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SEMI-PRIMAL OLUSTERS

D. JAMES SAMUELSON

A primal cluster is essentially a class (%) of universal algebras of the
same Species, where each ; is primal (= strictly functionally complete),
and such that every finite subset of {%;} is «independent». The concept
of independence is essentially a generalization to universal algebras of the
Chinese Remainder Theorem in number theory. Primal algebras themselves
are further subsumed by the broader class of «semi-primal» algebras, and
a structure theory for these algebras was recently established by Foster
and Pixley [5] and Astromoff [1]. This theory subsumes and substantially
generalizes well-known results for Boolean rings, p-rings, and Post algebras.

In order to expand the domain of applications of this extended « Boo-
lean » theory, we should attempt to discover semi-primal clusters which,
preferably, are as comprehensive as possible. In this paper we prove that
certain large classes of semi-primal algebras form semi-primal clusters. In-
deed, we show that the class of all two-fold surjective singular subprimal
algebrag which are pairwise non-isomorphic and in which each finite subset
is co coupled forms a semi-primal cluster. A similar result is also shown
to hold for regular subprimal algebras with pairwise non-isomorphic cores.
Moreover, we prove that the class of all pairwise non-isomorphic s-couples,
as well as the class of all »-frames with pairwise non-isomorphic cores, and
even the union of these two classes, forms a semi-primal cluster. Finally,
we construct classes of s-couples and r-frames.

1. Fundamental Coneepts and Lemmas.

In this section we recall the following basic concepts of [2][5]). Let
U=(A; £2) be a universal algebra of species § = (n,,n,,..), where the

Pervenuto alla Redazione il 23 Dicembre 1969.
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n; are non-negative integers, and let 2 =(0,,0,,...) denote the primitive
operation symbols of 8. Here, O;=Oi(§,,..., &) is of rank n;. By an 8-
expression we mean any indeterminate symbol &, 4, ... or any composition
of these indeterminate symbols via the primitive operations O;. As usual,
we use the same symbols O; to denote the primitive operations of the al-
gebras U, , U, ,.. when these algebras are of species S. We write
«P(&..)(U>» to mean that the S-expression ¥ is interpreted in the S-
algebra 9/, This simply means that the primitive operation symbols are
identified with the corresponding primitive operations of <)/, and the inde-
terminate-symbols &, ... are now viewed as indeterminates over /. Moreover,
« WP (&..)(U) » is called a strict U-function. An identity between strict ¥-
functions ¥, & holding throughout U is called a strict UW-identity, and is
written as P (&, ..)= D (& ...)(U). We use Id(U) to denote the family of
all strict -identities. A finite algebra </ with more than one element is
called categorical (respectively, semi-categorical) if every algebra, of the same
species as 9, which satisfies all the strict identities of 9/ is a subdirect
power of Y (respectively, is a subdirect product of subalgebras of U). A
wap f (& ,..,&) from AF into A is S-expressible if there exists an S-expres-
sion WP (&,,..., &) such that f= ¥ for all &, ..., & in A. A map f(&,,..,&)
is conservative if for each subalgebra 93 = (B; Q) of U and for all b,,...,b;
in B, we have, f(b,,..,br) € B. An algebra U/ is primal (respectively, semi-
primal) if it is finite, with at least two elements, and every map from
A X< ..>x A into A is S-expressible (respectively, every conservative map-
ping from A X< ..X< A into A is S-expressible). A semi-primal algebra ¥
which possesses exactly one subalgebra U* = (A*; Q) (F=UWU) is called a
subprimal algebra. The subalgebra U* is called the core of U. If U* has
exactly one element, </ is called a singular subprimal; otherwise it is cal-
led a regular subprimal. An element a in A is said to be expressible if there
exists a unary S-expression A, (&) such that A, (&)= a for each £in 4. An
element @ in A\ A* is said to be ex-expressible provided there exists a
unary S-expression I, (&) such that I, (£)=a for each £ in 4 \_A* (here,
AN A*=|{E|E€ A, E¢AY).

We now proceed to define the concept of independence. Let (Ui} =
={U,.., U} be a finite set of algebras of species S. We say that {U}
is independent if corresponding to each set ¥,,..., ¥, of S-expressions
there exists a single expression ¥ such that ¥ = ¥;(U;), i=1,..,r (or
equivalently, if there exists an r-ary S-expression ¥ such that ¥ (§,,..., &)=
=& (W), i =1,...,7). A primal (respectively, subprimal, semi-primal) cluster
of species § is defined to be a class U = {eeey Uiy .o} of primal (respectively,
subprimal, semi-primal) algebras of species S, any finite subset of which is
independent.
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We are now in a position to state the following lemmas, the proofs
of which have already been given in [2; 5].

LeEMMA 1. A primal algebra is categorical and simple.
LEMMA 2. A semi-primal algebra is semi-categorical and simple.
LEMMA 3. Let 8= (B; Q) be a subprimal algebra of species S. Then,

(@) the core B3* = (B*; Q) is primal or else is a one-element subalgebra;
(b) each b in B* is S-expressible ;
(¢) each b in B\ B* is ex-ewpressible.

2. Semi-primal Clusters.

In this section some semi-primal clusters will be found. The methods of
proof are similar to those of Foster [4] and O’Keefe [6]. We will be con-
cerned, mainly, with co-coupled families of subprimal algebras, in the sense
of the following

DEFINITION 1. A family U = (4;; Q) i €I, of subprimal algebras of
species S, with cores UF = (A}¥; Q), i € I, respectively, is said to be co-coupled
if there exist two binary S-expressions & < ¢ (= &-5 = &y) and £T%, and
elements 0;, 1; in A4;(0; &= 1;), for each ¢€ I, such that

(@) if U; is a singular subprimal, then

(1) {0} = AF;
(2) 0; <X E=EX0=0;; LiXE=&XL;=¢ (all §in Ay);

(b) if U; is a regular subprimal, then (2) and (3) hold in addition to
(4) {0:, 1) c AL,

DEFINITION 2. A family U, = (4;; ), i €I, of regular subprimal alge-
bras of species S is said to be co-framal if there exist S-expressions
EXn(=¢&n=2¢&) and &0, and elements 0;, 1; in A; (0;== 1,), for each
i€ I, such that (2) and (4) hold in addition to

(5) N ig a permutation of 4; with 0 = 1,.
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REMARK 1. If U;, t€1, is a co-framal family of regular subprimal al-
gebras, then by letting &7y = def= (&N <X #MV, where £V denotes the
inverse of &n, it follows that (3) holds and therefore the family is also
co-coupled.

THEOREM 1. Let U= (4;; 2), t =1,...,n, be co-coupled subprimal al-
gebras of species S. Then, if the U; are pairwise independent, they are inde-
pendent.

PROOF. Assume that U, ,..., W, are pairwise independent. Then, for
any two algebras U, U; (where i ==j), there exists an S-expression P (£, n)
such that

(6) o (5’ n) =

& (U)
7 (Uj).

Let U¥ = (A¥; Q) denote the core of ;. If U; is a regular subprimal
(respectively, a singular subprimal), then 1;€ A¥ (respectively, 1;€ A;\ A}),
and according to Lemma 3 it is expressible (respectively, ex-expressible).
In either case, there exists a unary S-expression 4, (&) such that

() 4, =1L (& in 4\ {0:)

From (6), (7), and the fact that 0;€ A; is S-expressible, say by A, (§), it
follows immediately that

1, (& in AN\ {0:))
Ty () = det = @ (4,,(8), Aoy (6) = % )
i (Uj)
Define, now, a unary S expression ¥;(§), 1<<¢< n, by
~ 1; (& in AN\ {0:))
(8) Wi (&) = Iy (&) < voe X IT;5 (&) X voo X i () = %
0; (Uj) (all j == 1).

where ™~ denotes deletion and the II;(£) are associated in some fixed man-
ner. Using (8) and the co-coupling binary S-expression &T'#, define an n-ary
S-expression P (&, ..., &) by

o (51 y ooy En) = [Ti (51) X 51] T.. T[Tu (&n) X fn]?

the T-factors being associated in some fixed manner. It is easily checked
that & (£, ,...,&,) = & (W), 1 < i <<n. This proves the theorem.
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Because of Theorem 1, it is important to discuss the pairwise indepen-
dence of subprimal algebras. To do this we impose a surjectivity property
on the primitive operations.

DEFINITION 3. A subprimal algebra U, with core /¥ is said to be
two fold surjective if each primitive operation of <)/ is surjective on both Y
and /%,

We now show that subprimal algebras which are two-fold surjective
satisfy a certain factorization property (compare with [6]).

THEOREM 2. Let U = (A ; Q) be a two-fold surjective subprimal algebra
of species S. Then, for each wunary S-expression, I'(£), and each primitive
operation O; (of rank n;) of U, there exist unary S-ewpressions P, (&),..., P, (£)
such that

9) O: (Ti (E)y ey !p'n,; (8)) = I'(&) (U).

PrROOF. Let A = {(a,,..,0m,@nt1y..,a) Where A*={a,,..,a,} is
the base set of U* (= core of <)) Clearly. I'(a;) € A* for 1 < j << m. Because
of two-fold surjectivity, there exist elements a; (1 <<j<<t, 1 <<k<n,) of 4,
with aj in A* when 1 <Cj<Cm, such that

O; (ajl 9 ey a’.’iﬂ;) = F(“j )
Now let unary functions g, (§), ..., g»; (£) be defined on A by
gk(aj)= ajk(lgkgni, ].Sjgt).

Since gx (a)) € A¥, 1 <j < m, each g;is conservative and hence is S-expres-
gible, say by Wi (£). It follows that

Oi (Py (@3)y eee s Py (@) = Oi(gy (@5)y «vv y g (@5)) = Oi (@1 5 oev y @jn)) = I ()

for 1 <<j<Ct and (9) is verified.
From [6; Lemma 2.3] and Theorem 2 we immediately obtain the fol-
lowing generalized factorization property.

TBEOREM 3. Let U be a two-fold surjective subprimal algebra of species
8. Then, for each ewpression I (&, ,...,&,) and each expression O (&, ,...,&p) in
which no indeterminate &;,1 < i< p, occurs twice in O, there exist expres-
sions ¥, , ..., Pp such that

(10) OV, ., Pp) =23 (W)
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The pairwise independence of any two universal algebras U, B of species
S assures that any two subalgebras of U, B, of more than one element
each, are non-isomorphic. In establishing independence, therefore, this must
be taken as a minimal assumption.

THEOREM 4. Let U = (A ; Q) and B = (B; Q) be subprimal algebras of
species S with cores U* = (A*; Q) and B* = (B*; Q), respectively. Suppose
that etther of the following holds :

(i) B is a regular subprimal and U*, B* are non-isomorphic;
(i) B is a singular subprimal and U, B are non-isomorphic.

Then, there exist elements d,,d, in B (d, == d,) and unary expressions

Iy (&), I'y (&) such that

(19 @) =T, WU;
(29) I, (&) =4, (& in B\_B";
(3%) T, (&) =4, (& in B\_B").

Moreover, if (i) holds, then d,, d, € B* and
49 I'i(€)=d,(B);
(5% T, (§) = 4, (D).

PROOF. First, assume that (i) holds. Then 93* is primal (Lemma 3)
and hence categorical (Lemma 1). Therefore, if Id (%) D Id (‘6*) then
U 2 PB*® (= Kk subdirect power of ) for some k =1. Now k== 1 since
U has a subalgebra (3= W). But if k=2, there exists an epimorphism
U — B*, contradicting the simplicity of %. Thus, Id(°¥)D Id (‘B*). Simi-
larly, if Id(B*) D Id(U), then since U is semi-categorical (Lemma 2),
QB* o2 k) > QY*ka) (= gubdirect product of subdirect powers of Y and U*) for
some k, ,k,. Now k, 4 k,==1 since 9B* U are non-isomorphic and by
assumption B*, U* are non-isomorphic. Thus, k, + k, = 2. But then there
exists an epimorphism from 93* onto either U or U* contradicting the
simplicity of 93* Thus Id(B*) P Id (‘¥). These two non-inclusions assure
the existence of expressions ¥, (%,...,&) and W, (&, ..., &) such that

(11) Y, = Y,(U) and P, = ¥, (B".
From (11) it follows that there exist elements f,,..., f, of B* for which

(12) dy=def =Y, (B, ..., bp) F ¥y By, ..., Bp) = def =d,.
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Clearly, d, , d,€ B*. Since 8, ..., B, € B*, there exist expressions 4, (£),...,4p (&)
such that (see Lemma 3)

(13) Ai(§)=p: (B), 1<i<p.
If Ij(&) is defined by
(14) T(8) = Wi (4, (€)y ey dp (O 1 <j < 2,

from (12)-(14) it follows that I (£), I', (&) satisfy (19), (4%), and (5°).

Secondly, assume that (ii) holds. Using arguments similar to those
above, it can be established that Id (W) Id (“B) and Id(B) D Id(U).
Thus, there exist expressions W, (£,,...,&p), Py (&, &p) such that ¥y= ¥, (W)
and ¥, == P,(‘B). Let B,,...,8, be elements of B for which (12) holds.
Because of Lemma 3, there exist expressions A4, (&), ..., 4, (§) with

4i(§)=F:(in B\ BY), 1<i<p.

Let Iy (8), I'y (&) be defined as in (14). It is easy to verify that they have
the desired properties (1°)-(3°).
Next, we prove the following theorems.

THEOREM 5. Let U=(4; Q) and B = (B; Q) be subprimal algebras
of species S satisfing either (i) or (ii) of Theorem 4. Then there exist expres-
sions D, (&), ... , Dy (&) such that D, (&) = ...= D, (£)(U) and such that every
conservative unary function on B is identical, in B, to one of D, (&), ..., Pp (&)

PrOOF. Let the conservative unary functions on B be enumerated as
by (E)y weey bp (£) and let d,, dy, Iy (£), I, (£) be as in Theorem 4. Since B is
semi-primal, each conservative function on B is S-expressible. Hence, there
exists an expression @ = D (&, &,, ..., &p, &pp1) for which

D&y dyyenydi,doyu,dy))=10:;(§),1<i<p (£ in B).

i terms

(This follows since the above equation is a conservative condition). Using
@ as a skeleton, we now define @, (§),..., D, (&) by

@i(£)=Q(‘fyri(f)?"7Fi(e)ypg(g)y'-',Fg(E»’ 1SiSp-

i terms

From (19) of Theorem 4 it follows that &; (&) = &;(&)(U) for all 1 <<i,j<<p.
If (i) holds, then from (4% and (5° of Theorem 4, ®;(¢) = b;(§) (¢ in B),
1 << i <<p. If (ii) holds, then (2°) and (3°) assure that ®; (&)= 10b;(£) (¢ in B\ B*).
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Moreover, in 9B, P;(£) and b;(£) are both conservative. Since B* consists
of exactly one element, say B*= {0}, it follows that @;(0) = b;(0)= 0.
Hence, in case (ii) we also have P;(&) = b;(£) (¢ in B).

THEOREM 6. Let U= (A;RQ),B=(B;Q) be subprimal algebras of
species S (with cores U* = (A*; Q), B* = (B*; Q), respectively) satisfying
either (i) or (ii) of Theorem 4. If B is two-fold surjective, then for each a
in A* and each unary expression ¥ (£) there exists an expression £ = Q (&)
such that

a (U)

Q =
¥ (B).
PROOF. If a€ A* there exists a unary expression O (£) for which
O = ¢ (WU). Let O (&,,...,&,) be the S-expression derived from © by distin-
guishing each occurrence of ¢ in @. Thus, by definition, O’ (§, ..., &) = O (§).
From Theorem 3, there exist expressions ¥, (&), ..., ¥p(§) such that

4 (Ti (5)7 very !Pp (5» = T(f) (%)

Since ¥, (&), ..., Pp (&) are conservative in €3, by Theorem 5, there exist
expressions P, (&), ..., P, (§) such that

Di(§) = B;(§) (U) 1<, ] <p;
D6 =Ti(H(W) 1<i<p.

Let 2 (&) = O’ (D, (&), ., Pp(£)). It is easily verified that £ has the desired
property of the theorem.

If F is a family of subprimal algebras of species S let us use F,(res-
pectively, F,) to denote the subfamily of all singular subprimal (respectively,
regular subprimal) members of F.

THEOREM 7. (Principal Theorem) Let F be a family of two-fold surjec-
tive subprimal algebras of species S, each finite subset of which is co-coupled.
If, further,

(a) the members of Fs are pairwise non-isomorphic,

(b) the members of F, have pairwise non-isomorphic cores, then F is
a subprimal cluster.
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PROOF. Because of (a), (b), and Theorem 6, for any two members
U, B of F, there exist expressions £, (£), 2, (£) for which

(U 5w%)

Q, (&)= . .
0(B) [ &)

Since each finite subset of F is co-coupled, there exists a binary S-expres-
sion & Ty satisfying (3). Thus
& (U)

‘Qi (51) T‘Qg (52) = ;
£, (B)

and therefore <, <13 are independent. From Theorem 1 it follows that each
finite subset of F is independent, and the theorem is proved.

COROLLARY 1. Let F (= F,) be a family of two-fold surjective regular
subprimal algebras of species S satisfying (b) of Theorem 7. Suppose that
each finite subset of F is co-framal. Then F is a regular subprimal cluster.

This follows from the above theorem, upon applying Remark 1.

‘We now consider special subclasses of co-coupled and co-framal sub-
primal algebras.

DEFINITION 4. An s-couple is a singular subprimal algebra U = (4 ;
>, T) of species § = (2,2) containing elements 0,1 (0 5= 1) such that (1)-(3)
hold. An r-frame is a regular subprimal algebra U = (4 ; <, N) of species
8 = (2,1) containing elements 0,1 (0 5= 1) for which (2), (4), and (5) hold.
Examples of s-couples are plentiful. Two such examples are (see [5]):
(19 The « double groups » C=(C; <, +) of finite order n =2 in
which (C; +) is a cyclic group with identity 0 and generator 1, (C\ {0}; <)
is a group with identity 1, and 0 X =& < 0=0 (¢ in O); and
(2% the algebras G, = (Cp; <X +) of p elements 0,1,..,p —1 (p
a prime) in which & - # = addition mod p, and & <X # =min (§ #4) in the
ordering 0, 2, 3,...,p — 1, 1.
To establish other classes of »-frames and s-couples we need the fol-
lowing definitions and lemmas.

DEFINITION 5. A binary algebra is an algebra <8 = (B; <) of species
8 = (2) which possesses elements 0,1 (0 == 1) satisfying

(15) 00X E=EX0=0; 1X&=¢§x1=¢ (all £ in B).
The element 0 is called the null of <¥; 1 is called the identity.

8. Annali della Scuola Norm. Sup. - Pisa.
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LeEMMA 4. (Foster and Pixley [5]). An algebra B == (B; ) of species 8
is a regular subprimal if and only if there ewist elements 0,1 in B (0==1)
and functions > (binary) and N (unary) defined in B such that (15) holds, in
addition to

(19 B is a finite algebra of at least three elements ;

(29) B possesses a unique subalgebra (== 1), denoted by W* = (B*; Q)
and B* contains at least two elements ;

(3% the elements 0,1 and the functions ><,N are each S-expressible;

(4% N is a permutation of B in which 0N =1;

(8%) for each b in B, the characteristic function & (&) (defined below)
18 S-expressible :

(@) =1if E=0band 8,(&) =0 if E==b (all & in B);

(6°) there exists an element b, in B\ B* which is ex-expressible.
0 P

LEMMA 5 (Foster and Pixley [5]). An algebra B = (B; ) of species 8

is a singular subprimal if and only if there exist elements 0, 1, 1° in B
(0= 1) and two binary functions <, T defined in B such that (15) holds in
addition to

(1% B is a finite algebra of at least two elements ;

(2% €W possesses exactly one one-element subalgebra B* = (B*; Q) and
no other subalgebra (= B);

(3% the element 0 and the functions <, T are each S-expressible;

4) OTE=E(ETO=¢ for each & in B and 1 T1°=1°T1=10;

(8% for each b in B\ B* the characteristic function &, (£) is S-expre-
ssible ;

(69) there exists an element b, in B\ B* which is ex-expressible.

REMARK 2. If &0 is a permutation on a set, we use &Y to denote its
inverse. Moreover, for each positive integer s we define:

ENs — def = (... (§N)N...)0 (s iterations).

We define £Y¢ similary. Note that if &0 is a permutation on a finite set,
then there exists an integer s such that M= &y, Hence, any (0, Y)-expre-
ssion is just a (N)-expression.

The following theorems provide large classes of r-frames and s-couples,

THEOREM 8. Let B = (P; <, N) be a primal algebra for which
(19 (P; ) t8 a binary algebra (with null 0 and identity 1); and
(2% N is a cyclic permutation on P with 0N =1, If Py, = PU {d,, ..., m}



clusters 699

where ;¢ Py, 1 << i< m, then the operations > and N can be extended to Py,
such that By = (Pm ; X,N) is an r-frame with core B.

PrOOF. Let M= (0,1, f;, ..., f,) in P. Because of primality, there exists
a unary (<, N)-expression 4 (&) such that

1 if &=0
4@ = (£ in P).
0 if £%0

We extend the definitions of >< and 0 to P, as follows:

(i) For & n in P define £ <  and &N in P, just as in P;

() A =2, A0 =23, .0, =1y

(ill) li > lj = lmin oY) (lf 7 :*:]) and li > l‘ =1 (fOI' each i) ;

(V) Ox =4 x0=0,1 X A=14x<1=»41;

(v) £ 4; and 4; < & (£ in P) are defined arbitrarily for other &.
Each characteristic function 6,(£), v € P, , i8 (3<,N)-expressible since the fol-
lowing identities hold in P, (for a product of more than two terms, assume
that the association is from the left):

8o (&) = A (&) A (£ < &), 8, (£) = 8, (£Y), -.r, 85, (£) = 8 (£Vn—1);

O, (8) = (£-&M ... @M1 (8 €M EMmY) (0 ML g )Y
81y (§) = 83, (EY), v 5 O, (6) = By, (EVmY).

In the above, &V denotes the inverse of &N. Since P, is finite, &YV is
a (N)}-expression. Moreover, 0, 1, 85, ..., B, are (<,N)-expressible and 4, , ... , A
are (><, N)-ex-expressible, since

0 =25, (£) X 0, (&), 1 =00, By =0M, .. B,=0M""1( in P,);
Ay =&EN gt g =D, A = A]m—1 (¢ in P\ P).

Clearly, <8 is the unique proper subalgebra of 93, . The conditions (1°)-(6°)
of Lemma 4 are verified. Thus, 3, is a regular subprimal algebra and,

indeed, even an r-frame., The theorem is proved.

THEOREM 9. Let (B; <) be a finite binary algebra. Then a binary ope-
ration £ T n can be defined on B such that (B; ><,T)is an s-couple.
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Proor. For the two-element binary algebra ({0,1}; <) it is easily
verified that conditions (1°)-(6°) of Lemma 5 hold if £Ty is defined by
07¢=¢T0=¢ and 171 = 0. Let, then B={0,1,b,,...,b,} be the base
set of a binary algebra of order m 4 2, where m = 1. Consider the cases
(I) m=2 and (II) m = 1. For (I), define T on B such that

(16) 0T§=§(TO0=¢ (each & in B);
17) 1T1="0,,b, Tby=1"y,.ue,bp Thy=1;
17b, =1, b, Thy="b, Thy=1.. =bypy Ty =10y T1=1Tb, =0;

Ty is defined arbitrarily for other &, in Bj;
hold, while for (II), define T on B such that (16) and (17) hold in addition to
1T, =bT1=0.

In either case (I) or (II), let én= & T ¢, In the characteristic function 4, ()
is (X, T')-expressible then &y, (&), ..., dp, (£), Iy (£), and O are (X<, T')-expres-
gible since

Bs,, (§) = 06, (&N), 8y,,,_, (&) = 6, (M), ...y o, (§) = 0, (&™) (¢ in B);
@) =206, T, (&) T... T, (5=1(in B\ {0});
0 =9, (§) X &, (&) (¢ in B).

In case (I), 8, (§) = & T &N, while in case (II), 8, (£) = &2, (& T £%)%, or &N T'(& &n),
according as bi = 0,1, or b, , respectively. In each case, it is clear that
{0} is the unique subalgebra of (B ; ><, T'). The conditions (1°)-(6°) of Lemma 5
are verified. Thus, (B; <, T') is a singular subprimal algebra and, in fact,
an s-couple.

We conclude with the following easily proved corollaries of Theorem 7.

COROLLARY 2. Any subfamily of the family Fs, of all pairwise non-iso-
morphic s-couples forms a singular subprimal cluster.

COROLLARY 3. Any subfamily of the family F, of all r-frames with
pairwise non isomorphic cores forms a regular subprimal cluster.

COROLLARY 4. Any subfamily of the family Fy uF, is a subprimal
cluster.

The algebras given in Theorems 8 and 9 apply, of course, to thess
corollaries.

Note Added in Proof. Theorem 8 was obtained independently by A.
L. Foster, Monatshefte fiir Mathematik 72 (1968), 315-324.
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