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HARDY SPACES OF ALMOST PERIODIC FUNCTIONS

by J. P. MILASZEWIOZ

1. Introduction.

In the classic context, Hardy spaces can be defined in two equivalent
ways : first as the subspaces of L? of the unit circle with vanishing nega-
tive Fourier coefficients ; second as spaces of holomorphic functions in the
unit disc such that the p-th means in each circle of radius less than one
are uniformly bounded.

One departure point for a generalization is to substitute Z, the inte-
gers, by any subgroup g of the real line with the discrete topology. This
leads to the construction of the so called « big disc » (the closed unit disc
if g=2Z) and of a generalized Poisson kernel. As in the classic context
two directions can be chosen to define the Hardy classes; one dealing with
the «boundary » of this generalized disc, that is the dual group of g (see
[X]), and another dealing with its «interior » (see [VIII]).

This note deals mainly with the second definition. In the first part we
investigate in which measure some classic results can be extended as Her-
glotz’s theorem ((2.3.8)). Afterwards we give a description of the Hardy
classes as spaces of analytic almost periodic functions on a half plane, fol-
lowing an idea that can be found in [III] ((4.2.5)).

Finally, we show that the two constructions mentioned above lead to
different concepts unless g = Z ((5.2.1)).

2. Basic notations and preliminaries.
(2.1) ¢ will indicate a subgroup of the real line IR with the discrete

topology ; g+ ={x€ @/x=0}; L' (g) is the group algebra of g of complex

Pervenuto alla Redazione il 17 Gennaio 1970.
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valued integrable functions with respect to Haar measure of g, that is the
absolutely summable series with indexes in g¢.

Ay =L (g1)={fe L' (@if @) =0 N xégy)

T=9=1{1: 9= Th@+y) =@ 1)
T={2€C/|z|=1].

A, is a closed ideal of L'(g). I" is the dual group of g; if we give I' the
compact-open topology it is a locally compact group which can be indenti-
fied with the maximal ideal space of L!(g) ([IX]-§ 34). With * we shall
indicate the convolution product in I. In the present situation, the existence
of the identity element in L!(g) implies that I' is compact.

D=1(:€0/|z|<1), D={2€0C/|2]| <1

d={y: 9+ — Diy@+y) =g @) 1), 20

4 is a semigroup with respect to pointwise product; if we endow A with
the compact-open topology, it can be identified with the maximal ideal
space of the algebra A,; the identification is established in the following
way : if we call H(A,) the maximal ideal space of A, , we define

h:d— H(A,) by (h(é),f):ff(x)(&,w)dm
g

dr indicates the Haar measure of g and (& «)= value of & on 2. The
function h is a homeomorphism when we give H (4,) the weak"* topology
induced by the Gelfand transform. The group I'= H (L’ (g)) is imbedded

homeomorphically in A in the natural way. We shall call 4 =A—T If
we denote f the Gelfand transform of f€ L!(g) we have

@1.1) &) = (&), £ =ff(w><s,w>dx
G

?: A — C is continuous by the definition of the topology in ] ; the Shilov
boundary of the algebra A, of Gelfand transforms in 4 is exactly I. For
each £€ A there is a unique real regular Baire measure representing it ([I]-
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7.1 and [II]-4.8)

2.1.2) @& =<h, sy = f (@) dme (o), f€ It (g4).

The convolution of representing measures is the representing measure of
the product i.e.

(2.1.3) Mg x My = M., & € A,
In 4 there is a distingunished point, namely

1 if =0
(&, , )=
> (0 if x=0.

This point plays the role of the center of Z; its representing measure is
the Haar normalized measure of I. §€Z, EFf=>&=r-a in a unique
way; r:gy—>[0,1] r€d and a€I. If f€ C(I') we have

(2.1.4) f 7 () dmg () = f f (B, B,) dmy (B,) dme (By) —

= (1B am ¢y = (/e m) @

because of the symmetry of m, and the fact that m, is the unit mass mea-
sure concentrated on «. Remark that formula (2.1.4) is still valid if & = &,.

For the proofs of the foregoing statements see [II]. The mapping :[0, 1]—4
defined by {i(»),2)=1r® for r >0 and i(0) = &, is a homeomorphism bet-

ween [0,1] and the set of positive elements of 4.
A\ e . .
(2.1.5) We have f (&) =(h (&), f) = ff(oc) do(f€ A, de indicates the
Haar normalized measure of I'; we also note it dm. The mapping & — mg

from A into C(I'y*= dual space of C(I'), is a continuous homeomorphism
with its image when C (I')* is endowed with the weak* topology.

Thus calling m,) = m, r€[0,1] we have that the family of measures
(Mmy)o<r<1 i8 such that

(2.1.6) (myy )= ff(a) dmy () ——>f (€5)

e, = identity element of I' (f€ C(I')).
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In the case g = Z we get the Poisson kernel.
As a consequence of the preceeding remarks we get that if U is a
neighborhood of e, then m, (U)——-—l-> 1.
r—

(2.1.7) We also have for f€ C(I") that {m,, f> -———0—> ff(oc) do..

(2.2) Let f€ A, ,f: A— O be its Gelfand transform 7 (&) = f 7 (@p) dm, (B)

where & = ra (see (2.1.4)).
(2.2.1) LeEMMA : if 2 €g then f{a, z)dm, () =771 0 < r<<1.

PRrROOF : consider first # = 0 and define

1 if y==«
fxEAi fx(y)=;

0 yFo

then }\(a) = [f(y)(a, y)dy=<Ca,x) (see (2.1.1)). Applying (2.1.3) we get
g

./f\(r)=f<a,x>dm, (o)
using again (2.1.1) we obtain

For=[ 1) <ry> ay =
g9
The fact that m, is a real measure gives

f(oc,w) dm,(u)=f<a,-—w)dm,(a)=r—”

if x < 0 and this completes the proof.

If we consider the uniform closure of ;1\1 we obtain a Banach subalge-
bra of O(A_) which we shall call A;. The Shilov boundary for 4, is still
I'; formula (2.1.4) also holds for functions in A4,; it is possible to extend
it slightly as follows:
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(2.2.2) If r, <ry,<<1 then f(r, f) = f J (ry af) dmyr, (x). Following [II]

we shall call functions in A, generalized analytic functions in 4.

(2.2.3) LEMMA : Let f: I'— C be a continuous function ; f is the re-
striction to I' of a function F in A, iff

ff(a)<oc,x>da=0 2 < 0.

Besides,
F o) = [ o am,
Proor : [VIII](6.1).

(2.2.4) DEFINITION : given F: 4 — C we shall call F,: I'—> C the re-
striction of F to ». I'={r-a|a€l'}(r < 1)

(2.2.5) DEFINITION : given F: A4 — C we say that F,€ A, if F, is the
restriction to I" of some function in A, (r <1).

(2.2.6) DEFINITION : for F:4— C we say that F is generalized har-
monic (in the following g.h.) if

(i) F is continuous

(i) rn<r,<1=>F, = F * My, .
‘We say that F is generalized analytic (g.a. in the following) if

(iii) ¥ is g.h. and for some 0 <<r <1 F,€A4,. Remark that if (ii)
holds and F, is continuous for each » < 1 then F is continuous.

(2.2.7) LEMMA : F: 4— C is g.a. iff F €4, Mr <l

Proor : suppose F, € 4,; if ' <<r.

By (1) = Fyx myppy (@) = By (@) 1y (@) = B, (@) (’r—")'m' (see (2.2.1))

if > r, analogously

A~ A~ ~ ~ r\l=l|
By (%) == Fpr (@)« My () = Fyp (w)-(—)

,rl
(2.2.3) yields the desired conclusion.

4. Annali della Scuola Norm. Sup. - Pisa.
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(2.2.8) COROLLARY : Let F: A— C be g.h.; then if r,<r, <1 we
have

F, (@)-r}"' =T, () r]"!

(2.3) Let be ry=¢land 1 <<p << oo (e= 2 i)
n<o M!

(2.3.1) DEFINITION : if p < oo

h? ()= F:4— C/F is g.h. and supf| F (rap)|? dm,, (@) < oo
fer
H? (A)={Feh?(A)/F is g.a.}

if p=o0
ke (d)={F:4— C/F is g.h. and bounded)

H>(4) = (Feh> (4)/F is g.a.}.

(2.3.2) THEOREM : Let Feh?(4) with 1 <p< oo or FeH!(4); then
limit F (r-«) exists except on a set of zero mgmeasure for each &€ 4. The

r—1

limit function F, belongs to EQA L? (I'ymg) and for p < oo

e (Lym) N Eed

r —r &y

r—1

for
p =00 ” F" ||L°°(1‘,m5) ,?1 ||F1 ”L°°(I",m5) ‘

‘We have also the Poisson integral formula
(2.3.3) F (ra) =[F1 (- B) dmy, (B) = (F % m,) ().
Proor: [VIII] 5.1.

(2.3.4) LEM1\4A : Let F be g.h. and 1 <<p < coj then if r <r, <1

sup [| F (rap) |? dm,, («) < sup [| F (r af)|? dm,, («)
jer per

PROOF: fix r' <1 and fiel’

f | B0 ap)|? dm, (2) = f f | B (" ay 0ty B) |2 Ay, () Ay, (35) =
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=[f| F('ri Ay Gy /3) Ip dmy, (“2) dmn}n (ai) <
< sup/| F (rap)|? dm,, («).
Ber
(2.3.5) COROLLARY : Let F be g.h. and 1<<p < oo, r, < 1; then
sup f| F (ra)|? da << sup f[ F (r ap)|? dm,, («)
<t b,

ProOF : apply (2.3.4) with », = 0.

(2.3.6) DEFINITION : Let F€h? (4); if p << oo

| Flp = sup f | F (rap) | dm,, (@) (ry=e1)
gell

[| F[loo = sup | F(&)].
ted

(2.3.7) PROPOSITION : (h?(4),]| ||) is a normed space

(2.3.8) THEOREM : if F€h!(4) then there exists a Baire regular mea-
sure up€ C(I')* such that

F o=pup*m_ for 0 <<r <1,

r

We intend equality in the sense of measures
PRroOOF: Let r, 71, r, == 0; consider the measures associated to F, i.e.
if feC(I")

(F, ,f)= fFrn(oc)f(a) da
(2.3.5) yields
| CEry s SO f oo [l F [l -

A general compactness argument says that any closed ball of a dual space
is weak*® compact. Thus we have that there exists a subsequence n; and a
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measure u,€ C(I')* such that
W*

F'n —>Up i.e.
¥ kooo

(B, s fY—=>pg, /> MfeOD).

We clain that F, = pup*m, 0<r 1.
For this we shall prove that both members have the same Fourier-Stieltjes
transform and this will complete the proof for then, they take the same
values on trigonometric polynomials in I, and then in all of O (I") because
trigonometric polynomials are dense in C(I") (see [IX], § 38).

Let x€g; we want to show that

—~

ﬁ(w)-‘-‘f(%—ﬂv)ﬂ(“)d“=f<0‘,_x>d(,u1a"m,)(a)=(#F*mr)(w)-
We shall use that for s, <ls, <1

By @ b =T, @s"  (see (2.2.8).

Consider 0 <r <1

—~

(m, % pg) (@) =f (Buyw ) By, ) dm, (By) duy (By) =

= rlml/(ﬁ)dyi, (;32)=r|wl]kimitf17’,nk(ﬁ) (Byaddp =

P\ ! ~ 1 \l#l ~ 1V -~
= yl2| limit F,m (r) =1~|&3|_F,<"l (.’t‘)(/r ) =7‘|¢|Fr({l/‘) (7) = Fr(.l').

n

Take now »r =0

(my = 1) (8) = 1, (@) () = L m, (2 (o) =

= limit (m, % ) (#) = limit F (2) = F (&) f (Bw)ap = F(E,) (@)

r-—>0 r—0
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3. The Banach algebra structure for A2 (4).

(3.1) We have already observed that h?(d4) is a normed linear space
in (2.3.7)

(3.1.1) THEOREM : (h?(4), || ||p) is a Banach space; H?(d4) is a closed
subspace of h?(4).

PRrOOF : suppose first that p = co and let F, be a Cauchy sequence
in A (4). It is clear that there exists F: 4 — ¢ continuous such that

| Fn— F || ——>0.
Let 1, <r, <1

By, % myy, = limit (Fy),, * My, = limit (F,),, = F,, .

n - oo n — 00

In the case (Fy).€ 4, ¥ r <1 it is clear that F, €4, ¥ r<1.
Suppose now that p << ocoj let r, <r, <1 and r<<7,

| o (rat) — Fou (ra) | = i ] [Fn (% ocﬂ) — Fy, (72 aﬂ)] dm,., (8) !S

=|J

‘We know that this converges to zero as m and =» tend to infinity if
ro =1, by hypothesis. To see that this holds in this case independently
of r, <<r, we observe that m,, and m,, are mutually absolutely continuous
and that the respective Radon-Nykodym derivatives are bounded everywhere
(see [VIII] 2.23). Thus there exists a constant K (r,; r,) such that

7, (7’; o) — B (= p)|"am, (ﬂ)]”’.

2

(3.1.2) flf(ﬂ)l dm,,(f) < K(r,, "z)flf(ﬂ)ldmro(ﬁ) Mreo(r)

and then
| B (roe) — Frp (rar) | << K (rg, r9)'? || Fy — Foy ||p.

Thus F, restricted to r,. A= {r &: EEZ] is uniformly fundamental, and
this implies that F, converges uniformly on compact subsets of 4. So we
obtain F:4— C which is continuous; analogously to the case p = co it
can be shown that F is g.h. (g.a. if the F, are g.a.).
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Let us see that F, converges to F in h?(A4); given ¢ > ( there exists
n, (¢) such that

My m = ny (&) => || Fp — F ||, < &3

suppose that » <1 and eI are fixed

[ ﬁ F (rap) — Ty (rap) |? dmrow)]”” —

1/p

= limit [ f| F,, (raf) — F, (raf)|? dmy, (@) <&

m -0

I
if m = n, (¢): this implies that F€r? (4) and Fn——p—> F.

3.2. We proceed now to define the product between g.h. functions

(3.2.1) LEMMA : let F, G: 4— C be g.h. functions; if » << 1 and

Y = 7‘1-7‘2 == 81-82
we have
(Fr % Gry) (0) = (Fo % Gs,) ().

PROOF : suppose r, < s,
—Frl* Grﬂ = (Fgl* 7”"1/31) * Gy,= Fgl* Gr, s = Fax G.g, .

This equality holds almost every where with respect to Haar measure on
I" but because of the continuity of the functions involved, equality holds
everywhere.

(3.2.2) DEFINITION : given F, G g.h. functions we define their Hadamard
product F(x)G: 4— C in the following way

(F(;E) G) (Ir“) = (Frl* Gr,) (05) where Ty Vg ="1.

It is clear that, because of (3.2.1), this definition does not depend on the
decomposition of » as product of two numbers less than 1.

(3.2.3) LEMMA : if F and G are g.h. then F(¥)@ is g.h.; if @ is g.a.
then F(*) @ is g.a.



periodic functions 411

PROOF : we need only to prove that (2.2.6)-(ii) holds because of the
remark in (2.2.6)

(F(’E:) G)r,* My lrg = (FVE * GV';) * (mVE * M —) =

ja
re g

3 T3

In the case G is g.a. then
(F &) @) (2) = (FVT * Gv?) () = Fy7 (). Gv; (o)
vanishes whenever G (x) vanishes ; (2.2.3) implies that F(*) G is g.a.
(3.2.4) THEOREM : h' (4) % h? (4) © h? (4)1 < p << co ; moreover
| F @G|, <||Fll |l G|, for Fehrt(4), &enrr(d)

PROOF: the case p = oo offers no difficulty so we can suppose p << oo
Let 0 <<7r? <1 and feI’

/I (F &) @) (r? ap)|? dm,, (oc)=] U | F (rafy=) G (ry) dy|?dm,, (@)<<

< f l ﬁ Flrafy) G (ry) K dy|” K (r)? dmy, ()

where K (r) = f | F(raf y=) | dy = / | F(ry)|dy; we shall show later that
K(r)==0 for 0 <r <1 unless F=0;

[1Ee @0 oy am <
<[[[ixeeratiaenpEer | 0 m, () =
-/ [E w1 Bty @ onle ay m, =

= K0y [ | [1F ] am @] | € 02 <

= Kt llFllffl Gurypdy <K@p|Fl ¢l FlI3] &3
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The last two inequalities hold because of (2.3.5). The validity of the inequaliy
for each 0 <7 << 1 and f €I leads to the desired conclusion.

Suppose now that fos some r, > 0 K [r,) = 0; this implies that F, = 0
a.e. respect to Haar measure on I. But as F, is continuous it vanishes
everywhere. Since on the other hand we have (see (2.2.8))

Fo@ X =TF, @)X =0 ¥ r,<1

then F,,= 0 % 0 <7, <1 and this gives F = 0.

(3.2.5) COROLLARY : h?(4) is a Banach algebra and H? (d4) is 4. closed
ideal.

ProoF : apply (3.2.3) and (3.2.4).

(3.2.6) LEMMA : given F€h!(4) the measure up obtained in (2.3.8)
such that F, = u,* m, is unique.

~ 7
PROOF @ u,(x)= , 2(:';) MO0<r<<1 and x€g. The fact that two mea-

gures which have the same Fourier-Stieltjes transform must coincide leads
us to the conclusion.

(3.2.7) LEMMA : suppose F, G € k! (4) and pug, u, are the boundary mea-
sures given by (2.3.8); then

(F & G)r = (pp* pg) * my.
Proor: (F&*) @), = F]/r_* G]/F= (g * mv;) * (1g» Mmys) = (fp* M) * My .

(3.2.8) THEOREM : the mapping F — u, from h!(4) into C(I")* is a
continuous injective homomorphism.

PROOF : it is clear that the mapping is linear and (3.2.6) (3.2.7) imply
that it is multiplicative ; the argument used in (3.2.6) gives the injectivity
part ; the continuity follows because u, is taken in the closed ball of radius
I 7,

We shall prove in another section that the mapping in (3.2.8) has a
continuous inverse iff the departure group ¢ is Z.
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n

(3.2.9) LEMMA : let I" be a compact group; if p > Enf__i (n€N) and
fi€ Lr (I') 1 < i< 2" then
firrfu€C(I)

(L? (') is the space L? associated to Haar measure on I').

ProOF : the proof is by induction.

For n=1 we have p=2; if f,,f,€ L?(I") then f,€ L?(I') where

1 —ql— = 1 because of the compactness of the group. But as L? x L1 < C(I")

([VI] (20.19)) we have that f, x f, is continuous. Suppose now that the sta-
tement is true for n =k, and let

okot+1 .
p22k0+1__ 1= P L€ Lr (I') 4 < 2ktl,

. . 1 1 1
Consider gj = fj* foheti 1<<j<<2%;— 4 — — — =1 has the solution p, =
o by by Py
0

T — then we have that ([VI] (20.19)) g;€ L»:(I"); thus
fl * "'*fzkl)‘l'l = gl * e *gzkoe C(F)
because of the inductive hypothesis.

(3.2.10) DEFINITION : given FEh? (4) 1 << p << oo we say that Fe O(I")
if the boundary measure is a continuous function; we say that Fe€ A, if
FeC((I') and F(x) =0 M « < 0. It is clear that such an F together with
its boundary values is a continuous function on.

(3.2.11) PROPOSITION: (1) h? « R < C(I") for % + % =11<p<<o

(1) Hrxhic O(T) %4~%=11gp<m

1 1 1
2 h? « k4 C h" —_t——— =11 oo
(2 p+q " <r<
1<g<oo
(2% H? «hcH” %+_§__%-—_—.1 1<p<<oo

1< g < oo
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(3) WM xh? ch? l<p<<oo

(3) M« H?r Cc H? l<<p<oo

n

2" —1

(4)  For p> h? % .. xh? c O(I)

27 times

n

(4) Forpzzn__l

H? %« h? % ...xh? C A,
——

2" —1 times

PRrROOF: (1) Consider F€h? and G €h?; then their boundary functions
F,, G are in L?(I') and L?(I") respectively; but F, » G, is continuous
(see [VI] (20.19)); (3.2.7) makes the rest.
(1) We proceed as in (1) using also (3.2.3)
(2) and (2°). We repeat the technique of (1) and (1’) observing that

Lr(I)»Le(I)yc Ir  ([VI] (20.19))

(3) and (3’) have been prooved in (3.2.4) and (3.2.5).
(4) Apply (3.2.9) to the boundary functions and then (3.2.7).
(4’) Apply (3.2.5), (3.2.9) and (3.2.7).

4. The h?(4) spaces and harmonic almost periodic functions on a half
plane.

4.1. In the following we shall use the terminology concerning almost
periodic functions; Dirichlet coefficients and Dirichlet series as stated in
[V] with the only modification that we write the Dirichlet series of f:
MR — ¢ in the form

F)co I Agyeiat,
ZEMR

We have (see [II], [VIII)) a mapping exp—!:{w€ C: Rew=>=0}= P4
that restricted to Rew = 0 is a continuous homomorphism with values in
I’ and such that the image subgroup is dense in I, so that the image of
{Re w = u > 0} is dense in e—*.I" and consequently exp~!(P) is dense in
d. Let f€ A,, then f,exp—! is a bounded continuous almost periodic func-

tion in P, analytic in P = [Re w > 0}, More precisely we have

(4.1.1) THEOREM : the mapping f— f,exp~! defines an isomorphisxla
between A, and the bounded continuous almost periodic functions in P
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that are analytic in P and such that the exponents of their Dirichlet series
lie in g+ . The vector space isomorphism is an isometry if in both spaces
we congider the supremum norm.

PROOF : see [I1I)-(2.6); see also (4.1.5).

(4.1.2) Consider f€ C(I"); we know that f is the restriction to I" of a
function F in A, iff f(x) =0 \ « < 0 and that if this is the case

F(ro) = f F(ap) dm, ()= (F+m,) (@).

For any fe€ C(I') we can define a g.h. function F in which f as boundary
function, namely

(4.1.3) F(ro)= ff (@) dm, (§).

This is the only g.h. function in 4 whose restriction to I' coincides with
f. For feC(I') we define (4.1.3) to be the harmonic extension of f to 4 or
the Poisson integral of f. We note it also Pf.
We also have sup |(Pf) (ra)| = sup |f (a)].
3

(4.1.4) Consider now P f,exp~!: P— C;in the case f is a trigono-

metrical polynomial i.e. f(a)= 3 a,{a,x) where a, = 0 except for a finite
xeg
number of x €g then

Fera)= 3 ar'*{a,x)
zEg
and
F )= 3 a,e—* 4 3 ay 671w
=0 <0
So that Fyexp~! is a harmonic function in P, continuous and bounded in

I’, almost periodic in the whole half plane such that

we P

sup | F(e=) | = sup | F(ra) | = sup | F ()| = su%| F(e—)|.
r aE VE
ael

Observe that in this case we have that the Dirichlet coefficients of
F= F, exp~! are the Tourier coefficients of f.
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(4.1.5) THEOREM : the mapping f— If'N=(57)f)0 exp~! is a isometric
isomorphism between the space C (I') and the space of bounded continuous
uniformly almost periodic functions in P that are harmonic in P and such
that the exponents of their Dirichlet series lie in g. Moreover the Dirichlet
coefficients of F are the Fourier coefficients of f. A, is carried onto the
analytic ones.

PRroOF : For trigonometric polynomials in C(I") the stated properties
have been already established in (4.1.4). Let f€ C(I'), we can approximate
it uniformly in I' by a sequence of trigonometric polynomials (see [IX] § 38)
fn, 80 that P f, converges uniformly to ?f and F, to F. We want to see
that the Dirichlet development of Fis

S a, e~ + > a, e—lzlw

r=0 <0
where

ax=lf\(dﬂ')=jf(a)(5:,_w) do N xeg.

Consider f,exp—! = f :{Rew =0} — C; it is uniformly approximated
by fno exp™1 =?,. so that the Dirichlet coefficients of f are the limit of
the Dirichlet coefficients of f, and thus (see [V] § 9 - chap. II) we get that

the Dirichlet coefficients of f and the Fourier coefficients of f are the same.
Now we apply proposition 31, chap. IV of [V] and obtain that the function

o0
() G (u+ iv) = % f ﬁ__}_(z-__t?f(it) at

has as Dirichlet series the extended of that of fi. e.

Gw)co 3 ayge” ™+ 3 aye—lzlv
=0 <0

but (see [VII] page 123 or [VIII] (2.22)) formula (i) reproduces F from its
boundary function f so that ¢ = 7
Let now be F’: P— C with the stated properties and let F’(w)co

o 3 aze~* 4 3 ae—'*1v be its Dirichlet series (x € g).
x=0 <0
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The restriction of F’ to the imaginary axis can be approximated uniformly
by trigonometric polynomials of the type

F)(v) = 3 agne~® 4 3 az ne—™  (see [V] § 12)
*=0 <0

with a, ,== 0 only when a,==0 i.e. for x€g.
The natural extensions of F, to the half plane P defined by

F, (W) =X Ay, n 9_W+ > Az, n e—]xla
=0 <0

approximate F’ uniformly because oe the harmonicity and boundedness of
the functions involved. As

F. = Pfrexp—t =F,
where

Jole) =2 aznoy®) + = ay n€a,z)
=0 z<0

we get that there exists f€ O (I') such that f, — f uniformly. It is clear

then that Pf,exp—! = F'; observe that if a,= 0 whenever x < 0 then
Pre A, (i.e. when F’ is analytic in P).

4.2 We turn now to see how the mapping exp—!: P—» 4 behaves
when composed with g.h. functions.

(4.2.1) THEOREM : The mapping exp—!: P— 4 induces a linear isomor-
phism between the space of g.h. functions in 4 and the space of harmo-
nic functions in P, which are bounded and uniformly almost periodic on
each half plane {Re w =wu > 0} and whose Dirichlet series have its expo-
nents in g. This statement holds if we change g.h. and harmonic functions
by g.a. and analytic respectively.

PRroOF: Let F: A— C be g.h. Suppose that = Fyexp—': P—C
has Dirichlet series

Fw)co 3 ape- + 3 ape—12le,
=0 <0
Consider « > 0 and define F_,:4—> C by F_, (&)= F(e.&); it is clear
that Fe"“ is g.h. and continuons in all of A and that Fe_"' is g.a., i.e.
belongs to A, iff F' is g.a. Because of (4.1.5), as i’e__u(w)= F_y(e%) =
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F (v + w) we obtain that F is bounded and uniformly almost periodic in
{w: Re w = u}, harmonic in {w:Rew > u} and analytic iff F is g.a.
On the other and we have that

Fe—u (iv) —_ F(e— (u+iv)) o 3 aye v e—iav __I_ Sa,e— || u g—izv
=0 <0

and then working as in (4.1.5) we have

(ﬁ;_u) (,w) o S Uy 6~ g—%W + > a, e—]x]ue—-lﬂﬁ .
r=0 <0
But then (4.1.5) gives us that if a, 3= 0 then x€g. To see that if F=o0
it is enough to remeber that exp—!(P) is dense in 4.
Let us see the onto part; suppose we have G: P —> C harmonic with
the properties stated in the theorem. Let us consider for each u > 0
G*: P— C defined as follows

G* (w) = G (u + w).

We have that G* is harmonic in P, continuous bounded and almost perio-
dic in P and such that the exponents of its Dirichlet series lie in g. It is
also true that G* is analytic whenever G is. By (4.1.5) there exists F“:
A — O continuous g.h. such that B (w) = G* (w) = F* (e~¥).

Define F: 44— C in the following way F(ra) = F*(e“ra), r <<e—*. It
is necessary to see that this definition does not depend on = > 0. Let
r<e ™ r<e™and roa=e"% w=u-4iv

Fa(em ra)= F"(e4 e %) = Q1 (w — u,) = G¥ (w — uy) = F¥ ("2 e~ ),

The continuity of F* and F“ together with the density of {r-e—; ve 1R}
in ».I" imply that F“ (¢ ra)= F* (¢ ea) Y a €I’ and F is well defined.
F is continuous on A4 because it is continuous on each «disc» r-4

(r <1).
Let us see that F is g.h.; suppose

< rlry=e"Mry=¢" ry,<<e%u>0)
(Fy, * m"l/'ﬂ) () =fF(7'2 ap) Admyjr, B =fFu (e* 1y af) d’Mrllra B) =

ffFu (apy) dmeu.,-, () AMrjr,y B =fF“ (af) dmeu.h(ﬁ) =Fy(e*r,0)=F(r,a)=F, (a)
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Let us see now that
F (%) = @ (w)

Fe™)=F(e*e ) = F* (") = G (iv) = G (u + iv) = G (w).

If G is analytic fixing u, > 0 we should get that F*“is g.a. on A but as
F® ig the restriction of F to e—* A4 so that because of (2.2.7) F should be g.a.

(4.2.2) Let us see now how are mapped the spaces &?(4) by means
of composition with exp—1.

LeMMA : if F€h?(4) then

| F'||? = sup f| F(rae=i)|? dm, (@) for p < oo
oy
| F|loo = sup | F (r-e=)]|

vER

r<1

PROOF: [r-e~®:v€R)} is dense in r.I = {£ € 4/ = ra}; the continuity
of F, yields the conclusion.

(4.2.4) COROLLARY : through the correspondence F — F;, exp~!the

space h?(4) is carried isomorphically onto the space of functions F.r—>o
that verify the conditions stated in (4.2.1) and such that

“+ oo
1 (|~ 1
_ ) S —
nj|F(u—|—th ]+(0_t)2dt
is bounded uniformly for >0, v€R in the case p<Coo; in the case

p == oo such an ¥ is bounded in the whole half plane P.
Moreover we have

00
1 1
p = —||F D [ .a—, I}
|77 = s “f' (04 0] s
u>0 Yo

(4.2.5) THEOREM : Let ﬁ G Dbe almost periodic bounded functions in
every proper half plane {Re w = > 0} and harmonic in P; if

Fw)co I aze= 4 3 a, e 121w

=0 <0

G (w)co 3 bye—= 4 Z bye—|=lv
520 2<2
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are their Dirichlet series then the series

S ayby e 4 S a, b, e—1zlw
=0 20

is the Dirichlet series of a function with the same properties.

ProOF: consider F, G:4— C g.h. such that Fjexp—!= F and
~ ——
Goexp~! = G ; then F*)G = (F*) @), exp~! is the required function; ob-
serve that (4.2.1) gives us that
e"”l“a,,=if\’e_u(w) Mu>0
go that

F® @) (@) = F—p (@) G o (#) = 6= 171 0], .

(4.2.6) Calling h? and H? the image by composition with exp—! of
h? (4) and HP (A4) respectively we have the analogous of (3.2.11) for P.

(4.2.7) THEOREM : Let Feh? and G € h? with Dirichlet series

Fw)co 3 aye=+ 3 ae—1%lw

=0 <0

Gw)co I bye® 4 3 be1%lw

=0 <0
then )
z am'bxe—xw"i— > axbxe—lxiw

=0 <0
is the Dirichlet series of a function which is

(1) continuous bounded almost periodic in P and harmonic in P if
1 1
?+?=1 and 1 < p<loo

(1’) continuous bounded almost periodic in P and analytic in P if

FeH? and %+%=1 with 1 <<p < oo.

ProoF: apply (4.2.1) as in (4.2.5), then (3.2.11) and (4.1.5). For the
analogues of (2), (2%), (3) and (3”) the proof is the same changing (4.1.5) by
(4.2.1).

For the analogues of (4) and (4’) we proceed as with (1) and (1’).
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5. H? (4) and the Hardy spaces in the Dirichlet algebra context.

5.1. In [X] it is developed a theory of Hardy spaces when the depar-
ture notion is that of a Dirichlet algebra A, on a compact space I, i.e.
(i) 4, O(I') is uniformly closed
(ii) A, contains the constants and separates points
(iii) Re A, = {Re f/f€ Ay} is dense in Re C(I").
So if 1 is a representative real measure i.e. a Baire regular measure
on I'such that its restriction to 4, is multiplicative then if 1 << p < co H? (A)
is the closure of 4, in L? (A).
In our situation the restriction of the elements of 4, to I" is a Di-
richlet algebra; then given any &€ 4 the question arises in how are related
H? (4) and H? (m;) where m; in the unique real representing measure for &.

(5.1.2) Let 1 <<p << oo, £€4; we define
iy g2 HP? (4)— H? (ing)

in the following way ; (2.3.2) gives us that if F€h? (d4) there is a boundary

L2P(I, mg)
function F, such that F, = F, x m, and F, ————15—+F1 so that we define
r—

e (F) = F,.

(5.1.3) THEOREM : for any £€4 and 1<<p < oo iy is linear, conti-
nuous and injective.

ProoF: we shall deal with & =» where 0 <<r <{1; the linearity of

ip,r 18 clear from the context and (2.3.2); suppose first that » = 0; then
m, is Haar measure m in I'. As F, = F, « m,, then

f[F, () |7 dm () =flfFi (f) dm, (ﬂ)‘pdm(a)g
Sf[' F, (ap) |? dm () dm, (B) =

=f [ j] F, («)|? dm (oc)] dm, (f) = f| F, (x)|? dm («).

Thus we get
” FT ”LP(I" m) S “ Fﬂ “Lp(l’, m) .

5. Annali della Scuola Norm. Sup. - Pisa.
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This means that F, cannot vanish almost everywhere respect to Haar mea-
gure unless F vanishes in all of 4. To prove the continuity of i, z recall

that (see (2.3.2))

| £y ”L;ﬂ(p, my = lilfilt | Fy “LP(P, m)
but (see (2.3.4))

slill)fui’(rocﬁ)pldm <[ Fl|>
pel

and then
I Ey o my << Flls-

‘We remark that it is possible to see automatically that 4, ; is continuous
by means of the theorem that says that if A and B are Banach algebras,
B semi-simple 7: A— B a homomorphism such that 7 (A) is dense in B
then is continuous (see [VIII] § 24). Consider now the case » > 0; suppose
then that F, = 0 almost everywhere respect to m, ; the absolute continuity
of m,. respect to m, for any 0 <! < 1 gives us that F, = 0 almost eve-
rywhere respect to any measure m, with 0 <r <1; but then F(r-¢)=
= (F, *m,)(e;) =0 3 0<r <1 where ¢, is the identity element of I'; so
that Fyexp—!: P— C is an analytic function that vanishes on the real
axis (see (4.1.5)) but this implies that F = F, exp~! vanishes in the whole
half plane P. The density of {¢=“;w€ P} in 4 and the continuity of F
imply that F vanishes in all of 4; this completes the injectivity part. We
have that if 0 <r, <1 there exists a constant M such that

sup f[ F(rap)|? dm, (o) < M| F |3 (see (3.1.2))
r<]
gel

letting r tend to 1 and taking f=¢,
[17. @17 dma ) <1 7.

This completes the proof.

5.2. At this point it is of interest to determine under what conditions
H>r (4) coincides with H? (m;) for some &€ 4.

(5.2.1) THEOREM : Let 1 << p << co and m,r <1 be fixed; then i, , is
surjective iff g = Z.
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PROOF : we prove the only if part; for the if one see [VI] chapter 3.
We recall that in [II}-(6.5) it is proved that m, with » > 0 is non singular
respect to Haar measure in I' iff g = Z. Suppose that i, , is surjective;
we deal first with » = 0. The open mapping theorem togetheir with the fact
that i, , is injective imply that there exists a constant M sucht that

I F N < M| Py llpo g, -

This means that for f€ A, (we are considering its boundary values)

_/|"f|pd'mro (d)SM"f|ef|Pda (do = dm («))

i. e.

fePRef dmy, (a) << Ml’fePR"f da

or

jeRefdm,o (a)gMPfeRefda Mr4,.

The density of Re A, in Re C(I") leads us to
fefdmro(a)gll/[f’fefdoc MfeRe O(') = Cp(I').

Let Kc I be a compact set and f=1 on K, f=0 on I. Then if ¢ >0
log (f + ¢ € Cp(I") and then

f(f+5)dmroSMpf(f+e)da

ffdmrogjfda.

m,o(K)gffdm,OgMPffda

so that

As

because of the regularity of m,,, the regularity of Haar measure yields
my, (K)<< M? m (K)

but this means that m,, is absolutely continuous respect to Haar measure.
The theorem mentioned at the beginning of the proof implies that ¢ = Z,
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Suppose now that » > 0; there is no loss of generality in considering
r = r,= e~ because H? (m,) is topologically isomorphic to H? (m,) being
m,, and m, mutoally absolutely continuous. Thus we have

1

1£ 1< | 17, @l an @]

in particular for ge I’

| F(rap)|? dmy, (o) < M? fl Fy (o) |2 dmy, (0) W r <1
80 that

fl F, (af)|? dm,, (a) < MP/| F, («) |7 dmy, (o).
If Fe€ A, we have
[170 1 a0 < 30 [ 12, @)} am, @

This inequality leads us to the fact that m,.; is absolutely continuous re-
spect to m,, for all S€I" but this occurs only if g€ {e~—": v€ R} (see [II]
(6.7)) and {e~™:veR) =1 iff g =Z.

This completes the proof.

(5.2.2) COROLLARY : the mapping in (3.2.8) is sujective iff g ==.

(5.2.3) We remark that the mapping from H* (d4) into L*=(I, m;) given
by (2.3.2) is an isometry.

(5.2.4) At this point we are led to the following question: suppose
e H? (4). (p > oo) is it true that F belongs to the closure of 4, in H?(4).
We give here a partial answer.

(5.2.5) THEOREM : Let F € H? (4)(p < oo); then F belongs to the clo-
sure of A, in H? iff the function o« -— F, is continuous as a function from
I' into H? (4) (F,(rf) = F (rfa=1)).

(5.2.6) Before proving (5.2.3) we make a brief account of a tool we
shall use, namely the integration of coutinuous functions defined on I"
with values in a Banach space(!). Given K :I'— V continuous we define

() A complete exposition of this subject can be found in Bourbaki’s Integration
(Chap. 6).
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K () de as the limit of 3 K (a;)m (E;) where the E; are Borel disjoint

sets whose union is I' and such that if a€ E;, a—1. B;C U(e) being a
neighborhood of the identity element of I belonging to a fundamental
gystem of neighborhoods of ¢,; that is, for each U;(e) we fix a finite family
B, ; and a,,:€ E; ; and consider .iZ’ K (a3,:) m (B, ;);it is clear that the net

go defined is a Cauchy net and then it has unique limit point which we
call f K (o) dm (o) (The filter set is the fundamental system of neighborhoods

=

<—)Let 0 << e <1 be given and G € A, such that

of ¢,). The integral so defined is linear and

(5.2.7) PROOF of (5.2.5)

&
| F—6l,<—

then
| Fa— Foy llp <|| Fa— Gallp + || Ga — Ca, [|p + || Gar— Foo [[» <

& €
<z F+lé—Gulr+5-

The uniform continuity of G implies that there exists a neighborhood U, (e,)
such that

|6 @) — G ©O)| < if 571-8,€ U, (o)
80 that

|G — Ga0||gg§if AN
then

|| Fa — Fa |, < & if a-ar1€ U, (e)

and we have that o« — F, is continous.
—>) Let ¢ > 0 be given and consider U, (e,) such that

| Fo— Fo, || < e if a-a;l€ U, (e,)

Let @ :I'— (0, 4+ oo) be a continuous function such that

@) Glou, =0

(ii) f G(x)d(a) =1,
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The continuous function & — F, G («) is integrable and

=
»

H'[FaG(a)da—F

p= "f[Fa—F] G (o) da

S'/HFa—FHpG(a)da<8/G(oc)doc=e.
T

&

To see that f F, G(x) de€ A, we observe that

[jFa G (o) da] =‘/‘(F¢\1 G (x) da (Fa), = tp, o (F,))
1

(Fa)y G () do means the integral in L!(I",m) of the continuos «—> (Fo)+ G (a).
The equality of the integrals follows from the continuity of

ip, ot H? (4) — L2 (I, m).
As

f (Fa)y G () da = / (Fpe G () de
because (F,), = (F,), almost everywhere and as

j(ﬁq)a G(x)do= F,* @ ie.

| . 6102) ) = [Pipe) 6 o an
we get that the boundary values of f F, G (o) do. are continuous because

f F, (fo) 6 (o) doe = (B, + G) (B)

is continuous.

That f (Fy)a G(2)do = F, « G can proved first for F, continuous and

then using a density argument for every F, e L (I, m).

The continuity of the boundary values of f F, G (o) d. together with

the fact that it belongs to H?(d4) gives us that j Fo G («) de belongs to A4,
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i.e. it is restriction to 4 of a function in 4,; we have got that

< é

r

“-[FaG(oc)da—~F

and so we are done.

5.3 We intend to give the corresponding characterization given in (5.2.7)
for P. For this we use the definitions and theorems concerning almost pe-
riodic functions in TR with values in a Banach space X as stated in [IV]
chapter 6.

(5.3.1) PROPOSITION if f: I'— X is continuous then f, exp—1: IR — X
is continuous and almost periodic with exponents in g.

Proor: f, exp—! is cleary continuous; the fact that it is weakly al-
most periodic, i.e. when composed with ¢ € X* = dual space of X it is
almost periodic, implies that f is almost periodic (see [IV], theorem 6.18)
with exponents in g¢.

(5.3.2) ProPoOSITION; if F: IR — X is continuous almost periodic with
exponents in ¢ then there exists a unique f: I'— X continuous such that

F = f,exp~.

PRroOF : it follows from the uniform approximation theorem by trigo-
nometric polynomials (with exponents in g) with coefficients in X as stated
in [IV] tehorem 6.15. The uniqueness follows from the density of exp—!(IR)
in I.

(5.3.3) COROLLARY : let F'€ ﬁp (p < oo); then F belongs to the closure
of Ay=(F:P—Q; 3fc A, / Pf, exp~l = F)in H? iff the function from
R into ﬁp defined by v— F, (F, (w) = F (w -} iv)) is continuous and almost
periodic.

(5.3.4) COROLLARY: If F¢ H? and F is uniformly almost periodic in
all of P then F belongs to the closure of ZO in He.
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