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A. In [2] Grauert proves the following direct image theorem.

THEOREM @. Suppose n: X — Y is a proper holomorphic map of (not
necessarily reduced) complex spaces and ¥ is a coherent analytic sheaf on X.
Then the I direct image 7;(F) of F under = is a coherent analytic sheaf
on Y for all 1=0. (A simplified treatment of a key point of the proof
for a special case is given in [3] to illustrate the idea of the proof. In [5]
Knorr gives an amplified version of Grauert’s original proof.)

Pervenuto alla Redazione il 22 Set. 1969.
(*) Partially supported by NSF Grant GP-7265.
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When the dimension of the complex space Y in Theorem G is zero,
Theorem G is reduced to the following finiteness theorem of Cartan-Serre.

THEOREM C-S. Suppose X is a compact complex space and Fis a
coberent analytic sheaf on X. Then the dimension of H!(X, ) is finite
for all 1 = 0.

Theorem G can be regarded as a Theorem (-S with parameters (and
the parameter space is the complex space Y).

In [1] Andreotti and Grauert generalize Theorem C-8 to the following
finiteness theorem for pseudoconvex and pseudoconcave spaces.

THEOREM A-(G. Suppose X is a complex space and ¢ is a proper C®
map from X to (a,b), where a€{— cojUR and b € RU {oo}. Suppose a <
a’ <V <band ¢ is strictly p-convex on {p > b’} and strictly ¢-convex
on {p < a'}. If ¥ is a coherent analytic sheaf on X and codh F=r on
{p < a’}, then the dimension of H'(X,F) is finite for p=1<r—q.

It is natural to conjecture that Theorem G can be generalized to a
Theorem A G with parameters.

CONJECTURE. Suppose n:X-— Y is a holomorphic map of complex
spaces and ¢ is a C* map from X to (a,b), where a € {— co} UR and b€
€ R U{co} such that the restriction of = to {a*= ¢ =0b* is proper for
a < a* < b* < b. Suppose a < a’ < b < b and, for every y € Y, ¢ is strictly
p-convex on n—!(y)N{p > b’} and strictly g-convex on z~!(y) N {p < a’}.
If & is a coherent analytic sheaf on X and codh F=1r on {¢ < a’}, then
m (F) is coherent on Y for p=1<r —q—dim Y.

This conjecture is closely linked up with the theory of coherent ana-
Iytic sheaf extension. In [7] coherent analytic sheaves are extended by
proving that under special circumstances s, (%), is finitely generated over
the local ring at y for y€ Y.

Not much has been done in the direction of this conjecture. In private
correspondence Knorr told me that he could prove the following one-pa-
rameter version.

TEEOREM K. Suppose X is a perfect complex space, § is a Riemann
surface (with reduced complex structure), and n: X — S is a holomorphic
map. Suppose ¢ is a O map from X to (a,b), where a € {— co} UR and
b€ RU (oo}, such that the restriction of n to {a* = ¢ =b*} is proper for
a < a* << b*<b Suppose a<a' < b <b and ¢ is strictly p-convex on
{p < b’} and strictly g-convex on [p <la’}. Suppose ¥ is a coherent analy-
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tic sheaf on X such that codh F=r on {p <a’} and F|fp <a’} is
(n|{p < a’]) — flat. Then = (F) is coherent on § for p=1<r—q—2.

In this paper we prove a pseudoconcave version of the conjecture with
a parameter space of any dimension which is a manifold. This gives a
pseudoconcave generalization of Grauert’s direct image theorem. Before we
state the main result, we introduce a definition.

DEFINITION. Suppose ¢ is a natural number and n: X — Y is a
holomorphic map of complex spaces. w is called g-concave if there exists a
C*map ¢ from X to (c,, oo), where ¢, € {— oo} UR, and there exists ¢, <C
< ¢34 << oo such that (i) for ¢, << ¢ < oo, the restriction of = to {¢ = ¢} is
proper, and (ii) ¢ is strictly g-convex on {p < c;}. We call ¢ an exhaustion
Sfunction and call o,,c; concavity bounds for the g-concave holomorphic
map 7.

Our main result is the following.

MAIN THEOREM. Suppose X is a complex space, M is an n dimensional
complex manifold (with reduced complex structure), and n: X— M is a
g-concave holomorphic map with exhaustion function ¢ and concavity bounds
4, Cy - Suppose F is a coherent analytic sheaf on X such that codh F=r
on {p <<c} and F|{p < ey} is (n|{p < 6y}) — flat. Then the I** direct image
m(F) of F under = is a coherent analytic sheaf on M for I << r — q — 2n.

When X = {¢ = ¢y}, the Main Theorem gives Theorem @. The Main
Theorem may still be valid if we replace | <<r —q—2n by l<r—q—mn
and drop the (m|{p < cy}) — flatness of F|{p < ¢y}, but I cannot prove
this sharpened version.

B. To understand the difficulty involved in any attempt to prove the
conjecture, we analyze very briefly Grauert’s proof of Theorem @. Clearly
for the proof, we can assume that Y is the n-dimensional unit polydisc K.
(We allow K to take on unreduced complex structures also.) Grauert’s proof
hinges on what Grauert calls the Hauptlemma ([2], p, 47).

Denote by K (o) the n-dimensional polydise with polyradii equal to the
n-tuple ¢ of positive number. Suppose U and U are finite Stein open co-
verings of X (i. e. nembers of the coverings are Stein open subsets of X).
Denote by U (p) the covering obtained by replacing every number of U
by its intersection with n—!(K (p)). U (¢) has a similar meaning., A sim-
plified version of Grauert’s Hauptlemma can be roughly described as
follows.
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Suppose W and ) are suitably chosen and U refines U in
a suitable manner. Then there exist &, ..., & € Z4(T, ) such
that for ¢ sufficiently small (in a suitably defined sense) the
following is satisfied. For &€ Z' (W (o), #), there exist holo-

(0.1),, morphic functions a; on K (9) and %€ O1(V (o), ) such that
& =S a;& -+ 6y when restricted to \) (o) and some (suitably
defined) norms of a; and % are dominated by the product
of some (suitably defined) norm of & and a fixed constant
depending on p.

In Grauert’s proof (0.1),,; is proved by double induction consisting of
an ascending induction on n and a descending induction on I. When n=0,
(0.1),,; follows from Theorem (-8 and the open mapping theorem for Fré-
chet spaces. For ! very large, (0.1),; is vacuous, because {l is finite. To
prove the general (0.1),;, the idea is to use « power series » expansion to
go down to (0.1),—;,;. We expand & into «power series» in one of the
coordinates of K. The trouble is that the coefficients of the «power series»
may not be a cocycle. Caleculation can show that, since £ is a cocycle, even
though the coefficients of the « power series » may not be a cocycle, the
coboundary of any coefficient of the « power series » is small with respect
to the norm under consideration. Now use (0.1), ;. coupled with other
things to show that the coboundary of every coefficient of the « power se-
ries » is equal to the coboundary of an l-cochain which is small. So every
coefficient can be approximated by an l-cocycle. By applying (0.1),—; ; to
the approximating l-cocycles, we can find a; and 5 so that X a; &; 4 dy ap-
proximates & By taking limits, we have (0.1),;. The step of taking limits
involves a lot of technical details. The reason is the following. When we
have an approximation, the covering is shrunk from T (g) to V (p). Unless
we have some way to enlarge the covering from U (p) back to W (o), we
may end up with nothing. Grauert overcomes this difficulty by proving a
Leray’s isomorphism theorem with bounds whose proof depends on a Car-
tan’s theorem B with bounds.

The conjecture is, loosely speaking, a combination of a pseudoconvex
generalization and a pseudoconcave generalization of Grauert’s direct image
theorem. Let us look at the pseudoconvex case and the pseudoconcave case
separately.

For the pseudoconvex case, naturally we would only expect to have
(0.1),,; for 1=1,, where [, is a fixed number. The ascending induction on
n and the descending induction on ! still work. For the step enlarging the
covering from U (¢) to U (¢) we can use the techniques of [1] in addition
to Leray’s isomorphism theorem with bounds. Things seem to work out
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smoothly. However, in Grauert’s proof, there is an isomorphism lemma used
after the establishment of (0.1),; which poses great difficulties for the pseu-
doconvex case when n > 1. We shall explain more about this isomorphism
lemma in a short while.

For the pseudoconcave case, naturally we could only expect (0.1),; to
hold for ! =1, where [, is a fixed non-negative integer. The descending in-
duction on ! obviously fails. However, for the case n = 1 this difficulty can
eagily be circumvented in the following way. Obviously we have (0.1), ; for
1=1,, because of Theorem A-G and the open mapping theorem for Fréchet
spaces. From (0.1),;, by the techniques used in the proof of Proposition
14, [7], we can prove a weakened version of (0.1);,; which can replace (0.1),,;
in proving the coherence when n = 1. The weakened version of (0.1); ; dif-
fers from (0.1); ; in that, instead of requiring a; to be defined on K (9) and
n to be defined for U (g), we only require a; to be defined on K (¢') and 7
to be defined for U (p!) for some smaller o', The reason why this circum-
vention works only for n =1 is that from the weakened version of (0.1),;
we cannot derive the weakened version of (0.1), ;. To derive the weakened
version of (0,1),; we need the original version of (0.1); ; which we do not
have.

After establishing (0.1),; Grauert’s proof employs diagram-chasing and
other simpler techniques. Coherence is proved by ascending induction on n.
At one point the following isomorphism lemma is used.

If 7 (Supp ) is contained in a submanifold of codimension 1
(0.2),,1 in K, then the canonical homomorphism from H'!(X, F) to
I'(K, 7 (F)) is an isomorphism.

In Grauert’s proof, (0.2),; follows from the induction hypothesis and
the general statement that, if 6: V-— W is a holomorphic map of complex
spaces and ‘R is a coherent analytic sheaf on V such that W is Stein and
o, (‘R) is coherent for » < 1, then H!(V,R)~I(W,n (‘R)). For the pseu-
doconcave generalization, (0.2), ; offers no problem. It can be dealt with in
the same way. However, for the pseudoconvex generalization, (0.2),; poses
great difficulties except for the case m = 1. In the case n =1, (0.2),,; is
trivially true.

C. In this paper we prove the pseudoconcave generalization with pa-
rameter manifolds of arbitrary dimensions by overcoming the difficulty
concerning the pseudoconcave case of (0.1),;. We derive a technique which
enables us to derive (0.1),,; from (0.1),—,; and (0.1),—; 14, . Because instead
of using only (0.1),_;,; we use both (0.1),—;; and (0.1),—;;4+; to prove
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(0.1),,1, we could only prove the coherence of () for I <lr — q— 2n
instead of ! << r — q — n which we believe should be the sharpest possible
for this kind of situation.

One of the most messy parts of Grauert’s proof is the part concerning
measure charts and measure coverings ([2], § 4). The measure coverings
would naturally be much more messy for the pseudoconcave case. To avoid
undesired complications, we introduce a neater form of treatment. This is
made possible by two techniques. One is to define for holomorphic functions
on compact subsets of unreduced complex spaces a semi-norm which is
practically independent of the local embeddings used to define it (§ 6).
Another is to use Richberg’s result on the extension of plurisubharmonic
functions [6] to approximate Stein open subsets of a subvariety embedded
in a Stein domain in a number space by Stein open subsets of the number
space (§ 7).

Needles to say, most ideas in this paper evolve from the ideas of
Grauert presented in [2]. Without the ingenious pioneering ideas of Grauert,
any proof of the coherence of direct images of sheaves would not be pos-
gible. A considerable part of the development here parallels the development
in [2]. Unfortunately this cannot be avoided by simply quoting intermediate
results of Grauert in [2], because we use a new treatment for measure co-
verings and because we need slightly more general versions of the results.

As far as the proof of the Main Theorem goes, this paper is self con-
tained, except that some simple statements are quoted from the earlier
part of [7]. Hence our proof of the Main Theorem gives as a by-product
another version of the proof of Theorem @.

In this presentation we try to separate « soft» analysis and «hard »
analysis. « Soft » analysis is dealt with in the earlier part of this paper,
whereas « hard » analysis is postponed to the latter part.

D. The following conventions and notations will be used in this paper.
Additional ones will be introduced later on when needed.

Unless specified otherwise, all complex spaces and complex subspaces
in this paper are in the sense of Grauert (i.e. their structure-sheaves may
have non-zero nilpotent elements).

A holomorphic function on a complex space (X, O) means an element
of I'(X, O).

Suppose & is an analytic sheaf on a complex space X and z € X, Then
%. denotes the stalk of F at x. If f€ I'(X, ¥), then f, denotes the germ of
S at @. If W ={Uicr is a collection of open subsets of X, then U;o,, ;

-lp
denotes U.-0 n..n U,-p and | Tl | denotes _91 U;. If Y is a subset of X, then
T

WnN Y denotes {U;nY)icr. If g€ C? (W, F), then g;o_,,.'pEF(U,-o_,,.-p,g)
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denotes the value of g at the simplex (i, ..., %,) of the nerve of UW. Sup-
pose VU = {Vj}jes is a collection of open subsets of X. If there is a map
7:J — I such that V; c U,;, then we write D < UW. If V<<W and
V; €c Uyy, then we write U << W. Suppose VU << W. We have a map
™: 0?2 (W, F)— 02 (V, F) induced by z. If g€ 07 (W, F), we call *(g)
the restriction of g to ) or on ) and denote it by g | V. If ¢’ € C? (W, F)
such that * (g) = ©* (9’), then we say that g = ¢’ on V. If ||.|| is a norm
on O? (Y, F), then || *(g)| is also denoted simply by || g||. If every U;
is Stein, we say that Ul is a Stein open covering of | |.

A holomorphic map @ from a complex space (X, O) to a complex
space (X’, O’) means a morphism of ringed spaces. That is, & = (¢, , ¢,),
where ¢, is a continuous map from X to Y and ¢, is a continuous map
from {(z, s) |2 € X, s € Oy} to O. Sometimes, for the sake of notational
simplicity, we suppress ¢, and ¢,. In that case, we use P to represent
also the continuous map ¢,: X -— Y and, for helI'(X’, 0’), we denote
@, (e ' X, 0) by h o . If no confusion can arise, we sometimes denote
both h and h o @ by h.

The ¢** direct image of an analytic sheaf & under a holomorphic map
@ is denoted by P, (F).

«O denotes the structure-sheaf of C™.

n will denote a non-negative integer. It occupies a special position in
this paper and does not simply represent a general non-negative integer.
ty 4 o, ty will denote the coordinate functions of C».

Ry ={ceR|c¢> 0}. N= the set of all positive integers. N, = N U {0}.
If a4 € R™, then a,, .., a, denote the components of a. Suppose a, b€ R™.
a=b means @;=0b; for 1=1=m. a < b means a; << b; for 1 =1 =m. Sup-

pose o, BEN™., o 4+ f means («;, + B, , .., tw -+ Bw) If § = a, then (;)

means (;‘) (“m) . | o | means a, + ... + o . If b is a holomorphic fun-

i m
ction on an open subset of C™, then D%k or D;h denotes %ﬁ——— ,
12 0 0™ 2
where z, , .., 2, are the coordinate functions of C™. '

If a€RY, then K™ (a) denotes {(2,, ..., 2m)€C™||2,| < yy oy | 2m| <aw)
K™ (a) is simply denoted by K (a). When a = (1,..., 1), K(a) is simply de-
noted by K.

In a collection of open subsets, members which are empty sets are
ignored. Two collections of open subsets are considered being the same
if they are identical after dropping all members which are empty sets.

If E is a subset of a topological space, dE denotes the boundary of E.

Norms in this paper are allowed to take on the value -} oo.
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§ 1. A Criterion for Coherence.

We derive a criterion for coherence which will be used to prove the
coherence of direct images of sheaves.

Suppose (X, O) is a complex space and <% is an analytic sheaf on X.
For # € X, m (x) denotes the maximum ideal-sheaf on X for the subvariety (}.

ProPOSITION 1.1. Fis coherent at a point x, of X if and only if there

exist Stein open neighborhoods W € W of @, and £, ..., & €' (W, F) sati-
sfying the following.
(i) F=23tL,0& on W.
(ii) TFor every x € W there exists a function p (x, -) : N — N, such that
(a) d]im P (®,d) = oo, and

(b) for every ne S, I'(W,0) & with 7, € (m (@)? F),, there exist
oy y ey 0 € I'(W, M (2)?@ @) with 5 = b, «;& on W.

Proor:

I. «Only if» part.

We can find a Stein open neighborhood W of xz, in X and &,,..,&¢€
e I'(W, F) such that F= 3t_, O& on W and Fis coherent on W. Thus
we have (i), Let W = W and p@,d)=4d for € W. We have a sheaf-epi-
morphism O%— F on W defined by &y ey &+ This sheaf-epimorphism in-
duces a sheaf-epimorphism m (z)¢ O* — m (z) ¥ on W for x€ W. Since W
is Stein, I"(W, m ()¢ O%) — I'(W, m (@)* F) is surjective. (ii) follows.

II. «If» part.

Let R c O*| W be the relation-sheaf of &y y & . We need only prove
that “® | W is generated by global sections.

For x€ W. Let T be the O, submodule of ‘¥, generated by global sec-
tions of | W. Suppose U is an open neighborhood of x in W and
(0g y ooy o) €L (T, R).

Fix »€N. There exists d € N such that p (v,d)=» and d =». Since W
is Stein, the map

I'(W, 0)Zs I'(W, O/m (2)%) ~ (O/m (2)?),

induced by the quotient map vw: O — O/m(x)? is surjective. There exists
pi€ I'(W, O) such that ¢ (8;), = v (%)) Hence (B — o)y, € (M (@)2), .

(Shey Bibide = (St fibi — Sk i 8ide = Sty (Bi — o (B € (M (@)2 F s -
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By (ii) (b) there exist y,, .., yx€ (W, m (x)?®®) such that Stayib =
=S Bibion W (By— ey Br— y) € L (W, R).

(ﬁi i SR RIS B — Yr)e — (0g 5 oue y Ok)a
= (51 — %y g ey ﬂk - O‘k)x - (7’1 9 seey }’k)x €(m(x) Ok)x .

Hence ®,c T -4+ (m(z) O%),. Since » is arbitrarily fixed, ¥, c DN (T +
v
+ (m (w)v Ok)z) =T. %x =T. q. e. d.

§ 2 Direct-finite Oy systems.

‘We prove in this section some preparatory propositions which are
esgentially algebraic in nature. These propositions deal with properties of
certain direct systems of modules over rings of local holomorphic functions.
In later sections these propositions will be applied to the defining preshea-
ves for direct images of sheaves.

Suppose (X, O) is a complex space and x€X. T denotes the directed
set of all open neighborhoods of # in X. For UeW, Of denotes I'(U, O%).
1, denotes the element of Oy whose germ at every point ¢ of U is the
unit of the local ring O,.el:* denotes the element (9,...,0,17,0,...,0)
of O’fy, where 1y is in the i*place. For U’c U in W, oy y: 0% — O
denotes the restriction map and a'{fz O%——> O’; denotes the natural map.

DEFINITION. A direct system R = (R, 0y ;) indexed by the directed

set T is called an Ogy-system if

(i) Ryis an Ogp-module, and

(i) oy is an Ovp-homomorphism from the Oy module Ry to the
Oy -module Ry which is naturally regarded as an Ogy-module.

We denote the direct limit of Ry by R,. o,: R;,—> R, denotes the
natural map.

We need some more notations. Suppose for some fixed UeU, ¢, :
0% — Ry is an Oy-homomorphism. For U’c U in U, denote by @, the
Op~homomorphism from O% to Ry defined by Py (€7F) = 0y Py (€7-¥) for
1=i=Fk We say that ¢,, is induced by ¢;. (¢} induces an O,-homo-
morphism from O to R, which we denote by ¢,. We say that ¢, is in-

duced by ¢,. These notations will be applied, in particular, to the case
where Rq = (0%, &%, ..
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LemMMA 2.1. Suppose U€ W and N is a coherent analytic subsheaf
of a coherent analytic sheaf 9 on U. Then there exists U’c U in U such
that, if &€ (U, N) and &, € N, , then &, €N, for ye U".

PrOOF. By replacing U by a smaller member of {l, we can assume
without loss of generality that U is Stein. Let 57 be the subsheaf of
on U generated by all elements # € I" (U, N) satisfying 5, € V(,. By applying
Cartan’s theorem A to the coherent sheaf (| U on the Stein space U,
we conclude that 5)7(95 = N(,. Being a subsheaf of coherent analytic sheaf
and being generated by global sections, and W is coherent. Since the two
coherent subsheaves M and agree at x, N and M agree on Ssome
open neighborhood U’ of # in U. We claim that U’ satisfies the requi-
rement. ‘

Suppose &€ I'(U, M) and &,€N,. Foom the definition of C}%, we con-
clude that &€ I'(U, (). Since W and M agree on U, | U el (U, M.
q.e.d.

LemMMA 2.2, Suppose Ue W and ¢, : Of — O is an Oy homomorphism.
Then there exists U’ < U in W such that (Im af, ;) N (x4,)~" (Im ¢,)< Im @,.

PRrOOF. Let Y be the subsheaf of O7 on U generated by Im ¢, . N
is coherent. By Lemma 2.1 there exists U’c U in U such that, if £€ OF
and &, € W(,, then &| U’ € I'(U’, M). By shrinking U’, we can assume that
U’ is Stein. We clain that U’ satisfies the requirement.

Take # € (Im a, ;) N («%,)~! (Im @,). Then 5 =¢| U’ for some &€ Of and
al, (n)€Im @,. It is clear tat Im ¢, = W,. Hence &, = aZ,(n)€N,.
| U €U, NM). Since Im ¢, generates )| U’ and U’ is Stein, by Cartan’s
theorem B we conclude that &| U7 € Im @y - q.e.d.

LEMMA 2.3. Suppose U€ Ul and 4 is a subset of Of. Then there exists

U’ c U in @ such that the Oy-submodule of O'ﬁ;/ generated by oc'{rU(A) is
finitely generated over Oy .

ProOOF. Let T be the Oysubmodule of Of generated by A. Then there
exist &,..., &€ A such that (£,)q, .., (&), generate T. Let N = >, 0&on
U. 9 is coherent.

By Lemma 2.1 there exists U’c U in W such that, if te0O% and
&€ My, then &| U’ € I'(U’, N). By shrinking U’, we can assume that U’
is Stein. We claim that U’ satisfies the requirement.
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‘We need only check that aky v(d)e 2§=1 Op o% v(&). Take &€ A. Then
EE€ENM,. E| U eI (U, M). Since U’ is Stein, Cartan’s theorem B implies
that & = 3i_, a; & for some a;€ Oy . q.e.d.

DEFINITION., Suppose Ry = (R, 0, .} i8 an Ogq-system. Ry is said
to be direct-finite if
(i) R, is finitely generated over O,, and
(ii) for every U € U there exists U’c U in U such that the O -sub-
module generated by Im g, is finitely generated over Oy .

LLeMMA 2.4. In the preceding definition, (ii) is equivalent to each of
the following two statements.
(ii)” for every Ue€ Tl there exist an Oy homomorphism ¢ : 0% — Ry
and U’c U in W such that Im ¢, ,©Im ¢,.
(ii)" for every U€ U there exist U’c U in W and an Oy -homomor-
phism ¢, : 0% — Ry such that Im 0y y©SIm @ .

ProoF. It is clear that (ii) is equivalent to (ii)’. It is clear that (ii)’
implies (ii)”. We are going to prove that (ii)” implies (ii).

Take U €. By (ii)’/ there exists U’c U in W and an Og-homomor-
phism qu,:O%f—)RU/ such that Tm ¢, ,< Im ¢,,. Consider the subset
A= g7 (Im g, ) of Op. By Lemma 2.3 there exists U”c U” in T such
that the Og--submodule of Of generated by at v’ (4) is finitely generated
ove Oy~. Hence the Ogp~-submodule of Ry~ generated by ¢, (af, ;, (4)) is
finitely generated over Ogy~.

Since Im ¢, ,SIm @, , @, (4) =@, (7!} (Im oy ) = ¢y - We have
@y (08, 5 (A) = 0 1 (P (A)) = @y 1 (IM @, ) =Tm g, . Hence the Og-
submodule generated by Im g, , is finitely generated over Oy~ . q.e. d.

PrOPOSITION 2.1. Suppose Ry = (R, 01, ] i8 a direct-finite Og-system.
Then for every U € Ul there exists U’ © U in U such that Ker ¢, c Ker g, ..

Proor. Fix UeUW. There exist U, < U in W and an Oy, homomorphism
¢U1:O’°U1—> Ry, such that Im ¢, ;< Imgg,.

There exists an Oyhomomorphism v, : O, —> O% such that Im vy, =
= Ker ¢,. There exists U,c U, in Tl such that v, is induced by some
Ov;homomorphism v, : Op,— O%, and Py, Yo, = 0.

By Lemma 2.2 there exists U’c U, in T such that (Imaf, )N
N (¥~ (Im y,)< Im y,,. We are going to prove that Ker ¢,< Ker g, ;.
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Suppose &€ Ker g¢,. Then there exists #¢ O’;h such that Py, () =
= 0y, ¢ (€) Py “%1 () = 04 (&) = 0. Hence oc’{,1 (n) € Im y,, .

ak, g, (M €(Im ek, )N (ak,)=1 (Im y,).
“’;7' 7 (n) = vy () for some € O%. Since P, Yo, = 0, 9y vy =0,

0g v &) = 0y 1,00, (§) = 0y g, P, (1) =Py 0l 1, (1) = P ¥ () =0. g.e.d.

LeMMa  2.5. Suppose Sq = {8y, 0y, and Rq = (R, 0y | are
Onq-systems. Suppose for every U’c U in U, Sy is an Oy-submodule of
Ry and (- is the restriction of 0y ¢ t0 Sy. If Rqq is direct-finite, then
Sz is direct-finite.

Proor. Since 8, is an O-submodule of R,, S, is finitely generated
over O, .

Fix UeUW. There exist U, ¢ U in 1 and an Ogp — homomorphism
Py, O’{yl—> Ry, such that Im gpy ¢ Im ¢gy,. There exists an O, holomor-
phism vy, : Of — O; such that Im v, = @;!(8,). For some U, c U, in U,
v, is induced by some Opg,-homomorphism vy,: OF,— Op, such that Im
(po,wov,)c Sy,. By Lemma 2.2 there exist U’ c U such that (Im a'{r AL
Nk, )1 (Imy,) cImypy . We are going to prove that Im ¢p yp N
5 Im oy

Take €8, . 0 (8) = @y () for some n € Of . @, ok (1) = oy ¢y () =
= 0y, 0y (§) = 0y (§) €8,. Hence aof (n) € ¢! (8,) = Im y, . oc’;,,m(q) € (Im
a%,m) N (a%,)~! (Imy,) € Imy,;,. For some ¢ € Oy, oc’l‘J,Ul(q) =y, () 0py (&)=
= 0pig, P, ) = Py ¥, (1) = @, ¥y, (£). Henece Im oy, Tm @y, py,

Since Im ‘PU,'/’UaCSU, y Im @, w, ©€8,. Since U is arbitrary, by
Lemma 2.4, S is direct-finite. q. e. d.

PROPOSITION 2.2 Suppose Ry = (R, ¢y}, Brq = By, 0y} 80d By =
= (R7, o7rv] are Oqy-systems. Suppose for everyU’ c U in T, the diagram

' Pu Yu "
Ry —— Ry——> Ry
’ ’ | ”
QU’Ul Cro QU'Ui
] Y Yo "
Ry —— Ryr—— Ry
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is commutativ eand bas exact rows, where ¢y and yy are Oy-homomorphisms
and ¢y and wyr are Op-homomorphisms. If both Ry and Ry are direct-
finite, then Rq is direct-finite.

PrOOF. By using Lemma 2.5 and by replacing Ry by Im wy, we can
assume that yy is surjective.

Since Ri— R, — RV — 0 is exact, R, is finitely generated over O, .

Fix Ue¢UW. There exist U,c U in W and an Oy -homomorphism
fv,: O%,— RY, such that Im %, v < Im fy,. Since yy, is surjective, there
exists an Og,-homomorphism »g: Of — Ry, such that g, vy, = fo,.

There exist U’ ¢ U, in W and an Op-homomorphism oy : Oy — Ry
such that Im ¢y, ¢ Im ogr. Let 7yt ngj-k_) Ry be the Or-homomorphism
defined by : 7yr(a @ b) = (¢, 0,,) (@) + v, (b) for a€ O and be Of . We are
going to prove that Im ¢, c Imz,,.

Take £€ Ry. Then for some 7€ 01{71, Q'{,lU(tpU(E)) = ,BUl (). 2 (QUlU(f) —
Yo, (1) = 7,5 (Wy(é) — By, () = 0. 0, (§) — v, () = @ (£) for some (€ Riy;.
For some 6 € Oy ’ Q,UIUl )= Oy (6). Oy, () — Yo (a,';]/Ul ()= uu, (QUIU(E) —_
— 7’y () = yu, Py ) = Pur Q’U"Ul €)= P O (6). (s ()= Yo (a’%/m (n)) +
+ ¢y 0 (0) €EIm 7, . q. e.d.

PROPOSITION 2.3. Suppose Ry = (Ry, ¢v-p) is a direct-finite Oqy-system.
Then there exist U €l and an O homomorphism ¢ : O’%—» Rj satisfyng

the following. For any U c U in W there exists U’ c Uin W such that
Im ¢y, cIm @, .

PROOF. Since R* is finitely generated, there exist U €Ul and an
Ohomomorphism ¢ ;: O’;—> R such that ¢,: O — R, is surjective.

Fix Uc U in U. There exist U,;c U in Nl and an Og,-homomorphism
'PU,:O%I_* Ry, such that Im ¢, < Im Yy,- Since ¢, is surjective, there
exists an Oyhomomorphism B, : O — O; such that ¢, f, = v, . For some
U'c U in U, B, is induced by an Oy-bomomorphism ,BU/:‘O’{},—> O% such
that ¢, B, = v, . Since Im e pCIm y,, Im oy, =1Im o, 0y,C
cIm 0, V1, © Imy,=Ime,p,clmge,. q.e.d.

§ 3. Reduction of the Problem.

In this section we reduce the proof of the coherence of direct images
to the verification of a certain property which we call H'finiteness.
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Suppose X is a complex space and ¢ is a coherent analytic sheaf on
X. Suppose n: X — K is a holomorphic map, where the n-dimensional unit
polydisec K is given the reduced complex structure. For o € R} let X (o) =
— 71 (K (o).

For t°¢ K, m (¢°) denotes the maximum ideal-sheaf on K for the sub-
variety {t°). The holomorphic functions ¢; o # on X obtained by lifting the
coordinate-functions ¢ on K are also denoted by ¢; for the sake of notatio-
nal simplicity.

DEFINITION. For ¢ K and l€¢ N,, Fis said to be Hfinite at t°
with respect to n if the O system (H'(n=1(U), F), vy )y, veq 18 direct-
finite, where Ul is the directed set of all open neighborhoods of ¢° in K
and, for U' < U, rypt H (a=1(U), F) — H' (a1 (U’), F) is the restriction
map. ¥ is said to be Hfinite with respect to n if F is H'-finite at every
point of K with respect to .

LemMMa 3.1. Suppose 0— @' — @’— 0 is an exact sequence of co-
herent analytic sheaves on X. If @’ and Q’/ are H 'finite at a point t° of
K with respect to =, then § is H'finite at t* with respect to .

PrOOF. For every open neighborhood U of t° in K, the sequence
H'(z=1(U), @) — H (a1 (U), Q) > H' (=1 (U), G”’) is exact. The Lemma
follows from Proposition 2.2. q.e.d.

LEMMA 3.2. Suppose ¢! < ®=(l,..,1) in R}, t°€ K (o), and d€N,.
Suppose the following three conditions are satisfied.
(i) t,— ¢ is not a zero-divisor for (tn — t?.)d % for x € X (g°).
(ii) ¢, is not a zero-divisor for ¢ g1 (Fg
(iii) We have Ker f € Ker « in

i (Fy < HW (X (), F) —> HW1 (X (oY), F).

For every » € N, let F® = (t, — ¢, F and %, = FHF®.
Then, for every » € N,, we have Im v € Im ¢ in

HY (X (o), F) 2> HY (X (oY), F) = H' (X (0%, Fr42d),

where ¢ is induced by the quotient map F— %, and v is induced by the
inclusion map X (o!) c—y X (0% and the quotient map F,yoqa —> % .
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Proor. Fix »€N,. From the following commutative diagram with
exact rows:
0 — Fo+2) — F 5 Fiog— 0

I

090 5> F—>F —0

we obtain the following commutative diagram with exact rows:

HY (X (), Foyaa) — HH (X (o), Fo+20) = HUW1 (X (%), F)
vl v
H (X (o"), F) > H (X ("), F) — H' (X (¢!), F¥).
We need only prove that ba = 0. Consider the following commutative
diagram :
F <2 Fot =2y G0
e 1
(3.1) F @ .
n
,, v

F1F

w

where p and s are defined by multiplication by (t, — tay+?, q is defined
by multiplication by (¢, — 2)“‘, and r is defined by multiplication by (tn — ).

Because of (i), p is a sheaf-isomorphism on X (g%.

Applying HY! (X (g%, -) to the diagram (3.1), we obtain a diagram
with maps denoted by p;, ¢:, i, %, ui, vi, and w; (i = 0, 1).

Applying my4, (+), to the diagram (3.1), we obtain a diagram with maps
denoted by p’, ¢, ', §', w', v, and w'.

We first prove the following :

(3.2) Ker s’ < Ker ¢'.

When ¢, == 0, s is a sheaf isomorphism on =—1(U) for some open nei-
ghborhood U of 0 in K. Hence s’ is an isomorphism. Ker ' = 0 < Ker ¢'.
When ¢y = 0, (3.2) follows from (ii).

Consider

g (Fo+20)) < HHL (X (9, Fo2d) Sy HH (X (gF), Frt29),

where ¢ and r are natural maps.

9. Annali della Scuola Norm. Sup. - Pisa.
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To prove ba = 0, take £ € Im a. Then ¢ (§) = 0.
s'w' (p)71 T (§) = v'v (§) = fe (§) = 0. By (3.2),
qw' (p')~' 7 (§) = 0. Hence fgqw, (po)~* (§) = 0. By (iil),
aqow, (Po)~! (§) = 0. Hence g,uw, (p,)"' o (§) = 0.
b (&) = w6 (§) = riqw, (p)y 1o (8 =0 q. e. d.

LEMMA 3.3. (a) Suppose R is a Noetherian ring and M is a finitely
generated R module. If f € R, then there exists » € N, such that f is not a
zero-divisor for f*M.

(b) Suppose G is a coherent analytic sheaf on a complex space Y
and @ is a relatively compact open subset of Y. If ¢ is a holomorphic
function on Y, then there exists » € N, such that g is not a zero-divisor
for g* G, for w € Q.

ProoOF. (a) For »€ N, let N, be the kernel of the R-homomorphism
M — M defined by multiplication by f*. {N,} is a non-decreasing sequence
of R submodules of M., Since M is finitely generated over a Noetherian
ring, N, = N,4, for some » € N,. It is easily checked that this » satisfies
the requirement.

(b) For » € N, let X, be the kernel of the sheaf-homomorphis @— @
defined by multiplication by g¢*. {X,} is a non decreasing sequence of co-
herent analytic subsheaves of Q. Since @ is relatively compact, there exists
» € N, such that K, = UN,4; . It is easily checked that this » satisfies the
requirement. q.e.d.

Observe that, in Lemma 3.3, for u =, f is not a zero-divisor for
S# M and g is not a zero-divisor for g» G, for x € Q.

The proof of the following Lemma is a trivial modification of the proof
of Satz 5, (2].

LEMMA 3.4. Suppose ¢: Y — Z is a holomorphic map of complex spa-
ces, @ is a coherent analytic sheaf on Y, and Z is Stein. Suppose I € N,
and o, (§) is coherent for 0 =k < 1. Then the natural homomorphism
HY (Y, @)— I'(Z, 0, (Q)) is an isomorphism.

Proor. The case ! = 0 is ftrivially true. We can therefore assume
that { > 0.

Let 0 — Q — &, — &, —> Sy —> «.. be a flabby sheaf resolution for G.
By taking the zeroth direct image under ¢, we obtain the followind sequence
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which in general is not exact:

0 — 0y (Q) —> 00 (Sy) —> 05 (Sy) —> G (Sg) —> wvr -

Since o, () is flabby for k=0, H? (Z,06,(N) =0 for p =1 and
k=0. Since Z is Stein and ox(Q) is coherent for 0=k <1, H? (Z, 01 (G)) =0
for p=1and 0=k <L

By considering the following two exact sequences

0 — Ker ¢ — gy (i) — Im pp — 0
0 — Im ¢;_; — Ker ¢ —> 0 (§) — 0 (where Im ¢, = 0)

~and by using induction on %k, we obtain H? (Z, Ker @) = H? (Z,Im ¢;) = 0
forp=land 0=k <1

H! (Z, Ker g}_,) = 0 implies that I"(Z, o, (Si—1)) — I' (Z, Im @}_;) — 0
is exact. H* (Z, Im ¢j_;) = 0 implies that I"(Z, Im ¢i_,) > I" (Z, Ker ¢}) —>
—I'(Z, 0, (Q)— 0 is exact. Hence I'(Z, 0(Q)) = I (Z, Ker ¢;)/Im fa.
Since H'! (¥, Q) ~ Ker (I' (Y, &) — F(Y, CSl-l—l))/Im (F(Yy Si—1) — r(y, CSL))7
the Lemma follows from I'(Z, Ker ¢i) = Ker (I'(Z, 6o () — I' (Z, 0y (Si41))) &
~ Ker (I'(Y, $) — ['(Y, Siyq)) and Im fa = Im (I'(Z, 6,(Si—1) —> I (Z, 0, (5)) =
2 Im (I' (Y, Simy) = I' (Y, &) q.e.d.

PROPOSITION 3.2. Suppose ! €N, and the following three conditions
are satisfied.
(i) For every ® € K and »€ N, , a; (F/(t, — 3 F) is coherent for
0=kr=1

(i) & is H'finite and H'l-finite with respect to 7.

(ili) For every t°€¢ K and every relatively compact open subset U
of K there exists €N, such that ¢, — ¢, is not a zero-divisor for (t, —t,) %
for € a—1 (U).

Then m; (4) is coherent on K.

ProoF. Fix y € K. We need only prove the coherence of m; () at y.
Without loss of generality we can assume that y = 0.
By applying Propositions 2.1 and 2.3 to the direct-finite ,O-systems
(H (@1 (U), F)y vpylu, ey © =14 U+ 1, where U is the directed set
of all open neighborhoods of 0 in K and r%,, are restriction maps, we can
find p® << o' < ¢° < (1,..., 1) such that the following two conditions hold.,
() We have Ker ’ € Kera’ in my (F), Lo (X (0%, F) —
HW (X ("), F).
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(b) There exist &, ,..,&€ H' (X (%, ) such that we have Im fic
€ 31 T'(K (¢%), 0) P (&) in

HU(X (o), F) > HY (X (oh), F) 2> H! (X (¢), F)

Fix arbitrarily ¢°€ K (o?). By Proposition 1.1, to prove the coherence
of m; () at 0, we need only prove the following two statements.

(8.3)  The images of &, ,...,& in I'(K (g%, m(F)) generate 7 (F)o

For »€N,,if £€ 3t I'(K (% O) & and the image of &

(3.4) in 7z; (F)w belongs to (M (&) 7 (F))o , then Pa(£)€ Sty I'(K (0?),

m (t°) e (&)

By (i), =, (%), is finitely generated over ,On. By Lemma 3.3 (a)
and by (iii), there exists d € N, such that ¢, is not a zero-divisor for ¢2 z, +1(C])0
and t, — t° is not a zero-divisor for (t» — t%)¢ % for x € X (¢°).

For » €N, define F® = (t, — £, F and F, = F/F®.

1. By Lemma 3.2 we have Im yc Im ¢ in H' (X (o%), ¥) S HY(X (oY),
Fat1) <m (X (0%, Fsa+1), Where ¢ is induced by the quotient map F— Fypa
and y is induced by the quotient map S4y; —%zy, and the inclusion map
X (o) E— X (0.

Consider H'! (X (pt), 7)——‘f)nl(gd.,.l)t,ﬁi 71,(F),, where a and b are indu-
ced by the quotient map — %441 . We are going to prove

(3.5) Im b € ,0Op Im a,

where ,Op Im a denotes the ,Og-submodule of n; (Fst1)n generated by Im a.
Consider the following commutative diagram.

H' (X (0%, Faart) ——> HY(X (), Fap1) —— HU (X (o!), F)

’ f . }‘
Y
h a
i (Fsagle ——> i (Fagio <~ HY(X (o), F)
4 4
g b

() (7)t0 _— T (C])to ’



of Grauert’s Direct Image Theorem : I 297

where ¢ and f are natural maps, ¢ is induced by the quotient map F— a4y,
and & is induced by the quotient map Fagts—> Fats -

By (i) and Lemma 3.4, H'(X (0%, Fat1) ® I (K (0%, 7 (Fiat1)). Since
7 (Fsay1) is coherent, by Cartan’s theorem A, Imc generates m(Tzat1)e
over ,0p. Imb=ImhgCImh = h (,0p Im ¢) = ,Op Im h¢ = ,OpIm fy €
€ .0p Im f ¢ = ,Op Im a. (3.5) is proved.

Consider the following commutative diagram :

(FD)yy  — > 1 (Fo
\J

”l .|
u (F @), — (Fo s 7 (Fat1)eo = (Fat1o
d 4 d

HU(X (0%, F) —— HY(X (oY), F)—— H' (X (¢?), F),

where r is induced by F@ c_y %, s is induced by F@) c_, % p and ¢
are defined by multiplication by %, — t,, y is the natural map, and 0 is
induced by the quotient map F— Fay; .

Since ¢, — ¢ is not a zero divisor for (t, — t3) %, for € X (%), the
sheaf-homomorphism F@ — F@+1 on X (%), defined by multiplication by
ty — tﬂ, is a sheaf-isomorphism. Hence p is an isomorphism.

From the exact sequence 0— F@+t) — F— F3\, — 0, we conclude
that Im s = Ker b.

Ima=Im 68 = 6 (Im f) € 0 (St I' (K (0?), 10) fat (&) ©
C 3F1 nOn 0P (&) = Sty O by (&)
Imbc,Oplmac ZL, 00 by (&)

Let T = 3%, .00 y (&). (3.3) will follow if we can prove 7 = m;(F)o.
Since Im b c 3, ,00b y (&),

m(FwecT+Kerb=T+Ims=T -4 Imgrp?
CT4Img="T4 (ta — ) (Flo € T 4 (M ) 71 (F ) -

By Nakayama’s lemma, 7 () = T. (3.3) is proved.
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II. Fix arbitrarily » € N, . Consider the following commutative diagram :

HY(X (oY), F@) — s H (X (ot), Fotd)

‘wi o
v

HY X (o), F) —— H' X (o), F) <——HYX ("), F) —>m(Fo

o

HY (X (91)7 %+d) *'—L H'(X (Qo), (17v+ad) —H—> ) (%+3d)t9 )

where o is induced by F¢+9 c_, & w is induced by F@ c_y F u and »
are induced by multiplication by (t, — t)*, %, &, and y are induced by
quotient maps, and 4 and u are natural maps.

Since t, — t2 is not a zero-divisor for (t, — tn)¢ % for x€ X (o), the
sheaf-homomorphism %@ — F¢+d on X (¢ defined by multiplication by
(t, — tyy is a sheaf-isomorphism. Hence % is an isomorphism.

From the exact sequence 0 — F+d — F— F.;—0 we conclude
that Im o = Ker 7.

To prove (3.4), take &€ 35, (K (g%, ,0) & such that A(£)€ (M (¢2) 7ty (F))ey
Then e (£) € (M (%) 7 (Ftsa o

By (i) and Lemma 3.4, the natural map 5 : H'(X (¢°), Fysq) — I" (K (0°).
71 (Fy+34)) is an isomorphism.

Since 71;(F43q) is coherent on K and ne(£) € I'(K (0°), 7 (PFysq) and
ne (&), = pe (&) € (M (1% 75y (Fy3q))e0, by Part I of the proof of Proposition 1.1
we conclude that xe (&) € I'(K (gp), m (t°) I'(K (9q), 71 (F+34)). Hence

e (§) € I' (K (¢°), m (to)") H' (X (@), Fosa)-

Xe () e I' (K (oY), m (¢°") Im X, where I' (K (o!), m (t°) Im X denotes
{4, By + ... + 4 Bj| A;€I" (K (o), m (), B;€ Im ¥}. By Lemme 3.2, we have
Im ¥c Imv. Hence Xe(&)€ I'(K (pt), m (%)) Im =,

o (£) € I' (K (o1), m (t°) Im 7. & (£) € I (K (o%), m (1°) H' (X (o%), F)+ Kerz.
Since Ker t = Im ¢ = Im vwu—1c Im v = (t, — t3)* H* (X (o!), F)c I" (K (ot),
m () H' (X ("), F), we have a (¢)€ I' (K (o), m (1)) H' (X (o), F).

Since Im A< Sk, I'(K (¢?), 10) fx (&), wo have ‘B (&) € (I" (K (o%), m(&))-
Im gc Zi, I'(K (%), m(t%) o (£). (3.4) is proved. q.e.d,
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§ 4 Further Reduction of the Problem.

In this section we carry out another reduction for the proof of the
Main Theorem. We show that, to prove the Main Theorem, we can replace
X by (¢ > ¢}, where ¢, < c¢ <cy.

A. Suppose & is a coherent analytic sheaf on a complex space X and
n: X — K (g% is a holomorphic map, where o€ R}. Suppose X,c X, are
open subsets of X and the restriction of = to X, is proper. Let n*: X;— K
be the restriction of = to X;, i =1,2. Suppose t€N,. nj(F) denotes the
I direct image of | X; under =’

PROPOSITION 4.1. Suppose n?(F), is finitetely generated over ,O, and
the map = (FtnF)y—>m (F/tn F) is injective for every r € N,. Then
a2 (F)y —> at (F), is injective.

Proo¥. By Lemma 3.3 (b), after shrinking ¢° we can find d€ N, such
that t, is not a zero-divisor for t* %, for x€X,.

Let Q.= F/t, F,reN. For r=s in N, consider the following commu-
tative diagram :

r

7} (Fo _‘Z—* 73 (Gr)o — 72 (Gelo
l | |
3 s, o,
+ 4 +

r )
ﬂll (g)o _éﬂ; (gr)o—'—) nll (gs)o ’

where @, @,, @, are induced by restriction maps and o,, 7,, 15, u; are
induced by quotient maps. Take arbitrarily » =d. Since @, is injective,
Ker @, o, = Ker o, . Consider the following commutative diagram with exact
TOWS :

7 (18 F )y ——> 7 (F )y
n? (t:, <77)0 J‘“* n? (C])o ___”"_) n? (gr)o )

where the second row comes from the exact sequence 0 — t;, F—> F—>
— G — 0, a comes from the sheaf-homomorphism a: tF— 1, F defined
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by multiplication by ¢,~*, b comes from t; FS—» F, and ¢ is defined by
multiplication by ¢ *.

Since ¢, is not a zero-divisor for t‘,l, %, for x € X,, @ is a sheaf-isomor-
phism on X,. a is therefore an isomorphism. Ker o, = Im f=Im cba—lc
cIme=1¢"n (Fo -

Ker &< Ker 7, & = Ker @, o, = Kero, € t;, " z; (F). Since r is arbitrary,
Ker ®C Nr=a %Al (F)o. Since 7y (F), is infinitely generated over ,O,,

Nyza ty " 73 (F)y = 0. q.e.d

B. LEMMA 4.1. Suppose €N, , X is a topological space, and ¥ is a
sheaf of abelian groups on X. Suppose {B},} reN, 18 a non-decreasing sequence
of open subsets of X whose union is X.

(@) If H'(Bgyy1, F)— H' (B, F) is surjective for k€ N,, then
HY(X,F)— H'(B,, ¥) is surjective.

(b) If H' (Bgy1, F)— HY (B, F) is injective and H''(Bxy;, F)—>
— H"1 (B, F) is surjective for k€N, , then H'(X, F)— H'(B,, ¥) is inj-
ective.

ProoF. When ! = 0, both (a) and (b) are trivially true. Therefore we

can assume that I > 0. Let 0 — F— Sy —> I, —> S, —> ... be a flabby sheaf
resolution of F on X. Let & = Ker ¢ for k€N, .
(a) Take &* € H'(B,,F). & is represented by some &, €I'(B,, Z).

We are going to construct, by induction on k€N, & €I (Bx,Z)
such that &;4; = & on B,. We already have &,. Suppose we have &, for
some k€N,. Since H'(Biy;, F)—> H'(By,F) is surjective, there exist
f]:;+1€ F(Blc—l-l ’ zz) and 7€ F(Bk y CSl—l) such that f]lc+1 =& — g1 (1]) on B, .
Since o, is flabby, % can be extended to 5' €I (Biy1,Si—1). Set &y =
= {41+ @1—1 (') The induction is complete. Define & € I' (X, Z)) by &| By=¢;.
Let € H' (X, F) be induced by £ Then ¢ is mapped to £ under H' (X, F) —>
— HY(B,, F).

(b) Suppose &*€ H'(X, F) is mapped to zero in H'(B,,T). &* is
represented by some &€ I'(X, Z).

Since H'(By4,,F)— H'(By, F) is injective, &* is mapped to zero in
H'(By, %) as is seen by induction on k. & = ¢, (yi) on B for some
’712 €I'(By, Si—1)-

We are going to construcet, by induction on k€N, , 5, €I (Bx, 1)
such that & = g () on By and nu41=me on By. Set 5, = 7). Suppose
we have 7; for some k€N, . @i (k41— ) =0 on Bp. H-1(Byyy, F)—>
— H'1(B, F) is surjective. When I =1, yit; — s ={ on B, for some
{€I'(Byy1, F) and we need only set niy; = 9y — {. When I > 1, giyy—
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— e = + @u—2(0) on By for some (€I (Biyy,Zi—1) and o€ I'(Bi, Si_s)
Since §_, is flabby, o can be extended to some o' € I'(Bit1,Ji—2). Nky1 =
= Q41 — { — @u—2 (') satisfies the requirement. The induction is complete.
Define 7€ '(X,Si—1) by #n|Bi=1nur. Then £ =¢i_;(y) on X. & =0 in
HY(X, F). q.e. d.

LeMvA 4.2, Suppose X is a complex space and ¢ is a C* map from
X to (e, , o0) where ¢, € (— oo} u R, such that {¢ = ¢} is compact for ¢ €(c, , o).
Suppose ¢4 €(c,,00) and & is a coherent analytic sheaf on X such that
codh F=r on {p < ¢y). For c€fe,,00), let X,={p >c} If ¢, =¢' < e <oy
and 0 =1 < r— gq, then ' (X,, ) — H'(X,, F) is bijective.

PROOF. Fix ¢, <c<cy . We need only show that H'(X, F) > H'(X,,F)
for 0 =1 < r— q. For, if ¢, = ¢ <e¢, then H' (X, ,F) = H' (X, F) follows
from HY(X,7F)= H'(X,, ) and H'(X, F) = H' (Xy, F).

Let I' be the set of ¢’ €[c, ,c] such that HY(X,, F)=> H'(X,, F) for
0=1l<r—gq. Let ¢ =infI. We claim that eI Let {er)y e N, be a sequence
in I strictly decreasing to ¢ and ¢, = c¢. Since both H' (Xegpys F) and
e S
= HY(X,,,F) for 0=1<r—q. By Lemma 4.1, H'(X;, F) > H' (X, F)

for 0 =1 <r— q. Hence el
To finish the proof, we need only show that c= ¢, . Suppose the

H'(X,, ,F) are isomorphic to H'(X,,F)for 0 =1 <r —gq, H'(X,

contrary. Then ¢, < c. By Proposition 17 on p. 239 of [1], there exists
¢1€(cy,0) such that H'(X, , F)> H'(X;, F) for 0=1<r—gq. Hence
P € I', contradicting ¢ = inf I q.e.d.

REMARK. Lemma 4 2 and its proof are implicitly contained in [1].

C. Suppose (R, m) is a local ring and M is an R module. A sequence
of elements a,, ..., a; of m is called an M-sequence if a; is not a zero-divisor
for M/3;Zia; M for 1 =i =F.

LEMMA 4.3. Suppose 7, ,..,7 €m form an M-sequence. If d,,...,dr €N
then 1?1,...,12" form an M-sequence.

PROOF. Prove by induction on k.
(i) k= 1. Since 7, is not a zero-divisor for M, 1;‘1 is not a zero-divisor
for M as seen by induction on d,.
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(ii) For the general case, assume &k > 1. It is well-known that any
rearrangement of an M-sequence is still an M-sequence. Since 7, ,.., 7
form an M-sequence, 7,,..,7 form an (M/r, M)-sequence. By induction
hypothesis, tgz,...,‘tik form an (M/v; M)sequence. 7,, rgz,...,rk" form an

M-sequence. 7, is not a zerodivisor for M/Z}, z‘f"M. Hence ,;‘1 is not a

zero-divisor for M/Z%* , A8 T, 4, wy 7% form an M-sequence. q.e.d.
LEMMA 4.4. Suppose 7j,..,t,t€ M. Let N = M/zM.
(@) If dyy..ydr,d €N, then there exists a natural R-homomorphism

w: N/, W N— (e M+ S5 M)t M+ SE <F M),

(b) If in addition 7;,..., 7, v form an M-sequence, then « is an
isomorphism.

PRrOOF. () The second Dedekind-Noether isomorphism theorem for
modules implies that there is a natural R-isomorphism

Bt M)z M)N (¢ M + Sk Al M) —
— (@1 M S5 < M))ad M+ SE 5 M.

Let n: M— "1 M/t 1 M)Nn (¢ M + Sk oM ) be the composite of
the quotient homomorphism %! M — 1?~1 M/(z*—1 M) N (z¢ M 4 St o)
and the homonorphism M — 1%—! M defined by multiplication by z?—!. Clearly
™ -I-ZL, 7% M < Ker n. Hence 7 induces 77': M/(zM + Z‘L, t}i"M) —
w01 M/(x%=1 M) 0 (r% M + St <5 M).

Let y: N = M/tM — M/M }+ ZL ©i M) be the quotient homomor-
phism. It is clear that Ker y = 3¢, 7 N. Hence » induces an isomor-
phism y : N/3t, o8 N — M)aM + 32, < M).

a=2_§ ;; is the homomorphism we look for.

(b) Now assume in addition that z;,...,7;, form an M-sequence. To
show that « is an isomorphism, we need only show that Ker 5 ctM -
+ T T M.

Take f € Ker 5. 1%1 f = 1% g 4 3t—, %% h; for some g, h;€ M. 19— (f —zg) =
= 2:-;1 7% h;. Since %! is not a zero-divisor for M/Z‘Ll 74 accordmg to
Lemma 4.3, f — 19 = St_, o¥% b} for some h{€ M. Hence f€tM + 3t 75
q.e.d.

D. Suppose o€ R'_;_ and n: X — K (g% is a ¢-concave holomorphic map
with exhaustion function ¢ and concavity bounds ¢, , ¢y . Suppose F is a
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coherent analytic sheaf on X such that codh ¥=r on {p <ecy{ and ¢ —
— 1), ., ty— by form an F,sequence for t°€ K (¢°) and x € 21 (t°) N < eyl
For c€fe,,0) let X, =3¢ >c{ and a°=n|X,. For c¢€[c, c0) and
1e N we denote by =i (F) the It* direct image of F| X, under .
‘We introduce the following statement and shall prove that it implies
the Main Theorem.

If c€(cy,c4) and 0 =1 << r — q — 2n, then

(i) a7 (¥) is coherent, and

(ii) for t°€ K (¢° there exists ¢'€(c,,¢) depending on ¢
and ¢ such that af (F)o — ) (F)s is surjective.

(4.1),

Note that, when X = }p = ¢y}, (4.1), implies Grauert’s direct image theorem.
PROPOSITION 4.2. (4.1), —> Main Theorem-

PROOF.
I. We are going to prove (4.2); for k= 0 by induction on %

If dpigr yeee y G EN, €K (09,0 =1<r—¢q—2n 4k, and
(4.2) cE€(c, ,cy), then ay (?7/2?=,,_k+1 t?‘ ) is finitely generated
over ,Op.

Note that, for every fixed F, (4.2); makes sense only when k=n. We shall
restrict onrselves to this situation.

Fix t°€ K (0°. When the z"‘ coordinate of #° is non-zero for some
n—k+1=i=n, F/Zrn st F=0 on 7~!(U) for some open neighbo-
rhood U of t° in K (o%. Hence we can assume without loss of generality
that 1* = 0. Fix c€(c,, cy).

When k=0, F/Zimn—it+1 15 F=F and (4.2); follows from (4.1), .

For the general case, assume 0 << k¥ =n and further assume that (4.2),—,
is true (for all n=%k — 1). We are going to prove (4.2); by induction on

. Let @= F/t,F.

When d, =1, F/Ziu i thFr Q/Z',_n_k.{_l th Q. codh@=Zr—1 on
fp <oyl

When X is replaced by X n {¢t, = 0} and 7 is replaced by | X n {t, = 0},
(4.2);—, implies that zf (Q/Z5L sy t78Q), is tinitely generated over ,O, for
0=1l<<r—q—2n -+ k. (4.2);,—; is therefore proved for d, = 1.

Suppose d, > 1. For » €N let R = 2,’_”_—,,1_,‘.,.1 t ‘C]+ t, . The exact
sequence 0 — R/ R G s FiR )y F/RED s 0 gives rise to the
exact sequence si; (R /R W) — 7f (FR M), for 1€N,. To complete
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the induction on d,, we need only show that af (R “™"/R™)) is finitely
generated over ,0, for 0=1<r—gq—2n + L.

By Lemma 4.3 we a sheaf-homomorphism o : Q/Z?;LkH t?‘g—>
— R/ and « is a sheaf-isomorphism on {p < cy}. Supp Kera <
c {p = ¢;} and Supp Coker & C {¢ = ¢y}. The restriction of = to Supp Ker «
and Supp Coker a are proper. Since (4.1), implies Grauert’s direct image
theorem, =] (Kera), and nf(Coker «), are finitely generated over 20, for
leN,.

Since 7} (Q/Zi”:]l_kﬂ t?"g)o is finitely generated over ,O, for 0 =1 <
<r—q—2n 4k, from the following two exact sequences

i (G P i Q) — i (Im &)y — 7i4 (Ker ),

77 (Im &), — 717 (R~ /R )| — a7 (Coker a),

we conclude that (C){?('jl""l)/‘)‘z('jl"))0 is finitely generated over ,0, for 0 =
=l<r—gq—2n+ k The induction on d, is complete and (4.2); is proved.

II. We are going to prove (4.3); for 1 =k =n + 1 by induction on %.

Ifde,...,dn€N, ¢, <6’ <<c<ecy, and 0=1 < r— q— 2n-k, then

(4.3) 75 (F)Zii 68 Fho —> a5 (F/Zisi 885 F o

is injective for t° € K (o9).

Fix €K (0%, dry..,dn€N, ¢, <c¢'<<e<cy, and 0=l r—gq—
— 2n 4- k. Without loss of generality we can assume that t° = 0.

When & =1, by Lemma 4.3, t‘fl,... , o form an “-sequence for x €
€1 (0)N {p < ¢y). On {p < cy} we have codh (F/ZL, 15 F)=r —n. Since
Supp (F/ZiLy tHF) € a1 (0), (4.3), follows from applying Lemma 4.2 to the
coherent analytic sheaf F/3/»; t{iF on 7~ (0).

For the general case, assume 1 <&k =mn - 1. (4.3); follows from (4.3);_,,
(4.2)n—41, and Proposition 4.1. The induction on %k is complete and (4.3)
is proved.

III. We are going to prove the following :
If o' <" in R}, 0=1<<r—gq—2n, and ¢, < ¢ < ¢4,

(4.4) then there exists ¢, << ¢’ <c¢ such that af(F)— a(F)
is bijective on K (p?).
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Fix ! < in R}, ¢, < ¢ <ey, and 0 =1 < r— q — 2n. Take arbi-
trarily t€ K (o')~. (4.1), implies that there exists ¢, < ¢’ () < ¢ such that
7y (F), — @ (F); is surjective and hence is also bijective because of
(4'3)n+1 . ,

Since j® (¥) and #; () are both coherent on K (g%, for some open
neighborhood D (t) of ¢ in K (%), we have af'® (F)> 2 (F) on D (t). (4.3)nty

implies that #” (7) > @ (F) on D (t) for ¢’ (t)= ¢’ =c.
K (o')~ € U, D (t)) for some ¢, ey tPE K (09). Let ¢/ = max {¢’ (1), ..., ¢/(t¥)}.
Then ¢’ < ¢ and af (F)-= af (F) on K (g?).

IV. We are going to prove the following :

If0=1<r—gq—2n and ¢, <c¢ < ¢, then  (F)—> at (F)
is bijective on K (9.

(4.5)

Fix ¢, < ¢ < cy. Take arbitrarily o' < ¢° in R}.. Let I' be the set of
all ¢’ €fe,, ¢] such that z¢(F)— #f(F) is bijective on K (o!) for 0 =1 <C
<7 —q—2n. To prove (4.5), we need only show that ¢, €I

I'== &, because ce€I. Let ¢=infI. First, we show that ¢c€ I Let
{cy},,EN* be a sequence in I" stringly decreasing to ¢ and ¢, = ¢.

Take an arbitrary Stein open subset U of K (¢!). For c€le,, c0) let

U(c) =a"1(U)N X,. Since nr+! (C])—g ar (F) on K(o!) for 0=1<r—
— ¢ — 2n, we have I'(U,n*+1 (C]))i L'(U,ap (F)) for 0=1<r—q— 2n.
By Lemma 3.4, H'(U (cyyn), F) > H!(U (¢,), F) for 0 =1 <7 — q — 2n. By
Lemma 4.1, H! (U(%,?)E)H’(U(co), F). By letting U run through a
neighborhood basis of any point ¢® of K (o!) and taking direct limits, we

have n%((.f_;)go:—) a2 (Flo for 0 =1 <<r—q—2n.

Hence nf(?f)—"—}n‘;(cf) on K (p!) for 0=1<r—q—2n cel.

(4.4) implies that ¢ must be ¢,, otherwise ¢=inf I' is contradicted.
The proposition follows from (4.5). q. e. d.

§ 5. Bounded Sheaf Cocycles ou Domains of Number Spaces.

In this section we consider complex spaces of the form K (¢°) < @,
where ¢° € R} and @ is an open subset of C¥. After introducing necessary
notations and defining norms for sheaf cochains, we will introduce Cartan’s
Theorem B with bounds for these spesial complex spaces and consider the
change in norms when a sheaf section is divided by powers of ?,.
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If Wl ={Uiier is a finite collection of open subsets of C¥, we denote
{K (0) < Us}iex by K (o) < W.
If f€I'(K (o), »O), then |f|, denotes sup {|f,, ., || ¥y ..., s € Ny}, Where
=2 ., (—2’—)7l (t—”>v” is the Taylor series expansion.
1 On
If f="Ffy, /o) €'(@ yOP) for some open subset G of C¥, then |f|q

denotes sup {|fi(@)||z€@,1=1i=p).
If f€ I' (K (g) X @, ny5OP), then |f|g, o denotes sup (|f,,...», [@|?1s €Ny,

where f=ZXf,..,, (Z—‘) . (:)—") " is the Taylor series expansion of f in
1 n

T
If g€ Cr (K (¢) X W, ny-5O?), then |g|z , denotes

sup {|gs... 4, |l7¢0mir’g [ty ey ir €T}

Suppose & is a coherent analytic sheaf on K (9% < @, where o€ R}
and G is an open subset of C¥. Suppose H is a relatively compact open

subset of a Stein open subset G’ of @ and 0 <o in R}. We are going to
define a norm |f|g,, for f€I'(K (o) < H, F).

By shrinking ¢° and G, we can assume that we have a sheaf-epimor-
phism @ :, 4, yO? — F on K (g,) X @&’'. For fe I'(K (¢) X H, F), define

|f1%  =10f {|g]me| g€ (K (o) X H,ninO?), @ (9) =1}

Suppose y; nyyO? — F is another sheaf-epimorphism on K (g% < @’.
Then we bave a sheaf-homomorphism o:,4x¥O? — 48O on K (¢°) < G’
such that v o=¢. By Lemma 1(a) of [7], for g€ I'(K (0) <X H,n4n O?), |0(9)|m,¢ =
=0C|g|me, where C is a constant independent of ¢ when o = g! for a
fixed o' <. Hence, for fe€I'(K(o) < H,F), |f|4 ,=C|f|%,. Likewise,
|f1% .= 0"|fy, for some constant (" independent of ¢ Wwhen o =o' The
two norms |-|¢ , and |-|4  are therefore equivalent. For the sake of nota-
tional simplicity, in what follows, whenever such a norm arises, we assume
that we arbitrarily fix a sheaf.epimorphism and denote the norm by |-|z,,.
‘Whenever possible, we choose always the obviously most convenient sheaf-
epimorphism.

When J=,450P, we can choose ¢ to be the identity sheaf-homomor-
phism and the norm agrees with the one defined earlier. Whrn F%c ,..,_NO?,
we have two norms for I'(K (¢) X H, F): one is I«I%,e defined by a sheaf-
epimorphism ¢:,;yO? — ¥ and another is induced from the norm on
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I'(K () X H, n4vO?). To distinguish the two, we denote the second one
by ||&e-

Suppose U = {U;}ier is a finite collection of open subsets of C¥ and
every U; is a relatively compact subset of a Stein open subset 17.- of G.
If he O (K (o) <X W, F), then we define | & I‘III,Q = 8upy,, ..., i, | M. "rlUio...i,’ 0-
When F=nxOF the norm |-|qy , can be chosen to agree with the one
defined earlier. If ¥ < ,, 509, then we define

1

|h|'fu,9= 8UP;,, iy | Rigoi, |0, iy e

10 . r

In [7], H'lll,g is denoted by ”'”’Ql,e and ”'”‘él,g is denoted byH-Hm’Q.

DEFINITION. An n-tuple w = (w, ..., w,) is called an echelon function of
order n if
(i) w,€Ry, and
(ii) for 1 < ¢ =n, w; is a map from

{(91, wey Qim1) € R'EFI l 01 < @y Qg < W (04)yue-y i1 < i1 (04 5eeey Qi—2)}

to Bv+.

£ denotes the set of all echelon functions of order n. If w € Q0
then w,,...,w, denote the components of w.

Suppose w€ Q™ and o€Rj}. We say that o < w if 9, <w, and
0i < Wi (@14 +eey 0i—1) for 1 <4 = n. Note that, o’ <p and ¢ << w do not
imply ¢’ << w. We say that v < ¢ if w, < ¢, and for 1 <i=n we have

sup {a)i(Ql' yeeey Qt!—l)l (015w s Qi—1) EB’i;l y (1, eey Ql{-—l) <@y g eee y Wiy )} < i

We order 2™ by the following ordering. For w, w’ € QW, v = @’ if
anp only if
(i) w; = w; and
(i) @i(pyy ey 0i—1) = i (04 y e Qim1) When

1 i=m(egy ey 0i)E R'i-:lr and (o, «y Qim1) < (@4 5 very Wia)e

We identify every o€ R} with an element w of 2" as follows: (i)
w, = 0, and (i) w; (g} , ... , 0—1) = i When 1 < i =, (g{, ..., 0i—;) € R'7’, and
(Qi y ey Qt!—l) < (Qu sy Qi—l)'
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After the identification of R} as a subset of Q™ ,in R} the relation
« < » has three meanings and the relation « = » has two meanings. Ho-
wever the three meanings of « <» are identical and the two meanings of
« = » are also identical. Note that, for two general w, w’ € 2™, we do not
define o < w’.

A. The following three Propositions are proved as Propositions 2,4,
and 5 of [7]. Even though the last statement in each Proposition is not
explicitly stated there, it is easily seen to be a consequence of the proofs
in [7].

Suppose o°€ R, G is a Stein open subset of C¥, and Fis a coherent
analytic sheaf on K (% < @. Suppose @ apyOP—> 4 yO71i8 a sheaf-homo-
morphism K (p% < a.

ProrosiTioN 5.1. Suppose H, cc H, are open subset of G and H, is
Stein. Then there exists w € QM sgatisfyng the following. If o << w and
e (K (o) < Hy, Im ¢) with |f|g, ,=¢ < oo, then for some g €I (K (g) <
X H;,n4n0?), @(g)=f on K (o) X H, and |g|g,, = C,e, where C,is a
constant depending only on p. Moreover if ¢,is not a zero-divisor for

(Coker @), for x € K (% < @; then C, can be chosen to be independent of g,.

ProrosITION 5.2. Suppose G, <= @, are open supsets of G such
that G, cc G and @, is Stein. Suppose T is a finite Stein open covering
of G{(i =1,2) such that U, <<W,. Then for I =1 there exists € L2™
satisfying the following. If ¢ < w and f€Z' (K (o) <X W, , F) with | f|x wo <
e < oo, then for some g€ C'(K (o) X W,, F), g =f on K (¢) X W, and
|9 ln,,o << Cc e where C, is a constant depending only on g. Moreover,
if ¢, is not a zero-divisor for %, for x € K (¢°) < G, then C, can be chosen
to be independent of g, .

ProrosiTION 5.3. Suppose @, cc @, are relatively compact Stein open
subsets of G and M, is a finite Stein open covering of G,. Then there
exists w € QM gatisfyng the following. If o < w and fe€I' (K (o) X Gy, F)
such that |7|W,e < e < oo, where £ € Z° (K (o) < W, , F) is induced by f,
then |f|a,.<< Cp is a constant depending only on g. Moreover, if ¢, is not
a zero-divisor for <%, for x € K (¢%) < @, then C, can be chosen to be in-
dependent of g, .
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REMARK. It can be proved that, in Propositions 5.3, even if we do

not assume that ¢, is not a zero-divisor for %, for x € K (¢°) < @, C, can
still be chosen to be independent of g,. This more general statement is
not needed in this paper. However, in Proposition 5.1, for C, to be inde-
pendent of g, it is essential that ¢, is not a zero-divisor for (Coker ¢), for

x € K (0% < @. This can easily be seen by taking the special case where

t
@ : 0y ¥O —> np-vO is defined by multiplication by ¢, and f= —.

n

B. PROPOSITION b5.4. Suppose G, c< @, cc @ are Stein open subsets
of C¥. Suppose @’ € R’} and ¢: F— @ is a sheaf-homomorphism of coherent

analytic sheaves on K (%) < @. Then there exist o € QM satisfying the fol-
lowing. If o < w and g€ I'(K (o) X Gy, Im ¢) with |glg, <<e << oo, then
for some f€I' (K (o)< Gy, F), ¢ (f)=g and |fl|e, << Coe, where O, is a
constant depending only on p.

ProoF. By shrinking o° and '(}', we can agsume that we have the fol-
lowing commutative diagram of sheaf-homomorphisms with exact rows :

n+NOp "'"o"""> g—-) O

Lo
atnO19 LN @—0

such that Im v = f—1 (Im ¢).

Take w€ 2™ and we shall impose conditions on w later. Take o <
<< w and geI'(K(g) X Gy, Im ¢) with |g|s,e<e. Then for some g’ €I
(K () X @y, nynO0), f(g) =g a0d |’ |g,.0 < e.

9’ €I’ (K (g)< @, , Im y). By Proposition 5.3, if v = @! for a suitable '€ Q"
(and we assume this to be the case), then for some f’ € I'(K (¢) <X @, ntnOP),
w(f)=y¢" and |f’|¢, o < C,e, where C, is a constant depending only on g.
Let f = a (f'). Then feI'(K (o) X @, F). @ (f) =g and [fla,<Ce.
q.e.d.

C. PROPOSITION 5.5. Suppose G is an open neighborhood of 0 in C¥
and o€ R} . Suppose W is a coherent analytic subsheaf of ,4yO? on
K (g% < @ such that ¢, is not a zero divisor for (,4+ yO/M), for x€ K (9°) < G.
Then there exist a Stein open neighborhood 4 of 0 in G and w € 2® such

10. Annali della Scuola Norm. Sup. - Pisa.
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that, if f€ I (K (o) < 4, N + ¢, n+NOq) for some 1€ N, and |f|4,, = ¢ < oo,
then for some g€ (K(g) < 4,M) and heI' (K(g) X dy n4-nO0, f=9 +

]
+(t—”> h and |g|s,=3e and |k |y, = 2e.
On

PROOF. By shrinking ¢° and G we can assume that <)( is the image
of a sheaf-homomorphism ¢ : .4 yO? — 4 ¥O? on K (¢°) <X G. We can also
assume that ¢ is defined on some open neighborhood of (K (0% < G)~.

Let ¢ be represented by the ¢ < p matrix ¢* and let ¢* = 3; ¢f & be
the Taylor series expansion. Let y: ,—14+50O? — ,_;45¥O? be the sheaf-hom-
omorphism defined by ¢
By Proposition 1 of [7] we can find w € Q"D and a Stein open neighbor-
hood 4 of 0 in @ such that, if g€ R} and ¢ < w and f’ € I'(K"(g) X 4,
n—1+809) ‘with f; € (Im y), for €0 X< 4 and |f’ |1’!'-9 = ¢ < oo, then for some
g’ € T'(E™1(0) X 4, n—1450%), v (¢') = f’ and | g’ |;'5 = 0(9—1) e, where 0%1) is a
constant depending only on p.

Take o' < ¢° in R} . By Lemma 1 (b) of [7] there exists O®¢€ R sati-
sfying the following. If 9 = o, €N, f/ € I' (K () X 4. n4-x09), g" € F(Kl(g)x 4,
utn0?), and R’ € I'(K (9) X 4y n4-¥09 such that f/ — ¢ (9')= (5‘- 1’ and

the Taylor series expansion of ¢’ in ¢, has no power higher t%an ¢,
then | A" (4,0 =|f’ |40+ 0n OP ]9’ |-

Choose w € 2™ guch that the following conditions hold: (i) o = o,
() i (Qy 5 rry @i1) = @5 (04 5 vory 0iy) for 1 =i < m, and (iii) wn(0) = (1 +
42 0@ Cg ™! for o€ R}'. We claim that 4 and w so obtained sati-
sfy the requirement. To verify the claim, we are going to prove (5.1), for
1€ N, by induction on 1.

If o< o and feI'(K(o) X 4, WM+, . O such that | f4,0e=
= e < oo, then there exist ¢g¥ €I (K (g) X< 4, n+xOP) and AW €

t. \!
(5.1) € I'(K (0) X 4, »4+x0%) such that f= ¢ (9®) + (9—”) hO, | g9 14, =
= 20%‘) e, | h® |4, o = 2¢, and the Taylor series expansion of g; in
t, has no power higher than ¢-!, where 0 =(04 5 +ee y Qu—1)-

(5.1), is trivial, because we can set g =0 and Rk = f. Suppose >0
and (5.1),—; is true.
Take ¢ < w and f€I'(K (o) X< 4, W + ty nyxO%) With |f|4,, =€ < co.
By (5.1);_; there exist g¢—» and hl—D satisfying the requirements in (5.1);_;.
[\ . .
Let ht—D = 3, p{? (—") be the Taylor series expansion.

On
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Since ¢, is not a zero-divisor for (awO?/M)s for x€ K (¢ X @,
(hff"‘) )z € (Im ), for x € 0 >< 4, Hence there exists a€ I' (K" (g) < 4, n—14+80O?)

. 1)
such that v (a) = A~ and J’i’:”5§20% e.
t .
Let g0 =gt +a (é) . Then |g® |y, = 20’:5') e and the Taylor se-
n,
ries expansion of g® in ¢, has no power higher than #-1. f— @ (g¥) =

1

= (%‘—) h® for some hY € I'(K (9) X A, np-5O9). | b0 |4 ¢ = (1 + 20, O (}z’(l))eé
n

= 2e. (5.1); is proved.

tn\! !
The claim follows, because | (g%) |y, = ‘ f— (9—") h(’)i =|fls,e +
n 4,0
+ | D |y, o = 3e. q.e. d.

PrROPOSITION 5.6, Suppose @, cc @G, cc G are Stein open subsets of

C¥ and @€ R’}. Suppose ¥ is a coherent analytic sheaf on K (g°) < G such

that ¢, is not a zero-divisor for <%, for x€ K (% < . Then there exists

o € Q™ gatisfying the following. If feI" (K (0) < G5, F) and (z_anL;, <e<L oo
n ' @

for some l€N,, then |f|q, 6, << Cpe¢, where C, is a constant depending only
on ¢ and is independent of I.

PrOOF. By shrinking o° and G we can assume that we have a sheaf-
epimorphism ¢ : .1 yO? — F on K (g% < G. Let W = Ker . Take a Stein
open subset G; of C¥ such that G, cc G4 cc G,.

Take w € 2™ and we shall impose conditions on  later. Take ¢ < w

and €I (K (p) X Gy, F) such that (;—")lf

t.\!
For some f’ €I (K (g) X Gy, nyx0), <P(f')=(-e—"—) foand |f'le,. e <e.
n
Fr el (K (o) X Gy, M+ thnyn09).

By Proposition 5.5, if w = w! for a suitable ©!€ 2® (and we assume
this to be the case), then we can find Stein open subsets 4; of G, and
g€ (K (o) < di, M) and h€ I'(K(0) X diy nyx0?), 1 < i<k, such that

s ta\!
() 6 € Utea de, (1) £ = g5+ (22 on K (@) 4, (i) | gLy, < 36, ama
n
(iv) | B |4;,e < 2e. Note that () and 4; are all independent of I.
Py
Let W = {4: N @3). Since ¢ (k) = f on K (o) X 4i, we have | f|q o < 26,

where ?E Z9 (K (o) < W, F) is induced by f. By Proposition 5.3, if o = w?
for a suitable w?€ Q" (and we assume this to be the case), then |f|g,, <
< C; 2¢, where (, is a constant depending only on p. q.e.d.

< e < oo for some IEN,.

G, e
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§. 6. Semi-norms for Holomorphic Functions on Unreduced Spaces.

For a reduced complex space, we know that the set of all holomorphic
functions has a natural Fréchet space structure whose semi-norms are the
sup norms of holomorphic functions on compact subsets. When the space
is not necessarily reduced, the set of holomorphic functions still has a
natural Fréchet space structure, but to obtain the semi-norms we have to
resort to local embeddings of the space into domains in complex number
spaces. In our development later on, these local embeddings give rise to
many complications. To avoid such complications, we seek in this section
to define semi-norms on some unreduced spaces in a manner which sup-
presses the role of local embeddings.

A. Suppose V is a subvariety in an open subset G of C¥ and p€eN,.
We denote by Iy (p) the sheaf of germs of holomorphic functions on G
whose derivatives of order = p vanish identically on V.

PROPOSITION 6.1. Jy(p) is a coherent ideal-sheaf on @.

ProovF. It is clear that Jy(p) is an ideal-sheaf on @.

To prove the coherence, we use induction on p. The case p = 0 is the
well-known theorem of Cartan-Oka. Suppose the statement is true when p
is replaced by p — 1. By shrinking @, we can assume that Jy(p — 1) =
= 3¢, xOf:; on G for some f,,..,fr€ I'(G, yO)

Let 1 be the number of « € NY with |a| = p. Define ¢ : yO* — yO' on
G as follows. For € G and

@y 5oy W) EROE, @@y y @) = (e y Sty G(D° fi)y ooy

where a runs through all elements of NY¥ with |« |=p.

Let 5:yO'— yO'/ Iy (0)y O be the natural sheaf-epimorphism. Let
@ = n@. Define y: yO* — yO on G by (@, ,..., &) =St a;(f;), for z€ G
and (@, ..., a)€ ~OE.

We are going to prove that Jy(p)= w (Ker ). This will imply the
coherence of Iy (p).

Since Iy (p — 1)=Im v, we observe that both Iy (p) and v (Ker ¢) are
subsheaves of Jy(p — 1). Suppose g€ I'(U, Iy (p — 1)) for some Stein open
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subset U of G. Then ¢ = 3;a;f; on U for some a,,..,a;€ (U, yO). Fix
arbitrarily |« |=p.

o
p

= S0 DSt Snza e ()07 @) (P

D'g= 2D (aif;) = Zi Zp<a ( ) D P ay (D )=

Since Dff;=0 on V for |f|=p—1, we have D*g= Z;a;D*f; on
v n U. If follows that g € I (U, Iy (p)) if and only if (4, ..., az) € I' (U, Ker ¢).
Hence Jy (p) = v (Ker o). q.e.d.

Suppose U is an open subset of V and f€ I'(U, y O/Ir(p)). For x€ U,
we can find an open neighborhood D of x in G and fE I'(D, 5O) such that
7 induces f|Dn V. For |a|=p, define of () = (D* f) (x). Obviously °f (x) is
independent of the choices of D and f':' For any open subset E of U, define
ol flle=sup {[f @) ||| «| =p, @€ B}

Note that, for g€ I'(U, yO/Iv(p)), we do not in general have | fg ||z =
=(|lf]lD G|l g]ls but we have the following weaker inequality: || fg|x=

=29 ()£ 8o 19 ), Decanse (70) = Zpsa ) 41) (=)

PROPOSITION 6.2. The semi-norms ,|-||z on I'(V,yO/Iy(p)) define a
Fréchet space structure when L runs through all relatively compact sub-
sets of V.

ProoF. We use induction on p. The case p = 0 is well-known. Suppose
the statement is true when p is replaced by p — 1.

Let {f,},exy be a Cauchy sequence in I'(V, yO/Iy (p)). The proof will be
complete if we can show that {f,] converges to some element in I'(V,y O/Iv(p))
with respect to the seminorms ,||-||z. We need only prove that every point
of V admits an open neighborhood U in V such that {f,| U} converges to
some element in I'(U, yO/Iv(p)) with respect to the seminorms ,||-||q,
where ¢ runs through all relatively compact subset of U. Hence we can
assume without loss of generality that G is Stein and Jy(p — 1) = 3 x0s;
for some s;€I"(@, xO).

The maps in the following commutative diagram are all natural sheaf-
homomorphisms :

7O —2— yO/Ty (p)

|

vO —"— 50/Ty(p —1).
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By induction hypothesis, {n (f,)}] converges to some element f’¢€
€ I'(V, xO/Iv (p — 1)) with respect to the semi-norms ,_||-||z -

Since G is Stein, v induces a surjection y:I'(@, y O)—I(V, yO/Iy(p—1).
y is obviously continuous when I'(G, yO) is given the natural Fréchet
space structure and when I'(V, yO/Jy (p — 1)) is given the Fréchet space
structure defined by the semi-norms ,_,||-||z . By the open mapping theorem
for Fréchet spaces, we can find ¢,, g € ['(@, yO) such that v (g9,) = 5 (f),
w(9) =f", and {g,} converges to g.

If we can prove that {f, — @ (9,)] converges to some element f¢
€I (V, xO/Iv (p)) with respect to ,|-||z, then {f,} converges to f- ¢ (9).
Since 7 (f, — @ (9,) = 5 (f.) — v (9,) = 0, by replacing {f,} by {f, — ¢ (9.)},
we can assume without loss of generality that 7 (f,) = 0.

o=@ (f,*) for some f,*€ I'(G, yO). Since %(f,) = 0, we have f)¢€
€er@q,Iv(p —1). f,*=Zia,s; for some a, €I (G yO). For |a|=p,
Dof}=3;a, D*s; on V, because Dfs;=0 on V for |[f|=p — 1.

Let ! be the number of a€NY with |a|=p. For 1=i=Fk, let u;=
= (e y (D*8;| V), ...), Where o runs through all elements of NY with |a|=p.
w, € I'(V, (yO/Ty (0))). Let N be the subsheaf of (yO/Iy (0))} generated by
[ui}lsisk .

Let h, = (..., (D*f,)*| V),..), where « runs through all elements of N¥
with |a|=p. Since D*f*= ;a,,D*s; on V for |a|=p, h,€I'(V,NM).

{h,} is a Cauchy sequence in I'(V,“N) with respect to the topology
of uniform convergence on compact subsets. Since N is defined on the
reduced space (V, yO/Iy(0)), {h,) converges to some h €I (V,N) with re-
spect to the topology of uniform convergence on compact subsets.

For some b;€ I'(V, yO/Iy (0)), h = Z;b;u;. Since G is Stein, b; is in-
duced by some a;€ I'(@, yO). Let f* = Z;a;8;. Then, for |a|=p, D*f*=
=23;b;D%s; on V. Let f= ¢ (f*).

{f,) converges to f in I'(V, yO/Jy (p)) with respect to the seminorms
o||-||x. The reason is the following. For |f|=p — 1, Dff* = DFf* =0 on
V. For |a|=p, D*f,*| V and D*f*|V are respectively the components
of h, and h. q.e.d.

Now we have a Fréchet space topology T on I'(V, yO/Iv (p)) defined
by the semi-norms ,||-|[z. The quotient topology induced by I'(@, »O)—>
— I'(V, O/, (p)) is the usual Fréchet space topology T’ on I'(V, xO/Iv(p)).
T’ is obviously finer than 7, because any sequence in I'(V, yO/Iy (p))
which converges with respect to 7' converges with respect to 7. By the
open mapping theorem for Fréchet spaces, the two topologies 7 and 7'/ agree.

B. Suppose V is a subvariety of an open subset @ of C¥ and V’ is
a subvariety of an open subset G’ of C¥. Suppose J is an ideal-sheaf on
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G whose zero-set is V and I’ is an ideal-sheaf on G’ whose zero-set
is V.

Suppose (®,, ¢,): (V’, ¥O/I’)— (V, 5O/I) is a holomorphic map. If
iy Jn€(V, yO/9I) are induced by the coordinate-functions of C¥ and
fi = @, (fi), then we call f/,...,fx the coordinates of (¢,, @,).

LEMMA 6.1. (¢, ¢,) is uniquely determined by its coordinates f/,...,fx.

Proor. Let °f/ be the holomorphic function on the reduced space V
which is induced by fi'. (This notation is consistent with our earlier nota-
tions when 9’ = Jy-(p)). The map (°ff,...,%x): V' — C¥ agrees with ¢,.
Hence ¢, is uniquely determined.

Take '€ V’. Let &= ¢,(x’). We want to prove that ¢, :(yO/I ). —
— (O]9’ is uniquely determined. Without loss of generality we can
assume that x = 0.

Suppose a € (yO/I),. Then a is induced by some b e I'(U, yO) for some
polydisc neighorhood U of # in G. Let b= 3Xb,2* be the Taylor series
expansion, where » = (v, ,...,7,) € N¥ and 2” =2} .. z‘;@’ o is also induced
by Zbf .. YEL(UNY,xy0/J). Since @ (Z|yjzmbfi'e.. [3Y) =
= |y =m by (i) . (fw)¥ for meN,, by letting m — co, we conclude
that ¢, (a) is the germ of X b, (f))"...(f¥)Y. Hence g, is uniquely deter-
mined. q.e.d.

Suppose pe€N,. We are going to describe holomorphic maps from
(V'3 0[Fv (p)) to (V, ¥O/Ty (p)).

The chain rule for differentiation gives us the following.

LEMMA 6.2, Suppose o€ NY — {0}. Then there exists a polynomial
P, ({Xg}, {Yy}) = 25 Qap ({Yys}) Xp with non-negative integral coefficients,
where 1 =4{= N, # runs through all elements of N¥Y — {0} with |g|=|«],
and y runs through all elements of NXY — {0} with y =a«, such that, if
gi(#y e y2y)y, 1=4i=N, is a holomorphic function on an open neighborhood
of a € CY¥ with (g, (), ..,9y () =10 and f(w,,..,w,) is a holomorphic fun-
ction on an open neighborhood of b, then (D5 k)(a) = P, ({(Dﬁ, O, (D} 93) (@)}),
where h(2y ..., 2y) =7 (9, (25 00y 2p)y ooy G By ooy 230))

PROPOSITION 6.3. Suppose (v,, w,): (V’, ¥O/Iy (p)) = (V, ¥O/Iv (p))
is a holomorphic map with coordinates fy,..,fxy. If g€ I'(U, yO/Iv (p))
for some open subset U of V, then *(y, (9)) = Pa({(fg) o w,}, {*f{]). Hence, if
U is contained in a relatively compact open subset @ of V, then
?|| v, (g)Hwo_l(U)é C(y|l9|lv), where C is a constant depending only on @

and is independent of g and U.
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Proo¥. Take x’ €y ! (U). Let » = y, (#’). For gome open neighborhood
D of # in G, g is induced by some ¢g* € I'(D, yO). For some open neighbor-
hood H of #’ in @', f/|Hn ¥V’ is induced by some f* €I (H, 5O) such
that f;* (H) < D.

Let h = g* (f*,..,f%). Then h induces v, (9) at #’. Hence

(1 (@) = (D*h) (@”) = P ({(D? g%) (@)}, {(D” fF) (@")}) =

= P, ({(g) (wo @), {Cfi) (@))).

Since «” is arbitrary, *(w, (9)) = Pa ({(°g) o wo}, {fi]) on v (U).
Let B == sup;(y|fi|l¢). Then zf v, () ”,,,0—1(U)§(S'lpla:§p 3 Qas((B) (ol 9ll0)-

q.e.d.

PROPOSITION 6.4. Suppose vy,: V’/— V is a holomorphic map of re-
duced spaces. Suppose fi € I'(V’, 5 O/Iy (p), 1 =i =N, such that (%1,...,%n):
V'’ — C¥ agrees with vy,. Then there exists a unique holomorphic map
% ) (V' %O/Iv(p) — (V,50/Iv(p)) With f1,...,fn as coordinates.

ProOOF. Uniqueness follows from Lemma 6.2.

Take x’ € V’. Let # = vy, (¢’). We are going to define y,: (vO/Iy(p))—
~—> (#O/Tv(p))s. Without loss of generality we can assume that z = 0.

Take a € (yO/Iy(p)),- @ is induced by some b€ I'(D,5O) for some
polydise neighborhood D of 0 in G. Let b= 2b,2” be the Taylor series
expansion, wher » = (v,,...,vy) ENY and 2 =2 ... 277

Since (O j (@), ove , °f ¥ (#”)) = 0, for some open neighborhood H of z in
@, f'| Hn V’ is induced by some f¥¢I'(H, yO) such that f*(H) c D. Since
Z b, (fi*r ... (f)Y converges on H, 3b,(f{)!...(fx)¥ converges on HnN V’.
Define y, {a) to be the germ of X'b, (f1)"... (f¥)'¥ at #'. To finish the proof
we need only prove tgat y, (@) is independent of the choice of b.

~

Suppose another b € I'(D, yO) is chosen. We can obviously assume that
D=2D. DT =DFb on DNV for [B|=p. Let T =3T,2 be the Taylor
series expansion. X b, (f/) ... (f3)’¥ and 3 b(f/)...(f3)' are respectively in-
duced by k=15 (f¥,...,f¥) and k = b (fi*, ..., f%). For |a|<pand y’ €HN V’,

(D=R) (y') = Po((DF B) () ), (D7 £*) (")) =

= P, ({(D? o) (9)}, (D7 f*) (¥')}) = (D* h) (),
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where y =1y, (¥ )€D N V. Hence Dl = D*h on ANnH’. The germs of
Sby ()" e (FAYY and 3 b, (fi Y (fQ)'N at @’ agree. q.e. d.

PROPOSITION 6.5. Suppose V' is Stein, Iy (p) € I, and Ty (p) € I’.
Then for every holomorphic map (¢,,¢,):(V’, »OI’)—(V, yO/I) there
exists a holomorphic map (y,,y,): (V’, ¥O/Iy (p)) — ( ,NO/Q'V ) such
that the following diagram is commutative

v N'O/g') (tpo.wx) ,NO/.g

(idy ) 7)
( ) \L
V', 5 O/Ty(p)) LIRS (V, xO/Iv(p)),

(td v, 7") |

where 5 : yO/Iy(p) — vO/I and: 9’ : 5 O/TIy(p)— yO/I’ are the natural
gsheaf-homomorphisms.

PROOF. Set y,= ¢,. Suppose f/,..,fv€I'(V’, »O/I’) are the coordi-
nates of (p,, ¢,). Since V’ is Stein, f1 = %’ (¢i) for some g € I'(V’, xO/Ty (p)).
The map (%;i,...,%%): V/— C¥ agrees with vy,, because gi and f! induce
the same holomorphic function on the reduced space v, By Proposition 6.4
there exists a unique holomorpic map (y,,y,):(V’, »O/Ix (p))— (V, ¥ O/Iv(p))
with coordinates ¢i,..,gy. The commuativity of the dlagram follows from
Lemma 6.1, because the holomorphic maps (v, y,)o(idy+, ') and (idv, n)o(@y, ¢,)
from V’,NO/Q’) to (V, yO/9v(p) have both fi, ..., f5 as coordinates. q.e.d.

0. Suppose V is a subvariety of an open subset G of C¥ and J is an
ideal-sheaf on G whose zero-set is V. For w€ V, let n(r) be the maximal
ideal of the local ring (yO/Y),. Consider the following statement.

If feI'(U, yO/I) for some open subset U of V
(6.1),
and f, € n(x)?*+! for x € U, then f=0.

The following Lemma is obvious.

LumMMA 6.3. (6.1), implies Iy (p)c I.
The following Proposition is proved as Theorem 2 of [8].

ProposITION 6.6. Suppose < is a coherent analytic sheaf on a complex
space (X, 0). For € X, let m(x) be the maximal ideal of O,. The for
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every relatively compact open subset Q of X there exists p =p (@)EN
such that, if feI'(U,F) for some subset U of ¢ and f,€m(x)? % for
every € U, then f=0 on U.

CorOLLARY. For every relatively compact open subset @ of G there
exists p € N, such that Jy(p)c J on Q.

PROOF. Apply Proposition 6.6 to the coherent aualytic sheaf yO/J on
(V, ¥O/J) and the relatively compact open subset @ N V of V and make
use of Lemma 6.3. q.e.d.

DEFINITION. A non-negative integer p is called the reduction order of
a complex space (X, O) if p is the smallest non-negative integer such that
the following holds. If feI'(U, O) for some open subset U of X and
S €m(x)rt+! for x€ U, where m(x) is the maximal ideal of the local ring
O:, then f=0 on U. When no such p exists, the reduction order of (X, O)
is defined to be oo.

From the definition it is clear that a complex space is reduced if
and only if its reduction order is O.

Proposition 6.6 implies that a complex space which can be realized
as a relatively compact open subset of another complex space has finite
reduction order.

Suppose (X, O) is a complex space of reduction order = p < oo and
U is a relatively compact open subset of Stein open subset U of X. Take
of X. Take f€I'(U,0). We are going to define a norm ,||f|y. This norm
cannot be defined intrinsically. It will depend on some embedding we
choose at random. However, any two different norms obtained this way
will be equivalent.

By shrinking ﬁ, we can assume that U is relatively compact in X,
There exists a biholomorphic map @ from T onto a complex subspace V
of an open subset G of C¥. (In fact, we can choose @ = C¥. However,
this is not important. @ is not even required to be Stein). Let I be the
ideal sheaf on @ defining the complex subspace V. By Lemma 6.3, Iy (p) c .
The biholomorphic map & carries f uniquely to an element f, €I'(®(U),
¥0/9). Define || f ||z to be

inf {,|| /4 |lew) | f4 € L (P (U), vO/Iv (p)), f4 induces f,}.

Suppose we have another set of U’, ¥/, V/, G’,C¥,J, and f, and
obtain another norm || f|y. By replacing both U and U’ by Un U,
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we can assume that U= U’. We have a biholomorphic map (p,, @,):
(V’y 0/F) — (V, ¥O/I) such that (¢,, ¢,) 0 &' = P,

Since V’ is Stein, by Proposition 6.5 there exists a holomorphic map
(wo, w,): (V7 #O/Ty (p)) — (V, vO/Iv (p)) such that the following diagram
is commutative :

(@0, @3)

(v, #O[T) —(V, x0/9)

@y, %) I l (idy, 7)
+

(w0, 1)

(V' O[Ty (p)) —(V, ¥0/Iv (p))

where 5: yO/Iy(p) — vO/I and %’ : x»O/Ty (p) — wO/J’ are the natural
sheaf-homomorphisms.

Since @ (U) is a relatively compact in V, by Proposition 6.3, for
F+€T'(® (0),50/Fv (p) we bave o v, (f3) a0 = O] f4 o)y Where O is &
constant independent of f;. Since % (fy) =/, implies 5’ (v, (fy)) =f, for
J+ €T (D (U), ¥O/Ty (p), we have ,||f|v= O(,||f]||v). By reversing the roles
of V and V’, we obtain another (¢’ independent of f such that || f|v=
= O’ (|| f||v)- Hence the two norms ,||f|v and ,| f||v are equivalent.

For notational semplicity, in what follows, whenever such a norm
o f||v arises, we assume that we choose a fixed norm from the class of all
those equivalent norms. Whenever possible, we choose always the one which
is obviously the most convenient for the purpose.

If no confusion can arise, we simply write || f|v for ,||f|v.-

Again, for g€ I'(U,O), we do not have ||fg|v=|f|lv|9g]v, but we
have || fgllu=C"||fllv|lg|lv, where C’’ is a constant depending only on
U and is independent of f and g.

For g=(9,,...,99 € I'(U, 0%, we deflne | g|v=supi g:|v-

Suppose ¥ is a coherent analytic sheaf on X and k€ I'(U, F). We are
going to define a norm for k. By shrinking ﬁ, we can assume that there

is a sheaf-epimorphism ¢: O? — ¥ on T. Define

|| 2|l =inf {|| 2" [|o | 4" €T"(T, O, @ (') = h}.

When no such b’ exists, || & ||% is defined to be 4 co.

Suppose yp: O — F is another sheaf-epimorphism. Since U is Stein,
there exists a sheaf-homomorphism o: 07— O" on U such that yo = @.
There exists C, € R4 such that || o () |jv= O, ||} ||y for b’ € I'(U, O%). Hence
IRllg= 0k
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This together with the result obtained by interchanging the roles of ¢
and y shows that the two norms | 4||% and || k||% are equivalent. For the
sake of notational simplicity, in what follows, whenever such a norm arises,
we assume that we choose a fixed norm from the class of all the equivalent
norms and denote it simply by ||k ||y if no confusion can arise. Whenever
possible, we choose always the one which is obviously the most convenient.

Suppose W = {U;} is a finite collection of open subsets of X and each
U; is relatively compact in some Stein open subset of X. If &€ C" (U, F),
then “ E“m denotes 8Upi, ..., i, ” 51'0--- '.r”Uio

P
v by

§ 7. Stein Open Subsets of a Subvariety.

In this section we approximate Stein open subsets of a subvariety
embedded in a Stein domain in a complex number space by Stein open
subsets of the complex number space.

The following Proposition is proved as Satz 3.2 of [6].

ProOPOSITION 7.1, Suppose X is a subvariety of an open subset W of
C¥ and A is a compact subset of W, If ¢ is a O« strictly plurisubharmo-
nic function on X, then there exists an open neighborhood G of A in W

and 0= strictly plurisubharmonic function a; on G which agrees with ¢ on
GnX '

PROPOSITION 7.2. Suppose X is a subvariety of a Stein open subset
G of C¥. Suppose L is a Stein open subset] of X and A is a compact
subset of L. Then there exists a Stein open subset H of G such that
AcXnHclL. '

PROOF. Since L is Stein, there exist holomorphic functions fi,..,fn
on L such that (fi,..,fm): L—>C™ imbeds L as a subvariety of Cm™.
Let ¢ = 3L, | 2|2+ Zj~ |fj|? on L, where 2,,..,2y are coordinates of
C¥. ¢ is a C= strictly plurisubharmonic function on L. Let ¢, = sup,¢ 4 ¢ (®).
Take ¢, >¢,. Let M = |x€L|p(r)=<¢,). M is a compact subset ot L.

Since L is an open subset of X,L = @' n X for some open subset G’
of G. L is a subvariety of G’. By Proposition 7.1 there exist an open

neighborhood G* of M in G’ and a (= strictly plurisubharmonic funetion 'q\;
on G which agrees with ¢ on G*n L. Let D and F be open subsets of G*
such that M c¢ D cc F cc G*,
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Since @ is Stein, there exist holomorphic functions g¢,,..,9 on @

defining X. For ¢€ Rylet H, = {2 B | ¢ (x) < ¢,,|gi@) | <&gHl1=j=1. We
clain that H, c D for some ¢€ Ry . Suppose the contrary. Then for every

r € N there exists «,€ f;, — D. Since E— — D is compact, there exists a
subsequence {2, } of {x,] converting to some z* € £~ — D. Hence P (@) = Cy
and g¢;(@*) =0 for 1=j=1 g, (2*)=..=¢ (") =0 implies that a*€

€XN 6* c L ¢@*)=¢@") <c, implies that a*¢M c D, contradicting
a* € B— — D. Therefore we can find ¢€ R, such that H, € D.

Let H=H,. Ac Hn X € L. To finish the proof, we need only show
that H is Stein. We are going to show that H is p-convex (Definition
1X. C. 11, [4]). Take arbitrarily a compact subset A of H. Let A, be the
p-convex hull of A in H, i.e. 4, = {w€ H |y ()= supyec4 w(y) for all con-
tinuous plurisubharmonic function on H}.

Since A is compact, Supses @ (@) = ¢y <c, and sup {|gj(x)||x€A,
1=<j=<1}=4¢ <& Hence 4, C (¢ € E|p (@) = 05, | gj(@)| =& for 1=j=1) cD.
Since D is relatively compact in F and A4, is a closed subset of E, 4, is
compact. Therefore H is p-convex. H is Stein (Theorem IX.D. 14, [4]).

q. e. d.

PROPOSITION 7.3. Suppose X is a subvariety of a Stein open subset
G of C¥ and W, << W, are finite collections of open subsets of X such
that every member of Ul, is Stein. Then there exists a finite collection
of Stein open subsets of @ such that W, << BN X << U,. Moreover, if H
is a relatively compact Stein open subset of @ with |{l,|cc XN H and
XnH-c|W,|, then we can choose B to satisfy in addition that H = | D |.

ProoF. Suppose Wi = {U;V);z, and v: I, — I, is the index map for
W, <<W,. For jeI, U, .1 Ui¥ ecc U?. Since U is Stein, we can
chose open subsets W; and W; of X such that W; is Stein and U
U,c(l) ce W, cc W; cc Uj(2)-

For j€1,, choose by Proposition 7.2 a Stein open subset Dj; of G such
that W; € D;jn X € Wj. B = {Dj}jc 1, satisfies the requirement.

Suppose H is a relatively compact stein open subset of G with
|W,|cc XN H and Xn H- c|W,|. Since X n H- is a compact subset of
| Wy |, we can find a finite collection T, of open subsets of X such that
W, <W3<<UW, and Xn H- c|W;|. By the preceding argument, we can
find a finite collection B, of Stein open subsets of & such that Wy << B, N
NX<<W,. H— — |®,| is a compact subset of G —X. We can find a
finite collection 3, of Stein open subsets of ¢ — X such that H— —

)
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— | Dy | €| Dy |. Let B = (D, uD,) N H. Then B’ is a finite collection of
Stein open subsets of ¢, W, <<BD'NX<<W,, and H=|D’]|. q.e.d.

§ 8. Grauert Norms.

In this section we define Grauert norms for sheaf sections defined on
a complex space equipped with a projection. Some elementary propertles of
these norms are then derived.

A. Suppose (X, O) is a complex space of reduction order =p < co and
n: (X,0)— K (" is a holomorphic map, where @°€¢R}.. Suppose U is a
relatively compact open subset of a Stein open subset U of X. U (o) will
denote UnNa—! (K (g)) for o=g° in RY. Suppose f€I'(U (o), O) for some
e =¢°. We denote by 7||f lly,, or simply by || flly,, the following Grauert
norm :

”f“l]’,g = inf (sup, || f» [|o | £+ € I"(U, O),

tom\n thom\*n
ZyEN:fy( Q4 ) ( On )

converges on U (¢) and is equal to f}.

At first sight this definition of Grauert norms seems very unnatural.
To shed some light on the motive behind this definition we are going to
give a second description of Grauert norms. This second description will
not be used in the rest of this paper. The only purpose of this second
description is to help clarify the preceding definition of Grauert norms.

From the complex structure of (X, O) we obtain a natural product

complex structure for K (g% < X and we denote the structure sheaf by 0.
(X, O) is reduced if and only if (K (% < X, 5) is reduced). Denote the
projections (K (%) < X, O)— K (¢%) and (K (¢°) < X, O) — (X, O) by II, and
II, respectively. For every g€ I'(K (o) < U, 5), we have a unique « Taylor
series expansion » :

9= 2 (gvl... vy © HZ) (ti ° Hi) l.“ (tn ° Hi)v'n’
€4 on

where g,, .., € I'(U, O)). Define || g||¥,e = 8UDs, ..., », || 901.. o, [l7+ 7 : (X, O)—
— K (0% and the identity holomorphic map idx : (X, O)— (X, O) give rise

to a holomorphic embedding <: (X, O)— (K (0% < X, 0O) satisfying I or=n
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and IT, o r=14dx. Let O*=1,(0). Since O*|7(X) is the structure shea-
of the complex subspace 7 (X) of (K (g% X< X, 5), we have a natural sheaff
epimorphism % : 6— O f corresponds uniquely to f,€ I'(z (U (o)), O*). Since
Supp O* =7 (X) and (K (o) X U)Nz(X)=1(U(g)), we can regard f, natu-
rally as an element of I'(K (o) <X U, O*). It is easily seen that the Grauert
norm || f||v,. i8 equal to

(0) < T, B, n(9) = ™).

The second description of Grauert norms is complete.
For b= (hy, ..., k) € I'(U (g), O"), define ||k ||z,o = supi| kv, -

LEMMA 8.1. Suppose o: O?—s (O is a sheaf-homomorphism on U. Then
there exists C€ Ry such that ||o(9)||v,e = C|| g |v,e for g€ I'(U (o), 09 and

0=o%

PROOF. o is represented by an » < ¢ matrix (¢;) of holomorphic fun-
ctions on U. Let C, = sup; ;| osv. O, is finite, because o; is defined on
U which contains U as a relatively compact subset.

Let g =(9,,..,9,) and o(g) = (h,,..,h,), where g;, h;€ I'(U (o), O)
hi= 3}, 059; on U(g). We can assume that || g|/v,, < co. Choose arbitra-
rily ¢ > || g|lv,e. There exists gj € I'(U, O), »€ N3, such that || g |0 <e

t ¢ t v
and X, gj ( ‘; ﬂ)l... (,,Qo"n>n converges on U (o) to g;.
1

Let hiy, = 37— gj» (05| U). Then hy € I'(U, O) and || by |jv < q 0, O, ¢,
t "ty "n
where C, is a constant depending only on U. 3, hy (1 2 n) ( ° n)

€1 On
converges on U(g) to h;. Hence || h|yo<<gq 0, C,e. Since ¢ is arbitrary,
lo@llo.e=q0; 0]l gllve- q. . d.

LEMMA 8.2. Suppose p = o* = in R} such that g;= of for 1=i=
=n—1 and g,< oK. Suppose ai€ I'(U(o*, 0% for keN, such that

oo t k -1
2k=oak(non) <( "‘g;) C.
n U, e On
PROOF. Since || ax ||v,o+ < C, there exists ax, € I'(U, 09 for u€ N2 such

¢ o, »
that || ax, ||v < O and X, ax, ( 1 ;,,n) - (" 1”) " converges to a; con U (g*).
L n

|| ax ||v, e+ < € for sgome C€ R . Then

i
Let b}. == 2k+i=l,, Ak, (A1, ooy Ag_1 s 9 (Qg—:) for A€ N:: . Then b;_ € I'(U, Oq) and
n
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n -1 t 4 ta An t, k
|01 |lv < (1 — %) C. 2, b, ( . n) <_?_”) converges to 2 ak( ° n)
On Q4 On On

oo t k -1
k=0 ak(" on) < ( —Q—:) C. q. e. d.
On U, e On

on U(p). Hence

Suppose  is a coherent analytic sheaf on (X, O). Suppose h€I'(U (9). F)
for some ¢ =% We are going to define a norm for h. By shrinking ﬁ,

we can assume that there is a sheaf-epimorphism ¢: (07— ¥ on U. We
denote by 7| h|7 , or simply by | &||v,, the following Grauert morm :

” h “U.e'__inf{ ”g”U,elgEF(U(Q)7 Oq)’ o (9) =h}-

When no such g exists, || k]||y,, is defined to be -+ co.

Suppose y:(O"— F is another sheaf-epimorphism. Since U is Stein,
there exists a sheaf-homomorphism o: 07— O" on U such that wo= ¢.
By Lemma 8.1, | o(g)|lz,e=0C]|g||v,;e for ge€I'(U(g), O?), where C is a
constant independent of g and g¢. Since o(g) = ¢’ implies vy (¢9’) = ¢ (g) for
g€ I'(U (), O, we have Z||h|ly ,=O(7||k|l3 ). This together with the re-
sult obtained by interchanging the roles of ¢ and vy shows that the two
norms are equivalent. For the sake of notational simplicity, in what follows,
whenever such a norm arises, we assume that a fixed norm from the class
of all the equivalent norms is chosen. Whenever possible, the obviously
most convenient one is always chosen.

Suppose W = {U;} is a finite collection of open subsets of X and each
U; is relatively compact in some Stein open subset of X. For ¢ =0 in
R}, we denote {U;(o)} by W (o). Suppose £€ O (U (o), ) for some p = o°,
then || & Hm, o denotes sup, .., | &q..., ||U,-0___ et

It is easily seen that the Grauert norm | | , can also be defined
as follows:

” ¢ ”"0,1, o = Sup [ ” 5””'111' &E Or(m? Cj)?

t ks v
2, N E,( ’;n)l...(t';:ﬂ) " converges to £ on U (o).

This alternative definition will be used in § 14.
The following Lemma follows trivially from the definition of Grauert
norms.

LeMMA 8.3 Suppose G is a coherent analytic sheaf on X and ¢: F— @
is a sheaf-epimorphism. If g€ C" (W (), §) for some ¢ =¢° and || g|lg, , <é
then there exists f€ 7 (U {g), F) such that ¢ (f) =g and || f |y, , < ¢ (When
the two norms are suitably chosen). )
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The following is a consequence of Lemma 8.2.
LeEMMA 8.4, Suppose o = o* = ¢° in R? such that g;=1pf for 1=¢=

=n—1 and g, < on. Suppose 3 € I'(W(e*), ¥) for ke N, such that ||y ||m, <
< O for some CeRy . Then

o t, ot \*
k=0 N ( )

on \™!
On /(1— '> C-

b on

W, e

B. Suppose (X, 0) is a complex subspace of an open subset G of CN
and the reduction order of (X,0) is = p < co. Suppose ¥ is a coherent
analytic sheaf on (X, O). Suppose ¢° € R} and n: (X, O)— K (0 is a holo-
morphic map.

Let P,: K (¢°) <X G — K (¢°) and P,: K (¢°) X @ — @ be the projections.
There exists a unique holomorphic embedding 6 : (X, O) — (K (¢° <X @, n4+~0),
such that P, o 6 is the inclusion map (X, O) ©— (@, yO) and P, 0 6 =a.
Let F* = 0, (F).

If U is an open subset of X, D is an open subset of @ with DnX= U,
and ¢ =< o° in R} , then there is a natural isomorphism 6p: I'(U (g), F) —
— I' (K (0) < D, F*), because 6 (U (9)) = (K (9) < D)n 6 (X).

If W is a finite collection of open subsets of X, B is a finite collection
of open subsets of G with ® N X =T, and ¢ =¢° in R}, then for reN,
we have a natural isomorphism 6z : 0" (U (), F) — 07 (K (¢) X B, F*). Since
0y commutes with the coboundary operator 6, 65 maps Z7(U (g), ¥) onto
7" (K (0) X B, #*) and maps B (W (g), ) onto B (K (g) X B, F*).

We are going to investigate the relations between || f||z,oand | 65 (f)|p, o
for f€I'(U(g), ) and the relations between || ¢ ||q ,and |65 (g)|p , for
g€ 0" (W) F). In § 9 we will transplant the results of § 5 to general com-
plex spaces equipped with projections by means of these relations.

PRroPOSITION 8.1, Suppose H is a relatively compact open subset of

a Stein open subset Il of G and U cc U* are open subsets of X such
that HNX = U* Then there exist C€ Ry such that, if o =o° and f¢€
€ F(U* (o) F) then, Hf” U, o =0 I 0= (f) ‘H,e .

ProoOF. By replacing G by T ana by shrinking H we can assume
that there is a scheaf-epimorphism o¢:0? — ¥ on X. ¢ is defined by ¢ ele-
ments 8, , ..., 8 € I'(X, F). The q elements 6¢(s,),...,0¢(s,) of I' (K (¢° < @, F¥)
defines a sheaf-epimorphism ¢*: 1 yO? — F*.

Let f*=0g(f). We can assume that |f* |z, < co. Take arbitrarily
¢>|f*|m . By definition of the norm there exists g* € I' (K (¢) <X H, nt.xO?)

11. Annali della Scuola Norm. Sup. - Pisa.
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t, o P,\”
such that o* (g*) = f* and |g* |H,9 <e Let g*=23 Nn(g’f ° 2) ( 1 1) l“'
YEN, \ 01
(i";—P‘> " be the Taylor series expansion, where gF€ I'(H, yO9). Then
1
|97z <e.

Let g, € I'(U*, 0% be induced by ¢¥. By Cauchy’s inequality || g,|v =
=sgup {|D*gy (x)||a€NY,|a|=p,a€ U} << Ce, where C is a constant
independent of g¥.

ty om\" ty © 7T\"n .

Let g = Zg,( o ) ( o ) €I'(U (), ©). Then || g ||v,¢ << Ce. Since
o(g)=f on Ul),| fllv.e < Ce. q.e.d.

The following is a consequence of Proposition 8.1.

PROPOSITION 8.2. Suppose B is a finite collection of open subsets of
G such that every member of B is relatively compact is some Stein open
subset of G. Suppose W << W* are finite collections of open subsets of X
such that ® N X = TW* Then there exists C€ Ry such that, for ¢ = ¢° and

F€0m (W (0), F) “f”m,gé 0|9m (f) |E,Q :

ProPOSITION 8.3. Suppose U is a relatively compact open subset of a
Stein open subset U of X. Suppose H cc H*¥* ¢ D are open subsets of @G
such that H* is Stein and DN X = U. Then there exists €€ Ry such that,
for 0 =0° and fEI'(U(e), F), |0p(f)|me=C|fllv,e-

PROOF. By replacing X by U and shrinking 17, we can assume that
there is a sheaf-epimorphism o: (07— X. o is defined by q elements s, ,..., 8,
of I'(X, F). The q elements 0g(s,),...,0q(sy) of I'(K (¢ < G, F,) define a
sheaf-epimorphism ¢*: 4 yO7 — F*.

We can assume that || f||v,, << co. Take arbitrarily e > || f||v,o. There
exists g € I'(U (p), 07 such that o (9)=f and | g|ly,e <e. There existg,¢€

€I'(U,09, veNz, such that | g,|lv<e and 2y, (t‘ > n)ﬂ... (t"go n)"n =y
on U (p). o "

Since the quotient map % :I'(H* yO)— I'(H*n X, O) is a continuous
linear surjection of Fréchet spaces, by the open mapping theorem there
exists gj€ I'(H* yO) such that %(g))==g, on H*N X and |g}|z< Ce,
where C is a constant independent of g, .

t, o P\t ([tho P\’n
Letg*=2‘(g,*o 2)( 1;1 1) ...( ° i) EI‘(K(Q)XH,,H_NO). lg*|H.e<

< Ce. Since o* (¢*) = 0p (f), | Op (f) |z, e << Ce. q.e. d.
The following is a consequence of Proposition 8.3.
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ProprosITION 8.4. Suppose Ul is a finite collection of open subsets of
X such that every member of Ul is relatively compact in some Stein open
subset of X. Suppose Tl << TUM* << ® are finite collections of open subsets
of G such that ® N X = W and every member of T(l* is Stein. Then there
exists CeR; such that, for ¢=¢"and f€C" (W(), F), |0p (f)|um, o=
= 0|flly, o -

O. Suppose (X, O) is a complex space of reduction = p < co and ¥ is
a coherent analytic sheaf on (X, O). Suppose ¢° € R} and = : (X, O) — K (¢°)
is a holomorphic map.

If U and U’ are open subsets of X and U (p) = U’ (p), from the defi-
nition of Grauert norms we cannot immediately say anything about the
relationship between ||:||v,, and ||-||v’,o. We are going to investigate this
gituation. It turns out that we can draw some conclusions if we shrink
U or U’ a little.

LeEMMA 8.5. Suppose W, W, U are relatively compact open subsets
of a Stein open subset U of X and o’/ < o’ =° in R} such that Wecc W,

W(g’)c U, and W is Stein. Then there exists €€ R, such that, if ¢ = o’
and f€I'(U (e), F), then | f| W(o)|lw,e=C|flv.e-

PROOF. Obviously we need only prove the special case F= O. By re-
placing X by U and by shrinking ﬁ, we can assume that X is a complex
subspace of a Stein open subset @ of C¥. We use the notations of § 8B.

We can suppose || f||v,e < co. Take arbitrarily e > || f||v,,. There exist
fr€I'(U,0), veN2 , such that ||f,|lv<e and X f, (t'; ﬂ)ﬁ... (t”go n)m =f
on U (). ! "

Since W is Stein, by Proposition 7.2 we can choose Stein open sub-
sets D, cc D, of @ such that Wee D, and D,n Xc W. Let W;= D;n X.
Choose ¢” < ¢* <o’ in R} .

From the assumption we have W,(¢’)C U. Let f, =f,| W,(¢’). Then
A lwaien <ee

Let a: I'(K (0’) X Dy, nynO)—> I'(K(¢’) X Dy, O*) be induced by the
quotient map ,4x¥O — O* (recall that O* = 6, (0)). Let f: I'(K (o) <
X Dyy g5 0) — I' (W, (”), O) be defined by g = (0p,)! .

Since f is a continuous linear surjection on Fréchet spaces, by the
open mapping theorem there exists g, €I (K (g’) X Dy, »4xO) such that
B(g,) =1, and | ¢ |k @4xp, < C,e, where C, is a constant independent of f,'.

Let g, = 2‘” e N1 (Gvu © Py) (t‘ ZTP‘)M... (t";:P‘)ﬂn be the Taylor series
expansion. By Cauchy’s inequality |g,. |p, < C,e.
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Let f,, € I'(W,, O) be induced by g,, . By Cauchy’s inequality || f,.|w=
=sup {| D* gy, (@)| | e ENJY, || =p, x€ W] < C, O, ¢, where C, is a constant
independent of f,, .

M1

Let f},* = Z'u+v=l f'y‘u (’g'i;) oo

1

H“n
(9—1) for A€ N?. Then we have f=

n

t 23 t, A
= (1 ° ”) (" ° ”) on W (o) and || f*|lw << C3 C, C, ¢, where Cy=

€4 On
on \! on \™* .
= 1—5-1; L) Hence || f||w, << C; C, C; e. q.e.d.

LEmMA 8.6. Suppose U, cc U, cc U are open subsets of X and U,, U
are Stein. If o! < 0?*=¢® in R} and f€I'(U, (0%, F) then | f|v, e < co.

ProoF. Choose a Stein open subset U; of X such that U, cc Uz cc U,.
Choose ¢! < @* < ¢? in R} . Since Uy (o%) << Uy (¢?), || £ lvy e << 0. Obvio-
usly || fllzien, & = || fllvsey» The Lemma follows from Lemma 8.5 by setting
W="0,,W=",, U="U;(e") o =o¢=o¢!, and ¢’ =" q.e.d.

The following two Propositions are consequences of Lemmas 8.5 and 8.6.

ProOPOSITION 8.5. Suppose T, m, W are finite collections of Stein

open subsets of X such that each member of T{l, 'll'ﬁl, T is relatively com-
pact in some Stein open subset of X. Suppose o/ << o’ =g° in R},

Wl << U, and T (¢") < W. Then there exists C€ Ry such that, if o=¢”
and f€ 0" (W (o), F), then |/ | W (o) [lum, o = Cll.f ||, o

ProposiTION 8.6. Suppose U, << U, are finite collections of Stein open
subsets of X such that each member of Ul, is relatively compact in some
Stein open subset of X. If o! < > =¢® in R} and fe€ 07 (W, (¢?), F), then

1/ 11, ot < 00

D. Suppose X is a complex space of reduction order =p < oo, o® € R} ,
and n: X — K (9% is a holomorphic map. Suppose (X’,(0’) is a complex
subspace of X and the reduction order of X’ is = p’ < co. Let n’ =z | X'.
Suppose %’/ is a coherent analytic sheaf on X’ and ¢ is the trivial exten-
sion of ¥ on X.

If U is an open subset of X, UNn X’ will be denoted by U’. If U is
a collection of open subsets of X, Ul N X’ will be denoted by T’.

For ¢ = ¢° and any open subset U of X there is a natural isomorphism
ov: I'(U(o)y F)— I'(U’ (0)y F'). For o =% r€N,, and any collection U of
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open subsets of X there is a natural isomorphism ogy: 0" (W (e), F) —>
— 0" (W (o), F)

LemmA 8.7. Suppose U,, U,, U are relatively compact Stein open sub-
sets of a Stein open subset of X and ¢’ <o’ =g° in R} such that
U, cc U, and U,(¢’) cc U. Then there exists € Ry such that, if ¢ = o/,
then

() v (llgg o= €71l for £EI(T @), F), and

(i) 05" (M) lg,. o = CIIF |

v, for fP eI (U (o), ).

PROOF. We can assume without loss of generality that X is a complex
subspace of a Stein open subset G of C¥. We use the notations of § 8 B.
For corresponding notations for X’ we add a prime. Note that (F)* = F*.

Let Uy = U, (o’). By Proposition 7.2 we can choose relatively compact
Stein open subsets D, cc D, of G such that Usecc D, and D,NX c U.
Choose a relatively compact open subset D of G such that D, ¢ D and
DnX=T.

(i) Take ¢ = o'’ and f€ I'(U (), F). By Proposition 8.3, | 0p (f)|p,,o =
=0,||f||lv, o) where C, is a constant, By Proposition 8.1, ||(6p)~1(0p (f))”vé, o=
=0,|0p(f)|p,o» where C, is constant. Since oy (f)=(0p)"! (6p (f)),
60 Iz e S Cs 41/l - By Lemma 8.6, [0, (/) |0 = Cs | o0 (/) Iy o
where C,; is a constant.

(ii) Take ¢ = ¢’/ and f'€I"(U’ (¢), 7). By Proposition 8.3, |05 (f")|p,,o =
= Ci||f |l",e, Where 0} is a constant. By Proposition 8.1, || 671 (63, (/) g, , =
=0,|0b (f)|p,e, Where O3 is a constant. Since o7 (f) =65 (0p (f)),
05" (Mo, e = 0201[| S ||v7, - By Lemma 8.6, || 07! (f)||zy, 0 = Gs |05 () ||vs, s
where C; is a constant. q.e.d.

The following Proposition follows from Lemma 8.7.

ProposiTION 8.7. Suppose W,, W,, W are finite collections of Stein
open subsets of X such that each member of W,, U is relatively compact

in some Stein open subset of X. Suppose o’/ < o’ =g° in R}, W, << W,,
and W, (o) < W. Then for r €N, there exists (€ R, such that, if ¢ < p’,
then

Q) low () Iy, o = €11l o for £€ 07 (W (e), ), and

(i) loq' (), o = Ol llr, ¢ for /7€ 0" (A (@), F).
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REMARK. In the special case X = X’, Lemma 8.7 and Proposition 8.7
spell out the effect on Grauert norms when p is changed.

Suppose, in addition, n’(X’) € {t, =0} and (t,°7) 0’ = 0. For ¢ =
= (0y, -+ y0n) ERY, we denote (g, , ..., 0n—y) € R'_‘,.‘l by o. We can regard n’
as a holomorphic map from X’ to Kn—1 (%), If o = and V)’ << V) are finite
collections of Stein open subsets of X’, then we have two Grauert norms:
One is ||-|ly’,, When we regard z’ as a holomorphic map from X’ to K(¢°);
another is ||-|ly o When we regard n’ as a holomorphic map from X’ to
Kn—1 (50). From the definition of Grauert norms, we can easily see that
(tn, °n) O’ = 0 implies “'“ll)',9= I-lly, 2~

Hence under these additional assumptions we have the following.

ProposiTION 8.8. Suppose U, , W, , W, and ¢’’, o’ are the same as in
Proposition 8.7. Then there exists €€ Ry such that, if o =p’/, then

) ” i | (f) ”'(ui,Eé GHfH W, for fe 0" (W (o), 7), and

(i) low M, o= ClI/ kg, g for /7 €07 (W (o), F).



