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A PSEUDOOONOAVE GENERALIZATION
OF GRAUERT’S DIRECT IMAGE THEOREM: I

by YUM.ToNG SIU (*)

Table of Contents

~ o, Introduction.

A. In [2] Grauert proves the following direct image theorem.

THEOREM G. is a proper holomorphic map of (not
necessarily reduced) complex spaces and F is a coherent analytic sheaf on X.
Then the lth direct image of 7 under n is a coherent analytic sheaf
on Y for all I &#x3E; 0. (A simplified treatment of a key point of the proof
for a special case is given in [3] to illustrate the idea of the proof. In [5]
Knorr gives an amplified version of Grauert’s original proof.)

Pervenuto alla Redazione il 22 Set. 1969.
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When the dimension of the complex space Y in Theorem G is zero,
Theorem G is reduced to the following finiteness theorem of Cartan-Serre.

THEOREM C-S. Suppose X is a compact complex space and F is a
coherent analytic sheaf on X. Then the dimension is finite

for all I &#x3E; 0.

Theorem G can be regarded as a Theorem C ~ with parameters (and
the parameter space is the complex space Y).

In [1] Andreotti and Graaert generalize Theorem C-S to the following
finiteness theorem for pseudoconvex and pseudoconcave spaces.

THEOREM A.G. Suppose X is a complex space and cp is a proper C°°

map from X to (a, b), where a E {- Do} U R and b E R U Suppose a 
a’  b’  b and op is strictly p-convex on (99 &#x3E; b’) and strictly q-convex
on 199  a’). If J is a coherent analytic sheaf on X and codh on

then the dimension of is finite for  r - q.
It is natural to conjecture that Theorem (~ can be generalized to a

Theorem AG with parameters.

CONJECTURE. a holomorphic map of complex
spaces and cp is a C°° map from X to (a, b), where a E { - oo) U R and bE

such that the restriction of ~c to (a* Z b*) is proper for

a  afl  b*  b. Suppose a  a’  b’  b and, for every y E Y, 99 is strictly
p-convex on (y) n 199 &#x3E; b’{ and strictly q-convex on ~"~ (y) n (w  a’).
If its a coherent analytic sheaf on X and codh on IT  a’), then

ni is coherent on Y  r - q - dim Y.
This conjecture is closely linked up with the theory of coherent ana-

lytic sheaf extension. In [7] coherent analytic sheaves are extended by
proving that under special circumstances y~ (9)y is finitely generated over
the local ring at y for y E Y.

Not much has been done in the direction of this conjecture. In private
correspondence Knorr told me that he could prove the following one pa-
rameter version.

THEOREM K. Suppose X is a perfect complex space, 8 is a Riemann
surface (with reduced complex structure), and n : X - S is a holomorphic
map. Suppose cp is a C°° map from X to (a, b), where a E { - oo) U R and
b E R U such that the restriction of a to {a~ ~ gJ Z b*) is proper for

a  a*  b*  b. Suppose a  a’  b’  is strictly p-convex on

{~  b’) and strictly q-(-.onvex on {q~ a’). Suppose 7 is a coherent analy-
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tic sheaf on .X such that codh on ~q~ [ a’~ and ~I (~p  a’~ is

(n  a’l) - flat. Then is coherent on S for p 1  r - q - 2.
In this paper we prove a pseudoconcave version of the conjecture with

a parameter space of any dimension which is a manifold. This gives a
pseudoconcave generalization of Grauert’s direct image theorem. Before we
state the main result, we introduce a definition.

DEFINITION. Suppose q is a natural number and X -+ Y is a

holomorphic map of complex spaces. a is called q-concave if there exists a
from X to (c~ , oo), where c~ E ( - oo) U R, and there exists c. 

 c#  oo such that (i) for c~  c  oo, the restriction of a to ~~ -_&#x3E; 0) is

proper, and (ii) 99 is strictly q-convex on lop  c#]. We call 99 an exhaustion
function and call c* concavity bounds for the q-concave holomorphic
map ~.

Our main result is the following.

MAIN THEOREM. Suppose ~’ is a complex space, M is an n dimensional

complex manifold (with reduced complex structure), a

q-concave holomorphic map with exhaustion function rp and concavity bounds

0* c~ . Supposes is a coherent analytic sheaf on .~ such that codh ~’? r
on (~  c#} and J  o#j is (~ ~ }~  -:flat. Then the lt h direct image
;11 of J under n is a coherent analytic sheaf on .M~ for l  r - q - 2n.

the Main Theorem gives Theorem G. The Main

Theorem may still be valid if we replace l  r - q - 2n by l  r - q - n
and drop the (n  - flatness c#), but I cannot prove
this sharpened version.

B. To understand the difficulty involved in any attempt to prove the
conjecture, we analyze very briefly Grauert’s proof of Theorem G. Clearly
for the proof, we can assume that Y is the n-dimensional unit polydisc K.
(We allow I~ to take on unreduced complex structures also.) Grauert’s proof
hinges on what Grauert calls the Hauptlemma ([2], p, 47).

Denote by K(g) the n-dimensional polydisc with polyradii equal to the
n-tuple e of positive number. Suppose U1 and V are finite Stein open co.

verings of e. nembers of the coverings are Stein open subsets of X).
Denote by U1 (~o) the covering obtained by replacing every number of Bl1
by its intersection with has a similar meaning. A sim-
plified version of Grauert’s Hauptlemma can be roughly described as

follows.



282

Suppose lll and V are suitably chosen and V refines lll in

a suitable manner. Then there exist ~17 ... ~k E Zl(’U1, such

that for o sufficiently small (in a suitably defined sense) the

following is satisfied. there exist holo-

i morphic functions ai on K (o) and E (e), J) such that
~ = I ai Ei -~- or¡ when restricted to W (e) and some (suitably
defined) norms of ai and q are dominated by the product
of some (suitably defined) norm of $ and a fixed constant

depending on e,

In Grauert’s proof 1 is proved by double induction consisting of
an ascending induction on n and a descending induction on l. When n = 0,

I follows from Theorem C-S and the open mapping theorem for Fr6-
chet spaces. For I very large, (0.1),,,, 1 is vacuous, because TH is finite. To

prove the general (0.1)~ ~ ~ the idea is to use « power series » expansion to

go down to (O.l)n-l, 1. We expand J into « pocver series » in one of the

coordinates of K. The trouble is that the coefficients of the  power series »

may not be a cocycle. Calculation can show that, since $ is a cocycle, even
though the coefficients of the « power series &#x3E;&#x3E; may not be a cocycle, the

coboundary of any coefficient of the  power series &#x3E;&#x3E; is small with respect
to the norm under consideration. Now use 1+1 coupled with other

things to show that the coboundary of every coefficient of the  power se-

ries » is equal to the coboundary of an l-cochain which is small. So every
coefficient can be approximated by an l-cocycle. By applying (0.1)~2013~ 1 to
the approximating l-cocycles, we can find ai and q so + bq ap-
proximates ~. By taking limits, we have The step of taking limits
involves a lot of technical details. The reason is the following. When we
have an approximation, the covering is shrunk from U (e) to V (e). Unless

we have some way to enlarge the covering from V (p) back to U (o), we
may end up with nothing. Grauert overcomes this difficulty by proving a
Leray’s isomorphism theorem with bounds whose proof depends on a Car-
tan’s theorem B with bounds.

The conjecture is, loosely speaking, a combination of a pseudoconvex
generalization and a pseudoconcave generalization of Grauert’s direct image
theorem. Let us look at the pseudoconvex case and the pseudoconcave case
separately.

For the pseudoconvex case, naturally we would only expect to have
I for l:::: lo, where 10 is a fixed number. The ascending induction on

n and the descending induction on I still work. For the step enlarging the
covering from V (Lo) to TH (e) we can use the techniques of [1] in addition
to Leray’s isomorphism theorem with bounds. Things seem to work out
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smoothly. However, in Grauert’s proof, there is an isomorphism lemma used
after the establishment of (O.I)n, 1 which poses great difficulties for the pseu-
doconvex case when n &#x3E; 1. We shall explain more about this isomorphism
lemma in a short while.

For the pseudoconcave case, naturally we could only expect i to

hold for l Z lo where lo is a fixed non-negative integer. The descending in-
duction on I obviously fails. However, for the case n = 1 this difficulty can
easily be circumvented in the following way. Obviously we have (0.1)0. 1 for

Z ~ to , because of Theorem A-G and the open mapping theorem for Fr6chet
spaces. From (0.1)0, l, by the techniques used in the proof of Proposition
14, [7], we can prove a weakened version of 1 which can replace (0,1)1, ~ 1
in proving the coherence when n =1. The weakened version of (0.l)1, ~ 1 dif-

fers from (0.1)1, 1 in that, instead of requiring ai to be defined on K (e) and
~ to be defined we only require ai to be defined and q
to be defined for 1~ (Ql) for some smaller Q1. The reason why this circum-
vention works only for n =1 is that from the weakened version of (0.1)], 1
we cannot derive the weakened version of (o.1 )2, i , To derive the weakened
version of (0, Ih, i we need the original version of (0,1)1, 1 which we do not

have.

After establishing (0.1)~ 1 Grauert’s proof employs diagram-chasing and
other simpler techniques. Coherence is proved by ascending induction on n.
At one point the following isomorphism lemma is used.

is contained in a submanifold of codimension 1

(0.2)~, , i in K, then the canonical homomorphism from to

is an isomorphism. ~

In Grauert’s proof, (0.2)~,, i follows from the induction hypothesis and
the general statement that, if 0: Y ---~ W is a holomorphic map of complex
spaces and 92 is a coherent analytic sheaf on V such that W is Stein and
Qv (Cf2) is coherent for v  l, then H I (V, %) z r ( W, llz (Cf2)). For the pseu-
doconcave generalization, (o.2)n, i offers no problem. It can be dealt with in
the same way. However, for the pseudoconvex generalization, (0.2)~,, Z poses
great difficulties except for the case n = 1. In the case n = 1, (0. 2)n, I is

trivially true.

C. In this paper we prove the pseudoconcave generalization with pa-
rameter manifolds of arbitrary dimensions by overcoming the difficulty
concerning the pseudoconcave case of We derive a technique which
enables us to derive 1 from i and i+1. Because instead

of using only Z we use both Z and to prove
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(O.l)n, l, we could only prove the coherence of 1’ll for l  r - q - 2n

instead of 1  r - q - n which we believe should be the sharpest possible
for this kind of situation.

One of the most messy parts of Grauert’s proof is the part concerning
measure charts and measure coverings ([2], § 4). The measure coverings
would naturally be much more messy for the pseudoconcave case. To avoid
undesired complications, we introduce a neater form of treatment. This is

made possible by two techniques. One is to define for holomorphic functions
on compact subsets of unreduced complex spaces a semi-norm which is

practically independent of the local embeddings used to define it (§ 6).
Another is to use Richberg’s result on the extension of plurisubharmonic
functions [6] to approximate Stein open subsets of a subvariety embedded
in a Stein domain in a number space by Stein open subsets of the number
space (§ 7).

Needles to say, most ideas in this paper evolve from the ideas of

Grauert presented in [2]. Without the ingenious pioneering ideas of Grauert,
any proof of the coherence of direct images of sheaves would not be pos-
sible. A considerable part of the development here parallels the development
in [2]. Unfortunately this cannot be avoided by simply quoting intermediate
results of Grauert in [2], because we use a new treatment for measure co-
verings and because we need slightly more general versions of the results.

As far as the proof of the Main Theorem goes, this paper is selfcon-

tained, except that some simple statements are quoted from the earlier
part of [7]. Hence our proof of the Main Theorem gives as a by-product
another version of the proof of Theorem G.

In this presentation we try to separate « soft » analysis and « hard »

analysis. « Soft » analysis is dealt with in the earlier part of this paper,
whereas « bard » analysis is postponed to the latter part.

D. The following conventions and notations will be used in this paper.
Additional ones will be introduced later on when needed.

Unless specified otherwise, all complex spaces and complex subspaces
in this paper are in the sense of Grauert (i. e. their structure-sheaves may
have non-zero nilpotent elements).

A holomorphic function on a complex space (X, Ô) means an element
of r (X, 0).

Suppose 9 is an analytic sheaf on a complex space X and x E X. Then
denotes the stalk of J at x. then Iz denotes the germ of

f at x. If is a collection of open subsets of X, then ip
denotes Ui and I denotes U If Y is a subset of X, theno P ; I

denotes then 
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denotes the value of g at the simplex (io , ... , tp) of the nerve of U. Sup-
pose V == is a collection of open subsets of X. If there is a map
z : J -~ I such that Vj c then we write 1~  ’t!l. If B1)  U and

~t~~) , then we write V « TH. Suppose  U. We have a map
Op - CP (V, 7) induced by r. If g E Cr ‘~ ), we call T* (g)

the restriction of g to B1) or on ’0 and denote it by g ~ If g’ E OP (M, 7)
such that 1. (g) = 1:* (g’), then we say that g = g’ on B1). If 11.11 is a norm

on CP 7), then 11 1* (g) 11 is also denoted simply by If every Ui
is Stein, we say that %l is a Stein open covering of 

A holomorphic map 0 from a complex space (X, 0) to a complex
space (X’, means a morphism of ringed spaces. That is, W = (CPo, CPt),
where 990 is a continuous map from X to Y and ~1 is a continuous map
from s) x E X, s E to O. Sometimes, for the sake of notational

simplicity, we suppress To and (p, . In that case, we use 0 to represent
also the continuous map 990 : X - Y and, for h E I’ (X’, 0’), we denote

(h) E r (X, 0) by h o 0. If no confusion can arise, we sometimes denote
both h and h o 4Y by h.

The qth direct image of an analytic sheaf y under a holomorphic map
4Y is denoted by 4Yq (~).

denotes the structure-sheaf of Cm .
~c will denote a non-negative integer. It occupies a special position in

this paper and does not simply represent a general non-negative integer.
t1 , ..., will denote the coordinate functions of Cn.

R+ = (c E R ) c &#x3E; 01. N = the set of all positive integers. N~ = N U 10).
If a E Rm, then al , ... , denote the components of a. Suppose a, 
a Z b for 1 ~ i ~ m. a  b means ai ~ b~ for 1 ~ i ~ m. Sup-

pose a + ~ means (1X1 I -~- ~1 , ... , ~ + If ~ ~ a, then 

means (;;)... a I means ... + am . If h is a holomorphic fun-
BPi /

ction on an open subset of then Dah or D’h denotes ,z 

where zi ... , are the coordinate functions of C~ .

If a E R,+ , then denotes (z1, ... , E z1  a1, ... , ~ zm ~ ·

is simply denoted by K(a). When a = (I, ... , l j, is simply de-
noted by .g.

In a collection of open subsets, members which are empty sets are

ignored. Two collections of open subsets are considered being the same

if they are identical after dropping all members which are empty sets.
If E is a subset of a topological space, BE denotes the boundary of E.
Norms in this paper are allowed to take on the value + oo.
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§ 1. A Criterion for Coherence.

We derive a criterion for coherence which will be used to prove the

coherence of direct images of sheaves.
Suppose (X, 0) is a complex space and 7 is an analytic sheaf on X.

For x E X, m (x) denotes the maximum ideal-sheaf on X for the subvariety j.rj.

PROPOSITION 1.1. 7 is coherent at a point xo of X if and only if there

exist Stein open neighborhoods W c W- of xo $k E y) sati-
sfying the following.

(i) on W.

(ii) For every .r E W there exists a function p (x, N -+ N, such that
(a) lim p (x, d) and

d - oo

(b) for every I E 0) ~i with 17,, E (m (X)d there exist

Otj r(w, m d)) with 27 = on W.

PROOF:

I. «Only if» part.
We can find a Stein open neighborhood iV of x. in X and E
’V k ’V ""’J

such that on Wand 7 is coherent on W. Thus
we have (i). Let W = 1V and p (x, d) = d for .r E W. We have a sheaf epi-
morphism Ok 2013~ on fV defined by ... , $k. This sheaf-epimorphism in.

duces a sheaf-epimorphism on W for x E W". Since fiT
is Stein, is surjective. (ii) follows.

II. «If» part. ,

Let CR c Ok I iii be the relation-sheaf ... , ~ . We need only prove
that is generated by global sections.

For x E W. Let T be the Ox submodule of %z generated by global sec-
tions of 9~ I W. Suppose U is an open neighborhood of x in Wand

(oci --- , L%k) 
Fix v E N. There exists d E N such that p ’x, d) and d &#x26; v. Since W-

is Stein, the map

induced by the quotient map y : O - aim is surjective. There exists

fli E F( W, 0) such that 99 = 1p ((at.)~). Hence (fli - E (m 
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By (ii) (b) there yk E such that ïi ~s =
= on W. (#i - y! ~ ·.. ~ fJk - yk~ E 

Hence Since v is arbitrarily fixed,

9 2 Direct-finite systems.

We prove in this section some preparatory propositions which are
essentially algebraic in nature. These propositions deal with properties of
certain direct systems of modules over rings of local holomorphic functions.
In later sections these propositions will be applied to the defining preshea-
ves for direct images of sheaves.

Suppose (X, ð) is a complex space and x lli denotes the directed
set of all open neighborhoods of x in X. denotes r (U, Ok).
1 u denotes the element of Ou whose germ at every point g of U is the

unit of the local ring Oy. ef, k denotes the element (0, .,. , 0,1 ~, 0, ... , 0)
where 1 ~ is in the ith place. For 

denotes the restriction map and a%: 05 - ~x denotes the natural map.

DEFINI1’ION. A direct system R’{l1 = (Ru ~) indexed by the directed
set is called an if

(i ) Ru is an Ou-module, and
(ii) is an Ou-homomorphism from the Ou.module RD to the

Ou, -module Ru, which is naturally regarded as an Ou-module.
We denote the direct limit of RZt by B,. denotes the

natural map.
We need some more notations. Suppose for some fixed U E ’tl1, 

is an Ou.homomorphism. For U’ e IT in ’tl1, denote the

Ou;homomorphism from to defined by 99 U, = for

We say that is induced by induces an 

morphism from , to _R * which we denote by T*. We say that 9’. is in-

duced by These notations will be applied, in particular, to the case

where R~ = ~C~~~, a~, -u].
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LEMMA 2.1. Suppose UE ’U1 and 9~ is a coherent analytic subsheaf
of a coherent analytic sheaf 9~ on U. Then there exists U’ c U in ’~ such

that, if E E Cfl) and $z E then $y E for y E D’’.

PROOF. By replacing U by a smaller member of ’U1, we can assume

without loss of generality that U is Stein. Let be the subsheaf of %
on U generated by all elements n E r (U, satisfying By applying
Cartan’s theorem A to the coherent sheaf 9N I U on the Stein space U,
we conclude that Being a subsheaf of coherent analytic sheaf

and being generated by global sections, and is coherent. Since the two

coherent subsheaves c)k and 97C agree at x, 9~ and cfii agree on some

open neighborhood U’ of x in U. We claim that U’ satisfies the requi-
rement.

and Foom the definition of cfii, we con-
clude Since 9ll and c7k agree on U’, $ ) U’ ET(U’, 
q.e.d.

LEMMA 2.2. Suppose O$ - Ob- is an Ou homomorphism.
Then there exists U’ c U in ’U1 such that (Im ~) n (Im c: 

PROOF. Let c)K be the subsheaf of C~q on U generated by Im Tu. 9ll
is coherent. By Lemma 2.1 there exists U’c U in lll such that, if ~ E 
and then I By shrinking U’, we can assume that
U’ is Stein. We clain that U’ satisfies the requirement.

Take q E (Im n (Im 99.). Then q = ~ I U’ for some ~ E õ1r and
(q) E Im It is clear tat Im 9’* = ~x . Hence ~0153 (q) E 

~ ~ I U’ E r( U’ , Since Im generates 9N U’ and U’ is Stein, by Cartan’s
theorem B we conclude that $ ) I q.e.d.

LEMMA 2.3. Suppose U E III and A is a subset of C)7’ . Then there exists

U’ e U in U such that the Õu,.submodule of Ok, generated by u(A) is
fi nitely generated over 0 v’ .

PROOF. Let T be the Ox.submodule of O£ generated by A. Then there
exist ... , ii E A such that (~1)x, ·.· , (~i)x generate T. Let 9ll = on

U. c)k is coherent.

By Lemma 2.1 there exists U in ’U1 such that, if iEok and
I U’ By shrinking U’, we can assume that U’

is Stein. We claim that U’ satisfies the requirement.
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We need only check that C~~- a~- ~(~~). Take E E A. Then
I Since U’ is Stein, Cartan’s theorem B implies

that $ = $i for some ai E q.e.d.

DEFINITION. Suppose R’ij1 = (lu’ is an Ou-system. R’ij1 is said

to be direct-finite if

(i) R~ is finitely generated over and

(ii) for every there exists U’ c U in Bl1 such that the 
module generated by is finitely generated over 

LEMMA 2.4. In the preceding definition, (ii) is equivalent to each of
the following two statements.

(ii)’ for every there exist an Ou homomorphism Ru
and U’ c U in Bl1 such that Im Im g, .

(ii)" for every there exist U in Bl1 and an Ou;homomor.
phism g, : 0~2013~JR~ such that Im uc. Im cpu’.

PROOF. It is clear that (ii) is equivalent to (ii)’. It is clear that (ii)’
implies (ii)". We are going to prove that (ii)" implies (ii).

Take U E ’tl1. By (ii)" there exists U’ c. U in lll and an OU’-homomor-
phism such that Consider the subset

of 0~. By Lemma 2.3 there exists in Ul such

that the OU"-submodule of generated by (A) is finitely generated
ove Hence the OU"-submodule of generated by is

finitely generated over 

Since Im 

f/Ju" (ext" v’ (A)) = = (lu" u’ (Im = Im (lu" u’. Hence the 

submodule generated by is finitely generated over q. e. d.

PROPOSITION 2.1. Suppose R’ij1 = is a direct-finite OU-system.
Then for every U E Bl1 there exists U’ c. U ill Bl1 such that Ker e Ker ~.

PROOF. Fix U E Ul. There exist U in Ul and an OU1-homomorphism
such that Im 

There exists an Õx-homomorphism 1Jl.: such that 1m 1Jl* _
= Ker CfJ*- There exists U2 e U1 in Bl1 such that 1Jl* is induced by some

OU2-homomorphism 1Jlu2: and 

By Lemma 2.2 there exists U’ e U2 in Bl1 such 

We are going to prove that Ker 
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Snppose $ E Ker Then there exists such 

=. 
u I&#x3E;. (1]) = gv 1) = 0. Hence r) E 

at-, U1 (1]) = (0 for some 0~. Since CPus ’fJJu2 = 0, 1/Ju’ = 0.

LEMMA 2.5. Suppose .8’U! = and are

OU-systems. Suppose for every U’ c. U in %l, SD is an OU-submodule of
R~ and the restriction of eu’ u to Bu. If R’U1 is direct-finite, then

B’UI is direct-finite.

PROOF. Since B. is an Ox-submodule of R., B* is finitely generated
over Oa;.

Fix There exist U1 in Ut and an OU1 - homomorphism
such that Im cpul. There exists an Oarholomor-

phism such that Im For some U2 in Ut,
1Jl. is induced by some OU2-homomorphism such that Im

By Lemma 2.2 there exist U’ c U such that (Im 
We are going to prove that Im 

::) 1m °u’u.
Take E _ for some n E (17) = eUI CfJul (q) =

_ = o~(I) E S~ . Hence E = 1m 1/’.. cxt’u1 (17) E (Im
(o~)-i (Im tp.) c Im 1/lu’. For = 1Jlu’ (Q). (~) =

_ (r) = _ Hence Im c Im vu, .
Since Im l/Ju’ Since U is arbitrary, by

Lemma 2.4, B’U1 is direct-finite. q. e. d.

PROPOSITION 2.2 Suppose ~RU ~~,~~~ R’U1 = and Rin =
_ are Suppose for everyU’ c U in U1, the diagram
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is commutativ eand has exact rows, where and yu are OU-homomorphisms
and ggu, and 1jJu’ are OU’.homomorphisms. If both R’ and Rïa are direct-

finite, then R’U1 is direct-finite.

PROOF. By using Lemma 2.5 and by replacing B" by Im we can

assume that tpu is surjective.
Since R~ --~ R~ -~ R~’ -+ 0 is exact, R~ is finitely generated over 
Fix There exist U1 c: U in Bl1 and an OU1-homomorpbism

such that 1m eUl u c Im Since "pul’is surjective, there
exists an Ou;homomorphism Õt-1--+ R~1 1 such that flu,

There exist c U1 in Bl1 and an OU’-homomorphism au,: 
such that Im c Im au’. Let Bu, be the OU’-homomorphism
defined by : b) = (a) + "U’(b) for a and b E C~~~ . We are
going to prove that Im 

Then for some i

PROPOSITION 2.3. Suppose R"Q1 = is a direct. finite a"Q1.system.
Then there exist and an Où homomorphism satisfyng

the following. For any U c U in Ul there exists U’ c U in ’tl1 such that

1m Qu,u c 1m 

PROOF. Since is finitely generated, there exist fJ e t11 and an
OU-homomorphism : such that CP.: 0: is surjective.

Fix in Ul. There exist in tt1 and an Ou;homomorphism
such that Im Since CfJ. is surjective, there

exists an aø-homomorphism fJ.: O£ such that _ 1Jl*. For some

U’c U in is induced by an Ov;bomomorphism such

that Since Im Im 

q.e.d.

§ 3. Reduction of the Problem.

In this section we reduce the proof of the coherence of direct images
to the verification of a certain property which we call Hl-finiteness.
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Suppose X is a complex space and F is a coherent analytic sheaf on
X. Suppose ~: is a holomorphic map, where the n-dimensional unit

polydise K is given the reduced complex structure. For g E R+ let X(g) _
~~ (~))·

For t° E K, m (t°) denotes the maximum ideal-sheaf on K for the sub-

variety (t°). The holomorphic functions ti on X obtained by lifting the
coordinate -functions ti on .g are also denoted by ti for the sake of notatio-
nal simplicity.

DEFINITION. For t° E .K and l E is said to be 

with respect to n if the ,,OU-system (Hl (U), u’, U E is direct-

finite, where is the directed set of all open neighborhoods of t° in K
and, for U’ c U, rulu: g (n-l ( U), lF) -+ g (n-l ( U’), :1) is the restriction
maps is said to be ,V4finite with respect to a if 9 is Hl-finite at every
point of K with respect to 

LEMMA 3.1. Suppose 0 2013~ ~ -~ g" --~ 0 is an exact sequence of co-

herent analytic sheaves on X. If g’ and g" are H i-finite at a point t° of
.g with respect to n, then 9 is Hl-finite at t° with respect to 

PROOF. For every open neighborhood U of t° in K, the sequence

( U )~ ~’) (U), ~) - H ( U), (j") is exact. The Lemma

follows from Proposition 2.2. q. e. d.

LEMMA 3.2. Suppose j~ tO and dEN*.
Suppose the following three conditions are satisfied.

(i) is not a zero-divisor for (tn - 97 x for x E .

(ii) tn is not a zero-divisor for tn 
(iii) We have Ker B c Ker a in

For every v E N~ let = (tn 7 and 7v = 7/7(v) .
Then, for every ’J1 E N., y we have Im y c in

where 99 is induced by the quotient map 9 -+ 9y and 1p is induced by the
inclusion map X c,~ X (eo) and the quotient map :f,,+2d - ·
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PROOF. Fix v E N.. From the following commutative diagram with
exact rows :

we obtain the following commutative diagram with exact rows :

We need only prove that ba = 0. Consider the following commutative
diagram :

where p and g are defined by multiplication by is defined

by multiplication by (tn - t~°,)d, and r is defined by multiplication by (tn - 

Because of (i), p is a sheaf-isomorphism on X (QO).
Applying Hl+l (X (ei), .) to the diagram (3.1), we obtain a diagram

with maps denoted by ri, via, and wi (i = 0, 1).
Applying (.)o to the diagram (3.1), we obtain a diagram with maps

denoted by p’, q’, r’, s’, u’, v’, and w’.
We first prove the following :

When 0, s is a sheaf isomorphism on for some open nei-

ghborhood U of 0 in K. Hence s’ is an isomorphism. Ker s’ = 0 c Ker q’.
When tn = 0, (3.2) follows from (ii).

Consider

where o and T are natural maps.

9. Antiali della Scuola Norm. Sup, . PiBa.
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To prove ba = 0, take ~ E Im a. Then c (~) = 0.

LEMMA 3.3. (a) Suppose B is a Noetherian ring and M is a finitely
generated R module. If f E R, then there exists v E N~ such that f is not a
zero-divisor for f yM.

(b) Suppose q is a coherent analytic sheaf on a complex space Y
and Q is a relatively compact open subset of Y. If g is a holomorphic
function on Y, then there exists v E N~ such that g is not a zero-divisor

for x E Q. 

PROOF. (a) For v E N~ let Ny be the kernel of the B-homomorphism
M -+ M defined by multiplication by f v. (Nv) is a non-decreasing sequence
of R submodules of M. Since M is finitely generated over a Noetherian

ring, Ny = for some v E N~ . It is easily checked that this v satisfies
the requirement.

(b) For v E N. let 9C be the kernel of the sheaf-homomorphis 
defined by multiplication by gv. (9(yj is a non decreasing sequence of co-
herent analytic subsheaves of ~. Since Q is relatively compact, there exists
v E N~ such that c)Cv = 9C+i . It is easily checked that this v satisfies the

requirement. q. e. d.

Observe that, in Lemma 3.3, for p ~’" f is not a zero-divisor for

f ~ M and g is not a zero-divisor for for x E Q.
The proof of the following Lemma is a trivial modification of the proof

of Satz 5, [2].

LEMMA 3.4. Suppose 0 : Y -+ Z is a holomorphic map of complex spa-
ces, g is a coherent analytic sheaf on Y, and Z is Stein. Suppose I E N.
and Ok (rJ) is coherent for 0 ~ k  l. Then the natural homomorphism
Hl (Y, ~) 2013~ (~)) is an isomorphism.

PROOF. The case I = 0 is trivially true. We can therefore assume

that 1 &#x3E; 0.

Let 0 cS tpo % cS2 ... be a flabby sheaf resolution for G.Let 0 -+ rJ -+ cSt C52 -+ be a flabby sheaf resolution for ’d.

By taking the zeroth direct image under a, we obtain the followind sequence
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which in general is not exact:

Since ao (cSk) is flabby for 0, Hp (Z, 00 (cSk)) = 0 for p -_&#x3E; 1 and

Since Z is Stein and Ok (g) is coherent for 

By considering the following two exact sequences

. 

and by using induction on lc, we obtain Hp (Z, Ker 9’k) = HP (Z, Im 9’k) = 0

Hi (Z, Ker q~i_1) = 0 implies that -~ r (Z, Im 9’l-Ü 2013~ 0
is exact. Hi (Z, Im = 0 implies that 1~ (Z, Im 9’l-1) A Ker 9’0 ~
- r (Z, ui (~)) - 0 is exact. Hence 1’ (Z, 01 (~)) =1’ (Z, Ker ~x.
Since HZ i (Y~ ~) N Ker (T(Y, - r ( Y, (T (Y, 
the Lemma follows from r (Z, Ker 9’l) ~ Ker (T (Z, °0 ---~ 1’ (Z, °0 
~ Ker (r ( Y, - r ( Y, cSi+1)) and Im (r (Z, - ~’ (Z, o° 
~ Im (r (Y, - r (Y, cSi))· q. e. d.

PROPOSITION 3.2. Suppose l E N. and the following three conditions
are satisfied.

(i) For every to E K and v 6 N~ nk 7) is coherent for

(ii) CJ is Hl.finite and Hl+1-finite with respect to 1f.

(iii) For every t0 E K and every relatively compact open subset U
of K there exists v E N* such that tn - tn is not a zero divisor for (tn - CJx
for x E w1 ( ~ ).

Then ni (CJ) is coherent on K.

PROOF. Fix y E K. We need only prove the coherence of 1lz ( ~ ) at y.

Without loss of generality we can assume that y = 0.
By applying Propositions 2.1 and 2.3 to the direct-finite nOU-systems

~+1? where Bl1 is the directed set

of all open neighborhoods of 0 in K and are restriction maps, we can

find e2  gi  g°  (1, ... 1) such that the following two conditions hold.

(a) We have in 
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(b) There exist ~1’ ." ~ ~k E H I (X (OO), such that we have 1m fi c
c r (-g (e2), nO) #L-4 (~~) in

Fix arbitrarily By Proposition 1.1, to prove the coherence
of at 0, we need only prove the following two statements.

(3.3) The images of ~1 , ... ~k in oT, (9)) generate a, 

By (ii), (~)~o is finitely generated over By Lemma 3.3 (a)
and by (iii), there exists d E N~ such that tn is not a zero divisor for t£ 
and tn - tn is not a zero-divisor for (tn 2013 ~ 9~ for x E ~ 

For v E N~ define (tn - and 9~ = 9/y~).

I. By Lemma 3.2 we have in 

where q is induced by the quotient 
and 1p is induced by the quotient map 9~~i 2013~~-{-i and the inclusion map

Consider where a and b are indu-

ced by the quotient We are going to prove

where Im a denotes the Oto-submodule of ni generated by Im a.
Consider the following commutative diagram.
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where c and f are natural maps, g is induced by the quotient map 7-+ 73d+1 ,
and h is induced by the quotient map --1- gd+l -

By (i) and Lemma 3.4, (eO), 93d+l) ~~ r (K (eO), Since

is coherent, by Cartan’s theorem A, Im c 

over Im b = Im hg c Im h = h Im c) = Im ho = c

c = noto Im a. (3.5) is proved.
Consider the following commutative diagram :

where r is induced by 9~ c~ 9~ ~ is induced by g(d+l) and q
are defined by multiplication y is the natural map, and 0 is

induced by the quotient map CJd+1 . ·
Since tn - tno is not a zero divisor for (tn - CJx for x E .~ (,gO), the

sheaf-homomorphism ~ on X (eO), defined by multiplication by
tn - tn 0 7 is a sheaf-isomorphism. Hence p is an isomorphism.

From the exact sequence 0 - - iF- ~ 0, we conclude

that Im s = Ker b.

Let T = y (~i). (3.3) will follow if we can prove T = ni 

Since Im b c not° b y (11&#x3E;,

By Nakayama’s lemma, (3.3) is proved.
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II. Fix arbitrarily v E N~ . Consider the following commutative diagram:

where o is induced by c_ c:f, w is induced by c:~ CJ, , u and v
are induced by multiplication by (tn - t’)v, x, 8 and X are induced by
quotient maps, and Â and p are natural maps.

Since is not a zero-divisor for (tn - for x E the

sheaf-homomorphism ~~d~ --~ on X (QO) defined by multiplication by
- to)v is a sheaf-isomorpbism. Hence u is an isomorphism.
From the exact sequence 0 - ~’--~ :fv+d -+ 0 we conclude

that Im g = Ker 7:.

To prove (3.4), take ~ such that 1($) E (m (tO)v n 
Then us (~) E (m Jl’1 (‘~y+3a ))to.

By (i) and Lemma 3.4, the natural map q : H :f,,+3d) -~ 
~~ is an isomorphism.

Since al ( ,l’y+3d) is coherent on .g and ns (~) E r (K (~o°), ni ( ~v+3d)) and
qe (~)to = po (~) E (m (t°)y ;91 by Part I of the proof of Proposition 1.1
we conclude that qs (~) E I" (K (eo), m (t°)v) r (K (eo), ;71 (~~y+3d))· Hence

Xs (~) E 1-’ (K (e1), m (tO)v) Im X, where 1’ (K (e1), m (tO)v) Im X denotes

+ ... + Aj Bj E r (tO)"), Bi E Im X). By Lemme 3.2, we have
Im xc 1m T. Hence X8 (~) E T (g (oi), m (tO)v) Im r.

va (E) E 1’(K (ei), 11t (tO)v) 1m 1’. a (~) E 1-’ (.g III (tOr) H (X (~O1)~ J) + Ker 1’.
Since Ker r = Im a = Im 1m v = (tn - to), H (K (el),
m (t°)v) H I (X 9), we have a (~) E r (K (01), m (tOy) Hi (1-01), 

Since r(ir~), ~0) Na (~), we have (E) E (F (K (e2), m(tO),,).
.Im fl c T (e2), m (tO)v) fla (Ei). (3.4) is proved. q. e. d,
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§ 4 Further Iteduction of the Problem.

In this section we carry out another reduction for the proof of the
Main Theorem. We show that, to prove the Main Theorem, we can replace
X where c~  c  c# .

A. Suppose 9 is a coherent analytic sheaf on a complex space X and
is a holomorphic map, where o° E R~.. Suppose Xl C X2 are

open subsets of X and the restriction of a to X2 is proper. Let 11,’ : Xi -+ K
be the restriction of n to i =1, 2. Suppose denotes the

Lt~ direct image of under Të.

PROPOSITION 4.1. Suppose is finitetely generated over and

the map is injective for every r E N;~. Then

injective.

PROOF. By Lemma 3.3 (b), after shrinking eO we can find dEN. such
that tn is not a zero-divisor for td’ 7z for x E 

Let ~r 7, r E N. For r ? s in N, consider the following commu-
tative diagram :

where 0, ~r , ~8 are induced by restriction maps and 9 Try are

induced by quotient maps. Take arbitrarily r ~ d. Since Or is injective,
Ker 4Yr 6r = Ker cT,.. Consider the following commutative diagram with exact
rows :

where the second row comes from the exact sequence 

-+ 9, - 0, a comes from the sheaf-homomorphism a: tn 7-+ t’ 7 defined
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by multiplication b comes from tnd y and c is defined by
multiplication by 

Since tn is not a zero divisor for for x E is a sheaf-isomor-

phism on X2. a is therefore an isomorphism. Ker 

Ker (Pc = Ker lPr Or = n/ j£F), Since r is arbitrary, y
Since is infinitely generated over 

q. e, d

B. LEMMA 4.1. Suppose is a topological space, and yis a
sheaf of abelian groups on X. Suppose non-decreasing sequence
of open subsets of X whose union is JL

(a) If HZ (Bk+i , ~) --~ HZ (Bk , y) is surjective for k E N~ , then

HZ (X, y) - HZ (Bo , y) is surjective.
(b) If HZ SF) --~ gi (Bk , is injective and gi-1 

--~. HZ-1 ( Bk , 7) is surjective for k E N~ , then ~z --~ Hi (Bo , ~ ) is inj-
ective.

PROOF. When l = 0, both (a) and (b) are trivially true. Therefore we

can assume that l &#x3E; 0. Let 0 c50 lb ... be a flabby sheaf
resolution of ~’ on X. Let Elk = I(er ÇJk for k E N~ .

(a) Take ~~~(~~7). ~ is represented by some 
We are going to construct, by induction on k E N~ , 

such that on Bk . We already have Suppose we have k for
some lc E N~ . Since 7) --~ HZ (Bk , iF) is surjective, there exist

E such that ~k+1= ~k - qJZ-l (q) on Bv .
Since c5Z-1 is flabby, n can be extended to Set 
_ ~k-~-1 ~ CPZ-l (~’). The induction is complete. Define $ E 
Let 1 E Hl (X, iF) be induced by ~. Then [is mapped to 8* under HZ (X, ~) 2013~

Xb) is mapped to zero in is

represented by some E r (X, 
Since is injective, ~* is mapped to zero in

as is seen by induction on on Bk for some

We are going to construct, by induction on k E N~ , 
such that ~ = (’fJk) on Bk and on Bk . Set ’fJo = ~ . Suppose
we have qk for some k E = 0 on Bk . 
--~ .g~-1 (B~ , ~ ) is surjective. When l =1, on Bk for some

E and we need only set C. When l &#x3E; 1; 
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- yjk = ~ -[- g~i_2 (a) on Bk for and a E F (Bk , cSZ-2).
Since cSl-2 is flabby, a can be extended to some a’ E C51-2)- rlk+1=

CPl-2 (a’) satisfies the requirement. The induction is complete.
Define 17 E I’ (X, by q Bk = Then = on X. ~~ = 0 in

q. e. d.

LEMMA 4.2. Suppose X is a complex space and cp is a C°° map from
X to where c~ E (- R, such c) is compact for c E(c~ , oo).
Suppose c# E oo) and F is a coherent analytic sheaf on X such that
codh on 199  c#]. For c E [c~ , let &#x3E; c). If c’  c  c#
and  r - q, then H’ is bijective.

""

PROOF. Fix e*  c  c# . We need only show that H 1 (Xl (Xc, 
""

for  r - q. For, if c’  c, then Hl (X,, 7) Hl follows
"" ""

from and 
""

Let I’ be the set of such that for
N

0 £ 1  r - q. Let c = inf T. We claim that c E 1’. Let be a sequence

in I strictly decreasing to c and c0 = c. Since both Hl and
""

H (XCk , y) are isomorphic to .g’ F) for 0  l  r - q, gi g) 
N z

£F) for 0 ’--- 1r-q. By Lemma 4.1, F)
for 0 Z I  r - q. Hence ii E 1’.

To finish the proof, we need only show c~ . Suppose the

contrary. Then c,  c. By Proposition 17 on p. 239 of [1], there exists

et E (c~ , c) such that HI (XCt ’ ~ ) ~ H ~ ) for 0 ~ l  r - q. Hence

Cf 6 T, contradicting c = inf F. q. e. d.

REMARK. Lemma 4 2 and its proof are implicitly contained in [1].

C. Suppose (R, m) is a local ring and M is an R module. A sequence
of elements ai ... , ak of 1n is called an M-sequence if ai is not a zero-divisor

for for 1 ~ i £ lc.

LEMMA 4.3. Suppose 7:1 , .,. , zk E m form an M-sequence. If d , ... , dk E N
then zfk form an M-sequence.

PROOF. Prove by induction on k.

(i) lc =1. Since z1 is not a zero-divisor for M, zfi is not a zero-divisor
for M as seen by induction on ~ .
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(ii) For the general case, assume lc &#x3E; 1. It is well-known that any

rearrangement of an M-sequence is still an M-sequence. Since I Tk

form an JI-sequence, z2 , ... , ~k form an (MITt M).sequence. By induction

hypothesis, T 22 1 zfk form an (M/r, 1 2 ... , T:k form an
M-sequence. 1’1 is not a zero divisor for M/I/:=2 T di M. Hence rdIis not a
zero divisor for l~. form an M-sequence. q. e. d.

LEMMA 4.4. Suppose zl , ... , E m. Let N = 

(a) If d1 , ... , dk , d E N, then there exists a natural R-homomorphism

(b) If in addition ri , . - - , Tk , T form an M-sequence, then oc is an

isomorphism.

PROOF. (a) The second Dedekind-Noether isomorphism theorem for

modules implies that there is a natural R-isomorphism

M - 1’d-l M) n (1d M + M) be the composite of

the quotient homomorphism 7:d-l M- (7:d M + M)
and the homonorphism M defined by multiplication by zdw. Clearly
1’M + 7:1’ M c Ker q . Hence n induces : + M) -

M/(1’d-l M) n + M).
be the quotient homomor-

phism. It is clear that Ker y N. Hence y induces an isomor-

M/(1’M + M).
(X = # i$l$ is the homomorphism we look for.

(b) Now assume in addition that 1’1, ... , 1’k, form an M-sequence. To

show that (X is an isomorphism, we need only show that 

+ k Ili 
Take f E Ker n. 1’d-l I = 1’d 9 + 1’fi hi for some g, =

_ Since 1’d-l is not a zero-divisor for 1’t, M according to
Lemma 4.3, f - zg = 7:1i hi for some h; E M. Hence f E r~f + M.

q. e. d.

D. Suppose and yr: is a q-concave holomorphic map
with exhaustion function q; and concavity bounds Suppose CJ is a



303

coherent analytic sheaf on X such that codh r on 199  col and tl -
- t° , ... , tn form an 9,,-sequence for t° E and x E (t°) n  o#t.

For c E [c* , oo) let Xc = j(p &#x3E; et and nC = n For c E oo) and

l E N we denote the lth direct image under 

We introduce the following statement and shall prove that it implies
the Main Theorem.

Note that, when X = ~~ ? c##, (4.1)~ implies Grauert’s direct image theorem.

PROPOSITION 4.2. (4.1),, &#x3E; Main Theorem-

PROOF.

I. We are going to prove (4.2)k for k ? 0 by induction on k

Note that, for every fixed k, (4.2)k makes sense only when k ~ n. We shall

restrict onrselves to this situation.

Fix When the ith coordinate of t° is non-zero for some

n - k -~-1 ~ tti 9 = 0 on n-l ( U) for some open neighbo-
rhood U of t° in .g (o°). Hence we can assume without loss of generality
that t° = 0. Fix c E (c* c#).

When k = 0, tli 9 and (4.2)k follows from (4.1)n .
For the general case, assume 0  k ~ ~z and further assume that (4.2)~_1

is true (for all n ~:-, k - 1). We are going to prove (4.2)k by induction on

When d~, = 1, t~~ codh q r - 1 on

(g ,O#J.
When X is replaced by X n (tn = 0) and F is replaced (tn = OJ,

(4.2)k_1 implies that nf g)o is finitely generated over for

0 £ 1  r - q - 2n + k. (4.2)k_1 is therefore proved for d,,:= 1.
Suppose dn &#x3E; 1. For v E N let = The exact

sequence 0 - --+ rise to the

exact sequence n§ (% (dn))o for To complete
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the induction on dn, we need only show that ne is finitely
generated over ~Oo for 0 ~ l  r - q - 2n + k.

By Lemma 4.3 we a sheaf-homomorphism IX 

and a is a sheaf-isomorphism on (gJ  Supp Ker a c
c ~~ &#x3E;-_ o#) and Supp Coker a C {~9 ~ c,) . The restriction of n to Supp Ker Lx
and Supp Coker oc are proper. Since (4.1)n implies Grauert’s direct image
theorem, and nc (Coker a)o are finitely generated over for

I E N .
Since g)o is finitely generated over ~Oo for 0 ~ l 

 r - q - 2n + k, from the following two exact sequences

we conclude that is finitely generated over nÕo for 0 ~
% I  r - q - 2n + lc. The induction is complete and (4.2)k is proved.

II. We are going to prove (4,3)k for by induction on k.

Fix t°E.g(O°), dk,...,dnEN, and 0 £ 1  r - q -
- 2n q- k. Without loss of generality we can assume that t° = 0.

When k = 1, by Lemma 4.3, form an Fx-sequence for x E

E n-1 (0) n (~  c# ). On {9?  c#) we have codh ~ ) ? r - n. Since

Supp tli J) c n-l (0), (4.3)1 follows from applying Lemma 4.2 to the
coherent analytic sheaf w1 (0).

For the general case, assume + 1. (4.3)k follows from (4.3)k-1,
(4.2)n_k+1, and Proposition 4.1. The induction on k is complete and (4.3)k
is proved.

III. We are going to prove the following:
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Fix g’  eO in R~ ? ~  ~  ~ , and 0 ~ ~  ~ 2013 ~ 2013 2n. Take arbi-

trarily (4.1),, implies that there exists ~;(/()~c such that
is surjective and hence is also bijective because of

(4.3).+,.
Since ac’(t) (9) and are both coherent on for some open

neighborhood D (t) of t in we have on D (t). (4.3),,+,

implies that all" (y)-~~(7) on D (t) for o’ (t) ~ c.

= u k 1 D (ti) for some Let c’ = max [c’ (ti),..., 
Then o’  c and on 

IV. We are going to prove the following :

If 1r-q- 2n then j 
If ° Z I  r - q - 2n and c*  c  c#, then ni (£F) - (4.5) is bijective on 

Fix c*  c  c# . Take arbitrarily ei  QO in Let r be the set of
all c’ E [c~ , c] such that ~ (7)2013~ (9) is bijective on for 0 s l 

 r 2013 ~ - 2n. To prove (4.5), we need only show that c, E r.

F + 0, because c E r. First, we show that c E r. Let
be a sequence in r stringly decreasing to c and co = c.

Take an arbitrary Stein open subset For let

on for 

- q - 2n, we have F (U, (7)) -L* F (U, 7"v (£F )) for 0 1 1  r - 2n.
I

By Lemma 3.4, By

Lemma4.1,~~(F(~y)~~~(~(c~y). By letting U run through a

neighborhood basis of any point to of and taking direct limits, we

ha ve .n (7)to for 0 :!!~~ I  r 2013 ~ - 2n.

Hence nf (7) on for 0 ’--- I  r - 2n. E r.
(4.4) implies that $’ must be c. , y otherwise c-= inf F is contradicted.

The proposition follows from (4.5). q. e. d.

§ 5. Bounded Sheaf Cocycles ou Domains of Number Spaces.

In this section we consider complex spaces of the form X G,
where eO E R’ and G is an open subset of CN. After introducing necessary
notations and defining norms for sheaf cochains, we will introduce Cartan’s
Theorem B with bounds for these spesial complex spaces and consider the

change in norms when a sheaf section is divided by powers of tn.



306

If is a finite collection of open subsets of CN, we denote

by K (e) x U.
If f E 1’ (K (e), then If 1, denotes sup ( ... , v~ E N~), where

is the Taylor series expansion.

If for some open subset G of CN, I then If 1,9
denotes 

r(.~(o) X G, then denotes sup ( IG I )11".’ 

t1 yl the Taylor series expansion of f in" B 
If g E Cr (K (oy then I g denotes

Suppose J is a coherent analytic sheaf on K (eO) X ii, where LoO E It+
and G is an open subset of CN. Suppose .H is a relatively compact open
subset of a Stein open subset G’ of ii and ~O  eO in R+. We are going to
define a norm ~ f I H, e for f E r (K (e) X H, ~).

By shrinking 120 and G’, we can assume that we have a sheaf-epimor-
pb is m 99 : -+ on K X G’. For f E r (.K X define

Suppose is another sheaf-epimorphism on G’ .
Then we have a sheaf-homomorphism on 

such By Lemma 1 (a) of[7], for 
~ C ~ where C is a constant independent of e when for a

fixed Hence, for . Likewise,
~ f ~$, ~ for some constant 0’ independent of e The

two and are therefore equivalent. For the sake of nota-
tional simplicity, in what follows, whenever such a norm arises, we assume
that we arbitrarily fix a sheaf-epimorphism and denote the norm by 
Whenever possible, we choose always the obviously most convenient sheaf-
epimorphism.

we can choose cp to be the identity sheaf-homomor-
phism and the norm agrees with the one defined earlier. Whrn 
we have two norms for one is defined by a sheaf

and another is induced from the norm on
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To distinguish the two, we denote the second one

by 
Suppose t!1 = ( Ui ji, i i is a finite collection of open subsets of CN and

every Ui is a relatively compact subset of a Stein open subset ~7, of ~6.
If 7), then we de fine e.

When the norm can be chosen to agree with the one

defined earlier. If then we define

In [7], denoted by and denoted 

DEFINITION. An n-tuple is called an echelon function of
order n if

to R~+ .
o(n) denotes the set of all echelon functions of order n. If w E 5~~~~~~

then w1, .,. denote the components of w.
Suppose w E o(n) We say that o  w if (21  col and

(1i  w~ ((11 , ... , oz-1) for 1  I  n. Note that, e’  (1 and e  w do not

imply (2’  w. We say that w  (2 if w1  ~O1 and for 1  i ~ n we have

We order Q(n) by the following ordering. For w, w’ E 7 w’ if

anp only if

We identify every o E R+ with an element w of as follows : (i)
wi == Loll and (ii) ... , I) - when 1  i ~ n, (~O~’, ... R,-1 and
(e1 , ... , ei-l)  (L91 Y ... 
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After the identification of R+ as a subset of ~~~~ , in R+ the relation

« » has three meanings and the relation « ~ » has two meanings. Ho-
wever the three meanings of   » are identical and the two meanings of
«  » are also identical. Note that, for two general w, w’ E Q(n), we do not
define w  m’.

A. The following three Propositions are proved as Propositions 2, 4,
and 5 of [7]. Even though the last statement in each Proposition is not

explicitly stated there, it is easily seen to be a consequence of the proofs
in [7].

Suppose e° E R~ ~ is a Stein open subset of C~, and 9 is a coherent
analytic sheaf on K (QO) x G. Suppose 99: is a sheaf-homo-

morphism X C.

PROPOSITION 5.1. Suppose are open subset of G and H2 is

Stein. Then there exists w E Q(n) satisfyng the following. If o  w and

f E x .ff2 , Im with oo, then for some X

on K(e)XH1 and I g 0, e, where 0, is a
constant depending only on e. Moreover if tn is not a zero-divisor for

-

(Coker cp)x for x E K (QO) X G, then 0, can be chosen to be independent of 

PROPOSITION 5.2. Suppose G1 cc G2 are open supsets of G such

that G2 cc G and G2 is Stein. Suppose BL1i is a finite Stein open covering
of = 1,2) such that BL11« BL12. Then for t ? 1 there exists w E Q(n)

satisfying the following. If e  w and f E Zt (K (e) x BL12 , £F) with f ~~ 2, ~ 
e  OC) I then for some g E Cl-I (K (e) x BL11 , bg = f on K (e) X and

I g lB11t, e  C, e, where C, is a constant depending only on e. Moreover,
if tn is not a zero-divisor for 9a; for x E x G, then C, can be chosen
to be independent of en .

PROPOSITION 5.3. Suppose G1 cc G2 are relatively compact Stein open
subsets of G and Uz is a finite Stein open covering of a2. Then there
exists w E satisfyng the following.  co and f E F (K X G2 , 1

- -

such that  e  oo, where f E Z° (.g (e) X 9) is induced by f,
then ( f ~ ~1, ~  Ce is a constant depending only on o. Moreover, if tn is not
a zero-divisor for Yz for G, then CQ can be chosen to be in-

dependent of on .
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REMARK. It can be proved that, in Propositions 5.3, even if we do

not assume that t. is not a zero-divisor for %for C~ can
still be chosen to be independent This more general statement is
not needed in this paper. However, in Proposition 5.1, for Cp to be inde-
pendent of en it is essential that t. is not a zero-divisor for (Coker for

G. This can easily be seen by taking the special case where

99 is defined by multiplication by tn and 
Qn

B. PROPOSITION 5.4. Suppose Gi cc G2 cc (j are Stein open subsets

of CN. Suppose is a sheaf-homomorphism of coherent

analytic sheaves on ~6. Then there exist satisfylng the fol-

lowing. If e  co and g E X Im cp) with I g 1 0,, L,,  e  oo, then

for some f E X ~ , ~ ~ (f) and e, where C~ is a

constant depending only on e.

PROOF. By shrinking 20 and G, we can assume that we have the fol-

lowing commutative diagram of sheaf-homomorphisms with exact rows :

such that 1m 1jl = fl-1 (Im q)).
Take co E 0 (n) and we shall impose conditions on w later. Take e 

 w and x G2 , Im g~) with 19 1 G,,,  e. Then for some 

X G2 (g’) = g and g’ ~a, e  e.
X G2 Im y). By Proposition 5.3, if m £ roi for a suitable col E 

(and we assume this to be the case), then for X 

1jl ( f’) = g’ and  C, e, where C, is a constant depending only on o.
Let f = a ( f’). Then X G1, ~ ). ~ ( f ) = g and 

q. e. d.

C. PROPOSITION 5.5. Suppose G is an open neighborhood of 0 in CN

and E R+ . Suppose 9k is a coherent analytic subsheaf of on

.~’ (e°) x G such that tn is not a zero divisor for for xE K (LOO) X G.
Then there exist a Stein open neighborhood 4 of 0 in G and ro such

10. Annati della Scuola Norm. Sup.. Pisa.
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that, for some 

then for some and 

and I g 3e and 2e.

PROOF. By shrinking e0 and G we can assume that em is the image
of a sheaf-homomorphism cp: on X G. We can also

assume that cp is defined on some open neighborhood of G)-.
Let qJ be represented by the q X p matrix q;" and let cp. = Ii be

the Taylor series expansion. be the sheaf-hom-

omorphism defined by CP:.
By Proposition 1 of [7] we can find co E D(n-1) and a Stein open neighbor-
hood zj of 0 in G such that, if e E lll$ and o  c~ and f’ E (ë) 

’with (Im 1Jl)x for x E 0 and I f’ I a, ~ = e  00, then for some

’ where 

constant depending only on e. 

Take ei  eO in R+ . By Lemma 1 (b) of [7] there exists C~2&#x3E; E R+ sati.
sfying the following. 

B!

and such that and+ ) + f 
the Taylor series expansion of g’ in tn has no power higher than 

then 

Choose W E Q(n) such that the following conditions hold : (i) 
(ii) Wi (e1 , ... , ei-1) = Wi (et , ... , ei-l) for  n, and (iii) wn (e) Z (1 +
fl- 2 C ~~~ Ctl~ )~l for e E R+1. We claim that 4 and 60 so obtained sati-

sfy the requirement. To verify the claim, we are going to prove (5.1)~ for

by induction on l.

If e  wand f E X such that =

= e  oo, then there exist E X d, and E

E r g X d C7q such that f - 

tn l 

(5.1) E r (K (e) X 4 such (9 ) + ° 

and the Taylor series expansion of gl in

tn has no power higher than t~ 1 ~ where e = (e1 , ... , 

(5.1)° is trivial, because we can set g°&#x3E; - 0 and ~0)==~ Suppose ~;&#x3E;0
and (5.1)i_~ is true.

Take ew and X with ·

By (5.1)l-1 there exist and satisfying the requirements in (5.1)1_1 ·

Let = I. tn be the Taylor series expansion.
en
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Since tn is not a zero-divisor for for x G,
(ho~-’~ )x E (Im for x E 0 X A. Hence there exists aE (e) X A, 
such that qp (a) = hoj-la 2 e.

Let g(l) = g(l-l) 

o 

+ It. B1-1 . 
i1, 

I g(l) l! e 
2 e and the Taylor se-Let + a . Then e and the Taylor se-

LOn 
’ e

ries expansion of in tn has no power higher than ==

= for some hO E F (K (Lo) X 1 2 = x I MI) (1 + 2en O(2) %

2e. (5.1 ); is proved.
The claim follows because ’ 

- - 

I 

’ The claim follows, 9 because A, Lo ’ f d, e 

+ I h(l) 1’, L, 3e. q. e. d.

-

PROPOStTION 5.6. Suppose c:c: °2 cc G are Stein open subsets of

CN and Suppose 7 is a coherent analytic sheaf on X fj such
that tn is not a zero divisor for 9a? for G. Then there exists

w E satisfying the following. x and tn i G2  e  o0( 2 
! 

for some 9 then where is a constant depending only
and is independent of 1.

PROOF. By shrinking LoO and (? we can assume that we have a sheaf-
epimorphism T: on K (e°) X G. Let = Ker 99. Take a Stein

open subset Q’3 of CN such that (~1 cc p~3 cc G2 -
Take w E and we shall impose conditions on co later. Take ~o  w

and X 7) such that I en tn I f G.,  e  oo for some t E N .! 
For some f’ E r (K (e) x G2 ( f’) = and  e." (en) f I I " e

r (K (e) 9X 
By Proposition 5.5, w1 for a suitable w1 E (and we assume

this to be the case), then we can find Stein open subsets Ai of °2 and
and such that

t i
(i) G 3 C Ut 1 (ii) on X df, 7 (iii) 3e, and

(iv) 2e. Note that ro(1) and Ai are all independent of l.
-

Let (4; n Since 99 (h,) = f on K (e) x 4; , we have  2e,
- 

’

where f E Z° (K(o) X U, 7) is induced by f. By Proposition 5.3, w2
for a suitable w2 E Q(n) (and we assume this to be the case), then f ~ 
 Cp 2el where 0; is a constant depending only on ~o. q. e. d.
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§. 6. Senli-norms for Holomorphic Functions on Unreduced Spaces.

For a reduced complex space, we know that the set of all holomorphic
functions has a natural Fr6chet space structure whose semi-norms are the

sup norms of holomorphic functions on compact subsets. When the space
is not necessarily reduced, the set of holomorphic functions still has a

natural Frécllet space structure, but to obtain the semi-norms we have to
resort to local embeddings of the space into domains in complex number
spaces. In our development later on, these local embeddings give rise to
many complications. To avoid such complications, we seek in this section
to define semi-norms on some unreduced spaces in a manner which sup-

presses the role of local embeddings.

A. Suppose V is a subvariety in an open subset G of CN and p E N~ .
We denote by 9v (p) the sheaf of germs of holomorphic functions on G
whose derivatives of vanish identically on V.

PROPOSITION 6.1. is a coherent ideal-sheaf on G.

PROOF. It is clear that 9v (p) is an ideal-sheaf on G.

To prove the coherence, we use induction on p. The case p = 0 is the

well-known theorem of Cartan-Oka. Suppose the statement is true when p
is replaced by p - 1. By shrinking G, we can assume that 
= on G for some f1, ... , fk E r (G, NO).

Let I be the number of a E N ~ with = p. Define P : on

G as follows. For x E G and

where a runs through all elements of N,~ with I cx I = p.
Let 9y (O)N Ol be the natural sheaf-epimorphism. Let

k
Define 1p: Nok G by 1p ... , ak) ai ( fi )x for x E G

and (al ak) E NO: .
We are going to prove that 9y(p) = tp (Ker ~). This will imply the

coherence of 9y (p).
-

Since 9y(p - 1) = Im 1p, we observe that both 9y(p) and 1p are

subsheaves of 9y(p -1). Suppose g E for some Stein open
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subset II of G. Then g = li ai fi on U for some at,..., ak E r (U, NO). Fix

arbitrarily I ex = p.

Since Dfl f; = 0 on V for ~ p -1, we have Da g Da f~ on

v n U. If follows that g E F (U, 9y (~)) if and only if (a1, ... , ak) E 1’ ( U, Ker ~).
Hence 9v (p) = 1p (Ker ~). q. e. d.

Suppose I7 is an open subset of V For x E U,
-

we can find an open neighborhood D of x in G and NO) such that

induces f D f1 V. For I oc define af (x) = Obviously af (x) is

independent of the choices of D and f. For any open subset E of U, define

Note that, for g E -V(U, we do not in general have liE 
(pll g but we have the following weaker inequality : liE 

because 

PROPOSITION 6.2. The semi-norms on define a

Fr6chet space structure when .~ runs through all relatively compact sub
sets of T~.

PROOF. We use induction on p. The case p = 0 is well-known. Suppose
the statement is true when p is replaced by p - 1.

Let be a Cauchy sequence in The proof will be

complete if we can show that If,,) converges to some element in 
with respect to the seminorms · We need only prove that every point
of V admits an open neighborhood U in F such that ( fv I U) converges to
some element in r ( U, with respect to the seminorms 

where Q runs through all relatively compact subset of U. Hence we can

assume without loss of generality that G is Stein and 9y (p ~-1) _ 
for some 

The maps in the following commutative diagram are all natural sheaf-
homomorphisms :
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By induction hypothesis, (q (j~)) converges to some element f’ E

E r ( V, N 0/gY (.P - 1)) with respect to the semi-norms ·

Since G is Stein, 1p induces a surjection ~:r(C,~0)-~jT(~~0/~(p2013l)).
’;p is obviously continuous when is given the natural Fr6chet

space structure and when is given the Fr6chet space
structure defined by the semi-norms · By the open mapping theorem
for Fr6chet spaces, we can find gv , such that 1p (gy) = r~ ( f y),
~y (g) = f’, and (gy) converges to g.

If we can prove that If, - cp (gy)) converges to some element f E
with respect to pll.IIL, then ( fw) converges to f -~- ~ (g).

Since r (fy - 99 (g,,)) _ ~l 2 (f,,) - V) = 0, by replacing by - ~ (9y))~
we can assume without loss of generality that q ( fv) = 0.

fN = q~ ( fv*) for some I". E r(G, Since t’J ( f~) = 0, we have f y E
for some For I a I = p,

= Zi a"i D" 8i on V, because DfJ 8i = 0 on V for ( ~ p -1.
Let I be the number of a with I a .= p. For k, let Ui ===

= (Da Si I Y ), .,.), where a runs through all elements of N,~ with I a = p.
ui E .r ( ~, (O))z). Let em be the subsheaf of (NO/9y (0))l generated by

Let ~==(..,(.Z~/,~ V), ...), where a runs through all elements of N,~
with Since 

(h,) is a Cauchy sequence in T ( V, 9N) with respect to the topology
of uniform convergence on compact subsets. Since 9X is defined on the

reduced space (V, NO/9y (0)), (h,,) converges to some hEr ( V, with re-

spect to the topology of uniform convergence on compact subsets.
For Since G is Stein, bi is in-

duced by some Then, for 
on V. Let f = (p ( f’~)·

( f~~ converges to f in with respect to the semi norms
· The reason is the following. on

V. For [ V and V are respectively the components
of hy and h. q. e. d.

Now we have a Fr6chet space topology T on defined

by the semi-norms pll.IIL. · The quotient topology induced by 1’(G, NO) --~
--~ ( p)) is the usual Fr6chet space topology T’ on 
T’ i s obviously finer than T, because any sequence in 

which converges with respect to T’ converges with respect to T. By the
open mapping theorem for Fr6chet spaces, the two topologies T and T’ agree.

B. Suppose V is a subvariety of an open subset G of CN and V’ is
a subvariety of an open subset G’ of CN’. Suppose 3 is an ideal-sheaf on
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(~ whose zero-set is V and ~’ is an ideal-sheaf on (~’ whose zero-set

is V’.

Suppose (~° , q~1) : ( V’, N,Oj9/) - ( Y, is a holomorphic map. If

/i~...~/y~~(~~0/~) are induced by the coordinate-functions of CN and

f~’ = ~1 (f.), then we call f1’, ..., fN the coordinates of (~° , y 991).

LEMMA 6.1. (990, is uniquely determined by its coordinates /i,...~/y.

PROOF. Let be the holomorphic function on the reduced space V
which is induced by f;’ . (This notation is consistent with our earlier nota-
tions when 9’ = 9v’ ( p)). The map (°fi , ... , °fN) : V’ - CN agrees with 
Hence 99, is uniquely determined.

Take x’ E F~. Let x := 990 (x*). We want to prove that 

-~ (N-~/~’’)x- is uniquely determined. Without loss of generality we can
assume that x = 0.

Suppose a E (NO/9)x. Then a is induced by some bE 1’(U, No) for some
polydisc neighorhood U of x in G. Let b zv be the Taylor series

expansion., where v - ... , vn) E N~ and Zv = ... zN . a is also induced

Since 

= Zj w j  m bv ... for mEN., I by letting 1n --~ oo, we conclude

that is the germ .Hence ggi is uniquely deter-

mined. q. e. d.

Suppose p E N . We are going to describe holomorphic maps from

(V’, N’ ( P)) to (V, (.~))·
The chain rule for differentiation gives us the following.

LEMMA 6.2. Suppose a E N) - 101. Then there exists a polynomial
non - negative integral coefficient,

where 1 ~ ~ ~ N, ~ runs through all elements of (0) ,

and y runs through all elements of Ni’ - (0) with y % a, such that, if

... , zN), 1 ~ i ~ N, is a holomorphic function on an open neighborhood
of a E CN’ with (g1 (a),..., gN (a)) = b and ,.. , wN) is a holomorphic fun-
ction on an open neighborhood of b, then (Dz h) (a) = P« (J(Dfl f ) (b)~, gi) (a))),
where h (zi , ... , = / (9i (z1, ... , x~,), ... , 9 N (Zi , ... , zN,)).

PROPOSITION 6.3. Suppose v (V’, (p)) --~ (V, (p))
is a holomorphic map with coordinates f i , .., , f N . 
for some open subset D~ of V, then (g)) = P« o (yf; )). Hence, if
U is contained in a relatively compact open subset Q of V, then

(g) II (U) 
‘ 0 (pll g IBu), where 0 is a constant depending only on Q

and is independent of g and
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PROOF. Take x’ E y~o ’ ( ~T ). Let x = ~o (x’). For some open neighborhood
D of x in G, 9 is induced by some For some open neighbor-
hood H of x’ in G’, f~’ ~ ~~ r’ is induced by such

Let h = g~ ( f ’~ , ... , f N). Then h induces ’fIJ1 (g) at x’ . Hence

Since x’ is arbitrary,
Let.

PROPOSITION 6.4. Suppose T~’ -~ ~ is a holomorphic map of re-
duced spaces. Suppose f’i E ( p)), 15.i 5.N, such that (°f i, ... , °fN) :
V’ 2013&#x3E;- C~ agrees with ’lfJ0. Then there exists a unique holomorphic map
(1p°, ( V’, - ( p)) with f i , ... , fN as coordinates.

PROOF. TTniqueness follows from Lemma 6.2.
Take x’ E V’. Let x = 1po (x’). We are going to define 

--~ (N’~/~’p~ ( p))~~. Without loss of generality we can assume that z = 0.
Take a is induced by some for some

polydisc neighborhood D of 0 in G. Let b = Z by z" be the Taylor series

expansion, wher v = ("1’’’. , )IN) E N*N and zv = zil ... 

Since (Vi(~)y...?~y(~))==0~ for some open neighborhood H of x in

C~’, f~’ ~ V’is induced by some such that c D. Since

converges on H, converges on V’.

Define ’1’1 (a) to be the germ x’. To finish the proof
we need only prove that tf1 (a) is independent of the choice of b,

Suppose another b E is chosen. We can obviously assume that

D = D. = Dfl b on .D n V~ for p. Let b = be the Taylor
series are respectively in-

duced by
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where Hence The germs of

b, (f;)vl... at ~ agree. q. e. d.

PROPOSITION 6.5. Suppose V’ is Stein, and 

Then for every holomorphic map (Y’, N’ 0 Sr’) -+ (V, there

exists a holomorphic map (Y’, (P)) -+ (V, NC)19V(P)) such

that the following diagram is commutative

where ---~ N 0/9 and : -+ are the natural

sheaf-homomorphisms.

PROOF. Set E ~(F~~0/~) are the coordi-
nates of Since V’ is Stein, f[ q’ (g~) for some gi E 1~(Y’, 
The map (Ogl, ..., °g~) : Y’ -~ CN agrees with yo, because gi and f! induce
the same holomorphic function on the reduced space V’. By Proposition 6.4
there exists a unique holomorpic map 
with coordinates gi , ... , gN. The commuativity of the diagram follows from

Lemma 6.1, because the holomorphic maps and (idv, 
from ( Y’, N~~/~’) to (V, (~I)~ have both f i, ..., as coordinates. q.e.d.

C. Suppose Y is a subvariety of an open subset (~ of CN and 9 is an
ideal-sheaf on G whose zero-set is V. For x E Y, let n (x) be the maximal
ideal of the local ring (N O/9)x’ Consider the following statement.

for some open subset U of V

and fz E n (z)P+i for z E U, then f = 0.and fx E n (x)P+l for x E U, then f = 0.

The following Lemma is obvious.

6.3. (6.1)p implies 9.
The following Proposition is proved as Theorem 2 of [8].

PROPOSITION 6.6. Suppose 9 is a coherent analytic sheaf on a complex
space (X, 0). For x E X, let M (x) be the maximal ideal of Ox. The for



318

every relatively compact open subset Q of X there exists p = p (Q) E N
such that, for some subset U of Q for

every x E U, then f = 0 on U.

COROLLARY. For every relatively compact open subset Q of G there
exists p E N,~ such that 9v(p)c: 9 on Q.

PROOF. Apply Proposition 6.6 to the coherent aualytic sheaf NO/9 on
( V, and the relatively compact open subset Q n v of V and make
use of Lemma 6.3. q. e. d.

DEFINITION. A non-negative integer p is called the reduction order of

a complex space (X, 0) if p is the smallest non-negative integer such that
the following holds. for some open subset U of X and

fz E for x E U, where m (x) is the maximal ideal of the local ring
Ox, then f = 0 on U. When no such p exists, the reduction order of (X, 0)
is defined to be oo.

From the definition it is clear that a complex space is reduced if

and only if its reduction order is 0.

Proposition 6.6 implies that a complex space which can be realized

as a relatively compact open subset of another complex space has finite

reduction order.

Suppose (X, 0) is a complex space of reduction  oo and

ZT is a relatively compact open subset of Stein open subset of X. Take
of X. We are going to define a norm pllfllu. · This norm
cannot be defined intrinsically. It will depend on some embedding we
choose at random. However, any two different norms obtained this way
will be equivalent.

N

By shrinking if, we can assume that 1i is relatively compact in X.
There exists a biholomorphic map 0 from fl onto a complex subspace V
of an open subset G of CN. (In fact, we can choose G = CN. However,
this is not important. G is not even required to be Stein). Let J be the
ideal sheaf on G defining the complex subspace V. By Lemma 6.3, 9y(p) c 9.
The biholomorphic map ø carries f uniquely to an element f* E (U),

Define pI! f II u to be

Suppose we have another set of ~’, ~’, V’ , G’, 9’, and /~ and
obtain another norm · By replacing both VT and U’ by 
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we can assume that #= U’. We have a biholomorphic map (qJo’ p) :
( V’, - ( Y, such that o 4S’ = W.

Since V’ is Stein, by Proposition 6.5 there exists a holomorphic map
v (V’ , (p)) -+ (V, NO/9v ( p)) such that the following diagram

is commutative :

where tl: (p) -+ Nô/9 and q’ : (p) - are the natural

sheaf-homomorphisms.
is a relatively compact in V, by Proposition 6.3, for

f# E we have . I I Vi (f#) 11 where C is a

constant independent of f#. Since implies ~’ (~1 ( f#)) = f ~ for

we have By reversing the roles
of V and V’, we obtain another C’ independent of f such that 

-_ C’ (p~ ~ f ~ ~ ~~. Hence the two norms and are equivalent.
For notational semplicity, in what follows, whenever such a norm

arises, we assume that we choose a fixed norm from the class of all
those equivalent norms. Whenever possible, we choose always the one which
is obviously the most convenient for the purpose.

If no confusion can arise, we simply write for 

Again, for we do not but we

where C" is a constant depending only on
U and is independent of f and g.

For g = (91 ~ .,. , gq) we 

Suppose 9 is a coherent analytic sheaf on X and We are

going to define a norm for h. By shrinking , we can assume that there
is a sheaf-epimorphism qJ: ôq on U. Define

When no such h’ exists, is defined to be + oo.

Suppose y : Or --~ ~ is another sheaf epimorphism. Since U is Stein,
there exists a sheaf-homomorphism 0: on U such that = 99.

There exists 0, E R+ such that ]] ( a (h’) Ilu -- h’ I I u for h’ E Oq). Hence



320

This together with the result obtained by interchanging the roles of 99
and y shows that the two norms 11 h lib- and 11 h IIIP are equivalent. For the
sake of notational simplicity, in what follows, whenever such a norm arises,
we assume that we choose a fixed norm from the class of all the equivalent
norms and denote it simply if no confusion can arise. Whenever

possible, we choose always the one which is obviously the most convenient.
Suppose B!1 = is a finite collection of open subsets of X and each

Ui is relatively compact in some Stein open subset of X. If ~ E Cr em, 7),
then ] ] $ ] ), denotes .

§ 7. Stein Open Subsets of a Subvariety.

In this section we approximate Stein open subsets of a subvariety
embedded in a Stein domain in a complex number space by Stein open
subsets of the complex number space.

The following Proposition is proved as Satz 3.2 of [6].

PROPOSITION 7.1. Suppose X is a subvariety of an open subset W of
CN and A is a compact subset of TV. If p is a C°° strictly plurisubharmo-
nic function on X, then there exists an open neighborhood C~ of A in W

and C°° strictly plurisubharmonic function 99 on G which agrees with p on

PROPOSITION 7.2. Suppose X is a subvariety of a Stein open subset

C~ of CN. Suppose .L is a Stein open subset) of X and A is a compact
subset of L. Then there exists a Stein open subset H of G such that

A 
°

PROOF. Since .L is Stein, there exist holomorphic functions II,... ,1m
on L such that ( fl , ... , fm ) : .L ---~ Cm imbeds L as a subvariety of Cm.

Let p = -~- on .L, where z1, ... , zN are coordinates of

C’L q is a C°° strictly plurisubharmonic function on .L. Let 
Take c2 ;&#x3E; ~ . Let M = (z (z) z is a compact subset ot Z.

Since L is an open subset of = Q" n ~’ for some open subset G’

of G. L is a subvariety of G’. By Proposition 7.1 there exist an open

neighborhood of .M in C~’ and a C°° strictly plurisubharmonic function $
on (~ which agrees with 9’ on G* n .L. Let D and B be open subsets of G*
such that ~l c J) cc .~ c c aff.
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Since G is Stein, there exist holomorphic functions g1, ... , 9z on G

defining X. For E E R+ let BE = (x (x) (x) I) . We
clain that H~ c D for some E E R+. Suppose the contrary. Then for every

r E N there egists xr E Hljr - D. Since E- - D is compact, there exists a

subsequence of converting to some x* E B- - D. Hence 99 c2
and 9j (x*) = 0 for 9t (x*) = ... = gi (x*) = 0 implies that x- E

E ~ f1 G* c -L. p (x~) = g~ (x~) ~ C2 implies that x* E M c D, contradicting
z* E .E- - D. Therefore we can find E E R+ such that He c D.

Let H = ~ - A c L. To finish the proof, we need only show
that H is Stein. We are going to show that .g is p-convex (Definition
IX. C.11, [4]). Take arbitrarily a compact subset A of H. Let Ap be the

p-convex hull of A in H, i. e. Ap = ~x E H IV’ (x) (y) for all con-

tinuous plurisubharmonic function on .g~.
Since A is compact, (X) = 03  C2 and sup (x) E A,

1 = s’  E. Hence Ap c g~(x) ~ ~ E’ for 1~~~) e D.
Since D is relatively compact in .E and Ap is a closed subset of E, Ap is

compact. Therefore :g is p-convex. H is Stein (Theorem IX. D. 142 [4]).
q. e. d.

PROPOSITION 7.3. Suppose X is a subvariety of a Stein open subset

G of CN and Ul are finite collections of open subsets of X such

that every member of U2 is Stein. Then there exists a finite collection D
of Stein open subsets of G such that Moreover, if H

is a relatively compact Stein open subset of G with 

X n H - c I then we can choose D to satisfy in addition that H .

PROOF. Suppose Mi = ( U;~’~); ~ i; and z : I2 is the index map for

is Stein, we can
chose open subsets Wj and of X such that is Stein and Uk 

cc U(2).cC w. CC cc U)2).k j j j

I choose by Proposition 7.2 a Stein open subset such

that satisfies the requirement.
Suppose g is a relatively compact stein open subset of G with

n ~ and X n H e ~ - Since X n g is a compact subset of

, we can find a finite collection U3 of open subsets of X such that

U1  «’Ut2 and X n H  U3 1. . By the preceding argument, we can

find a finite collection of Stein open subsets of G such that « 

H- - I is a compact subset of G - X. We can find a

finite collection Dz of Stein open subsets of G - X such that .g -



322

-- ~ · Let D’ = :ED2) n H. Then is a finite collection of

Stein open subsets of G, Uti « 1Ð’ n X ’~2 ~ and H = ~ 11Ð’ I. . q. e. d.

8. Grauert Norms.

In this section we define Grauert norms for sheaf sections defined on
a complex space equipped with a projection. Some elementary properties of
these norms are then derived.

A. Suppose (X, 0) is a complex space of reduction order  oo and

0) .g is a holomorphic map, where eO E R+. Suppose II is a
relatively compact open subset of a Stein open subset U of X. will

for in R+ . Suppose Õ) for some
We denote by or simply by the following Grauert

norm: 
~ ’ ’ °

converges on U (g) and is equal to f ).

At first sight this definition of Grauert norms seems very unnatural.

To shed some light on the motive behind this definition we are going to
give a second description of Grauert norms. This second description will
not be used in the rest of this paper. The only purpose of this second

description is to help clarify the preceding definition of Grauert norms.
From the complex structure of (X, Ô) we obtain a natural product

complex structure for x X and we denote the structure sheaf by 15.
((X, Ô) is reduced if and only if x ~, (~) is reduced). Denote the

projections (K (LoO) X X, Õ) --~ K (eO) and (K (LoO) x X, Õ) -+ (X, Ô) by 111 and
lIQ respectively. For every we have a unique « Taylor
series expansion » :

where 9"1 ... "n E 0)). Define II 9 = 9"1 ... "n (X, 
2013&#x3E;-JBT(~) and the identity holomorphic map t~:(~,0)2013~(~0) give rise
to a holomorphic embedding 1:: (X, 0) 2013~ (K (eO) 0) satisfying 
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and II2 --- idx. Let Õ- _ TO (0). Since is the structure shea -

of the complex subspace l’ (X) of x X, we have a natural sheaff

epimorphism q : 02013~ 0~. f corresponds uniquely to f. E r (z ( U (~)), 0*). Since
Supp O* == T (X ) and x U) (X) = 1: we can regard f, natu-
rally as an element of x U, 0-). It is easily seen that the Grauert
norm Ilfllu,e is equal to

The second description of Grauert norms is complete.
For h = (hi, 7 hr) E r (U (e), Or), define 11 h Ilu, e = sup; ] ·

LEMMA 8.1. Suppose 0: 09 -+ Or is a sheaf-homomorphism on U. Then
there exists C E R+ such that for and

~  LO 0

PROOF. a is represented by an r X q matrix (Oij) of holomorphic fun-
ctions on rT. Let C1= °1 is finite, because Oij is defined on

D~ which contains U as a relatively compact subset.
Let g = (g1, ..., gq) and 0 (g) = (hi , ..., hr), where hi E r ( U C)).

Oijgj on U (e). We can assume that 11 g  oo. Choose arbitra-

rily e &#x3E; I There exists E r (U, 0), v E N:, such that II  e

and Z, gi, 
vj tn 0 91 )vn converges on U (Lo) *to gj . 

11 gjv Ilu  e

and Zw converges on 1I (e) to g; .and I" gj" converges on U (e) to gj.

Let hi, = IJ=1 gjv I U). Then hj, E 0) and ( q C2 °1 e,

where C. is a constant depending only on U. I" hiv ... )LO i LOn in
converges to hi. Hence  q °2 Ci e. Since e is arbitrary,

q.e.d.

LEMMA 8.2. Suppose LOO in such that o = et for 1 ~ i ~

~ n -1 and en  n Suppose ale E Oq) for k E N* such that

11  C for some C E R+. Then

PROOF. 0, there exists aku E T(U, õq) for ft E N" such

that 11 0 and Z,ak, ( 91- ) -)a )"’1 converges to ak con ~(~ ).I", ak", C) I ) ... 

Q?t ) converges to ak con U(e«-).

Let Then and
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converges to .

on U(o). Hence

Suppose c:1is a coherent analytic sheaf on (X, 0). Suppose iF )
for We are going to define a norm for h. By shrinking U,
we can assume that there is a sheaf-epimorphism cp: on We

denote by ;11 or simply by the following Grauert 

When no such g exists, II h Ilu,u is defined to be + co.

Suppose is another sheaf-epimorphism. Since fj is Stein,
there exists a sheaf-homomorphism o : Or on U such that 1pa = 99.

By Lemma for where C is a

constant independent of g and e. Since a (g) = g’ implies V (g’) = g (g) for
we have This together with the re-p U, L p v, u

sult obtained by interchanging the roles of 99 and y shows that the two
norms are equivalent. For the sake of notational simplicity, in what follows,
whenever such a norm arises, we assume that a fixed norm from the class
of all the equivalent norms is chosen. Whenever possible, the obviously
most convenient one is always chosen.

Suppose U = is a finite collection of open subsets of X and each

U¡ is relatively compact in some Stein open subset of X. For e £ e° in
R+, we denote by Bl1 (e). Suppose ~ E er (O), for LOO,
then denotes °

It is easily seen that the Grauert norm ~~ ~ ~~~, ~ can also be defined
as follows :

This alternative definition will be used in § 14.
The following Lemma follows trivially from the definition of Grauert

norms.

LEMMA 8.3 Suppose @ is a coherent analytic sheaf on X 
is a sheaf-epimorphism. If g E or (Ul (e), ~) for some e° and 1 g  e,
then there exists f E Cr (e), 7) such that g ( f ) = g and Ilf 11’U1 , - ()  e (when
the two norms are suitably chosen). 

~ ’
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The following is a consequence of Lemma 8.2.

LEMMA 8.4. in R,+ such that ei = er for 1 ~ I %
and en  e:. Suppose ’Yjk 7) for keN. such that II1]k 

 C for some C E R+. Then

B. Suppose (X, 0) is a complex subspace of an open subset G of CN
and the reduction order of (X, ð) is £ p  oo. Suppose 9 is a coherent

analytic sheaf on (X, 0). Suppose eO E R+ and (X, ð) -~ .g (O°) is a holo-

morphic map.
Let x G --~ K (g°) and P2 : .~ X G - G be the projections.

There exists a unique holomorphic embedding 6 : (X, 0) -~ (K (e°) x G, 
such that P~ o 0 is the inclusion map (lK, ð) C- (G, and P, 0 9 = n.

is an open subset of X, D is an open subset of G with D 

and in R+ , then there is a natural isomorphism 0D: 
- r (K (e) X D, 9:*), because 0 ( U (~)) = (K (~) X D) n 0 (~).

If U is a finite collection of open subsets of a finite collection

of open subsets of G with D = in R+, then for r E N*
we have a natural isomorphism 0, : er (e), 7) Cr Since

9~ commutes with the coboundary operator 6, BID maps (e), ~) onto
Zr X D, y) and maps Br (U (O)~ J) onto Pr (K (e) 71*).

We are going to investigate the relations 
for y) and the relations between and (g) lID, e for

g E or (e), 7). In § 9 we will transplant the results of § 5 to general com-

plex spaces equipped with projections by means of these relations.

PROPOSITION 8.1. Suppose .g is a relatively compact open subset of

a Stein open subset H of G and are open subsets of X such

that there exist CE R+ such that, if and f E

YV N

PROOF. By replacing G by g and by shrinking jBT we can assume

that there is a scheaf-epimorphism 0: C7q on X. 0 is defined by q ele-
The q elements of X G, 7-

defines a sheaf epimorphism 0* : -~ ‘~~‘ ·
We can assume that Take arbitrarily

e &#x3E; I f* By definition of the norm there exists g* E T (K (e) X H7 

11. Annati della Scuola Norm. Sup. 
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such that ~~ (g’~) = f ~ and

be the Taylor series expansion, where Then

Let be induced by g* . By Cauchy’s inequality 
Da gy (x) ~ ~ 0153 E N § , ~ p, x E U~  Ce, where C is a constant

independent of gv .

Let g ... (tn 0 n)" 
11 

0’). Then g  Ce. SinceLet g = I B ... 

gn 
E r (U (e), ry). Then II g Ilu, l’  Oe. Since

6 (g) =f on q. e. d.
The following is a consequence of Proposition 8.1.

PROPOSITION 8.2. Suppose D is a finite collection of open subsets of

C~ such that every member of D is relatively compact is some Stein open
subset of G. Suppose are finite collections of open subsets of X

such that D n X = Then there exists C E R+ such that, for and

f E Cr (’tl1’ (e), C;¡), (f) 

PROPOSITION 8.3. Suppose U is a relatively compact open subset of a

Stein open subset U of X. Suppose are open subsets of G

such that H* is Stein and D n U. Then there exists such that,
.

IV N

PROOF. By replacing X by U and shrinking U, we can assume that

there is a sheaf-epimorphism Q : ôq - X, a is defined by q elements si ... , sq
of r (X, 7). The q elements 9G (S1)’ ... , 8~ (8q) of r (K (QO) x G, define a

sheaf-epimorphism o~ : n+N09 --~ 7~.
We can assume that · Take arbitrarily There

exists such that 6 (g) = f There exist gv E

such and

on u (e).
Since the quotient NO) 2013&#x3E;- X, 0) is a continuous

linear surjection of Fr£chet spaces, by the open mapping theorem there

exists gy E such on and 
where C is a constant independent of gy .

Let

 Ce. Since o* (g’~) = 9v (f), 9D ( f )  Ce. q. e. d.

The following is a consequence of Proposition 8.3.
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PROPOSITION 8.4. Suppose Ut is a finite collection of open subsets of
X such that every member of U is relatively compact in some Stein open
subset of X. Suppose T[XH «  ID are finite collections of open subsets

of Q’ such that ID n X = U and every member of M* is Stein. Then there
exists C E R+ such that, for and f E Cr (M (~), 71), I 8~ ~) 

°

C. Suppose (X, 0) is a complex space of reduction Z p  oo and 7 is
a coherent analytic sheaf on (X, C~), Suppose eO E R" and (X, 0) -~ 
is a holomorphic map.

If U and II’ are open subsets of X and U (e) = U’ (e), from the deft.
nition of Grauert norms we cannot immediately say anything about the

relationship between and 11.!lu’l (J. · We are going to investigate this

situation. It turns out that we can draw some conclusions if we shrink

II or U’ a little.

LEMMA 8.5. Suppose W, W, U are relatively compact open subsets

of a Stein open subset U of X and R+ sueh that W cc W,
and W is Stein. Then there exists C E R+ such that, if 

then ·

PROOF. Obviously we need only prove the special O. By re-

placing X by fj and by shrinking U, we can assume that X is a complex
subspace of a Stein open subset (~ of We use the notations of § 8B.

We can suppose  oo. Take arbitrarily e &#x3E; There exist

such that [ ( fw [ ( u  e and f CD), such that II (I e and B ... In =f
on 

Since W is Stein, by Proposition 7.2 we can choose Stein open sub-

sets D1 such that Wee D1 and D2 n Xc W. Let Wi = Di n X.
Choose e"  e*  ~o’ in 

From the assumption we have W2 (O’) e lI. Let I W2 (o’). Then

Let a : (o’) X D2 , -+ x -D2 0*) be induced by the

quotient map n+NO -+ O* (recall that O* = 90 (0)). Let fl : r (I~ (O’) X
be defined 

Since fl is a continuous linear surjection on Fr4chet spaces, by the
open mapping theorem there exists g11 X D2 , such that

and I gy  Ci e, where 0, is a constant independent of f,’.
be the Taylor seriesLet g11 0 P2) ( Lol / 

... 

n / 
be the Taylor series

expansion. By Cauchy’s inequality I 911ft I Dl  C1 e.



328

Let IVft E 0) be induced by By Cauchy’s inequality f,,~ ~ ( ( w=
_ J9" (x) ~ ~ a E ~ ~, x E where °2 is a constant
independent of 

Then we have f =

where C3 =

Hence q, e . d.

LEMMA 8.6. Suppose U, cc U2 cc U are open subsets of X and U2, U
are Stein. and f E r (U2 (e2), then f oo.

PROOF. Choose a Stein open subset Us of X such that U1 c c U3 c c ~2 ,
Choose ei  e3  e2 in Since Us (03) cc U2  00. Obvio-

usly The Lemma follows from Lemma 8.5 by setting

~ _ ~i ~ ~ _ ~s ~ ~ = q.e.d.
The following two Propositions are consequences of Lemmas 8.5 and 8.6.

PROPOSITION 8.5. Suppose ’UU1, U are finite collections of Stein

open subsets of X such that each member of ’UU1, U is relatively com-

pact in some Stein open subset of X. Suppose ~o" [ ~’ _ ~o in R’+ , I
and (e’)  BtI. Then there exists C E R+ such that, if o"

then 

PROPOSITION 8.6. Suppose U, « U2 are finite collections of Stein open
subsets of X such that each member of BtI2 is relatively compact in some

Stein open subset of X. If e1  R+ and f E or (e2), iF ), then

D. Suppose X is a complex space of reduction oo, ~° E Rn
is a holomorphic map. Suppose (X’, ð/) is a complex

subspace of X and the reduction order of X’ is % p’  oo. Let ~’ _ ~ ~ 
Suppose is a coherent analytic sheaf on X’ and F is the trivial exten-
sion of 9~ on X.

If U is an open subset of X, U will be denoted by U’. If lll is

a collection of open subsets of X, U n ~’ will be denoted by M’.
For and any open subset U of ~’ there is a natural isomorphism

au : r ( U (o), ~ ) --~ r ( ~’ (~o), ~’). t. EN., and any collection U of



329

open subsets of X there is a natural isomorphism or em (e), 7)-
- or (’tIt’ (LO), iF ’).

LEMMA. 8.7. Suppose U., U2, U are relatively compact Stein open sub-
sets of a Stein open subset of ~’ and e"  e’ in R+ such that
Ui cc U2 and U2 (e’) cc U. Then there exists 0 E R+ such that, if e e",
then

PROOF. We can assume without loss of generality that X is a complex
subspace of a Stein open subset G of CN . We use the notations of ~ 8 B.
For corresponding notations for X’ we add a prime. Note that (J’)* = 

Let U3 = U2 (e’). By Proposition 7.2 we can choose relatively compact
Stein open subsets Df of G such that and D2 n X c U.
Choose a relatively compact open subset D of G such that D2 c D and
D n X = U.

(i) Take By Proposition 8.3, 
where C1 is a constant. By Proposition 

~ °2 f ) where C2 is constant. Since Q~ ( f ) _ (8D)-1 (9D ( f )),
11 °2 01 · By Lemma 8.6, I 6~(f) 0311 
where C3 is a constant.

(ii) e" and (g), 7). By Proposition 8.3, ~ 6D ( f’) BDI’ e ~
~ 0111!’ Ilu’, fl’ where Ci is a constant. By Proposition 8.1, 

where Cz is a constant. Since 

where 03 is a constant. q.e.d.
The following Proposition follows from Lemma 8.7.

PROPOSITION 8.7. Suppose ’tl1t, ’tl12’ ’tl1 are finite collections of Stein

open subsets of X such that each member of B112, is relatively compact
in some Stein open subset of X. Suppose e"  in R,+ , ’tl1f « ’tl12 ,
and ’~2 (~o’)  ’tl1. Then for r E N~ there exists C E R+ such that, if ~O ~ ~o",
then
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REMARK. In the special case .X = ~’ , Lemma 8.7 and Proposition 8.7
spell out the effect on Grauert norms when p is changed.

Suppose, in addition, n’ (X’) c (tn = 0) and (tn On) 0~ = 0. 
= (el , ... , en) E R,+ , we denote (e1 ’ ... , E Ri bye. We can regard n’
as a holomorphic map from ~’ to If and B1)’ « B1)1 are finite
collections of Stein open subsets of X’~ then we have two Grauert norms:

One is when we regard a’ as a holomorphic map from X’ to 
another is e when we regard ~c’ as a holomorphic map from ~’ to
gn-’ (~6). From the definition of Grauert norms, we can easily see that

implies ·

Hence under these additional assumptions we have the following.

PROPOSITION 8.8. Suppose U12 , U, and e", e’ are the same as in
Proposition 8.7. Then there exists such that, , then


