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KILLING FORMS IN A RIEMANNIAN MANIFOLD
WITH BOUNDARY (*)

GRIGORIOS TSAGAS

1. Introduction.

Let M be a compact Riemannian manifold which is the closure of an

open submanifold of an n-dimensional orientable Riemannian manifold V.

The manifold M has a boundary aM = B, which is an (n - 1)-dimensional

compact orientable submanifold ([lj). We denote by KT2 (M, 1R) and 
the Killing 2 forms on the manifold, which are tangential and normal to

the boundary, respectively. We assume that the manifold M is negatively

k-pinched, then the groups 1R), .gN (M, 1R) have some properties.
The aim of the present paper is to prove that if the number is

greater than a number u and the second fundamental form on the bounda-
ry B satisfies some relations, then the two groups are trivial. These results
are an extension of those given in ([7]).

2. A p-form a = (aii ... ip) is called Killing if it satisfies the relation,
([8], p. 66) 

which implies

For any p-form a, we have the formula, ([5], p. 4)

Pervenuto alla Redazione il 5 Dicembre 1969.

(*) This paper was prepared with support from S. F. B. grant.
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where

If a is a Killing p-form, then (2.2) takes the form ([71)

We consider a point P on the boundary B. Let (ul, ,.. , be a lo-

cal coordinate system of a neighborhood of the point P as a point of B

and (vi, .,.. ron) another local coordinate systen of a neighborhood of the

same point considered as a point of V. The local representation of B is

given by

in U (P) n being a coordinate neighborhood of V.
We denote by N the normal vector field to the boundary. We choose

the local coordinate system (u1~ ... , such that the vector fields N,
alaul, ... form a positive sence of M with respect to vector fields

We assume that the mapping F of B into ~ defined by (2.6) is an

isometric immersion, therefore the metric h = (kiv) on the manifold B is

given by

where is the metric on the manifold M.

We denote by g and h the diterminants of the metrics and (h~~),
respectively.

If m is any (n -1)-form on the manifold M, then Stoke’s theorem can
be stated as follows

from which we obtain
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for any vector field y = (yi) on M and q, q are the volume elements of

M, B, respectively, defined by

The relation (2.7) is valid, if we define the codifferentation of a p-form
a = ip) as follows

A. p-form on the manifold M is tangential to B, if sati-

sfies the relations ([10], p. 431)

or

where is a p-form defined over B, which imply, ([10], p. 434)

We consider a p-form on the manifold M. This form is

normal to the boundary B, if we have the relation, ([10], p. 432)

from which, we obtain ([10], p. 435)

where a = is a on the manifold B defined by

3. We assume that the dimension of the manifold M is odd n = 2m + 1
and admits a metric which is negatively lc-pinched. We also assume that a
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is a Killing 2-form and consider the 2m-form B

Let P be any point of the manifold M. There is a special base of the
vector space such that the following inequalities hold at the point
P, ([ 7 ]),

where

where a12, a34 , ... , (X2m-l, 2m the components of the Killing 2-form a with

respect to the special base of the vector space l~p.
The formula (2.5) for p = 2 becomes

or

which by means of (3.1) becomes

It can be easily proved the formula

from which we obtain
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The relation (3.4) by virtue of (2.7) becomes

From (3.3) and (3.5) we obtain

The formula (2.2) for the 2m-form B takes the form

or

which by means of (2.7), (3.2) and the relation, ([4], p. 187)

becomes

It has been proved the inequality, ([7])

From (3.7) by means of (3.8) we obtain
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We add the (3.6), (3.9) and after some calculations we obtain

which can be written

The inequality (3.10), if the Killing 2-form a is tangential to B by
means of (2.9) becomes

The second member of the (3.11) is positive, if k satisfies the inequa-
lity, ([7])

We consider the following quadratic form
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From (3.11), (3.12) and (3.13) we have the theorem

THEOREM (I). Let M be a compact negatively k-pinohed Riemannian

manifold of dimension n = 2m + 1 with a boundary B. If the number

k &#x3E; p, given by (3.12), and the quadratic form G (a, a) is semipositive, then

the group 1R) = 0.
We assume tha the Killing 2-form a is normal to B, then (3.10) by

means of (2,1), (2.10) and the relation, ([10], p. 436)

takes the form

Let L (a, a) be a quadratic form defined by

From (3.12), (3.14) and (3.15) we obtain the theorem :

THEOREM (II). We consider a compact negatively k-pinched Riemannian
manifold M of dimension n = 2m + 1 with boundary B. If k &#x3E; fl, given by

(3.12), and the quadratic form L (a, a) is semi-negative, then .gN (M, 1R) = 0.

Mathematisches Institut der Bonn.
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