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ON THE RIESZ MEANS OF THE SOLUTIONS

OF THE SOHRÖDINGER EQUATION

by SIGRID SJÖSTRAND

0. Introduction.

Consider the solution = G (t) f of the initial value problem

At least formally we have

where y denotes the Fourier transform. From this it is easily seen that

G (t) is a bounded, even unitary, operator in L2 = L2 (Rn~. We also have

the group property

Thus we have a unitary group of operators. In LP = Lp (Rn), p # 2, G (t)
is not bounded. See Hormander [2] and Lanconelli [3]. See also Littman-

McOarthy.Riviere [4]. A possible substitute for this, motivated by the

theory of distribution (semi) groups, is that at least the Riesz means .

of sufficiently large order k are bounded in LP. See Peetre [7].

Pervenuto in redazione il 18 Novembre 1969.
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More generally we consider the operators G (t), t ~ 0, defined by

where H is a positive homogeneous function of degree m &#x3E; 0, and H is

infinitely differentiable for ~ =1= 0. We will show that I k (~ (t) is bounded

in if k &#x3E; n I llp - 1/2 1.
In particular we consider the case In this case we show

that the bound n - 112/ ] is the best possible if m =t= 1, but can be

improved to (n - 1) I lip -1/2 ~ I but not more if m = 1. (If m = 2, our

result easily follows from Lanconelli [3], th. 1, with the aid of lemma 2.1

below.)
The plan of the paper is as follows. Section 1 contains some preli-

minary theorems, mostly on Fourier multipliers. In section 2 we show that
our problem is equivalent to the following one : For which 1~ is the function

a Fourier multiplier on LP. Here 0 is infinitely differentiable and 0 (t) = 0
for t  1/2 and 0 (t) = 1 for t &#x3E; 1. In section 3 we prove that k &#x3E; n 1/p -
- 1/2 1 implies that I k (4 (t) is bounded in .Lp. Section 4 and 5, finally,
treat the special cases = I ~ ~ ~ for m * 1 and m = 1, respectively.

The problem treated in this paper was suggested to me by professor
Jaak Peetre. I thank him for valuable advice and great interest in my
work.

1. Preliminairies on Fourier multipliers and asymptotic expansion.
A v

By f or 7f we denote the Fourier transform of j and by f or 

the inverse Fourier transform of f. Thus formally

and

Let M p (Rn) denote the space of Fourier multipliers on LP =
A A

=== LP (Rn), i. e. a E Mp if and only if a is a tempered distribution and
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Then

In the sequel we may therefore consider only the case We also

have

for every p, and

A A A A

If ai E Mp and a2 E then a1 a2 E Mp and

Further M, is invariant for homotheties, i. e. for a constant t

For proofs and details see Hormander [2].

THEOREM 1.1. If 1  p  2 and 0 = 2 ~ 1-1 j~y, then

PROOF : Apply the Riesz-Thorin convexity theorem.
A A

By DN a we denote the set of all derivatives of a of order N and by
A

II DN a IILI the maximum of the L2-norms of these derivatives.

THEOREM 1.2. (th. of Bernstein; cf. Peetre [6], chap. 1, th. 2.1). If

N &#x3E; n/2, then there is a constant C, so that

PROOF: Using (1.1), Parseval’s formula and the Cauchy-Schwarz
inequality we get
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A

If ~ we choose

, , , 
A 

,

to obtain the desired inequality. If = 0, the inequality is of course

trivial.

THEOREM 1.3. Assume that F is infinitely differentiable on 0  u  o0
and that

where J h 1 and 0. Let .g be a positive homogeneous function as

in the introduction. Then

PROOF : Se Lofstrom [5], lemma 1.4.
Next we want to compute the Fourier transform of a function which

has a similar behaviour near the point xo as the function f defined by

For ~ &#x3E; 0 and a~-1~ -2,.,..

where

See Gelfand-Schilow [1], p. 169.

THEOREM 1.4. Suppose that

10 f is infinitely differentiable for Xo and has compact support.
20 DM f(x) = Cm (x - + 0 ( x - x° ~’~-~)~ 

where

and
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Then

PROOF : By (1.5) we may suppose that C = 0 and xo = 0. Here and

on several occasions in the sequel we shall make use of the following con-
struction. We let P be a fixed function such that 0  (R) and

supp tp  2j. We write

and assume

(For the existence of such a function, see Hormander [2].)
To prove the theorem we write f, = Then

and thus

This implies

2. A Lemma.

Using (0.1) and (0.2) we get after Fourier transformation

Thus our problem is to find for which k
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is a Fourier multiplier on i. e. belongs to Mp. By (1.3) it suffices to

consider the case t =.1, i. e. to find for which k the function

belongs to the space 
Now be such if t  1/2 

if t &#x3E; 1.
A 

, 

*

LEMMA 2,1. if and only if b E Mp, where

PROOF : We want to apply theorem 1.3 to the function F, where

and the constant Ck is defined by

Such a constant Ck exists in view of (1.5). The integral is of course to be

understood as a Fourier transform. For u &#x3E; 0 we get

Thus for u 1

Put
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Then for u &#x3E; 1

But

where s- = (- s)+.
The first term belongs to in a neighbourhood of s = 0 and the

derivatives of it of sufficiently high order belong to .L1 (s  - 1). This

gives the desired estimate

For 0 S u S 1 we get

We can now apply theorem 1.3 with a = ,~ =1 and get

3. The general case.

A

THEOREM 3.1. Or E if k &#x3E; n - 1/2 I.

PROOF : According to lemma 2.1 it is sufficient to show the correspond-
A

ing statement for b, where

We may also assume 1  p ~ 2. Choose in the proof of theorem 1.4
and put

Then

Since

where
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and

we get

and thus

If we take N &#x3E; n/2, theorem 1.2 gives

Moreover, by (1.2),

Theorem 1.1 with 8 = 2 ~1-1/p) gives

A

Remembering that b vanishes in a neighbourhood of 01 we get for
some vo

REMARK 3.1. Exactly in the same way we can prove the more general
result: Let F be infinitely differentiable on R and vanish in a neighbourhood
of 0. Assume that

Then F (H (~)) E if lc &#x3E; n I 1/p - 1/2 1. The corresponding result for the
torus Tn is proved in Lofstrom [5], section 10.

4. The case H (~) = ~ ~~ , m ~ 1.

In this section we always take H (~) = I ~ 1m and 1.

A

THEOREM 4.1. If H ($) = 1 ~ 1m, m =~= 1, then a E M. implies lc h

~n~l~y1/2~.
For the proof we need two lemmata.
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LEMMA 4.1. If m =t= 1 and n + m’ (~^ - n~2) &#x3E; 0, then

where m’ = - 1), C, and C2 are constants 0, and bm is a conti-

nuous function if m  1 and identically zero if 1.

REMARK 4.1. The lemma was proved in the case m  1 by Wainger
[8], Part II. We will prove it in the case m ;&#x3E; 1.

LEMMA 4.2. Let V be the function in section 2 and put

Then fa E LP , if a &#x3E; n/p’ , 1  p m oo, lip + lip’ = 1.

PROOF OF THEOREM 4.1.
A A

If a E -yp I then b E Mp. Consider

Then ~’ E LP according to lemma 4.2. On the other hand lemma 4.1 gives

f (x) = °1 I x 1-()t+ml(k+l--n/2)) exp (iC2 I x m’) [1 + a (1)] + bm (I x 1), I x 1m’ --+ 00,

if 

Now choose lc so that

A

i. e. 0  - n/p’ = m (n - 1/ 2)) - k). Thus a E leads to a contra-

diction if

REMARK 4.2. This method was used by Wainger [8], Part IV, to prove
the analogous theorem for Fourier multipliers on the torus T’2.

PROOF OF LEMMA 4.1 IN THE CASE 7?2 &#x3E; 1.

We will restrict ourselves to the case n h 2. The can be

treated in an analogous way.
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Let be the standard functions introduced in the proof of theorem
1.4. We may assume that

A 00 A

Then b (~) = Z bv (~), where
0

This implies

Clearly by is a function of I x 1, so we can assume that x = (~ x ~, 0~ ,.. , 0).
Then we make the transformation

and get

Finally we make variable transformation

or

We get
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where and

Let t8o be defined by

We split the integral into two integrals

Both of them can be handled in the same way. Let us consider only the
second one and call it bv (x), With t8 defined by

we get

where

Since

12. Annati della Scuola Norm. Sup. Pisa.
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is uniformly convergent on compact subsets of (s ~ s h SO) we get

where the integral, as in the rest of the proof, is to be understood as an

inverse Fourier transform.

Now we write

where

and are as in fig. 4.2.

Choosing I x sufficiently large, we can obtain that 0 = 1 in the integrals

defining go and g2.
We first consider go -

if
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The integrand is a function f of y and (ta - Elementary calcula-

tions give

uniformly in
But

with C + 0.

where h is analytic in a neighbourhood of 0, and h (0) = 0, h’ (0) # 0.
Hence go (s) fulfils the conditions of theorem 1.4 with a = (~c - 2)/2

and fl = (n - 1)/2. We thus get

We finally turn to g1 and g2. One can show that for N sufficiently
large

and

This implies

for every M h 1 v = 1,2.

PROOF OF LEMMA 4.2.

At first we suppose n &#x3E; a &#x3E; n/p’. Write

Thus

where ga E 
By differentiation we get

for any N.
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Thus fa E LP, if

i. e. if x &#x3E; n/p’.
Now the proof will be finished, if we show that

implies

Write

If a2 
- ai &#x3E; 0 the first factor belongs to MP by theorem 1.3 The proof

is finished.

5. The case 

Now we tarn to the case m = 1, i. e. in this section "= [ $ I.
A

THEOREM 5.1. a E Mp if = I; I and It &#x3E; (n - 1) - 1/2 I.
A

THEOREM 5.2. If _ ~ ~ I , then a E M. implies Ie - 1) 1/p - 1/2

For the proofs we need the following

LEMMA 5.1. If b (~) = o(I $1)1$ 1-keil$l, then

where bi E if k - (n - 1)/2  1 and k - (n - 1)/2 is not an integer

PROOF OF THEOREM 5.1.
A A

As usual we prove the theorem for b instead of a. By theorem 1.3 it is
A A

obvious that if b E Mi for a certain k = ko , then b E Mi for all k h By
lemma 5.1 we get
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and thus

To prove the theorem for p &#x3E; 1 we use again the standard functions IF,
from the proof of theorem 1.4 and put

Let ko be a number &#x3E; (n - 1)/2. Then

which implies, in view of (1.2), (1.3) and (1.4),

and

Theorem 1.1 with 0 = 2 ~1-1/p) gives

A

Thus b E Mp , if k ) ko (1- 0). But ko is arbitrary &#x3E; (n - 1)/2 and hence
A

PROOF OF THEOREM 5.2.

Let 0 be the annulus (s 1/2 ~ ~ x ~ ~ 2). Then by (5.2) b E LP (0) implies

i. e.

Suppose now that

Put
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By lemma 4.2 g E Lp. But

where

A A A

Thus (&#x26;~)~ which implies b ~ Mp.

PROOF OF LEMMA 5.1.
A 00 A

By writing &#x26;(~)==~~(~) as in the proof of lemma 4.1 we can justify
0

the following calculations :

Write

Then g is the inverse Fourier transform of the function

Let

and

be the corresponding Taylor series.
Put

From

DN RN E Ltoc and

2) if M is large
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we conclude that

Thus by (1.5)

and

where GN E L°° and fv is defined by

Now it is obvious that (5.3) is fulfilled. To obtain (5.2) we consider the

function f defined by

If then f E Z°°.
If a  1 is not an integer, then

The inverse Fourier transformation gives

where g E Loo and = (- y)o’-’. (See Gelfand-Schilow [1], p. 169).
Using this and y =1-~- ~ x I and 

we obtain (5.2). To prove (5.1) it is now sufficient to consider x ~ S 1/2.
By changing the order of integration and with f defined by (5.4) and

ex = k - n + 1 we get
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for N sufficiently large. But

and thus
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