = 2, ’t8 = ~t t = s by (1.9).

(2) Let be an element of ~H~ (E, L). [sx] = [tp-2 sx] =
= [t2p-3 x] = 0 if p is an odd prime. When p = 2, [~~ ~a sx] _ [sxJ is obvious.

Q. E. D.

LEMMA 1.13. The switching homomorphisms and the Smith coboundary
operators commute, i. e.

PROOF. Let feu] be an element of (E, L). Then

by the definition of be
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Hence Q. E. D.
Now we are going to define two operators It and v, called Smith

operations, which will play an important role in the later §’ s.

DEFINITION.

Since H* (.Eo , L) and tH* (E, L) are identified by ~~‘, we can also think of

,u and v as maps from t.H ~ (.E, L) to t,H ~ (.E, L) with degrees 2 and 1, res-

pectively.

LEMMA. 1.14. (1 ) ,u and v commute.

PROOF. (1) by definition

by (1.13)

by (1.13)

by definition.

(2) Let p be an odd prime, then

by definition

by (1.13)

by (1,12.2).

If p = 2, v2 = 6t 3s illt = bt 3s = ~ by (1.12.2). Q. E. D.
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LEMMA 1.15. Given any element [u] of Hk Lo), there exist cochains
and v2 such that vi E Ck+’ (E, L), i = 0, 1, 2 ; u = sv°, 6vo = tvl, = sv2, 1

V [U] = [8V’] and ft [u] = 
-

PROOF. Since [u] is in tgk (E, Z) Q9 gk (Bo 2 LO), u is t-cocyle, i. e. u = sv°
for some cochain v° in Ck (E, Z). Now 6. [u] = 6, [sv°J = [bv°] is an element

of (E, Z) which implies that 8~° = tvi for some (k + l)-cochain vl of

Ck+l (E, L). The class bt [tv1] = [6vi] belongs to tHk+2 (E, L), hence w1 is a

t-cocycle. In particular, w1 is in im s, i. e., = 8v2 with v2 E ek+2 (E, L).
Finally, v [u] = [sv°J by (1.13)

and Q. E. D.

COROLLARY 1.16. Let 1 denote the class of H° (Eo - L) (~ (E - L))
given by the 0-cocycle which is 1 on every vertex. Then there exist cocha-
ins 0’ in C’ (E - L), i = 0, 1, 2, such that 1= sc°, 3c° = tci, sc2,
"0 = v (1) = [sc1] and #0 = It (1) = (SC2].

The notation yo = It (1) and "0 = v (1) will be frequently used in the

sequel. They are called the Wu classes of the fibration (Z. --~ E - L -
LO)

LEMMA 1.17 (Wu). For any cochain x of C# (E, L) and for any t-cochain
y, we have 8(x U y) and t (x U y) = U y.

PROOF. Since y is a t-cochain, y = (h#) j y for any j.

and

Q. E. D.

PROPOSITION 1.18. For any element ~,x] of H* (Eo, 1), we have the fol-
lowing properties of ,u and v : 

.
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and

PROOF. By (1.16), there exist cochains ei in C# (E - L) such that

Po = [sc2] and vo = [so’] with the rest of the properties stated there. Therefore,

where 

by (1.16)

by (1.17)

by the definition of p = 6t 6.

since 8x = 0

by (1,16)

by (1.17)

because bx = 0

by (1.16)

Also

REMARK. Although yo is an element of H2 (Eo - the cup product
with [x] E H* = tH* (E, L) yields an element u0 u [x] of H * (Eo , Lo).
A similar statement applies to vo and vo u [xJ.

Suppose that Zp acts on spaces .E’ and .E" as a deck transforma-
tion group of prime period p, i. e., we assume there exist fixed point free
homeomorphism h’ : ,E’ --~ E’ and h" : .~" -~ E" of prime period p.

Then we also have a homeomorphism h’ X h" : E’ X -+ E’ X .E"

on the product space. Clearly X h" has the period p. Denote the orbit
spaces of .E’, E" and E’ X .E" by Eo’ and (.E’ X E")O’ respectively.

We have coverings {~-~~-~~o~f~-~~’2013~~ol and ( (~ -~ E’ X E" -~
(E’ X E")~). Define a map h : (E’ X E")o - (E’ X by
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n2
h induces a covering (2013JX)o20132013jE7oXo1’ Let vo o be the

Wu classes for be the Wu classes for Eo’; and be the

Wu classes for Eo X .Eo’. The fallowing lemma describes the relation be-

tween and fl’o’ . ·

LEMMA 1.19.

PROOF. Let [1] be the class of X jE7o’) given by the 0-cocycle 1
which is 1 et every vertex. (1) 0~ (jE7~ X E"), where
1~ and 1E-- are the 0-cocycles which take the value 1 everywhere. By (1.16),
there are cochains 0°, Oi and c2 such that 
30i = 8’ c~, +1 = [8’ and flb = [8’ c2] where t’ === 1 2013 (h’#) and 8’ = 1 +
+ + + ... + Similarly there are cochains v°, v’ and v2

such that viE IE" = Sm ,~0~ w° = t" vi, ~~J1 = = vi] and

= [s" v2J where t" and 8" are defined by t" = I - (h"#) and s" =1-f -
+ (h"#) + (h"#)2 +... + Let t, 8 : C# ((E’ X - C# ((E’ X j57")o)
be defined as t = 1 - hi and s = 1 + h# + ... + Then,

where (.,.)B denotes the cochain (...) in the orbit space
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We can assume that the simplexes appearing in (lE’ X v°) are all in a

fundamental domain F.

which can be identified with



756

Now

and

Hence,

,.

where ( and

Hence under the isomorphism of fto can be identified with F2 X ’;0 -
2013 c0 X ’;2]. Now, ,ua = [s’ c2], = [s" v2J, 1E’= [s’ 0°] and = VO] are

identified with [l’], [v~], and [v°J? respectively.
Hence Po = 1-’0 Q§ 1 2013 1 0 under the identification. Q.E.D.
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Our final remark in this § is concerned with the naturality of the
Smith operations. Suppose that ~p acts as a deck transformation group
on E and E with generators h and h. Let Bo and E-0 be the orbit spaces
under G of E and E, respectively, giving rise to two coverings I G

yr - n - -

and (G --&#x3E;E--&#x3E;E0). Suppose further, that a map f : E 2013&#x3E; E is
compatible with the action of 6~ i. e., assume that the map f induces

jE7o --&#x3E; Eo satisfiying = af. ·

PROPOSITION 1.20. Let the Smith operations on -E7o be p, v and let them

1, on .90. Then these operations commute with H* Bo -~ B~‘ i. e.,
= pfo* and fo* v = y/o*- °

PROOF. It is enough to prove the commutativity of the following
diagrams at the center :

and

Let E E, then by (1.15) there exist cochains vl, v2 in 0# E such
that bu = tv1 and 6v’ = sv~ .

Hence,

which implies the commutativity of the first diagram and the commutati-
vity fo* p = lafo* . The other part of the proof is similar. Q. E. D.
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COROLLARY 1.22. Let be the Wu classes for ((?2013~jE72013~.E7~
u0 be the Wu class for ( G- E -&#x3E; .E0}. Then f o vo = vo and fo* Po = fto.

REMARK. It is easily seen that the naturality of the Smith operations
holds also for the relativized cases.

§ 2. Generalized Smith Theory. ,

In this § we will generalize the standard Smith theory by considering
t, t2 , ... , tp-1= s and by taking every pair tp-k) into account instead

of (t, s) or (s, t). We will see that almost all the statements in the standard

Smith theory can be reformulated in the generalized framework.
Let G = (1, h, h2, ... , act as a deck transformation group on E,

and J57o be the orbit space of E under G. Assume that .E and Eo are
simplicial complexes and h is simplicial. Just as in § 1, we denote the in-
duced cochain map of Oi E into C# jE7 by h#, i. e., h# : Oi E - C~ .E. As was

stated before, the coefficient domain is always G = Zp where p is prime.
Let tk = (1- h#)k : C# E - C# .E, for k = 0,1~ 2, ... , p, Notice that to =

= 1, t1 = t, tp-1= s = 1 -~- h# + ... + and 0., tP-1 == 8 follows

from the formula -~~ 1 . 1 ~ (- 1)i mod p when p is prime.
LEMMA

PROOF.

LEMMA

PROOF. By (2.1) we have im tP-k c ker tk . Hence we will show the other
inclusion, i. e., im ker tk. The proof is by induction on k. By (1.2)
the inclusion above is true for k = 1. Suppose that it holds for k = 1, 2, ... , r.
Let u be in ker tr+l , then tr+l u = = 0 ; hence by the induction

hypothesis with k = r, we can write tu = tp-r v for some v in C# E. There-

fore, Again by the induction hypothesis with k =1,
for some cochain w of C# .E. Hence, u = tp-r-1 v +

is a cochain in im i. e., im 

~ ker This proves (2.2) for k =1, 2,..., P - 1. For k -= 0 and k = p,
the proof is immediate. Q. E. D.

REMARK. (2.2) can also be shown as follows : Let (~ ~’ Zp = ~ 1, h, 
... ~ h p-1 ~ : E --~ ~E act on jE7 freely. Let ÅG be the group ring of Zp over Zp
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so that Åa acts i. e. C# E --~ C# E. {I, h#, (h#)2, ..., and

t2, ..., are bases for A G . Hence, every element a of Aa has a

P-1 P-1

unique representation a (h#)i where a(h), a(t) E Zp . Let t b-o " t i

and F be a fundamental domain. Then for any x of C# E there
p-i

exist unique xi 8 in 0# 11 and unique yis in C# F such that x = I h’ xi ----

i=0

p-l
Hence im tp-k c ker tk. On the other hand, &#x3E; if x is in ker tk then

’==0

yi = 0 with unique representation. Thus, yo = y, =

= ... = and x = tp-k + ... E im 

DEFINITION. In a manner analogous to that of § 1, we define the tk-

special cohomology group, denoted by to be tk).
By virtue of (2.2), 
We can describe the additive cohomology group 

in

with the help of local coefficients over .Eo . The p-sheeted covering (Zp --~ E -
induces the locally trivial sheaf (or coefficient bundle) B={F --&#x3E;

--&#x3E;B--&#x3E;E0} with the stalk (or fiber) F = Zp EB ... Zp = (Zp)P where the

topology of F is discrete. Zp acts on F by ... , xp) = (xp , ... , 

after convenient ordering of the coordinates in .F === (Zp)P, and the map
is compatible with the action of G. Hence, tp induces

an action tB : B - B on the total space B of 93. Let Cf3" = ker tB = lFk -
- Bk - E~) be the subsheaf of C)3 given by Bk = ker t1 = (r I X E B, tBx .-
=0). Notice that 930 = (0 - Eo -~ ~1= (Zp - ~, -~ Eo~ and Cf3p = 03.

LEMMA 2.3. (1) H* (Eo ; In particular, °H* E = 0~ ~~ E QQ

PROOF. (1) This is immediate from k H* E = H * (ker tk) N H* (Eo ~ker t5) =
- .g ~ (-~o , ‘?~k).

(2) ker t$ = im analogously to (2.2). Hence, rank Fk =
= dim (ker t% ) = dim (im Clearly, (2) is true for k = 0, 1,p -l,p. Assume (2)
for k = o,1 ~ ... ~ r and ...~2013~. Then rank dim (im 
= dim (im = dim (ker = dim (ker ji"’’) - dim (ker tp) =
( p - r) 2013 1 ==jp ~- (r + 1), by the induction hypothesis with k = r and k =1.
Therefore, rank Fr+l = p - rank = r + 1, and rank =

dim (ker tF- ~r+1~) = dim (im == p 2013 (r + 1). Q. E. D.
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REMARK. The cup product induces a ring structure in 
and in H* E; but, in general, not in kH* E for 2 S lc S p - 1.
Cf. the formula for tk (a u b) used in the proof of Proposition 2.13.

We have the following short exact sequence :

Hence, by (2.~) and by the definition of the tk-special cohomology the

Richardson- Smith exact sequences (1.4) generalize for tk as follows : lb

PROPOSITION 2.4. For the p-sheeted covering (Zp -+ .E --- there is

the exact triangle

for each k = 1, 2, ... , p - 1. Here yk is induced by tk, flk is induced by ck ,

and 6k is the k-th Smith coboundary operation defined by 6k [tk x] = [dxJ for
any element [tk x] in P-kH* .E.

(Notice that [8x] is inkH* .E, 6 is the ordinary coboundary operation).
REMA.RK. When p = 2, (2.4) reduces itself to the part (1) of (1.4).
We discuss two relativized cases as we did in § 1. They are :

OA8E 1. The group Q’ 2i Z. acts on .E leaving a subset .L of B inva-

riant (not necessarily pointwise) and its action on E - .L is free.

CASE 2. The group (~ 2t~ Zp leaves a subset L of B pointwise fixed and
acts on B - L as a deck transformation group.

In either case, for simplicity we assume that L is a simplicial subcom-
plex of the complex E. The notation is the same as that of § 1.

PROPOSITION 2.5. In Case 1 where (E,L)/G = (.Eo , there is the exact

triangle rTW T B

for ~kA ~ === ly 2~... ~ 2013 1.



761

REMARK. Relativized tk-special cohomology groups are de-

fined to be g’~ (ker tk) where tk : C# (~ .L) -+ 0# (E, Z) are the relativized

cochain maps of Case 1. The proof of (2.5) is the same as in the standard
Smith theory and is omitted here. Also notice that when p = 2, (2.5) is

reduced to the part (1) of (1.6). The maps and ~k are defined in the

obvious manner as in (2.4).

LEMMA 2.6. In Case 2, we have

The proof is immediate.
The short exact sequences

entail the following proposition, just as in § 1.

PROPOSITION 2.7. In Case 2 where (E, = (Eo, L), there is the ex-

act triangle

for each k =1, 2, ..., p -1; are defined in the obvious

manner as before.

DEFINITION. For each k, k =1, 2, ... , p - I, we define a ma,p $k :
C# (E, .L) --~ C~ (E, Z) by The above definition holds also for

the obsolute case where L = 0. Note that 8 = t = tp-2 and p_1= 8 =
=1 where $t and $~ are defined in § 1.

LEMMA. 2.8.

for all k=1~2,...~~-1.

12. Anna4i Souola Norm. 8t1’. - 
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PROOF. This follows immediately from the definition of ~k .

LEMMA 2.9. The map ~k induces the switching homomorphism
~k : p-k H* (E, .L), for each k = 1, 2, ... , p - 1.

PROOF. If [u] is an element (E, Z), then by definition tp-k u = 0.
Hence, tk ’k 2G = tk tk-1 (tp-k u) = 0, which implies that ~k*[u]=
= [~k u] is an element of kH* (.~, L). Q. E. D.

LEMMA 2.10.

PROOF. (1) ~k = = 

Since k varies from 1 to p’, 2p - 2k - 1 &#x3E; 2p - 2p’ - 1 = p.
Hence, Ek tp-k -‘- 0.

Let be an element of

k Hill (E, L). Then E: = = [t p k 2 x] = 0 because
2p - k - 2 &#x3E; 2~ - (p - 2) - 2 = p. Recall that any element of (E, L)
is of the form for some cochain x. Hence k = 0 on kH* (E, L),
for 1  k - p - 2. Q. E. D.

LEMMA 2.11.

PROOF. As usual let [tp-ku] be an arbitrary element of k.H~ (E, L). Then,
Er bp-k [tp-k u] = ~r = [~k [6$k u]= 8k [tk $k u] = ~k [~p-k u] +
= ~k [tp-k u]. Hence, ~: bp-k = ~k $p~-k : kH * (E, L) -+ kH * (E, L), for

1 ,,- k -,-.P - 1. Q. E. D.
We now introduce the generalized Smith operations flk and and

state a few results about them.

DEFINITION. The generalized Smith operations and vk are defined

to be

and

where k =1, 2, ... , p -1 and q is a (non negative) integer.
When p = 2, they become
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and

where 60 is the operator introduced in the part (1) of (1.6).
As we remarked earlier in § 1, we identify H * (E , and (E, L) under
and hence we can view ft" and vk as maps from Lo) into itself.

LEMMA 2.12. (1)

PROOF. by definition

by (2.11)

by (2.11)

(2) Let p g 3. Then,

by definition

by (2.11)

by the part (2) of (2.10).

REMARK. The map tr : im tk -~ im tk+r induces a map j3~ (im tk~ «
- (E, L) - (E, L) - H* (im tk+r). If k = 0, clearly yo, r = rr.
When k + r _ p, the short exact sequence 

.

induces the exact cohomology triangle
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This can be verified by showing that ker (tr im tk) = ker (tr ~ C# (E, L))
when k + r ~ p, so that j?~ (ker tr im tk) = H * (ker tr (E, Z)) = r.g’~ (E, Z).

Recall that (1.18) in § 1 says that the action of the Smith operations
,u and v (i. e., of p, and v, in generalized Smith theory) is expressed by
the cup product with the elements p and vo , the Wu classes. We want

to prove analogous statements in generalized Smith theory for all pk and

= 1, 2, ... , P - 1. Let us begin with some preliminary considerations.

For any cochains a and b in C# (E, L),

We will write this equality as

where (h’ u h") (a u b) means h’ a u h" b for cochain maps h’, h" : C# (E, 1) -
- C# (E, L). Therefore, in general

o

i.e.

for any integer k.
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In (1.17), we observed that t (x u y) = (tx) U y for any cochain x and

t-cochain y, so that tk (x u y) = (tk x) u y, for k = 1, 2, ... , p -1. Hence, for

any [x] in (E, L), yo u [x] and [x] are elementi (E, L).

PROPOSITION 2.13. For any element [x] of and for k =

=1, 2, ,., , p -1~ the following relations hold :

and

Notice that by the remark preceding the proposition (2.13), the state-
ment above makes sense.

PROOF. By (1.16), there are cochains c° and el such that 1 = 80°, 2

because 8x = 0

Since is an element of kH* (~~ Z), tr x = 0 for r &#x3E; k. Hence,
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The last equality can be checked by applying the general formula for
k-1 k k-i

tk (a u b) repeatedly and summing, or by replacing -V x in (i) by Z Z
i=o ~=0 t=0 J=0

(since tr x = 0 for r &#x3E; k) and by remarking that (i) looks like the sum

for tk (00 U x) with tk-jw c° instead of tk-j c°. (ii) is the expansion of tP (c° U x)
with replaced by tP-J-1 CO. Therefore

go U ~x)

(2) Let ~x~ be an element of kH* (E, ~). Then "0 U [x] = v (1) ~ [x] =
= [se1 U x] = U x] _ [tP-2 tc1 U xJ = [tp-2 600 u x] = [b (tp-2 00 U x)] =

’ 1
= Bk tk (tp-2,00 U x )= ( -1 ) t 

k 
. k , i 

tk-j+p-2 c° U ty+3 x where( i i i) where
WO .9-0 2 J / J

if k - j + p - 2 &#x3E; p or i +j &#x3E; k, i. e., j  k-2
or i + j &#x3E; k. Hence, there is only one term left for i = 0, j = k -1. There-

fore v u u tk-I =fore, o 
= k3k x] = [r] = kvk M. Since kp-1 = 1 mod p by Fermat’s

theorem, we also have 7’k [XI = kP-2 "0 U [.y]. Q. E. D.
Notice that (2.13) reduces to (1.18) when k =1.

COROLLARY 2.14. For k =1, 2, ... , p -1, we have
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and

where and "k (1) = kP-2+o are elements of tH2 (E - L) and

(E -- .L), respectively. ,

The corollary (2.14) can be proved directly starting with (2.12) and

going through arguments as in [5, i, pp. 7-9] ; in particular, (1.15) has analo-
gues for a pair (tk, t p-k).

Proposition 2.13 (1) and the exact cohomology triangles which

appeared in the Remark after Lemma 2.12 lead to a commutative diagram

for k = 0, 1, ... , p -1 and k + &#x3E;r  p, i. e. (,a7 ] induces endomorphisms of

degree 2 of the exact triangles above. An analogous statement holds for

the induced endomorphisms being of degree 1.

§ 3. The Thom Direct Sum Decomposition for a p-cyclic Product.

In this §, we consider the case of the p-cyclic product of a simplicial
or OW-complex and establish the Thom decomposition theorem (3.14) and

(3.15) which says that the image (E, 4) in (E, 4) is a
direct sum of groups (3k 4 and (3k 4, where
i and j range over suitable sets of integers. The number An which will be

introduced in (3.5) will play an important role in the formulation of the

Thom-Bott formulas and in the proof of the Cartan relations in § 4.
Many of the lemmas we introduce in this § to establish the direct sum

representation as well as the Thom decomposition theorem itself are applied
later in the development leading to the Thom-Bott formulas.
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Let X be a finite simplicial or CW-complexe, and .E = X X ... X 
be the p-fold cartesian product of X (with the product topology). Define
a .E by h ... , Xp) = (xp , ... , for an ele-

ment ... , xp) of .E. Then the group G = (1, h, .,. , acts on E

leaving the diagonal 4 of .E pointwise fixed. 4 is homeomorphic to X. This
is clearly a special case of the relativized Case 2 considered in the previous §.
The map h induces a cochain map C# E - C# E on the cochain group

of E. In this § the coefficient domain will be always the cyclic p-group
unless otherwise stated. Whenever possible, we use the notations

of § 2, e. g.

I = 1 - hi, tk = (1 = 8 = 1 -}- ~#+ ... + (h#) "~~ , etc.

Recall that in the case where (E, = (.Eo , 4), we have the following
Richardson-Smith exact sequences by (2.5) and (2.7) :

... - H n (E, d) Yk --&#x3E; p-k B v (.E, d) --&#x3E;kHn+1 (E, d ) (E, d) - ...
and

bK bK
... - H n (.E) (E, d) ---&#x3E; k (E) ---&#x3E; Nk (.E) - ... ,

for k = 1, 2, ... , P - 1. yk are induced by and f3fc are induced

naturally ; and bk and b( are the generalized Smith coboundary operations.
We also have the following diagram :

for ~== 1~...~2013 1.
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is the exact sequence for the cohomology groups of the pair (E, 4), and

is the sequence obtained from the short exact sequence of cochain complexes

and hence it is exact. Here (k) 0# .E denotes the kernel of tk : C# E - 0# E

and (k)C# (E, A) denotes the kernel of C# (E, L) - 0# (E, L). Hence rows

and columns of the diagram are exact. Ok is naturally induced by 9t . When

p = 2, we just write Ot = 0.

LEMMA 3.1. The above diagram is anticommutative at the center and

commutative everywhere else, for k =1, 2, ... , p -1 if p &#x3E; 3. If p = 2,
then the diagram is commutative everywhere.

PROOF. Commutativity outside the center of the diagram is immediate.
We prove the anti-commutativity at the center when p ? 3. Let [u] be an

arbitrary element of then u is written as u = v + w where v E d)
and w E on LI. Hence, (8k r* + 6k yk) [u] = ro~ = C~w + 6V] = [3u = 0,
which implies that Ok r* + = 0.

It is clear that anticommutativity and commutativity are the same for

Z2 . Q. E. D.

The map tk : C#E induces (tk)* : H*E-+H*E and (tk) : 
--&#x3E; H*(E, d) on the cohomology groups. The induced maps are given by:

and

(tl)* and will be denoted by t* and t, respectively. Then (tk)* = (t*)k and
(tP-1)* = 8*. Moreover, for any class zi (o z 2(9 ... in H*E, we have



770

and

Similar relations hold for the actions of (tk).

NOTA.1.’ION. For let ; 

LEMMA 3.2. Let n be a positive integer. For any z in Hn X, ï’1e zP = 0
implies that zP =-- 0 in for any prime p &#x3E; 2.

PROOF. First, we consider the case where n = dim X. Since ï’1e zP = 0,
by Richardson-Smith exactness, there is an element u in E such that

zP u. By a dimension argument, both y~_k : Hnp E --~ (E, J) and

(E, J) --~ E are epimorphic. Hence, u E E (E, d) =
i. e., zP = y = for some y in 

Let y be written as y=’(...0 (by the Künneth formula). Then

y does not contain any nonzero term of the form zp. Since zP =

== (tP-k)* y, the only possible explanation is zP = 0 in Hnp E.

Second, suppose that Let be the n-skeleton of

X, (n) X ... X be the p-fold cartesian product of Lf(n) be

the diagonal set of and g : x(n) --~ X be the inclusion map. Notice that
the superscript n does not tell the dimension of E(n) whereas it does for

X(n). Then we have the following commutative diagram :

where (g X ... X g~~ : jE7 2013~ H* E(n&#x3E; is induced by the map (g X ... X g) :
2013~ E and (g X ... X ~-~: p-kHnp (E, J) 2013~ 4(n)) is defined

in the obvious way. Hence, yk zp = 0 implies that 0 = (g X ... X zP =

= yk (g X ... X z~ = yk (g* by the commutativity of the above diagram.
Thus, in because is

monomorphic on elements of the form xp, by the argument in the preceding
paragraph. The map is a monomorphism. Therefore,
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(g X ... X g)~ : (Hn X @ ... 0 Hn X) - gnp E("&#x3E; is a monomorphism by
the Künneth isomorphism theorem. This implies that zP = 0 in E.

Q. E. D.
LEMMA 3.3 Let n &#x3E; 0. Then

and

for ~===1, 2~.. ~ 2013 1.

PROOF. (1) By the definition of we have c: ¡3k 
Hence, we need only prove the other inclusion.

First suppose that n is divisible by p, say n = pm for some m. Let
x be an element of Pk Then becaase y[ fl[ = 0
by Richardson-Smith exactness. Hence

Now ï’1e x = 0 implies that 7,k (,Z zi)P = 0. By (3.2), (Ezi)p = 0, i. e. x is in
i ;

the image of the map (tp-k)*: HnE -+ gn E.
Secondly, suppose that n is not divisible by p. Then (tk)* x = 0 implies

that x is in (tp-k )* because there is no term of the form zt in the
expression of x.

r* i*
(2) Since Hn E (E, J) is exact (coho-

mology sequence for (E, A)) and r* is epimorpbic, we see that i* is a mono-
morphism. The commutativity of the following diagram

...

and part (1) imply that im (i* = im c = im = im 
= Hence, im (*iBk) = im /F-A) so that i* (im ---

Since i* is a monomorphism the desired result follows.

Q.E.D.
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The following lemma is a key step in proving the Thorn direct sum

decomposition.

DEFINITION. Let n &#x3E; 0 and 1  1~ _ p -1. Define kNn = kN" (E, A) as
3~ p-kHn--1 (E, 4)~

Clearly kN n is a subgroup of (E, 4).

LEMMA 3.4. Let n be a positive integer, then

PROOF. Let u be an element of is written as u = for some

v in p-kHn-I (E, 2 A). By (3.3.2), there is an element z in E such that

= 9l) z. Let y = v - is in p-kHn-I (E, d) and moreover, =

= Pp-k V - flp-k yk z = flp-k v - (tk) z = 0. Therefore, y is an element of

Op-k kHn-2 (E~ d) by Richardson-Smith exactness. Write y =
= 3,-k w, for some w in kHn-1 d). Then U = 6k V = bk (y + Yk z) ==
= bk y + 3k yk z = bk (bp-k w) - 9k r* z, where the last equality follows from
(3.1). Hence,

Since r* is an epimorphism,

, 
Q. E. D.

Later in this chapter it will be observed that the decomposition of (3.4)
is direct and that repeated use of (3.4) yields the Thom direct sum decom-
position theorem (3.14).

LEMMA 3.5 Let n 0 and a = rc ’ - 1 if p ~~!n 3 ’ _ ~ 1 . Let a

be any class of Then there is a nonzero element A of Zp si G such
that

Moreover, in case p &#x3E;_ 3, A depends only on n and p, i. e. A is independent
of the choice of a in Hn sn and of the choice of k, 1  k  p -1.
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If p = 2, we have

PROOF. First we assume p &#x3E; 3. = XP be the p-fold
cartesian product of X, and 4 be the diagonal of E. We apply (3.4) repea-
tedly to the above situation to get

Next we will show that kN’n::: 0 as follows:

by (3.4)

because = 0

by (3.4)
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Therefore, combining the two results we get

On the other hand,

(see the diagram in the proof of (3.3.2))

by the definition of 

hence flk y§-k aP = 0 because it&#x26; is a monomorphism as we saw in the proof
of (3.3.2). By Richardson-Smith exactness., implies that 7,p’-k aP
is in kNnp = bk (P-kHnp-l (E, 4)). Hence, there exists an element m in Zp such
that

by what we proved in the preceding paragraph.
in is nonzero because m = 0 would mean and hence ap =

= 0 by (3.2).
Let ao be the fundamental cohomology class of Hn sn and mo be the

number corresponding to ao in the formula

Let a be any class of 2’hen a = j a~o for some j in Zp and

(by Formats theorem)

This implies that m = mo and hence m is independent of the choice of
a in 
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To show the independence of m from k, 1  kp - 1, we write

where

Then, for we have

by (1. 17)

by (2.13.1~

and, thus, m is independent of k. For A, we set A = 

Finally, if p = 2 it is clear that a similar argument holds with A =1,
and we have

We shall write A = Ån to indicate that Â. depends exclusively on the
dimension n of the cohomology class used in defining it (if p &#x3E; 3). ln will
be determined later up to the sign (cf. Corollary 4.19 and the remark

succeeding it).
Since (tk)* (tp-k) = 0, we define the group by ker 

for k = 1, 2, .,. , p - 1. Then the following lemma characterizes this group.

LEMMA 3.6. Let n &#x3E; 0 and let .~’ be a finite simplicial or C W-complex.
(1) The map q : defined byq (a) = [aP] = the class of

aP mod im (tP-k)*, is an isomorphism, and
(2) kg{ rE = 0 if r is not divisible by p.



776

PROOF. It is obvious that q is well-defined.

(1) First we show that q is a monomorphism. Let q (a) = 0. Then
aP is in the image of (tP-k)*, I i. e. aP = x for some class x in E.

Hence, 7i aP = yk (tp-k)* x 71 k x = 0 by exactness. By (3.2), aP = 0.
Secondly, y to prove that ’Y} is an epimorphism, let y be an arbitrary

element of E. Then (tk)* y = 0 by constructions mod
i 

t
;

im by an argument in the proof of (3.3). Thus, y = (Ezi)p mod im (tp -k)*,
;

i. = q (Z ZS).
;

(2) Let y be an element of (tk)" y = 0 by the definition
of E. This implies that y is an element of im (tp-k )* because r is not

divisible by p. Q. E. D.

Lemma 3.6 implies that and for all k =

=1, 2,..., p -1 and for any integer r which is not divisible by p, i. e.

jE7 does not depend on k. So hereafter we shall omit k and just write
~C* .E for E.

DEFINITION. We define a map (.E, J) by [aP] --.-
where == ~ (~).

Then we get the following lemma:

LEMMA 3.7. Let n &#x3E; 0 and a = np’ - 1, if p &#x3E; 3. Then

(1) 9lnp FJ -+- kHnp (E~ 4) is a monomorphism for all k = 1, 2, ...
- 11 and

(2) if dim X = n, the following diagram is commutative:

where An is the number defined in (3.5).
(3) In particular, when p = 2, the map
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monomorphism ; y and the diagram

is commutative if dim X = n.

PROOF. (1) By (3.2) r:-k [aP] = aP = 0 would imply that aP = 0
and [aP] = il (a) = 0.

(2) The proof is done by going into the sample spaces Sn and (Sn)p.
Let K be the p-fold cartesian product of the n-sphere Sn and let 4K be its
diagonal set. The meaning of .E and A are as usual, i. e. E = XP and L1 =

= diag .E. Since for z &#x3E;_ n -~-1. Hence, by Hopf’s
theorem, [X, [g~ Sn] (gn [X, Sn], p* : .gn (X ; Z) -

Z) ) induced by multiplication by Z~ Z), and this isomor-

phism is natural in the sense that for a given element x of X, there
exists a corresponding map f : .X~ -~ Sn such that f* a = x where a is the

fundamental class Then we have the following commutative diagram:

Hence

by the commutativity of the above

diagram
by (3.5)

by the commutativity of the above diagram

13. Annali della 80uola Norm. Sup. Pisa.
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which proves (2).

(3) is proved by a similar argument. Q. E. D.

COROLLARY 3.8. (E, 4) and bn-1 0 0: ,Hn X -+
are monomorphism s, where dim X = n ] 0 and a = np’ -1

(a is defined if p is an odd prime).

PROOF. It is immediate from (3.6.1) and (3.7). Q. E. D.

Lemma (3.7) and its corollary (3.8) can be applied to the n skeleton
X(n) of ~’ when as we did in the proof of (3.2). Then the diagram

is commutative everywhere except around the exterior triangle (see (3.2)
for notations).

Let x E Hn X. = 0 then °p-7c (g* x) = (g X .., X 
so that g~‘ x = 0 by (3.8). Then x = 0 since g* is a mono-

morphism. Also if = 0, then (g. x) = (g X ... X 9)k* = 0

which means that g~" x = 0 by (3.8) and hence x = 0. Analogous discussions
hold for the case p = 2. Thus we have shown the following corollary:
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COROLLARY 3.9. The maps

and

are monomorphic for all ~==1,2~...~ 2013 ly ~ ~&#x3E; 0, p &#x3E;_ 3 and for any

complex X. If p = 2, the maps

and

are monomorphic, for n &#x3E; 0 and for any complex X.

Note also that bn-1 0 = 0 because v = 60 when jp = 2.
Let _ (ao ~ a1, ... , an (p-])-l)) be a collection of elements ai E Hn+i .~

for 0 :!!~~ i :!~ n (_p - 1) - 1. Such a n (p - I)-tuple (ai) shall be called a

system.

PROPOSITION 3.10. Let n &#x3E; 0~ 1 and a = np’ - 1 if p &#x3E; 3.

(1) In case p &#x3E; 3, define

where (ai) = (ao ~ at , ... , an (p-l)-l) is a system. If y belongs to 

then y is of the form

where ~,~ is the number defined and characterized in (3.5).
(2) Let p = 2.

If y = y a = 0 a.-, +800 a.-2+-,-+ bn-1 0 0 where (ai) = a l~11*1 a.-,),
is in y’0 H 2n E, then y is of the form

PROOF. (1) Let XCn) be the n-skeleton of X, = = X(n) X

X ... X XCn) be the p-fold cartesian product of L1(n) be the diagonal
set and g : X(n)cX be the inclusion map as in the proof of (3.2).
g* : Hn X -+ Hn (X ’i» is monomorphic. Define a homomorphism g": (E) -



780

and

be defined in the obvious manner. Then the following diagram is commu-

tative :

Here gft., and are monomorphisms, g* being a monomorphism by-

construction, g* being a monomorphism by the commutativity q g. = 
with t2 isomorphism, and being a monomorphism by (3.9); q is an

isomorphism by (3.6.1) ; and -+ khnp (E~’~), is an

3§-k
epimorphism because the sequence .gnp ( .E(~a)) yp --~ (E (n) 
p-k == 0 is exact. Hence, f k : k Hnp (E, A) - kHnp is

monomorphic on genp (E). Now, 
’

by naturality

by (3.7.2)

-

by the definition of g*

by the commutativity
of the above diagram

i, e,
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Since y is in y§-k .E by assumption, we can write y as

p

where Z (dim = np.
;=i 

J

It suffices to show that Since ~0~===0 and
0 by the Richardson-Smith exact sequence, we have

0. Hence,

which implies that

that by Richardson-Smith exactness. Thus, we
have shown that

Now, fk y = ao implies that fk = fk ";-k = 0. As we

observed earlier, ft is monomorphic on Hence, we get

";-k M = = 0, i. e., y = Ân °

(2) is similar to (1). Q. E. D.

PROPOSITION 3. 11. Let x be an element of If x belongs
to then x belongs to E), for any prime p.

PROOF. We proceed just as in the proof of (3.10). Since x is in

Hnp (E, we have x = ";-k zP + @ ... (Zil 0 ... 
mixed), x is also in so that This implies that Zil@
@ ... image of (tk)" and @ ... Q§ Zip) = 0. Therefore, x =

= zp = ":-k ~xp]· Q. E. D.

PROPOSITION 3.12. be a positive integer and k be

an integer, 1  k _ p -1. For any a in Hn X, there exists at most one

system = (ao’ ai’ ..., such that ao = a, and y =

= /L~ Yp-x aP where y = y (a~) is the expression in Proposition 3.10.
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PROOF. Suppose that we have distinct systems (ai) aud (hi) such that

ao = bo = a, ai , bi E Hn+i X and y = y (bi) = In Let Ci = ai - bi and
m = min I Ci=F 0 1 - Then clearly 1  m  n (p - 1) -1, and

y Us ) = Ok + bk Op-k Cn(p-l)-2 + ... -~- (6k 8k Op-k Co = 0,

where o&#x26; = np’ - 1 as usual. Let

(ei) = 0, ... , 0) is a system such that E Hn+m+i X.
We shall consider the following two cases:

CASE A. m is odd.

Let

Then

Hence y, = 0 E 
By (3.1.0) 0 = y, = = Å1n 7’k which implies that cm = 0 by

(3.2) and that cm = 0 contradicting our assumption cm # 0.

CASE B. m is even.

Let

Then

Hence, 0 === Y2 = Àm Àm y which again implies that c~ = 0
by (3.2) and that cm = 0 contradicting cm =j= 0. Q. E. D.

(3.12) should be properly interpreted for p = 2.
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Although the following result was stated and proved in the proof of

(3.5) for X = Sn , we restate if for an arbitrary complex X.

LEMMA. 3.13. Let n be a positive integer. For any class a in H’~ X,
yk aP is in p-kNnp .

PROOF. Since yk aP yi a P = (tk)* aP = 0 and is a

monomorphism, flp-k yk aP = 0. Thus, yk aP belongs to ker flp-k = im =

= p-kNnp . Q. E. D.
Now we state and prove the main theorem of this §.

THEOREM 3.14. (Thom direct sum decomposition for p _&#x3E; 3)..Let n ) 0
and k =1, 2, ,..,~ -1. We have the following direct sum decom position of kN’+ :

(1) If n = rp - 2q, for integers rand q such that 0  2q  p, then

then

Notice that r = min ( j  j~,
PROOF. First, we prove the directness of the decomposition. Suppose that

where for r _ i ~ n -1. Denote the left hand side of the above

equation by z. Apply (3k bp_k)q to z and get (bk z = 0. Now, (~k 6p-k)q Z
is an element of dimension rp and is of the form given in Proposition 3.10,
hence Xn-1 = = ... = Xr = 0 by (3.10) and (3.12). This proves the di-

rectness of the decomposition of part (1). For the directness of part (2), the
argument is similar; we have to apply instead of (bk ap_k)q .

Now we prove the equalities of (1) and (2) by induction on n. Let

n = 1. Then (E, d) = 0 because p-k.g° (E, d) = 0 for all k.

Also, by (3.1) and

r~
by the exactness of HO E- L1 -+ 0. Hence, (1) and (2) hold and both
sides are zero. Assume that they hold for 1, 2,..., n. We shall prove them
for n + 1 by considering the following two cases.
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CASE A. n is not divisible by p.
By (3.4), .gn 4 + By the induction hypothesis,

p-kNn will be decomposed into the direct sum of groups by (1) or (2). Hence,
(1) and (2) follow for n + 1.

CASE B. n is divisible by p.
Let n = rp. Again by (3.4) and by the induction hypothesis, we have

Since min ( j E Z I n __ j j = r + 1, we have to express the elements

of (bk Ok Hr L1 as linear combinations of elements in the bracket. Let

By (3.13), is in By induction hypothesis and by
(3.10) and (3.12), there exists uniquely determined elements an-2 , ... , a~
such that ai E Hi L1, ar = a and

Hence,

which implies that

Similarly, for p = 2 we have the following decomposition :

PROPOSITION 3.15. (Thom direct sum decomposition for p = 2). L6t n &#x3E; 0.
If n = 2r, then

is a direct sum decomposition. If n = 2r - 1, then
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is direct.

PROOF is immediate by interpreting (3.14) in a proper way.

§ 4. Steenrod Powers and the Thom-Bott Formulas.

The Thom direct sum decomposition of kNn ( p ~ 3) and of tNn ( p = 2)
leads to representations of yk aP and of 7( a2 which give rise to the Steen-
rod cohomology operations Pp : Hm - Hm+2i(p-l) and Hm+i .

p

The Steenrod powers 3) or the Steenrod squares ( p = 2) appear
in the direct summands of the Thom decomposition for rt aP or yo a2. The
existence of the Steenrod operations will be shown by proving the Steenrod-
Epstein axioms for the appropriate parts in the direct summands of the

Thom decomposition. The crucial step is the proof of the Cartan formula.

Uniqueness (or axiomatic characterization) is proved again by making use
of the Thom direct sum decomposition. This has been done already by
Nakaoka [4]. The final theorem in this §, Theorem 4.21, sums up the con-

nection between Smith theory and Steenrod operations by giving the Thom-
Bott formulas in their general setting.

The following proposition is immediate from (3.12), (3.13), (3.14) and (3.15).

PROPOSITION 0. Let a = np’ - 1 and 1~~~~ 2013 1 ij
p &#x3E;_ 3. Let a be an element in Hn X. Then :

,.,. ,., .., ,.,

(1) For p &#x3E; 3, there is a unique system
such that a~k~ E Hn+i X, = a and

(2) For p = 2, there is a unique system (ai) = (ao , a1, ... i an-1) such

that ai E Hn+’ X, ao = a and
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LEMMA 4.2. Let (a~k&#x3E;) be the system in (4.1.1). Then

and

where 1  i  np’.

and for k = 2, 3, ... , P - 1 we have

by (2.8)

by (2.11)

by (2.13.1)

= 0 because $t is written as [tp-1 z] for some z and hence
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which implies (1) and (2) by (4.1.1.). Q. E. D.

Let fl be the Bockstein homomorphism associated with the short exact
sequence

defined for absolute and relative cohomology.

LEMMA 4.3. For any prime p &#x3E; 2, we have

PROOF. (1) By (1.15) and (1.16)~ there are cochains c1, c2 on .E - 4
such that be’ = sc2, ,uo = p (1) = [sc2] and v. = v (1) = [801]. Since fl 
- fl = [6,ol] = [so2] =#0’ y we have wx (Yo u x) = fJvo u x - VO u ~x =

u x - ,ux - ’Vf3x, for any 
(2) 

for all x E H* X, because #2 = 0.
Å. u

(3) We have 0 --&#x3E; zp -&#x3E; -&#x3E; 0 where A (n) = np and
= m. This induces coefficient and p# in the short exact

sequences

Let ~ be the ordinary coboundary operator on (B 0 7 A) over Z. or The

map S over Zp induces Ot: H * A 2013~ H* (Eo , 4). Let 6 : C# (Y; 2013~C~(Y$ Zp2)
be the ordinary coboundary operator over Z., for any space Y.
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Let [xl be a class in can also be viewed as an

element of and is a preimage of r E Cn(4 ; Zp)
under /to . By definition [x] _ where x is regarded as an element

of Cn (A ; so that we can apply 3. [xJ = Ot [~# 18xJ = ==

A-’ X 6x] by naturality. On the other hand, fl0t [r] [bx] = [Â.i1 6 
Here again ð x is viewed as an element of 0""+1 (jE7o LI ; so that 6 (6 x)
makes sense.

Hence, it is enough to show 6 Let 8P = [ao ... ap], 
_ [ao .., ap a,+,] be simplexes of Jy and = lao..... ap ap+2] be a sim-
plex in Eo - A. Then

whereas

This is true for any sP  8P+l C,4 and  E (Eo - J). If sP  
with 8P E 4 and E (Eo - 2J) or with sP , sP+2 j then in both
cases and 6W(8P) do not have the term obtained through 
This exhausts every case, and 3 1jT= - ~$3.

(4) Let a be in H* X and let c be a cocycle representing a. Then

a=[c] and ~P == [c x ... X 
... and ... X c)] = [bu]

imply (4) where with (hence 
xox ... X 0)).

REMARK. For p = 2, (4.3) becomes

and the proof is similar.
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REMARK 2. (4.3.3) is a special case of the following remark. Let

0 --~ C’ -+ C - C’’ -+ 0 be an exact sequence of free chain complexes, and
0 -~ G’ - G - G" --~ 0 an exact sequence of modules (over a commutative

ring R). Then the commutative diagram of R-modules

with exact rows and columns induces the anti-commutative diagram

(cf. Proposition 2.1 of Cartan-Eilenberg’s Homological Algebra, p. 56),
= 2013 where ô. is the boundary homomorphism (belonging to

0 2013~ C’ - C - C" 2013~ 0) and fl the Bockstein homomorphism for 0 2013~ ~ 2013~
--~ Q’ --~ -~ 0. A similar statement holds in cohomology.

By (4.2.2) we may write as 

Similarly, in view of (4.2.1), an~p_l~_~2~_~~ may be written as an~p_1~_~2~-y .
LEMMA 4.4. Let p h 3. Then, for all i,

1 ~ t ~ ~.

PROOF. Let ex = np’ 2013 1 and a E Hn X. Then,
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On the other hand,

by (4.3.3).
Hence, by comparison of these two expressions, we have

By (3.14), we see that Q. E. D.

LEMMA 4.5. Let p = 2, and (ai) _ (a,o , a1, ..· , be the system
characterized by (4.1.2). Then, a2i+l = ,~ for 0  2i  n - 2. Hence, in

PROOF. Suppose that n is even &#x3E; 0.

Also
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Now let us look at the second term of the sum in the last equality. We
want to show that - ... = 0. Apply v to the sum to get

which is the expansion of the system

Therefore,

By uniqueness,

which entails an-i = = fJan-4 , ... and Thus the state-

ment is true for even n. For odd n, a similar discussion will show the

same result. Q. E. D.
Combining what we have shown we state the following proposition.

PROPOSITION 4.6. Let n &#x3E; 0.
(1) Let a = np’ - I and p &#x3E; 3. For any given class a of :gn(X),

there exists a unique system (a2i) = (ao ~ a2 ? 7a4 y a2a) such that ao = a and

a2i E (~’ ), which satisfies the following relations :

and if k = 2, 3~ .,. , p - 1, then
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vhere ~2t===(~2t(~)lS)’"S)~)~~B~’~(~) number introduced

and characterized in (3.5).
(2) Let p = 2. Then there exists a unique system = 

,.. , an-i)
such that ao = a, ai E Hn+i X, a2i+l = fJa2i’ and

PROOF. (1) The first equality for follows from (4.1.1) and (4.4).
Since ~8 8~ a2i == == 2013 ~~~ ~ a2i , I the second equality
for In yt ap follows from (2.13.1). Also the first equality for Ån yi aP,
2 :!!~~ k - p - 1, is immediate from (4.1.1) and (4.2). The second equality for

follows directly from (2.13.1).
(2) The first equality is directly coming from (4.1.2), and the rest

is a routine manipulation due to (2.13.2). Q. E. D.

REMARK. The relations in (4.6.1) are not in final form. Their revised

forms which will be given later are known as the Thom-Bott formulas.

Our next aim is to show the Cartan formula for the system defined in

(4.6). For this purpose, we make a few preliminary computations.
In (4.6), let = Then pa2i = by the naturality of fl, where

(~)... (~) 1. We have .

by (3.1 )

by (2.8)

by (2.13.2)
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Therefore, for any a E gm X where m &#x3E; 0, we see that

by (4.6)

when p h 3 and o = mj/ - 1. And if p = 2, then

by (4.6.2)

0 1) = 0.
The preceding formulas will be needed later in the proof of the Cartan

formula.
Let m and n be positive integers. Let If ~~3,

let 0 = mp’ -1, 1: = np’ -1 and « = (fi1 +n)p’- 1. Finally, let c = a u b.

DEFINITION. (1) Let i and i be integers. Let p &#x3E; 3. Define by

(2) When p = 2, we define

14. Annali Scuola Norm. 8up. - 
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Make a similar definition for h2j and c2r when p &#x3E; 3, and for cr when

~==2.

PROPOSITION 4.’l..Let p &#x3E;_ 3, then

and

If p = 2, then

PROOF. Let p &#x3E;_ 3, and let

We will show that A = - u bP).
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Let

Set also

Then, just as in the calculation for I, we get
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Hence,

because (u = 0
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Hence,

By (3.10) and by the exi-

stence and uniqueness of the representation of (4.6.1), the right hand side

in the last formula is (a u b) P. Hence

and

we see that

This proves (1) and (2).

Let. Then

Now

and similarly
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Hence

Hence,

DEFINITION. Let i be an integer.

ned by

When

When.,,

For D° a = a and 0 if 

PROPOSITION 4.8. The operator8 Dp and D’ defined above have the fol-
lowing properties. -
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(1) D~ and Do are both identity maps.

(2) Dp and D’ are additive homomorphisms.
(3) D~ and D‘ are natural.
(4) The Cartan formulas hold, i.6.,

and

(5) When p = 2, Di = fl, where P is the Bockstein homomorphism as-
sociated with the exact sequence

PROOF. (1) is immediate from the definition.

(2) Let a and b be arbitrary elements in Hm X, whith w ~&#x3E; &#x3E;. Then,
for F~3~K~+~=~((~+&#x26;)0...0~-)-&#x26;))==~~+~~+~~ for

some z E p’t(tHmpE) Hence r; p = 0 implies that y§ (a + b)P = yt ap + y) bp,
which in turn implies that Dip is a homorphism for each i = 0, 1, 2, ...
(and hence for any integer i). When m = 0, (2) is trivial.

When p = 2, the proof is exactly the same as above.
(3) Naturality of Dp and Di follows from the naturality of ya, 

and 6. Hence f* D) = D§ f* for any map

/:~2013~Y. (Of course, for H* the proper coefficient domain

(Zp or Z2) has to be taken).
(4) We have already proved the Cartan formulas in (4.7).
(5) follows from (4.5) which says a2J+l = pa2’. In particular, D1 a =

= a1 = Q. E. D.

We extend the cohomology operations

canonically to the relative cohomology groups for any pair (X, Y) via
reduced cohomology groups and See [7, pp. 122-124].
Properties (1), (2), (3), (4) and (5) of Proposition 4.8 hold in the relative cases,
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COROLLARY 4.9 (Existence of Steenrod Squares). Let p = 2. Then
(1) For all integers i, there is a natural transformation of functors

which is a homomorphism

(2) 1’° = 1.
(3) If dim a = n, = (u a)2 = a u a.
(4) 
(5) Cartan formula:

(6) Di is the Bockstein homomorphism fl of the coefficient sequence

(6) is known to follow from (1), (2), (3), (4) and (5). The properties (1)
through (6) are taken from [11 ; pp. 1-2]. Hence (4.9) implies the existence

of a cohomology operator satisfying the Steenrod-Epstein axioms when p = 2.
We set Sqi = To show the existence of « Steenrod powers » for Zp ~ p &#x3E;__ 3,
we need a further investigation of the 

LEMMA 4.10. Let (X, Y) be a finite pair and let 6 : B - Y- Hm+l (X, Y)
be the coboundary operator. Then

PROOF. This can be shown with the help of Proposition 4.8 and Co.
rollary 4.9 in exactly the same way as in [7 ; pp. 2,3].

Or present aim is to prove divisibility, y i. == 0 unless i == 0 mod

(p -1), p &#x3E; 3. For this purpose, we first introduce the universal example.
( n 

- )
Write the (2n S2n+1 as ... , C, =1 Define( =o )
an action of G = h2, ..., N Zp, p &#x3E; 3, on 82n+l by h (z0,z1... , zp)

2ni
Zi ... , zp). The action of G on 82n+l induces the orbit space 

= S2n+1/G, called the (2n+ 1)-dimensional lens space for This

induces a bundle (a p-sheeted covering) {Zp 2013&#x3E; /S+ 2013 Define S°° =
00 00= U and L; = U with weak topologies induced by 
n=o 

p 
n=o 

p ~- o ~ ~ ;

and respectively.
The (Zp --~ is universal for the fiber Zp .
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Similarly, y when p = 2, we can define the antipodal map h : Sn -+ Sn for
n &#x3E; 0, so the group G = 11, h) ~ Z2 acts on Sn. It is well known that

(Z2 - 800 -+ P°°~, where P 00 = L"O is the infinite-dimensional real projective
space, is the universal object for Z2 fibrations.

LEMMA 4.11.

(1) Let flo and vo be the Wu classes for the covering {Zp - S°° -+
-~ Lp ~, p _&#x3E; 3. Then

and

PROOF. (1) Since H° (L§7) Zp, we restrict ourselves to a positive inte-
ger n and show first that Hn (Lpoo) = Zp . By Richardson-Smith exactness

(1.4), we have the following two exact sequences :

and

becausE Hence,

which imply that Hi (Lp ) (LJJ’) and "Hl ~S°°) ^~ H2j (L§7) for j &#x3E; 1.

Therefore, I it is enough to show that H 1 (L,) N Z. and s.g1 (S°°) ~ Zp . Again
by the Richardson-Smith exact sequence, we have

and

Clearly Ys: H° (S°°) - H° (Lp ) and yt : H° (BOO) - 8H° (BOO) are zero maps. By
exactness, it follows that 3~ : (Lp ~ 2013~ (800) and 3t : ego (S°°) - Hi 
are isomorphisms. Since see that

’Hi (~’°°) n’ Hi °
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By (1,14.2),(uw)2= ~(1)==0. In the proof of (4.3.1) we showed

that uo = Also we observed that the ~~~ s are isomorphisms. Hence

(u Po) j = (6, b~) j (1) # 0 for all j = 0, 1, 2, .... Similarly (u Po) j u vo # 0, for

all j. Thus we have (1), i. e. H* (L~ ; Zp) is the tensor product of the ex-

terior algebra in vo and the polynomial algebra in #0 = flvo .
(2) is well-known, and is proved in Z2 Smith theory similarly to (1).

Q.E.D.

REMARK. In [7; p. 68], (4.11.1) is proved in a different manner using
a cell decomposition of Lp . See also [9 ; chapter II, § 2] and « Seminar on
Transformation Groups » (by A. Borel), Annals of Mathematics Studies Num-
ber 46, where more general cases are treated.

With the help of (1.19) and (4.11) we prove the following proposition
due to Wu [10]:

PROPOSITION 4.12 (Wu).

(1) 3,

and

where vo = v (1) = p (1) are the Wu classes in H~ (.Eo - d).
(2) When p = 2,

where vo and ¡.to are similarly defined as in (1) with Z2 coefficients.

PROOF. (1) We use the universal example (Z. - 800-+ L’) .p - Because
of (4.11), we have

and
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for some ni and mi in Zp , p~:3. By the naturality and universality of Lp,
the above relationships hold in general for the same ni and mi and with

Po and vo in appropriate Zp-coverings. Now by (1.19), the Wu classes for

.Lp X L§i are

Let ~’ then the Cartan farmula D (a u b) =

= Da u Db is known to be equivalent to D I
for its proof. Hence

On the other hand

Hence ni must be zero so that the two expressions for j
become equal when i &#x3E; 0. It is clear that non = 1.

Similarly, we have 
.

and also

which equals mi {(u ,uO)i+lQ9 1 -1 Q9(u and only if i = 0 or i = p - 1.
Hence mi = 0 for i =1= 0, p - 1. By definition, mo =1 and À2 .
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(2) When p = 2, SqO Yo = v and Sqi Yo = wo = !to = by (4.9).
unless i = 0, 1, by definition. Q. E. D.

LEMMA 4.13. is zero for i &#x3E; 0 and p &#x3E;_ 3.

PROOF. Every 1-cohomology class in X is induced by a map 
--&#x3E; K(Zp ;1) _ .Lp where denotes the Eilemberg-McLane space of
type (Zp 1). By writing the homotopy exact sequence for the covering
~~~.-~j~ we easily see that J~°==.B"(~1). By (4.12) and natura-
lity of D~ , we have Dp x ( f * Yo) ==/" = 0, for all x E HI (X).

Q. E. D.

REMARK. The proof of (4.13) does not work for p = 2 and (4.13) is
false for p = 2.

As a consequence of (4.12) and (4.8.4), the following proposition holds
for the operations 
- (Eo - Lo) for p &#x3E;_ 3, and vsqi : Hm (Eo - - (E0- /;0)
when p --. 2.

PROPOSITION 4.14. ~ 3, then

and

where

PROOF. (1) Let vo = v (1) as usual. Then

by (2.13.2)

by the Cartan formula

by (4.17)
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(2) For any x E H - (E - LO) we have

by ~2.13.1)

by the Cartan formula

o

lo i3o . Hence

(3) Now, let p = 2. Then

Hence

Q. E. D.
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PROPOSITION 4.15 (Divisibility p &#x3E; 3. Then D~ = 0 if
’Juod (~ -1).

PROOF. Let D) : Hm ---&#x3E; for m &#x3E; 0. Suppose that i = tt +1 == mp’.
Then for we have D~ a = Dp+1 a = ~m (u a) p by definition. If

0, then m must be even because if dim a is odd, we would
have (u~)~==2013(u~)P and (u a) ~ = 0, Let m = 2m’. Then 

~ (~ 2013 1) ~ 0 mod (p-1). So J~ =0 if I = « + 1 @ 0 mod (p-1).
Suppose that 1  i ~ tt. In this case, we apply induction from above on
m = dim a, where a E Hm X. Assume that X is a finite-dimensional CW-com-
plex. The statement is trivial for m ) dim X. By (4.6), we can write

because r* a2i = a2i = Dp a, r* a = a and the naturality of Dp imply that
r* p a = p a. Since Dp is natural, r, 7’. 8 Hence Am y8 aP =

- ~ Dip y8 a . Assume that (4.15) is true for all x with dim x &#x3E;
i=O

&#x3E; dim a = m. if i =1= 0 mod ( p -1 )~ then i - j ( ~ --1 ) ~ 0 mod (p -1 )

for j = 0, 1, .’. ,  i &#x3E; and hence (p. y$ a) = 0 by induction hypothesis.
By (4.14), = 0. Conseqaently, Di , - 0 
mod (p - 1) where a = mp’ - 1, i. e. a = 0 if mod ( p -1 ).
The uniqueness of the representation implies that D~ a = 0, for 

mod (p -1).
We have, therefore, proved (4.15) for the category of finite-dimensional

CW.complexes ; but by the limit procedure of J. Milnor [3], the proof extends
to the category of all CW-complexes. Q. E. D.

Now we are ready to show the existence and uniqueness of the Steen-
rod cohomology operations. Proposition 4.15 suggests that we define opera-
tions Pj = Â2jl Dj ~p-1~ : H- -+ for tu ;~!~ 0.

THEOREM. 4.16. (Existence of the Steenrod powers for Zp). The operations
Pp = = 1 + Pp + Pp +... are the Steenrod powers over Z. ? 3, i. e.

they fulfill the Steenrod axioms [7, p. 76] :

(1) Pp : H’~ .-~ is an additive homomorphism which is natu-
ral for all i and m &#x3E; 0.

(3) If dim a = 2m, then P; m a = (u a)P .
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(5) The Cartan formula holds, i. e. for any two cohomology classes a

and b,

REMARK. For p = 2, we already proved the existence of Steenrod

squares Sqi in (4.9).

PROOF. (1) and (2) are immediate from (4.8).
(3). If dim a = 2m, then Pp a = D;(P-l) a = ~,z~ a) r = (u a)P .
(4) is immediate from the definition of Pi -

(5) 

because Q. E. D.

Next we want to prove the uniqueness of the Steenrod powers and

squares. Before we proceed, the following lemma is needed.

LEMMA 4.17. Let = kHm-l (E, 4) as usual. If m is not di-

visible by p, 3k is monomorphic on p-kNm.

PROOF. Let v be an arbitrary element in p-kNm . Assume that 
Then by exactness and by the relation yk = y~ i*, we see that V = Yk Y =
= yk for some y in Hm (E, A). Since fl,-k = 0, 0 = fJp-k V = Pp-k Yk flly =
= y. = for some z E Hm .E because m is not divisible

by p. Since yk flk = 0, we finally see that v = 7’ i* y = yk (t p-k)* Z = 71 
=0. Q. E. D.
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00 
.

THEOREM 4.18. (1) The operation Pp = ~ Pp is uniquely characterized by
i=o

the properties (1), (2), (3), (4) and (5) in Theorem 4.16.
00

(2) The operation Sq = ~ Sqi is uniquely characterized by the pro.
i=o

perties (1), (2), (3) (4) and (5) in Corollary 4.9.

PROOF. (1) By (2), (3) and (4) of Theorem 4.16, we see that

and

By (5), the Cartan formula, the relations .
follow just as in the proof of (4.14). Repeated use of .
gives 

-

as in (4.14.2)., ,
Let z be a class in H* jE7 where E = XP, and let (E, = (Eo , if)

as usual. For any q &#x3E;_ 2, we see that

by (1.17)

by exactness.

Hence z)q = 0 if q &#x3E; 2. In particular, if we let z == a = a (&#x26; 1 (&#x26; .. -

0 1 E then It (u y~ a )q = 0, for q ? 2. Define

if m is even

if m is odd.

By the preceding argument, = 0, because if dim a = m = 2m’

then ~F~~~==~~~~=0? and if dim a = m = 2m’ -1 then 
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implies that == 0, by (4) of (4.16). Hence,

by setting i = m’ - j we get

by (4.10) and jP~ v = vP,. Now we consider the following two cases.

CASE A. m is even.

m --- 2m’. Then x -)- 1 == m’(p- 1) and ( a ~ = m’ -1. Also,

, 
a&#x3E;

We have = = 0. Hence px = 0, where x = ~ 
i=O

By (4.17), therefore Hence, by Richardson-Smith exactness,
x is in the image This implies that 

by(3.10),i.e.=i’(2013l/. The uniqueness of the re-
,

presentation of /g aP implies that the 2~ ~ are uniquely determined.

CASE B. m is odd.

We have m==2~ 2013 ], x-~- l==mp~ ===~~(j)2013 1)2013j/ and  ~ &#x3E; ==m~2013 1.
We start from

which we proved earlier. The above equation is rewritten as

because 
= m’ (p - 1 ) - ~i (p - 1) = (m" - i) (p - 1) and because = 0 as 2m’ &#x3E;
&#x3E; dim a = m = 2m~ 2013 1. Hence,

15. Annali delda 80uola Norm. Sup. 
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By (4.6) and (4.15)

o

i. e.

Therefore,

because y~ aP = /lP’ 8t ~s y~ a~ = - ¡-tP’ ~t 9~ - -- ¡-tP’ (u = 0 .

Substituting the above expression for in we see that

Notice that I = dim ((-1 )1 a) = m + 2 (p - 1). Apply Ap 
to the above equation to get

Notice that (~/ 2013 t) (j) 2013 1) + jp (j) 2013 2) 2013 ~ = ~ 2013 1 2013 ~ (jp 2013 1). By (3.2)
and (3.10)~ and hence the are uniquely deter-

mined. Also Å2 = -1.
(2) Let p = 2. By (2), (3) and (4) of Corollary 4.9, we get

By (5) of (4.9) we also have just as in (4.14.3). Let
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and then

by (3.1) and i = m - j

by (4.10)

Now, we have and 
_ _ _ m-1

= ðo (Yo a u y§ a) = 30 Yo (a u yo a ) = o . Hence v I 8 Sqi a = 0, y i. e.
t==0

m-1 rn-1

I By (3.10.2), ~ ·

i=O i=O

The uniqueness of the representation of Yo (a @ a) implies that the 

are uniquely determined. Q. E. D.

COROLLARY 4.19. Let p &#x3E; 3. Then

PROOF, The relation = An of (4.7) implies

and

In the proof of (4.18), we noticed Â,2 = - 1. Hence

(~, E. D.

REMARK. (*) and Å2 = - 1 yield A 2 = - 1 = (- 1) p’ Ål, 2 1 hence Ål 2 =
(- I)P’+’ = ( p’ ! !)2 since (p - 1) ! 1 = - 1 mod p (Wilson’ 8 theorem). Thus
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Åi = + p’ 1. Furthermore, (=?) implies lm + Ân = 0 if m == 1 mod 4, n E==
3mod4.

A careful analysis of the proof of (4.8) reveals the following :

(a) We did not use the requirement that Sqi and Pp are additive

homomorphisms.

(b) For p &#x3E; 3, the Cartan formula was used for a u b with dim a _ 2,
as (5) in (4.16) was only used to prove the commutativity of .Pp with the
coboundary operator 8~ and in the case were a = !to or a = ;Po .

(c) When p = 2, a similar discussion holds as in (b) above.

(d) We can start with a homomorphism j~~2013~ Hm+2i with (1),
(3), (3), (4), (5). Then, by proving first the divisibility (4.15), we get P~ .
Notice that in this case J9p must be an additive homomorphism.

Hence, we have the following theorem :

THEOREM 4.20. The following axiom systems uniquely characterize the

Steenrod powers Pp for Zp and the Steenrod Squares Sqi for Z2.

(1) A 1: natural transformation.

A 5 : Cartan formula : for any two cohomology classes a and b such
that dim a  27

When p = 2,

A 1’ : Sqi : Hm -+ is a natural transformation of homology functors.

A3’: If dima=m~ then Sqma=aua.

A 4’ : If dim a C j or j ~ 0, 

A 5’: Cartan formula : for any two cohomology classes a and b over Z2° 

such that dim a = 12
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(2) K 1: . g m --~ is an additive homomorphism which is

natural.

K 2: D,’ = 1.
K 3 : If i = mp’, then 

K 4 : If or i  0, 

K 5: The Cartan formula holds, i. e.,

The following theorem is immediate from what we have shown :

THEOREM 4.21 (Main Theorem: Thom-Bott formulas)..Let 
m&#x3E;0

(1) 3, M == ~2013 1, _ p -1. Then

there is a unique representation for yt aP and rk a P :

and

where pt: Hm -+- (P-1) are the Steenrod powers for Zp, p ;~~ 3. Moreover,
when k =p -1, we have
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is the unique representation for y’ 0 (a (&#x26; a).

§ 5. The Adem Relations.

The Adem relations are known to follow from the axioms of cohomo-

logy operations described in (4.9) and (4.16). In this §, however, we shall
prove them in the framework of Smith theory.

LEMMA 5.1. Let R be a sum of compositions of Pi. and Bockstein ho-
momorphism fl for 0 --&#x3E; Zp --&#x3E; Zp. --&#x3E; Zp --&#x3E; 0 (or of Sqi). Let be a sequence
of positive integers strictly increasing with j. If .R == 0 on Hnj for all j,
then B = 0.

PROOF [7 ; p. 114]. Let ~’ be a space. Suppose that R = 0 on .gr.
Then for u E Hr-I X and v E Hi S1, we have 0 = B (u (&#x26; v) - (Ru) @ v. Hence

on Q. E. D.

LEMMA 5.2. Let p be a prime, and let

0 ~ ~ &#x26;, ~ ~ 2013 1. Then

with

PROOF (cf. [7] ; pp. 5-6). Since (1 + x)P = 1 + xP, (1 + = 1 + 
im 

i b - 
m 

x8piHence (1 -{- = 
. 

mod p. The coefficient ofHence (1 + X)b 
t=0 

(1 + xP’) i i=O 8=0 8 ) 01538P’ mod p. The coefficient of

X0, = is ( ). But from the above equation, it is also /5 ( Q.E.D.~ ~ 

First, let us concentrate ourselves on the case where p = 2 and show
the Adem relations for the Steenrod squares Sqi.
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LEMMA 5.3. Let k and r be integers, r &#x3E; 0. Then

where v = 60 is the Smith operation for Z2.

PROOF. We use induction on r. If r = 1

which proves the formula for r = 1. When r = 0 it is trivial. Suppose
that the formula is true for r, 0  r  m. Then,

(~, E. D.

LEMMA 5.4. Let a and b be integers, a &#x3E; 1, and let

PROOF. We use induction on a. When a = 1, A=(2b)(b) = 2b = 0’ 1 0
mod 2. Assume that A = 0 for all b and for 1, 2, ... , a - 1. We will
prove the formula for a. In the proof, we shall make use of the following
relation (congruence mod 2):
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if m is even and n is odd

otherwise.

(1) Let ac = 2al and b = Then

by(*)

by (* )

= 0, by induction hypothesis.
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by(’)

by * &#x3E;

= 0 by induction hypothesis.

(4) Let a = 2a1 and b = 2b1 + 1. Then
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by induction hypothesis

by induction hypothesis.

Q. E. D.

LEMMA 5.5. Let a, b be integers, a ? 1, and let j be a nonnegative
integer. Then 

-

PROOF. By induction on a. Let ac =1, then the formula can be easily
checked:

mod 2, for all

and for any b. Suppose that the formula is true for 1, 21 ,., ~ ~ 2013 ly ~ ~ Oy
and for all b. We shall prove it for a. If j = 0, then A - 0 follows from (5.4).
Hence we assume j &#x3E; 1. Then
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where a’=a-2,b’=b-1 and j’=j-1 &#x3E;_0
(note a’ - 2j’ = a - 2j),
hence A = 0, by induction hypothesis. Q. E. D.

THEOREM 5.6. The Steenrod squares Sq’ for Z2 satisfy the Adent relations,
i. e., for 

PROOF. Let X be a space and let ~6.S~(~~m~&#x3E;0~ m odd. By
(4.21.2) we have the representation

Hence,

by (5.3)

because is odd.

Since

we get

By the Thom direct decomposition, we have

on where m is odd &#x3E; 0. By (5.1) Sq1 Sqi = (1-~- i) This proves
(AR) and 

Suppose that (AR) holds for k = ly 2, ... , a - 1 and for suitable b’s
satisfying the inequality 2b &#x3E; k ~ 0. We shall show (AR) for k = a and
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b such that 2b &#x3E; a. Since Sq2b-l Yo (x @ x) = 0 as before, we have

by (5.3).

Let n be chosen such that 2b  2’~ and let m = 2n + b. Then the above

equation becomes

If 0  i  b -1, then with or 1,

and with bi=O or 1 Hence,

mod 2 by (5.2), when 0  i  b - 1.

If i = b, then

n is sufficiently

Hence, we have

In the above equation, the dimension of the cohomology class is 2m + ~b - 1,
and the exponents of v are bounded by m + b - 2 so that the above ex-
pression is in the Thom direct sum decomposition range of Hence,
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corresponding to vm+b-a-2 , we have

This equality shows that it is enough to prove that

Now,

by induction hypothesis

Now let as prove the Adem relations for p &#x3E;_ 3. First we generalize
(5.4).

LEMMA 5.7. Let a and b be integers and p be a prime. Set

Then A = 0 mod p.

REMARK. If p == 2, (5.7) reduces to (5.4).
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PROOF. (a) Suppose b = b’ p. Let a = a’ p + a" and i =jp + io where
o  a", io  _p. If a"  io  p, then

If 1  io  ac"  p, then

mod p, because p - a" 2013 1  p 2013 io. Hence,

It is easy to check directly that A = 0 mod p for a _ 1. Hence by induc-
tion on a, A = 0 because a’  a in (’~~.

(b) Suppose b is arbitrary. Then

which shows (5.7).
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COROLLARY 5.8. Let

then 0 mod p.

PROOF. It is the same as that of (5.7), noting that (-1)E = 
(-1)~+’~ _ (- 1) i for io = 0. Q. E. D.

COROLLARY 5.9. For any j &#x3E; 0,

where a’=a-p, b’=b-1 
After finitely many steps as above, j decreases to 0 and the situation

reduces to (5.7).
(2) Similar proof. Q. E. D.

THEOREM 5.10. If a ~ pb, then

PROOF. Ijet x E m &#x3E; 0, a = mp’ - 1, ( a ) = [alp - 1]. The
Thom-Bott formula (Theorem 4.21) for -y’ says

Applying to both sides of the above equation, we see that

(this is justified by Lemma 1 in [5 ,vi]). By specifying &#x3E;
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-~ pn-l + b) for some large n,

We check that

Therefore,

The dimension of the above cohomology class is mp + 2 + 2 (pb -l)(p -1) =
= p (m + 2 pb - 2 - 2b) + 4, and everything is in the direct sum decomposi-
tion range. Letting j = i - k, we have

Let k = b -~-. 2 - pb. Then
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Now

and

because pb - p  pb - 2 3. Hence Pi Pb = (b -~-1) Pl+b, which
is (Al) for a =1. Now we assume that (Al) is true for 1~ 2~ ... , ,a- I
and prove it for a. Let k = a + b + 1 - pb. Then

Thus, it suffices to show the third term in the above equation vanishes.

16. Annali delta Scuola Norm. Sup. Piss.
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by induction hypothesis

by (5.9). Q. E. D.

REMARK. If we assume (Al), then (5.7) is its easy consequence. In

the expression (*) in the proof of (5.10), we see that

0, clearly

Assume g = 0 for  a. Then, for j &#x3E;_ 1

(in the same notation as in the proof of (5.7))

= 0 by assumption.

Hence, only the term corresponding to j = 0 is left in (~ ~ ) ; i. e.,

which implies (5.7).
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Let x E H1n X, m ~ 0 ; let a = mj/ 2013 1~  0153&#x3E; = 2013 1]. By Thom-Bott,

Let y = bt (lm yt xP), then

LEMMA 5.11. Let i then

PROOF. See [5,vii], Lemma 1, pp. 3-6.

Specify m = 2 ( pn + b) and I = pb where n is large. Then,

LEMMA 5.12.

PROOF. Directly from (5.11) and from the relation

for &#x3E;

for

for
1

LEMMA 5.13. Let
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Then

PROOF. For (1): See [5, vi], Lemma 4, pp. 4-5.
For (2): See [5, vii], pp. 7,8.
For (3): Enough to observe

for

for

for

and dim

Hence the following sum makes sense.

where
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It is easy to check I Y ji (x) .:r 0 for i ~ b. Since dim 0 = 2p’i+1-f - 2bp2 +
+ 3 and p &#x3E;_ 3, Proposition 3.10 and Lemma 4.17 imply

By directness of the decomposition,

Hence (Y); = 0 for all i.

THEOREM 5.14. Pi and P satisfy the Adem relations (A2):
(A2) If a then

PROOF (by induction on a). Let i = b + 1, and calculate to

get (easy calculation)

so that P 1 + p b+1 ~g, This equation is (A2) for a = 1.
Assume (A2) holds for 1, 21 ... , a - 1. Then for a we have
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Therefore, it suffices to show

Now

The middle term in the above sum is 0, as it is equal to
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which is 0 by (5.9). a’ = Hence where

by (5.10)

mod p by (5.9).

Q. E. D.
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