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THE FUNCTION CLASSES 03B3H(03B2, 03B4, d) AND GLOBAL

LINEAR GOURSAT PROBLEMS (*)

JAN PFRSSON

Introduction.

The non-characteristic linear Cauchy problem when the coefficients are
entire functions was treated in [4] and [5] as special cases of more general
problems. It was proved that with entire data the Cauchy problem has
an entire solution if the coefficients in the principal part of the operator
are constants.

In [4] it was pointed out that the solution of

is

Since u is not an entire function we must put some restriction on the co-

efficients in the principal part. Recent studies on the characteristic Cauchy
problem for the equation I q ~ 0, 1 q, m, n integers, 1 see
[6], show that the dependence on the space variable has a remarkable

impact on the solutions. See also Asadullin [1], and A. Friedman [2]. It

was shown in [6] that the only analytic solutions around the origin of
are the trivial ones Ax + B, A and B being arbitrary con-

stant. It was further shown in [6] that Dt u + tx3 has no analytic
solution in any neighbourhood of the origin.

It is then natural to modify (1.1) to

Pervenuto alla Redazione il 5 Marzo 1970.

(*) Qnesta ricerea 6 stata finanziata da una borsa di ricerca del Consiglio Nazionale
delle Ricerche presso l’Istituto di Matematica dell’Università di Genova.
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The successive approximations give the solution of (1.2) explicitly as the
series

Since

u cannot be an entire function. The solution of

is

So here u is entire.

We have taken the experience from (1.2) and (1.3) as a frame for the

hypotheses in Theorem 1 and Theorem 2 in section 3 below. Theorem 1 is

a slight modification of Theorem 1 in [5]. Here we use the function classes
YH (fl, 6, d) instead of the classes y (fl, 6, d) in [5]. See section 2. In section

2 we also give the notation. Otherwise we follow the proof of Theorem 1
in [5]. So we refer the reader to that paper for the main argument. Only
the deviations from that proof is indicated in section 3.

Theorem 2 is a special case of Theorem 1. It generalizes Theorem 3
in [5]. It says that the coefficients in the principal part of the operator
may be entire functions depending on the time variable only. The last
mentioned theorems deal both with the non-characteristic Cauchy problem
for entire functions.

So far the results in section 3. Still one might ask if it is possible to
weaken the hypothesis on the coefficients in the principal part. Let f (x2)
be an arbitrary entire function. The solution of

is

Thus u is an entire function. Now we look at

Its solution is

Here u is not an entire function. This is rather remarkable. But it is also
in line with the results in [6]. We have not been able to prove a theorem
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that covers the situation in (1.4) and excludes the situation in (1.5). Our
method of proof does not seem to apply to the situation in (1.4).

That a unique analytic solution of (1.1)-(1.5) exists in some neighbour-
hood of the origin follows from the Cauchy-Kovalevsky theorem. For a
further background we refer the reader to [4] and [5] and the references
given there.

In section 3 it is also indicated how Theorem 1 in [5] can be modified.
The new version does not cover the old one and is not included in that

theorem.

Added in proof: In a paper to appear in Norske Vid. Selsk. Forh.

(Trondheim) we prove that Dt u = x2 Dx u + tx2 has no entire solution.

2. Preliminaries.

Let where 0 
n’ - n. A multi-index with non-negative integers as components is de-

noted by a Greek ... , We define Dx = ... , Dxn) ==

... , alax.) and write = Dal ... We also write 1 0&#x26; ] = a1 +...
Xl n

... + an. We define a -,- 6 =&#x3E; a;  bj, 1 n.

Let d We define ad = a1 d1-~- ... -~- an We shall also use va-

riables x E Rn . If i=ý 1, yj and
~’ real, we define = 2-1 (a/ayi - ia/ayJ’). Otherwise for these variables

we use the natural extensions of the definitions above.

We repeat the definition of the class P as given in [5].

DEFINITION 1. Let p (t), t ~ 0, be a real valued oontinuously different
tiable function. If it satisfies the following conditions

(2.3) p (t) tends monotonically to + oo when t ---&#x3E;- -f - oo,

(2.4) p’ (t) tends monotonically to zero when t -+ + oo,
and

(2.5) p (t)lt and p ( p are decreasing,

then p is said to belong to the class P.
We then define the function class yg (~, 8, d). It is defined in such a

way that we can use most of the proof of Theorem 1 in [5].
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DEFINITION 2. The function g ( y, x) is complex-valued and defined in
Rn, b E Rn and fl E R-1 are mnlti-indices, and d E Rn, 0, 1 ---j --- n.

The derivatives -D’ -D~ g, y ~ p, all ~, exists and are continuous together with
g itself. For every fixed x E Rn, y --~ g (y, x) is a holomorphic function in 0’.

If to every set .g c es X Rn there exist a constant C &#x3E; 0 and a function
p E P suclz that

then g is said to belong to the function class y., (fl, 8, d). Here 0-1=1 in
(2.1).

We see immediately that 6, d) restricted to Ra is a subspace
of y (p, 6, d). See Def. 2 in [5].

Let the function g E 7H d). If

and

then we write

3. Goursat problems with solutions in YH (fl, ð, d).

We shall now prove the following theorem.

THEOREM 1. The integer it’ is restricted by 0  n. Let d E Rn, 7
d,j = 1, 1 .c--j ~ n’, dj 2 1, 1 ---j -,- n. The multi-indices fl E R8, 6 E Rn, yk E I

ak E 1 S k  N, are restricted by

and

The functions f (y, x), ak (y, x), 1 S k -,- N, belong to r H (P, ð, d). Thus to
every r &#x3E; 0 there exist a p E P and a constant Ct &#x3E; 0 such that
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and

The functions ak are further restricted by

depends on y only.

It follows that the Goursat problem

has one and only one solutzon u in yg ð, d).

PROOF. We compare the theorem above with Theorem 1 in [5]. We
see that (3.2) has no counterpart in [5]. In fact (3.2) is vital for the proof
below. On the other hand there is no restriction of the type (4.5) in [5]
above. Since the coefficients ak in (3.5) are holomorphic in C8 it would make

these coefficients constant. We shall follow the proof of Theorem 1 in [5]
very closely. So we shall only write down the points of difference.

Let Â, be an arbitrary fixed number in 0  Å.  1. We use the succes-

sive approximations in (4.7) in [5] connected with equation (3.6) above. We
choose an arbitrary fixed r &#x3E; 1. Then it follows from the continuity of the
coefficients that the sum

is bounded.

We now make the following coordinate transformation.

The new coefficients are of the form

We also have

It now follows from (3.1) and (3.2) that we can choose t so great that in
the compact set D in the primed space that corresponds to y I + I x C r
in the original space,
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We note here that (3.2) is crucial. We now fix t so that (3.7) is true toge-
ther with (4.2)’ and (4.3)’ in [5]. Then the proof goes through just as in [5].

It should be noted that lemma 5 in [5] must be modified. The function

u (y, x) in the lemma is now defined in C~ X Rn and for is holo-

morphic in y. The integrations in the y;-variable in the proof of the lemma
are now made radially from 0 to yj in the complex plane. It is also to be

noted that the functions from the successive approximations are all holo-
morphic in the y-variables. This is verified if we use a suitable representa-
tion of the functions by the Cauchy integral formula in the y-variables
and then perform the eventual necessary differentiations in the z-variables

under the integral sign in the Cauchy integral formula. That the solution

u (x, y) then is holomorphic in y E 08 for fixed x E Rn is an immediate con-

sequence of the uniform convergence of the successive approximations on
every compact set in the primed space. Thus u E yg (fl, 6, d). Theorem 1 is

proved.
We now look at Theorem 1 in [5]. We add condition (3.2) above and

delete (4.5) in [5]. Then the conclusion of the theorem is still true. This is

evident from the proof above.
What says Theorem 1 when we specialize to a Cauchy problem? We

only look at the case when dj = 1, 1 ~ j ~ n. Then u can be extended to

a function holomorphic in for every fixed y E C8 . Hartog’s theorem
then says that the extended function is holomorphic in For a

proof of Hartog’s theorem see Hormander [3], p. 28. Let now s =1 and

let n’ = 0. Then (3.1), (3.2) and (3.5) says that (3.6) is a non-characteristic

Cauchy problem with coefficients in the principal part that depend on y
only. Thus we have also proved the following theorem that generalizes
Theorem 3 in [5].

THEOREM 2. The and ak E Rn, 1 S
S k s N, are restricted by

The entire function8 f, ak, 1  k -,- N, in on are restricted by

If follows that the Cauchy problem

has one and only one entire solution, Here Dx denotes complex differentiation.
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