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HARDY SPACES OF ALMOST PERIODIC FUNCTIONS

by J. P. MILASZEWICZ

1. Introduction.

In the classic context, Hardy spaces can be defined in two equivalent
ways : first as the subspaces of LP of the unit circle with vanishing nega-
tive Fourier coefficients; second as spaces of holomorphic functions in the
unit disc such that the p-th means in each circle of radius less than one
are uniformly bounded.

One departure point for a generalization is to substitute Z, the inte-

gers, by any subgroup g of the real line with the discrete topology. This
leads to the construction of the so called « big disc » (the closed unit disc

if g = Z) and of a generalized Poisson kernel. As in the classic context

two directions can be chosen to define the Hardy classes ; one dealing witb,
the « boundary of this generalized disc, that is the dual group of g (see
[X]), and another dealing with its « interior » (see [VIII]).

This note deals mainly with the second definition. In the first part we
investigate in which measure some classic results can be extended as Her-
glotzys theorem ((2.3.8)). Afterwards we give a description of the Hardy
classes as spaces of analytic almost periodic functions on a half plane, fol-

lowing an idea that can be found in [III] ((4.2.5)).
Finally, we show that the two constructions mentioned above lead to

different concepts unless g = Z ((5.2.1 )).

2. Basic notations and preliminaries.

(2.1) g will indicate a subgroup of the real line 1R with the discrete

topology ; g+ = (x E ~&#x3E; 0) ; .L1 (g) is the group algebra of g of complex

Pervenuto alla Redazione il 17 Gennaio 1970.
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valued integrable functions with respect to Haar measure of g, that is the
absolutely summable series with indexes in g.

A1 is a closed ideal of .L1 (g). T is the dual group of g ; if we give 1’ the

compact-open topology it is a locally compact group which can be indenti-
fled with the maximal ideal space of Li (g) ([IX]-§ 34). With * we shall
indicate the convolution product in r. In the present situation, the existence
of the identity element in .L1 (g) implies that .r is compact.

4 is a semigroup with respect to pointwise product; if we endow A with

the compact-open topology, it can be identified with the maximal ideal

space of the algebra the identification is established in the following
way: if we call the maximal ideal space of we define

dx indicates the Haar measure of g and ( ~, x ) = value of ~ on x. The

function h is a homeomorphism when we give the weak* topology
induced by the Gelfand transform. The group .,r = g (~’ (g)) is imbedded

homeomorphically in 4 in the natural way. We shall call 4 = L1 - r. If
-"’"

we denote f the Gelfand transform of f E .L1 (g) we have

n -

j’ : C is continuous by the definition of the topology in 4 ; the Shilov
- -

boundary of the algebra A1 of Gelfand transforms in d is exactly r. For

each $ E d there is a unique real regular Baire measure representing it ([I]-
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7.1 and [II]-4.8)

The convolution of representing measures is the representing measure of
the product i, e.

In 4 there is a distinguished point, namely

This point plays the role of the center of L1; its representing measure is

the Haar normalized measure of F. 8 E 4, $ # ~o =&#x3E; ~ = r. a in a unique
way ; r : g+ --~ ~0,1] rE2f and a E 1’. If f E 0 (T) we have

because of the symmetry of r~r and the fact that ma is the unit mass mea-
sure concentrated on a. Remark that formula (2.1.4) is still valid if , = ’0 .
For the proofs of the foregoing statements see [II]. The mapping ~[0,1]2013~-J
defined by ( i (r), x ) = rO for r &#x3E; 0 and i (0) = ~o is a homeomorphism bet-

ween [0, 1] and the set of positive elements of J.

(2.1.5) We have indicates the

Haar normalized measure of 1’; we also note it dm. The mapping $ -+ mi~
from L1 into C (F)* = dual space of 0 (F), is a continuous homeomorphism
with its image when is endowed with the weak* topology.

Thus calling mi(r) = mr r E [0, 1] we have that the family of measures
is such that

e1= identity element of r ( f E C (r)).
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In the case g = Z we get the Poisson kernel.
As a consequence of the preceeding reIn arks we get that if U is a

neighborhood of e1 then mr (U) --+ 1.r-I

(2.1.7) We also have for f E C (F) tat 

be its Gelfand transform,

(2.2.1) LEMMA : if x E g then

PROOF : consider first x ~ 0 and define

then Applying (2.1.3) we get

using again (2. 1. 1) we obtain

The fact that mr is a real measure gives

if x  0 and this completes the proof.
If we consider the uniform closure of Ai we obtain a Banach subalge-

bra of C (J) which we shall call Ao . The Shilov boundary for Ao is still

7~; formula (2.1.4) also holds for functions in it is possible to extend
it slightly as follows :
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then Following [II]
J 

_

we shall call functions in Ao generalized analytic functions in 4.

(2.2.3) LEMMA : Let f : F- C be a continuous function ; f is the re-
striction to r of a function F in Ao iff

Besides,

PROOF: [VIII]-(6.1).

(2.2.4) DEFINITION : given F : 4 --~ C we shall call Fr : 1~-~ C the re-
striction of h’ to ~. 7~= I cx E F ) (r  1).

(2.2.5) DEFINITION: given F : 4 - C we say that Fr E Ao if Fr is the

restriction to F of some function in Ao (r  1).

(2.2.6) DEFINITION : for F : 4 - 0 we say that F is generalized har-
monic (in the following g. h.) if

(i) .~ is continuous

(ii) r1  r2  1 &#x3E; Frl = Fr2 :11= 
We say that ~’ is generalized analytic (g. a. in the following) if

(iii) F is g. h. and for some 0  r  1 Fr E Ao. Remark that if (ii)
holds and Fr is continuous for each r  1 then F is continuous.

PROOF : suppose

if r’ &#x3E; r, analogously

(2.2.3) yields the desired conclusion.

4. Annali della Scuola Norm. Sup.. Piaa.
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(2.2.8) COROLLARY : Let be g. h, ; then if
have

(2.3) Let be

(2.3.1) DEFINITION : I if ~I  00

(2.3.2) THEOREM : Let with or then

limit exists except on a set of zero mi-measure for each $ E A. The
r -;1

limit function Ff belongs to me) and for  o0
iE4

for

We have also the Poisson integral formula

PROOF: [VIII] 5.1.

(2.3.4) Let F be g. h. and

PROOF : fix r1  1 and Pl 6 F
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(2.3.5) COROLLARY : Let F be g. h. and 1  p  00, r2  1 ; then

PROOF: apply (2.3.4) with r1 = 0.

(2.3.6) DEFINITION: Let

(2.3.7) PROPOSITION: (hP lip) is a normed space

(2.3.8) THEOREM : if then there exists a Baire regular mea-
sure lAp E C (r)~ such that

We intend equality in the sense of measures

PROOF : Let 1, r1 # 0 ; consider the measures associated to i.e.
if f E C (r)

(2.3.5) yields

A general compactness argument says that any closed ball of a dual space
is weak* compact. Thus we have that there exists a subsequence rck and a
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measure such that

We clain that 0  r  1.

For this we shall prove that both members have the same Fourier-Stieltjes
transform and this will complete the proof for then, they take the same

values on trigonometric polynomials in r, and then in all of C (r) because
trigonometric polynomials are dense in C (T) (see [IX], § 38).

Let x E g ; we want to show that

We shall use that for 81  1

Consider 0  r  1

Take now r = 0
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3. The Banach algebra structure for hp (d).

(3.1) We have already observed that hP (d) is a normed linear space
in (2.3.7)

(3.1.1) THEOREM : is a Banach space; HP (A) is a closed

subspace of hP (L1).

PROOF : suppose first that p = oo and let Fn be a Cauchy sequence
in 7t- (L1). It is clear that there exists F : L1 --~ ~ continuous such that

In the case  1 it is clear that Fr E  1.

Suppose now that p  oo ; let r,  r2  1 and 

We know that this converges to zero as 1U and n tend to infinity if

r2 = ro by hypothesis. To see that this holds in this case independently
of r1 C r2 we observe that and mro are mutually absolutely continuous
and that the respective Radon-Nykodym derivatives are bounded everywhere
(see [VIII] 2.23). Thus there exists a constant r2) such that

and then

Thus Fn restricted {rt ~: ~ E 4 ) is uniformly fundamental, and
this implies that Fn converges uniformly on compact subsets of Lt. So we
obtain F : 11 - C which is continuous $ analogously to the case p = oo it

can be shown that .~ is g. h. (g. a. if the Fn are g. a.).
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Let us see that Fn converges to F in given s &#x3E; o there exists

no (8) such that

suppose that r  1 and BEf are fixed

if it no (8): this implies that F E hP (A) and

3.2. We proceed now to define the product between g.h. functions

(3.2.1) LEMMA : let F, G : 4 - C be g. h. functions ; if r  1 and

we have

PROOF : suppose r1  s1

This equality holds almost every where with respect to Haar measure on

r but because of the continuity of the functions involved, equality holds
everywhere.

(3.2.2) DEFINITION : given F, (~ g. h. functions we define their Hadamard

product &#x3E; (~ : L1 - C in the following way

It is clear that, because of (3.2.1), this definition does not depend on the
decomposition of r as product of two numbers less than 1.

(3.2.3) LEMMA : if F and G are g.h. then is g.h.; if (~ is g.a.
then F (~ ~ G is g.a.
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PROOF : we need only to prove that (2.2.6)-(ii) holds because of the

remark in (2.2.6)

In the case (~ is g.a. then

vanishes whenever vanishes ; (2.2.3) implies that F(*)(? is g.a.

(3.2.4) THEOREM : moreover

PROOF: the case p = o0 offers no difficulty so we can suppose p  o0

Let Or21 and 3 E T

where we shall show later that
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The last two inequalities hold because of (2.3.5). The validity of the inequaliy
for each 0  r  1 and B E .h leads to the desired conclusion.

Suppose now that fos some r1 &#x3E; 0 = 0 ; this implies that Fr, = 0
a.e. respect to Haar measure on F. But as Frl is continuous it vanishes

everywhere. Since on the other hand we have (see (2.2.8))

then Fr2 = 0 V 0  r2  1 and this gives F = 0.

(3.2.5) COROLLARY : is a Banach algebra and HP (4) is a. closed

ideal.

PROOF: apply (3.2.3) and (3.2.4).

(3.2.6) LEMMA: given the measure up obtained in (2.3.8)
such that Fr is unique.

PROOF: t and x E g. The fact that two mea-

sures which have the same Fourier-Stieltjes transform must coincide leads

us to the conclusion.

(3.2.7) LEMMA : suppose F, and are the boundary mea-
sures given by (2.3.8) ; then

(3.2.8) THEOREM : the mapping from into C (r )~‘ is a

continuous injective homomorphism.

PROOF : it is clear that the mapping is linear and (3.2.6) (3.2.7) imply
that it is multiplicative; the argument used in (3.2.6) gives the injectivity
part; the continuity follows because is taken in the closed ball of radius

||F||
We shall prove in another section that the mapping in (3.2.8) has a

continuous inverse iff the departure group g is Z.
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(3.2.9) LEMMA : let 1’ be a compact group ; and

then

(LP (1’) is the space LP associated to Haar measure on T).

PROOF: the proof is by induction.
For n = 1 we have p &#x3E; 2 ; if f, , f2 E LP (1’) then f2 E .Lq (1’) where

1 1 =1 because of the compactness of the group. But as LP * Lq c C(r)
p q
([VI] (20.19)) we have is continuous. Suppose now that the sta-
tement is true for n = ko and let

Consider has the solution P2 =

then we have that thus

because of the inductive hypothesis.

(3.2.10) DEFINITION : given F E hP (J) 1  ~ ~ oo we say that F E C (T)
if the boundary measure is a continuous function; we say that F E Ao if
F E C (I’) and F (x) = 0 ~ x  0. It is clear that such an F together with
its boundary values is a continuous function on.

(3.2.11) PROPOSITION :
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PROOF: (1) Consider F E hP and G E hq ; then their boundary functions

G1 are in and respectively; but Fi * Gi is continuous

(see [VI] (20.19)); (3.2.7) makes the rest.
(1’) We proceed as in (1) using also (3.2.3)
(2) and (2’). We repeat the technique of (1) and (1’) observing that

(3) and (3’) have been prooved in (3.2.4) and (3.2.5).
(4) Apply (3.2.9) to the boundary functions and then (3.2.7).
(4’) Apply (3.2.5), (3.2.9) and (3.2.7).

4. The spaces and harmonic almost periodic functions on a half
plane.

4.1. In the following we shall use the terminology concerning almost

periodic functions ; Dirichlet coefficients and Dirichlet series as stated in

[V] with the only modification that we write the Dirichlet series of f:
1R - G in the form

We have (see [II], [VIII]) a mapping egpw : iw E C : Re 0) = P - 4
that restricted to Re w = 0 is a continuous homomorphism with values in

r and such that the image subgroup is dense in F, so that the image of

is dense in e-u.r and consequently exp-1 (P) is dense in

d. I then fo exp-1 is a bounded continuous almost periodic func-
tion in P, analytic in P = (Re w ) 0). More precisely we have

(4.1.1) THEOREM : the mapping f -~ f~ exp-1 defines an isomorphism
between Ao and the bounded continuous almost periodic functions in P
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that are analytic in P and such that the exponents of their Dirichlet series
lie in g+ . The vector space isomorphism is an isometry if in both spaces
we consider the supremum norm.

PROOF : see [III]-(2,6) ; see also (4.1.5).

(4.1.2) Consider f E we know that f is the restriction to r of a
-

function .F in Ao iff f (x) = 0 A x C 0 and that if this is the case

For any f E C (r) we can define a g. h. function F in which f as boundary
function, namely

This is the only g. h. function in 4 whose restriction to T coincides with

f. For f E C (.P) we define (4.1.3) to be the harmonic extension of f to A or
the Poisson integral of f. We note it 

We -alse have -sup +~~ f ~ ~~’~ ~ = -SUp 1 f ~~) ~ .
aer

act

(4.1.4) Consider now 9 fo exp-l : P - C ; in the case f is a trigono-
metrical polynomial i. e. f (a) = I a., ( a, x) where ax = 0 except for a finite

xEg
number of x E g then

and

So that Po egpw is a harmonic function in P, continuous and bounded in

P, almost periodic in the whole half plane such that

Observe that in this case we have that the Dirichlet coefficients of

F = Fo exp-l are the Fourier coefficients, of f.
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(4.1.5) THEOREM: the exp-1 is a isometric

isomorphism between the space C (r) and the space of bounded continuous

uniformly almost periodic functions in P that are harmonic in P and such
that the exponents of their Dirichlet series lie in g. Moreover the Dirichlet

coefficients of F are the Fourier coefficients of f. Ao is carried onto the

analytic ones.

PROOF : For trigonometric polynomials in C(T) the stated properties
have been already established in (4.1.4). we can approximate
it uniformly in T by a sequence of trigonometric polynomials (see [IX] § 38)
fn, so that Pfn converges uniformly and Fn to F. We want to see
that the Dirichlet development of F is

where

Consider fo exp-1 = j: Re w = Oj 2013&#x3E; G ; it is uniformly approximated

by Ino exp-l = In so that the Dirichlet coefficients of f are the limit of

the Dirichlet coefficients of in and thus (see [V] § 9 - chap. II) we get that

the Dirichlet coefficients of f and the Fourier coefficients off are the same.
Now we apply proposition 31, chap. IV of[V] and obtain that the function

has as Dirichlet series the extended of that of f i. e.

but (see [VII] page 123 or [VIII] (2.22)) formula (i) reproduces F from its

boundary function f so that G = -F.
Let now be F’ : P -~ C with the stated properties and let F’ (w) c~

’ be its Dirichlet series (x E g).
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The restriction of F’ to the imaginary axis can be approximated uniformly
by trigonometric polynomials of the type

with ax. n =F 0 only # 0 i. e. for x E g.
The natural extensions of Fn to the half plane P defined by

approximate F’ uniformly because oe the harmonicity and boundedness of
the functions involved. As

where

we get that there exists f E 0 (F) such that fn --~ f uniformly. It is clear

then that 9)fo exp-1 = If’; observe that if ~ = 0 whenever x  0 then

9j’ E Ao (i. e. when F’ is analytic in P).

4.2 We turn now to see how the mapping behaves

when composed with g. h. functions.

(4.2.1) THEOREM : The mapping exp-1: P -~ 4 induces a linear isomor-
phism between the space of g. h. functions in J and the space of harmo-

nic functions in P, which are bounded and uniformly almost periodic on
each half plane (Re w h u &#x3E; 0) and whose Dirichlet series have its expo-
nents in g. This statement holds if we change g. h. and harmonic functions
by g. a. and analytic respectively.

PROOF : Let F : 4 - G be g~. h. Suppose that

has Dirichlet series

Consider u &#x3E; 0 and define it is clear

that is g. h. and continuons in all of d and that

belongs to Ao iff ~’ is g. a. Because of (4.1.5), as
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-~- w) we obtain that F is bounded and uniformly almost periodic in

(w : Re w ~ u~~ harmonic in ~w : Re w &#x3E; u) and analytic iff F is g. a.

On the other and we have that

and then working as in (4,1.5) we have

But then (4.1.5) gives us that if a,, 4= 0 then x E g. To see that if .I’ = 0
it is enough to remeber that exp-l (P) is dense in 4.

Let us see the onto part ; suppose we have G : P ---~ C harmonic with

the properties stated in the theorem. Let us consider for each u &#x3E; 0
P ~ ~ defined as follows

We have that Gu is harmonic in P, continuous bounded and almost perio-
dic in P and such that the exponents of its Dirichlet series lie in g. It is

also true that Gu is analytic whenever G is. By (4.1.5) there exists 

4 - C continuous g. h. such that Fit (w) = G’~ (w) = Fit (6-~).
Define F : J - G in the following way F (ra) = Fu (eu ra), r S e-u . It

is necessary to see that this de6nition does not depend on u &#x3E; 0. Let

The continuity of Fu~ and together with the density of v 

in imply that Ful (eul ra) = ea) V a E r and .1~ is well defined.

F is continuous on L1 because it is continuous on each « disc » r . J
(r  1).

Let us see that F is g. h. ; suppose



419

Let us see now that

If (~ is analytic fixing uo &#x3E; 0 we should get that is g. a. on A but as

F* is the restriction of F to j7 so that because of (2.2.7) F should be g.a.

(4.2.2) Let us see now how are mapped the spaces hP (d) by means
of composition with exp--l .

LEMMA : if 11’ E hp (zf) then

PROOF : E is dense in r r = {~ E J/~ = ra) ; the continuity
of Fr yields the conclusion.

(4.2.4) COROLLARY : through the correspondence F -~ .~o the

space hP (4) is carried isomorphically onto the space of 
that verify the conditions stated in (4.2.1) and such that

is bounded uniformly for u ~ in the case p  oo ; in the case

p = oo such an F is bounded in the whole half plane P.
Moreover we have 

- 

’

(4.2.5) THEOREM : Let F, 6" be almost periodic bounded functions in

every proper half plane 0) and harmonic in P ; if
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are their Dirichlet series then the series

is the Dirichlet series of a function with the same properties.

PROOF : consider F, G : A --&#x3E; C g. h. such that F and
’V =

Go exp-1 = 4; then = (F (* ) G)4 exp-1 is the required function ; ob-
serve that (4.2.1) gives us that

so that

(4.2.6) Calling 9P and the image by composition with exp-1 of

hP (A) and HP (zf) respectively we have the analogous of (3.2.11) for P.

N N N N

(4.2.7) THEOREM: Let and with Dirichlet series

then

is the Dirichlet series of a function which is

(1) continuous bounded almost periodic in P and harmonic in P if

(1’) continuous bounded almost periodic in P and , analytic in P if

PROOF : apply (4.2.1) as in (4.2.5), then (3.2.11) and (4.1.5). For the
analogues of (2), (2’), (3) and (3’) the proof is the same changing (4.1.5) by
(4.2.1).

For the analogues of (4) and (4’) we proceed as with (1) and (1’).
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5. HP (4) and the Hardy spaces in the Dirichlet algebra context.

5.1. In [X] it is developed a theory of Hardy spaces when the depar-
ture notion is that of a Dirichlet algebra Ao on a compact space F, i. e.

(i) Ao c C (r) is uniformly closed
(ii) Ao contains the constants and separates points

(iii) Re is dense in Re 0 (F).
So if 1 is a representative real measure i. e. a Baire regular measure

on r such that its restriction to Ao is multiplicative then if 1 C p ~ oo :gp (~,)
is the closure of Ao in LP (~,).

In our situation the restriction of the elements of Ao to r is a Di-
richlet algebra; then given any $ E d the question arises in how are related
Hp (J) and gp (m~) where m~ in the unique real representing measure for $.

we define

in the following way ; (2.3.2) gives us that if there is a boundary

function such that Fr = Fi :~ mr and so that we define

(5.1.3) THEOREM : for any $ E A and ip, I is linear, conti-
nuous and injective.

PROOF : we shall deal with ~ = r where 0 C r  1 ; the linearity of
is clear from the context and (2.3.2) ; suppose first that r = 0 ; then

mo is Haar measure ~t in T. As Fr = mr, then

Thus we get

5. Annali delta Scuola Norm. Sup.. Pisa.
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This means that F1 cannot vanish almost everywhere respect to Haar mea-
sure unless F vanishes in all of d, To prove the continuity of recall

that (see (2.3.2))

but (see (2.3.4))

and then

We remark that it is possible to see automatically that is continuous

by means of the theorem that says that if A and B are Banach algebras,
B semi-simple T : A - B a homomorphism such that T (A) is dense in B

then is continuous (see [VIII] § 24). Consider now the case r &#x3E; 0 ; suppose
then that 0 almost everywhere respect to mr ; the absolute continuity
of Mr, respect to mr for any 0  r1  1 gives us that Fi = 0 almost eve-
rywhere respect to any measure mr with 0  r  1 ; but then F (r =

= (Fl * mr) (ei) = 0 ~ 0  r  1 where e, is the identity element of 7~ i so

that ~’Q exp-1: P- C is an analytic function that vanishes on the real

axis (see (4.1.5)) but this implies that exp-1 vanishes in the whole
half plane P. The density of in J and the continuity of F
imply that F vanishes in all of this completes the injectivity part. We
have that if 0  1 there exists a constant M such that

letting r tend to 1 and taking fl = ei

This completes the proof.

5.2. At this point it is of interest to determine under what conditions

Hp (d) coincides with Hp (mE) for some, E L1.

(5,2.1) THEOREM : Let 1  p  oo and mr r  1 be fixed ; then ip, r is

surjective iff g = Z.
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PROOF : we prove the only if part; for the if one see [VI] chapter 3.

We recall that in [II]-(6.5) it is proved that mr with r &#x3E; 0 is non singular
respect to Haar measure in r iff 9 = Z. Suppose that ip, r is surjective ; 1
we deal first with r = 0. The open mapping theorem togetheir with the fact

that 2p,r is injective imply that there exists a constant M sucht that

This means that for f E Ao (we are considering its boundary values)

i. e.

or

The density of Re Ao in Re 0 (r) leads us to

Let K c r be a compact set and fh 1 on K, fh 0 on r. Then if s &#x3E; 0

log (/-}-~) E C1R (F) and then

so that

As

because of the regularity of mro ~ I the regularity of Haar measure yields

but this means that mro is absolutely continuous respect to Haar measure.
The theorem mentioned at the beginning of the proof implies that g = Z.
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Suppose now that r &#x3E; 0 ; there is no loss of generality in considering
r = ro = ew because HP (1nro) is topologically isomorphic to ~Ip (mr) being
mro and Mr mutually absolutely continuous. Thus we have

in particular for fl E r

so that

If we have

This inequality leads us to the fact that ’rnr.p is absolutely continuous re~

spect to mro for all T but this occurs only if fl E E JR) (see [II]
(5.7)) and = r iff g = Z.

This completes the proof.

(5.2.2) COROLLARY : the mapping in (3.2.8) is sujective iff g = z.

(5.2.3) We remark that the mapping from Hoc (J) into m~) given
by (2.3.2) is an isometry.

(5.2.4) At this point we are led to the following question: suppose
( p &#x3E; oo) is it true that F belongs to the closure of Ao in 

We give here a partial answer.

(5.2.5) THEOREM : Let  then F belongs to the clo-

sure of Ao in HP iff the function a is continuous as a function from

.r into 

(5.2.6) Before proving (5.2.3) we make a brief account of a tool we

shall use, namely the integration of coutinuous functions defined on T

with values in a Banach space (1). Given ~:jT2013&#x3E;- T~ continuous we define

(1) A complete exposition of this subject can be found in Bourbaki’s Integration
(Chap. 6).
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JK (a) da as the limit where the Ei are Borel disjoint

sets whose union is r and such that if a E Ei, Ei c U being a

neighborhood of the identity element of r belonging to a fundamental

system of neighborhoods of e1; that is, for each U~ (e) we fix a finite family
E).., i and i and is clear that the net

i

so defined is a Cauchy net and then it has unique limit point which we

call K (,%) dm (a) (The filter set is the fundamental system of neighborhoods

of The integral so defined is linear and

(5.2.7) PROOF of (5.2.5)

===) Let 0  ~  1 be given and G E Ao such that

then

The uniform continuity of G implies that there exists a neighborhood U,, (ei)
such that

so that

then

and we have that a --~ ~a is continous.

-&#x3E;) Let a &#x3E; 0 be given and consider Us (ei) such that

Let (~ : r--~ (o, -~- ~~ be a continuous function such that
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The continuous function a 2013~ ~ G (a) is integrable and

To see that we observe that

G (a) doc means the integral in .L1 (r, m) of the continuos
The equality of the integrals follows from the continuity of

As

because (Fa)1 = ( F1)a almost everywhere and as

we get that the boundary values of J Fa G (a) doc are continuous because

is continuous. 
’°°

That can proved first for F1 continuous and
then using a density argument for every F1 E .L1 (7~ m),

The continuity of the boundary values of Fa G (a) da together with

the fact that it belongs to gives us that belongs to Ao,
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i.e. it is restriction to 4 of a function in A ; i we have got that

and so we are done.

5.3 We intend to give the corresponding characterization given in (5.2.7)
for P. For this we use the definitions and theorems concerning almost pe-
riodic functions in 1R with values in a Banach space ~’ as stated in [IV]
chapter 6.

(5.3.1) PROPOSITION if f : T - X is continuous then fo exp-1: 1R 2013~ ~
is continuous and almost periodic with exponents in g.

PROOF : fo egp-1 is cleary continuous ; the fact that it is weakly al-
most periodic, i.e. when composed with (p E X* = dual space of ~’ it is

almost periodic, implies that f is almost periodic (see [IV], theorem 6.18)
with exponents in g.

(5.3.2) PROPOSITION; if P; 1R -+ X is continuous almost periodic with
exponents in g then there exists a unique f : T- X continuous such that

PROOF : it follows from the uniform approximation theorem by trigo-
nometric polynomials (with exponents in g) with coefficients in X as stated
in [IV] tehorem 6.15. The uniqueness follows from the density of exp-1 (lR)
in r.

(5.3.3) COROLLARY : let FE Hp (p  oo); then F belongs to the closure
N - N

of Ao = (F : P - G ; 3 f E exp-1 = F ) in HP iff the function from
1R into Hp defined by v --&#x3E;. Fv (Fv (w) = F (w + iv)) is continuous and almost
periodic.

(5.3.4) OOROLLA.RY : If and .~’ is uniformly almost periodic in
all of P then F belongs to the closure of Ao in HP.
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