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THE CARTAN-THULLEN THEOREM
FOR BANACH SPACES

by SEÁN DINEEN

The object of this paper is to give a characterization of domains of

holomorphy which is similar to that given by Cartan-Thullen for finite

dimensional spaces in [4]. In § 1 we recall some results from the theory of
holomorphic functions on a Banach space, define domains of holomorphy
and prove a number of fundamental lemmas. In § 2 we prove our main
results. Our main reference for the theory of holomorphic functions on a
Banach space is [16] and for domains of holomorphy in finite dimensions
we refer to [2], [3], [4], [10], [13] and [15]. In [1), [2], [3], [11] and [12]
there are a number of interesting results concerning domains of holomorphy
in infinite dimensions.

SECTION 1. E will represent a complex Banach space with unit ball B~.
For each positive integer m let denote the set of all continous

m-linear mappings from Em = jE7 x .E X ... m E (m times) into ,C (the complex
numbers). Let 11m denote the mapping from E into Em which takes x into

..., x) (m times). A continuous m homogeneous polynomial is a mapping
from E into C which is the composition of Am and an element of

.6(~E7). We denote the set of all continuous polynomials on E
and we note that it forms a Banach space under the norm

A complex valued function f defined on an open subset U of .E is said to

be holomorphic at ~ E U if there exists a sequence (Pn (~))~=o (where Pn ($) E
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E ~ for each n) such that

for all x in some neighbourhood of ~. f is said to be holomorphic on U

if it is holomorphic at all points of U. Since the expansion in (2) is unique
/’0..dmf(E)

(see [16]) we write m! = Pm ($) and call (2) ) the Taylor series expansion
&#x3E;1.

of f at E. For the remainder of this paper U will denote a connected open
subset of E with a nonempty boundary ~ U (the questions we consider are
trivial for U = E). CA will denote the complement with respect to jE7 of

the subset A of E. If A, and A2 are subsets of E we denote by d (Ai, A2)
the distance between d.1 and A2 , i. e.

DEFINITION 1. B c B is U-bounded if B is a bounded subset of E

and o. We note if E is finite dimensional that the closed

U-bounded sets are exactly the compact subsets of U.

DEFINITION 2. (a) is the set of all complex-valued holomorphic
functions on U.

(b) ~b (U) is the set of all holomorphic functions on U which are

bounded on all U-bounded sets.

-

DEFINITION 3. Let Bc U then But (resp. is the set of 

such that

for (resp. and is called the U (resp. Ub)-holomorphic
hull of B.

DEFINITION 4. A connected open subset U of B is a domain of holo-

morphy (resp. b domain of holomorphy) if there exists f E W ( U) (resp. Wb ( IT))
which cannot be extended to an element of qe ( U1) (resp. Wb (Ut)) where ~T1
is a connected open subset of .E which properly contains U.

For a subset 7 of (the dual we 

= sup I ø (P) I for all P E 6P 
Q E V
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1-1 -""’.

LEMMA 1. Let B c U and Yc then for all ~ E B u (resp. B U, b)
we have

for each integer m and all f E I (U) (resp. C7Yb ( U)).

PROOF. Let 0 E T~ and f E I (U) (resp. ~’b ( ~T)) then by the definition

of holomorphic hull

Hence

i. e.

LEMMA 2. Let B c U and 0 be such that B + a B1 e U. If f E ge (U)
(resp. geb ( U)) is bounded on B + then f is holomorphic (by analytic

continuation if necessary) on B u + (resp. Bu, b + o&#x26;Bi) and

~ n

where BUt b)  a.

PROOF. By Cauchy’s inequalities (see [16], p. 22) we get

where M = sup . By lemma 1 this implies (taking V = Bl)
x 

By the Cauchy-Hadamard formula ([16], P. 10) f is holomorphic (by analytic
...0,.. -

continuation if necessary) on (resp. Bu, b + aB,) and for x E Bo
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1-1

(resp. Bu b) and ( y 11 I  , we have

If a is a positive real number and Ac E we say A --~- (XB1 is an a neigh-
bourhood of A.

LEMMA 3. Let U be a domain of holomorphy (reap. b-domain of holo-

morphy) and let B be abounded. If each f E (resp. 9(b ( D’)) is bounded

on some a ( f ) neighbourhood of B then Bu (resp. BU, b) is U-bounded.

.11 

PROOF. It is easy to check that Bu (resp. Bu, b) is always a bounded’ 

1-1

subset of .E so there remains only to show that d (Ba, &#x3E;0 (resp.
- 

d (BU, b , CU))&#x3E; 0). If not there exists a sequence, (En)n"=0, of elements be-

longing to Ba (resp. such that d ($n , C~ ~T ) -~ 0 as n -+ oo. Lemma 2
implies that every f E qe (U) (resp. ~b ( D~)) has an extension to a holomorphic
function in some a ( f ) neighbourhood of each ~. Since U is a domain of

holomorphy (resp. b-domain of holomorphy) and ~(~,6~7)2013~0 as n --1- 00
this is a contradiction.

LEMMA 4. Let U be a connected open subset of E such that it is im-

possible to find two open connected subsets U1 and U2 of E with the fol-

lowing properties.
(1) and Uf ct. U
(2) For every there exists an 11 E such that

1=/1 on U2
=

then Ba, b is U-bounded for each U-bounded set B and 

= d(BU,b CU)
=

PROOF. Since we get immediately that CU).-’ - 
’

Suppose d (B, &#x3E; d b, C U ), Choose $1 and a &#x3E; 0 such
that B + ~2 - ~i ’)* and is U-bounded where ~2 - ~1 denotes the
convex balanced hull of E2 2013 E1(choose E1,E2 such that [[ $z - (1||  d 

- 
’

and take 0  a  1/2 [d (B, Cu) -||2 2013 E1 II ]). For ZEBu, b we get by
Cauchy’s inequalities and lemma 1 that
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(this is meaningful when we identify .E with a subset of ( ~ (’~.E ))’ by means
of the mapping for all Lemma 2 implies that f is
holomorphic on the set +E2 2013 E1 + aBi and for a1  a we have

-

But and this contradicts the hypothesis for U
and hence proves the lemma.

The analogous lemma for ge (~) can be proved in a similar fashion
and we get

LEMMA 5. Let U be an open connected subset of jE7 such that for each

there exists which cannot be extended to a holomorphic
function in a neighbourhood of $. Then the holomorphic hull of each com

-

pact subset .g’ of U, Ku, is a compact subset of U and d (K, CU) =
.11

=d(KU,CU)
In the next two lemmas we concern ourselves with topologies on 

(see [5], [7] and [16]). Let To denote the compact open topology 
and let T denote the bornological topology associated with To (see [7]).
Since To is complete (see [16]), T is also complete and barrelled.

LEMMA 6. Let xn E IT for n = 1, 2,... and suppose sup If (Xn) !  oo for
n

I defines a continuous semi-norm on
n

(Cfl (U), T).

PROOF. Let Bp = ( f ) S 1}. Then Bp is absorbing (by hypothesis)
and since Bp = f 1 { f ;|f(xm)  1} it is closed and convex. Since T)

p

is barrelled this completes the proof.

LEMMA 7. Let p be a continuous semi-norm on the space (U), T)
and suppose is an increasing sequence of open subsets of U such

00

that U Vn = IT then there exists a positive integer no and C &#x3E; 0 such that
n=l

PROOF. Suppose the result is not true. Then for each positive integer
n we can choose such that and sup If, (x) I .,- 1/n.

x E V n
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The sequence 1 is a bounded subset of (ge (U), To) and consequently
of (9l (U), T) but p ( fn) as rc - oo which is a contradiction.

SEOTION 2.

THEOREM (Cartan-Thullen I). Let U be a connected open subset of the
Banach space E. For the properties listed below we have (1) =&#x3E; (2) =&#x3E;
(3) -&#x3E; (4) -&#x3E; (5) =&#x3E; (6). (2) =&#x3E; (1) if .E is separable but this does not
hold for arbitrary E.

(1) U is a b-domain of holomorphy
(2) For each ~ E 8 U there exists f E geb ( ~ ) which cannot be extended

analytically to a neighbourhood of ~.
(3) It is impossible to find two open connected subsets U1 and U2 of

E such that :

(a) U fl U, :) U2 ~ Q~ and U.-~ Ui
(b) For every f E 9(b ( IT) there exists an f, E such that 

on U2
(4) If .8 is U-bounded then Bu b is U-bounded and d (B, eU) =

= d(BU,b , CU)
(5) If B is U-bounded then BUb is U-bounded.

(6) For each sequence of elements of U such that ~n E 8 ~T
as n --~ oo there exists f E ( U) such that sup I f (~n) I 00.

n

PROOF. (l)--&#x3E;(2)-&#x3E;(3), (4) _&#x3E; (5) and (6) =&#x3E; (2) are obvious.
Suppose (5) holds and (6) does not. Then there exists a sequence,

n= 0 , of elements of U such that E 6 U as n --~ oo and sup f (~n) 
n

for all f E Qtb ( ~ ).
Now endowed with the topology of uniform convergence on

U-bounded sets is a Frechet space and the mapping f -~ f (~~,) ( f E geb (U))
is continuous with respect to this topology for each n. Hence p ( f ) =

= sup f (~n) ~ 1 defines a continuous semi-norm on and thus there
n

exists B c U, U-bounded and 0 &#x3E; 0 such that

for all f E Hb ( U), By using the fact that Hb ( U) is an algebra we easily
show that C can be taken equal to 1.

=

Therefore for each n which contradicts the fact that Bu, b is

U-bounded, Hence (5) &#x3E; (6). (3) -&#x3E; (4) by lemma 4.
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In [12] there is an example of a Banach space whose unit ball is not

a b~domain of holomorpby. This gives an example in which (2)=~=&#x3E;(1).
We complete the proof by showing (4) ==&#x3E; (1) if ~ is separable. Since

jE7 is separable, U contains a countable dense subset M. Let (~~)~ 2 be a
sequence of elements in M containing each point in M infinitely often. For
each $n let An be the open ball with centre ~n and radius d (8n , eU). If
(4) holds we can construct by induction a sequence of U-bounded

sets and a sequence (Zn)::2 of points of II with the following properties :
1) ~==~=~
2) ,n+l E 

3) Bn is an increasing sequence and each abounded set is contained
-

in some Bu . (This is possible since d eU) = 0 and d (Bn, a, b, &#x3E; 0).
By construction we can choose such that sup [ fn (x) I ~ 1/2n

XE Bn

and

for all n and for each m, we have

Hence f (zn) as n - oo. This implies that if ~ E 6 U and 8 &#x3E; 0 is ar-

bitrary

Thus f has no extension as a holomorphic function to a larger subset of .E
than U. This completes the proof.

As regards qe ( U) we do not know if the converse to lemma 5 is true

even if E is separable. We now prove some results about ck ( U) similar to
theorem 1.

THEOREM (Cartan-Thullen II).
Let U be an open connected subset of the separable Banach space E then

the following are equivalent
(1) U is a domain of holomorphy
(2) There exists an increasing sequence of U-bounded sets, (B~,)~ Z , such

that Bn = and each compact set is contained in the interior of some Bn.

PROOF. Suppose (1) is true; then there exists f E c?t ( U) which has U
as its natural domain of existence. For each compact subset K of U choose
oc (K) &#x3E; 0 such that f is bounded on .g -~- 2a (K) B1 . The sets K + a (K) Bi
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cover U as K ranges over all compact subsets of ~7. Since E is separable
we can choose a sequence of compact subsets of U such that

U = (Kn + oe (Kn) B,). Now let ~ = inf. (z and define =

t~~

= (Kn + cx (Kn) Bl). Then Bn is an increasing sequence of U-bounded

sets and f is bounded on Bn + P,, Bl. Lemma 2 implies that f is holomor.
-

phic (by analytic continuation if necessary) on Bn, u + BnB1 I Since f has U
=

as its natural domain of existence this implies d (Bn, U, eU) &#x3E; 0. Since

Bn is U-bounded for each n this means that Bn, u is U-bounded for each n.

Each compact subset of U is easily seen to be contained in the interior of
-

some Bn. To complete the proof we note that the sequence Bn, u has all
the required properties.

(2) ==&#x3E; (1) This is quite similar to the proof that (4) =&#x3E; (1) in the

previous theorem. Let be the sequence of U-bounded given by hypo-
thesis. Let M be a countable dense subset of U and take ($n)n’-2 as a sequence
of elements in M containing each point in M infinitely often. For each n
let An be the open ball with centre n and radius Let 0 2 = B 2
and choose (this is possible since ~(A~6~7)===0 and B2 is

U-bounded).
Suppose C2 Cn and Z2 ... , zn have been chosen. Choose kn+i such

that On, Zn E Let On+, = and choose z,,+, E n 

For each n there exists In E (M (U) such that

The function f = E g{ ( U) and has U as its natural domain of exi-

stence. Hence (2) &#x3E; (1).
The example quoted in theorem 1 also shows that the separability

condition was essential in theorem II.

THEORFM (Cartarc-Thullen III).
Let U be a connected open subset of a Banach space E then the follo-

wing are equivalent :
(1) For each $ there exists f E 9l (U) which cannot be extended to

a holomorphic function in a neighbourhood of ~.

(2) For each sequence, (En)oon= 1, of elements of U which converges to some
point in 6 U there exists f E cY ( U) such that sup I f I = 00.

n
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PROOF. (2) ==&#x3E; (1) is obvious. We now show if (2) is not true then (1)
is not true.

If (2) is not true there exists a sequence, of elements of U

which converges and such that sup I  oo for all f E 
n

By lemma 6 p ( f ) = sup is a continuous semi-norm on (9t (U), T).
n

Let f E be arbitrarily chosen. For each positive integer n let

is an increasing sequence of subsets of U and U. By
lemma 7 there exists no and C such that

’ 

-

Since 9( (U) is an algebra we can take C = 1 and hence E for each

n. By our choice of the Vn’s, f is bounded on a neighbourhood of 
Lemma 2 implies f can be continued as a holomorphic function in a

1/no neighbourhood of $n for each n and hence in some neighbourhood of ~.
This completes this proof.

If the closed bounded subsets of .E’ (the dual of E ) are week*-sequen-
tially compact condition (2) of the last theorem can be replaced by the
following equivalent condition (see [8]).

(2’) For each sequence, (~~,)~ 1, of elements of U which has no limit
point in IT there exists f E qe (U) such that

In particular (2’)  &#x3E; (2) if .E is separable or reflexive.
I would like to thank Professor Leopoldo Nachbin for suggesting the

problem to me originally and Professor John Horváth for a number of in-
teresting conversations on this subject.
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