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ON SPECTRAL PROJECTIONS
OF ELLIPTIC OPERATORS

T. BURAK

Let A be an elliptic operator associated with a regular elliptic boun-
dary value problem G), cf. ~1~. We investigate in this paper

the existence of a direct sum decomposition: where

M+ is the closed subspace of spanned by the generalized eigenfun-
ctions of A with eigenvalues in an infinite sector determined by two rays
of minimal growth of the resolvent of A, and M- is the closed subspace
spanned by the other generalized eigenfunctions.

Assuming that there exist rays of minimal growth of the resolvent of
A which divide the complex plane into angles less than 2mn/n, so that by
[1] the generalized eigenfunctions are complete in and assuming in
addition that the coefficients of sIl, the boundary of G and the coefficients
of the B;’8 are C °° we prove that .go (G) = M+ EB M - and that A is com-

pletely reduced by the pair of subspaces M+ and M-.
Let E + be the bounded projection of on M+ determined by

the above direct sum decomposition. If D (A) is the domain of A, then
jE7+~(~)c:D(~ moreover, for f in D (A) we have AE + f = E + A f.

Furthermore let I’R = (1 ; 81 S Arg A ~ 9~ , ~ ~ ( &#x3E; R? be the infinite

sector under consideration and assume that the boundary 7!., of rR is in
the resolvent set of A. Let A+ be the restriction of A to M +, and let
a (A) and a (A+) be the spectra of A and of A+ respectively. Then g (A+) ==

rR and (~, - A+)-1= 0 (-2013~ o0 outside 

Finally, let f E Ho (G). Then

where yR is that part of y~ which joins to neie1.

Pervenuto alla Redazione il 30 Ottobre 1969.
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Using results of R. T. Seeley [2], [3] we show first in Sections 2 and 3,
that the operator B defined in D (A) by

is bounded (it is easily seen that the limit on the right hand side of II
exists for every f in D (A)). It is then shown in Section 4 that the above

results follow from the boundedness of B.

1. Notations.

We will use the following notations :
Rn is the n dimensional Euclidean space and en is the n dimensional

complex space (Rl = Rand C’ .= C). Points in Rn are denoted by x =

= (x1, ... , xn), ~ _ (~1, ... , ~’n) or by x = (x’, xn) x’ E Rn-I and xn E R. x · ~
denotes the scalar product in Rn. Also, let .R+ be the closed half space
given by and let S+ be the closed half sphere 
&#x26;8§ is the part of the boundary of S+ where Xn = 0.

We shall also employ the usual notation Di = i a and D = Dnp y 
axy 

1 ~ )~

a will stand for the multiindex an). In addition we shall write

D = D" ... ... ;an.1 n n

Let G be a subset of Rn, and let aa (x) Da be a linear
I

differential operator with coefficients aa defined in G. The principal part
of sIl (x, D) given (x) Da is denoted by D), the characteristic

lal=l
polynomial E a. (X) $a is denoted (x, ~).

I 
_

For a bounded domain G with closure G and boundary a G, 

( j = 0,1, 2, ...) is the completion of the space of complex valued C °° ( G)
/ r 1/2

functions under the norm 2 J . Given an elliptic boundary
/

value problem G), (G, is defined as the completion
in of the class of functions in C2- (G) satisfying the boundary
conditions B~ u = 0 on a G. For any C °° function 99 with support in G, ~1~
is the operator mapping C °° (G) into C °° (G) defined by 

Finally, given a C°° function f with compact support in Rn, f will

denote the Fourier transform of f : .7($) f dx.
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2. Some Lemmas.

Consider the following boundary value problem in R+ :

Here TjE C 1pij E C and
2m

C for i = 1, ... , m. Assume also that the polynomial Z has no real
j=0

zeros.

Let C k =1, ... , 2m. Then the are the initial values Dk-l U (0)
of a solution IT of (2.1) (2.3) if and only if

where

.L+ is a closed curve in the half plane Im 0 &#x3E; 0 enclosing all the roots of
2m

Z ggj oj = 0 which lie in this half plane ; ðj is a polynomial in ,.. , 0,
1=0

of degree less than 2m such that the relation

holds for every C °° function U with compact support in R+, cf. [2].
Assume that for every g = (g1 ~ ... ? g~) in C~n (2.1)~(2.3) has a unique

solution. Then the matrix V = (1pij) defines a one-to one linear transformation
from the range of P = onto Cm . Let E be the inverse of this trans-
formation.

We quote the following lemma which is proved in [2].
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2m 

I. The set ... , ,CfJ2m) such that half the zeros of ~ lie
j=0

above the real axis and half lie below is an open set and the projection
P is an analytic function of cp on this set.

II. The set of values such that (2.1)-(2.3) has a unique solution
for every choice of is an open set and d is an analytic
function of y) on this set.

III. The solution U of (2.1) (2.3) is given by :

where b = (61 ... , and bj is as in (2.6).
In particular, if is the solution of (2.1)-(2-3) with gi = 0 for 

and gj = 1, and if ~ is given by the 2m X m matrix (8ij) then

Let ,~ (x, D) be an elliptic homogeneous differential operator, of even

degree 2m~ with C °° coefficients in an Bn neighborhood of S’ . Let B~ (x, D),
be a system of m homogeneous differential operators with C °°

coefficients in an Rn neighborhood of 
We make the following assumptions:

ASSUMPTION A. The form a normal system of boundary operators;
i. e. the boundary ’is noncharacteristic to B~ at each point and the

orders of the different operators Bj are distinct.
In the case n = 2 we assum in addition that nl satisfies the roots

condition.

ASSUMPTION B. For every x E B8§ and I’ # 0 the polynomials in ’1,
are linearly independent modulo the polynomial

In 

+II (’1 - «t (x, where ’1t (x, 7c are the m roots of sIl (x, = 0
A:=l

with positive imaginary parts.
Finally we assume that for 0 = 0; , i = 1, 2, the following conditions

hold, cf. [1].
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CONDITION 1. (- 1)?’+ ~) for every A with Arg A = 0, x E S+,
and $ =F 0.

Let 01  02 and write 1’ _ 81 C Arg ~, C 82). From the assumptions
on A it readily follows that (- 1)m sIl (x, ~) ~ ~, for either all I E 1-’ or all

We may thus assume without loss of generality that (20131)~~(~~)~=~
for all A E r.

CONDITION II. The polynomials in r $’, ~), j =1, ... , m, are linearly
,

independent modulo the polynomial n (r - ~k (x, ~’, À)), where for every
k=I 

"

x E as+ ~’ ~ 0 and A with are the m

roots of fl (x, ~’, r) - 1 = 0 with positive imaginary parts.
Let 4 = (q; 0~/2&#x3E;n C Arg q  and let a be the boundary of 4

orineted from ooei8s to ooej81. For and q E a let

and

The assumptions on A and on the B~’s guarantee that, provided that

1 $112 -~- ~ 0 the system (2.1)-(2.3) with ggj = qJj (x’, ~’q) = 1Jlij (x’, ~’)
has a unique solution u (t, x’, ~’q), for every g in C’~ .

~’, q) is given by (2.7) where L+ = L+ ($’, q) represents the

boundary Ie 12   2 r 2 ( 1 e 12+ 1 q12)1/2 and ri I( 2 
r2 are chosen so that the roots of sIl (x’, 0, z) - q2m = 0 in the upper
half plane satisfy ( I ~’ 12 -~- I q ~2)1~2  Im ~c, ~ ~ ~  r2 ( I ~ 12 + I q I2)1~2~. As
observed in [2], ðj = ðj (x’, ~’, a, q) is homogeneous of degree 2m - j in

(a, ~’, q) while = tij (x’, ~’, q) is homogeneous of degree i - mj - 1 in (~’, q).

DEFINITION 2.1. For q E a ~~ (x’,~’, q, t)
be the solution of the system (2.1)-(2.3) with ~~~ (here w~ is Kronecker’s

delta).
The Dj(x’, ~’, q, t), j = 1, ... , m, form a basis for the space of the solu-

tions of (2.1) which tend to zero at infinity. Also by (2.8)

4. Annali delia Scuola Norm. Sup.. Pisa.
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From (2.11) recalling the definition of .L+ (~’, q) and keeping in mind
the respective homogeneities of (x’, 0, ~’, a) - (x’, ~’~ o, q) and
8ij (x’, ~’, q) in (~’, o, q)~ it follows that there exist constants el and C2 such
that

DEFINITION 2.2 For

the (unique) solution of

(2.14) Bi (x’, 0, ~’ d (x’, ~, q, t) = Bi (x’, 0, ~) (XI, 0, ~) - q2-)-l at t = 0

It is easily seen that

DEFINITION 2.3. Let 61 (~’~ q~ be an infinitely differentiable function

in ~’, Re q and Im q such that 91 (~’, q) = 0 whenever I ~.1 12 -~- Iq12 1/2
and ol (~’, q) = 1 whenever ~’ (N + I q 12 ~ 1. For and t &#x3E; 0 let

k (x’, ~, t) be defined by

The convergence of the right hand side of (2.17) follows from (2.12) and
(2.16). Note also that as can easily be verified k (,fi&#x3E;’, ~, t) is infinitely dif
ferentiable.

DEFINITION 2.4. Let .g be the operator mapping the C°° functions

with compact support in R+ into the C°° functions in 

defined by

It follows from (2.16), (2.17) and (2.18) that for every 6 &#x3E; 0 there exists
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a constant C6 such that if xn &#x3E; 3 and  r then

I denotes the L2 (Rn) norm of f.
The following lemma constitutes the main result of this section.

LEMMA 2.1. Let be a C°° function in Rwl with support in ~x’ ; ~ x’ ~  r).
Let 0 be a function in C°° (R) with compact support in R+. Let 99 be the
function in C°° (RII) given by 99 (x) = q’ (x’) 0 (xn), There exists a constant C
such that if f E C°° and has compact support in R+, then

Note that if g E C°° ( R)) then II 9 + denotes the norm of g in .L2 (x ; 0).
To prove this result, we shall first establish a number of lemmas.

Consider the following boundary value broblem in R+.

Since condition I holds for all A E r, the above system has a unique solu-
tion for every g = (g, ..., gm) in Cm, provided that q E 4 and

lql+ I ~’ 12 =1= o.

DEFINITION 2.5. For E 4 and -~- 1 ~’ ~2 =1= 0 let Wj (x’, ~’, q, t)
be the solution of (2.21)-(2.23) pertaining to the value The fun-

ctions Wj (x’, ~’, q, t), j = 1, ..., 7n, span the space of those solutions of (2.21 )
which tend to zero at infinity. Furthermore ffrj(x’, ~’, q, t) is given by (2.7)
where the 92j = (x, q) are determined by (2.9) and = 8ij . As a re-
sult the corresponding (x’, q) is homogeneous of degree 2m - i in
(a, ~’, q) and the corresponding Bij (x’, ~’, q) is homogeneous of degree i - j
in ($’, q). Also the Wj (x’, ~’, q,’t)’s, for q E A, $’ 12 -~- ~ 1 q 12 # 0 and
t &#x3E; 0, are infinitely differentiable in x’, ~’, Re q, Im q and t and are ana-

lytic functions of q in the interior of 4.
Now, as the ~’, q~ t), j = 1, ... , m form a basis for the solutions

of (2.21) which tend to zero at infinity the system
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with and I q 2 -}- ~’ 2 =1= 0 has a unique solution for every choice
of gi if and only if

We shall denote the value at t = 0 of the left hand side of (2.27) by
D (x’~ ;’, q).

It follows from the de6nition of D from 2.27 and the above properties
of the IVj’8 that D (x’, ~’, q) is infinitely differentiable in x’, ~’ Re q and
Im q and is analytic in q throughout the interior of d. Also, as is easily

seen D (x’, e, &#x3E;q) is homogeneous of - m ~~rz 2 -1) in ( ~’ q).
j=l 2

We now have:

LEMMA 2.2. There exists a o &#x3E; 0 such that for all E d and

provided D (x’, $’, q) = 0 then I q C 1$1 I.

PROOF. As is shown in [1] it follows from Assumption A and Condi-
tion I that for all q E # 0 and for all I x’ the boundary value problem
(2.24)-(2.26) with $’ = 0 has a unique solution for every choice of g. Con-

sequently one has

The existence of o now follows from 2.28 and from the continuity of
D (x’, ~’, q) in the region x’ E 4 and 1 q 2 -~- ~ I~’ 12 4= 0 combined with
the homogeneity of D (x’, ~’, q) in (~’, q).

In view of the above we can extend definitions (2.1) and (2.2) as
follows :

DEFINITION 2.6. Let  r~ q E 4, ) q ~2 -~- I ~’ 12 # 0 and D (x’, ~’, q) ~ 0
Dj (x’, ~’, q, t) is defined as the solution (2.24)-(2.26) with gi = i =1 ~ ... , m,
and d (x’, ~, q, t) as the solution of that system with

We have,
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The (x’, ~’, q)’ s are infinitely differentiable in x’, ~’, Re q and Im q and

homogeneous in q) of degree z ’n and the
i=l 2

fXjk (X’, q)’s are analytic in q in the interior of d. Also (2.16) continues

to hold.

DEFINITION 2.7. Let be a C°° function such that y = 0 when

~~ ~ 1 when ~’ ~ 2. For f in C°° (Rn)
with compact support in R+ , 0 we define :

where lc (x’, ~, xn) is given by 2.17. Note that the operator K, defined by
Definition 2.4, which appears in Lemma 2.1 equals K2. For .g2 we
have

LEMMA 2.3. Let f be a function in C°° (Rn) with compact support in

R+ . There exists a constant C such that if x 0, then

PROOF. Recalling the definitions of K2 and x one can see that it suffices
to show that there exists a constant 0 such that

The homogeneity of D (x’, ~’, q) and Lemma 2.2 imply that if C r,
q E 4 and then

Also

as can be seen from (2.11) by substituting in the system (2.1)-
(2.3). From (2.34), (2.35) and the properties of the one can deduce
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that for ix’l 

Therefore if ~’ I S 2

where y is the boundary of ~ l~~ and M = max (1, 4(». The
conclusion (2.33) can now be easily verified by considering (2.37) together
with i 2.16), the estimates (2.34) and (2.35), and the properties of the a;k’8.

LEMMA 2.4. Let (pl be a function in C°° (Rnw) with support in  r,
There exists a constant C such that if f E C°° (Rn) and has compact support
in R+ then

As in the proof of Lemma 2.3 we notice that if I ~’ h 2

where y (~’) is the boundary of (~ ; q E if, I q C 2e 1 $’ ~. For q E y ($’ j we
have 2)(~~~)=)=0y hence (2.16) and (2.29) are valid and consequently

with

Bi (x’, 0, ~) I

From equation (2.11) by inserting Bj = in the system (2.1)-(2.3).

where Mj (x’, ~’, ,u, q) is homogeneous of degree 2m - j in (~’, fl, q).
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Thus

where Z+ ($’) is a finite contour in the half plane &#x3E; 0 which encloses
all the p roots with positive imaginary part of ,~ (xl, 0, ~’ ,u) - = 0 for

x’ and q restricted by E L1 and ( S 2~ ~ . Also L+ (~’) is so

chosen that for all It E L+ (~’)

It follows from (2.43) that the singularities of kij (x’, ~, Xn) in the half
plane Im $n  0 are contained inside a closed contour L- (~’), which is the
boundary of 

By a method similar to the one employed in [2] we put:

and for f E C°° with compact support in R+ we set

Then

Let

It follows then from 2.43, from the definition of L+ (~’) and .L- (~’) and

from the properties of B; , and D that for every a’ = ... , 

there exist Cl and 02 such that
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Let

Then

From (2.50), (2.45), (2.40), (2.48), and (2.49) one concludes that for

every p there exist Cl and C2 such that

Therefore for every p there exists a constant C such that

and

Now choosing 2p &#x3E; n -~-1, we obtain

and

Finally, using the above inequalities together with (2.51) and Plancheral’s

formula, proposition (2.38) follows.
Lemma 2.1, the result that we set to prove in the beginning of this

sections, is now obtained as an immediate consequence of Lemma 2.3 and

Lemma 2.4.

3. The boundedness of B.

We shall assume throughout this section and the following one that

(~ C~) is a regular elliptic boundary value problem. We assume in
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addition that the coefficients of sfl are in C°° (G) that the boundary a G is

C°°, and that the Bjls are C°° in a neighborhood of aQ’.
Let us suppuse further that for every A such that Arg Â. = =1, 21

- 11:  01  0 0  02 ~ ~c~ Agmon’s Conditions I’ and II’ below are satisfied

Condition I’.

condition II’. At any point x of a G, let v be the normal vector and

let ~ ~ 0 be any real vector parallel to a G. m be the

m roots with positive imaginary parts of the polynomial in t (x, ~ +
+ tv) - Â. where A is on the ray Arg 1 = Then the polynomials in t

B~ (x, ~ + tv) are linearly independent modulo the polynomial (t-t ~))·
As before we may assume without loss of generality that Condition I’

holds Arg 2 C 82 .
Let A be the unbounded linear operator in Ho (G) defined as follows:

The domain, D (A), of A is .g2m G). For every f E D (A), Af = szi (xD) f.
It follows from [1] that the spectrum, o (A), of A is discrete and that

Arg A = Oi is a ray of minimal growth of the resolvent of A ; i.e., there
exist constants 0 and M such that for Arg 1 = (Ji and I Â. ) is in

the resolvent set of A and

DEFINITION 3.1. Let B be the linear operator from D (A) to .Ho (G)
given by

where R and n are defined as in the introduction.
The existence of the limit in the right hand side of (3.2) follows from

(3.1) and from the relation

which holds for every f E D (A).
The main result of this section is

THEOREM 3.1. There exists a constant C such that for every f E D (A),
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In the proof of Theorem 3.1 we will use the prarametrix Po (~,) of 
which was constructed by R. T. Seeley [2] as follows :

Let us assume first that .91. (x, D) is an elliptic differential operator of

even degree 2m with C°° coefficients in an R+ neighborhood of S+ . Also

suppose that Bj (x, D), j =1, .,. , m, is a system of m linear differential opera-
tors of respective degrees mj with C°° coefficients in an Rn neighborhood
of as+, and that .91.’ (x, D) and the D) satisfy assumptions A and B
and Conditions I and II of Section 2.

Let 01 q) be a C°° function in q and Im q such that ol 
when (~’~2-~-~q121/2 and ~ (~~ ~) === 1 when ~’ ~ + ~ p~ 1.

q) be a C°° function in and 1m q such that 82 (~, q) == 0
when ~~ 2-~-~q~2l/2 ~ + ~ p ~ 1.

Let f be a C°° function with compact support in the interior of R+ .
For q E A, q E a, we introduce respectively the one parameter families of

operators C (q), D (q) :

where d (x’, ~, q, xn) is given by substituting and for

fl (x, D) and Bj (x, D) respectively in Definition 2.2.

Let Q = (x ; xyz ~ 0, x’ I  Y°) . As in [2] there exists a constant C such
that for q E L1

In the general case, let ~~ , j =1, ... , N, be a resolution of the identity
subordinate to a covering of G by coordinate patches. Suppose that the coor-
dinates in a coordinate patch that intersects the boundary assume values

in S+ and xn = 0 on the boundary. Let N, have support in
the same patches and let 1jJj = 1 in a neighborhood of the support of 99j.

When the support of qJj does not intersect the boundary of G and
. for q E A, define

with C (q) as defined in (3.5).
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When the support of qJj intersects a G and for q E a, define

Then for q E a, Po (q) of [2] is given by

and there exists a constant 0 such that if f is C°° with support in G and

q E a,

It is proved in [2] that there exists a constant C such that if q E a

I q 12m ¿ R, and f is C°° with support in G then

It follows from (3.13) and from the existence of the limit in the right

hand side of (3.2), that for every f E D (A), the limit lim p (q)fdq
n-00 2nii

bn
exists. Here denotes the extension of Po(q) of (3.11) to a bounded
operator from to HO(G).

DEFINITION 3.2. Let Bo be the linear operator from D(A) to 
given by 

-

Using (3.13) it becomes evident that the proof of Theorem 3.1 is reduced
to a verification of the following lemma:

LEMMA 3.1. There exists a constant C such that if f E D (A) then

The proof of Lemma 3.1 is based on the following two lemmas :

LEMMA 3.2. Let tp£ be C °° with compact support in (x ; Xn 8). The

limit lim 2~~ J Jl1p£ D (q) exist in g (8.+), for every E .g andf we ~~) ~ ,~ ~ o + f o ~ +)
6n
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is equal to M1ps Kf, where .g is the extension of the operator defined by

(2.18) to a bounded operator from to (8§).

PROOF. For every C°° function f with support in S+ we have

as follows from a consideration of relations (3.6), (2.16) and (2.12). Thus,
to conclude the proof we need only to check that for every the

limit appearing on the left-hand side of (3.16) exist (in .go (S+)). This, howe-
ver, follows readily from the estimate

which also is a consequence of (3.6), (2.16) and (2.12).
Let OR be the boundary of ~q ; q E 11, q ~ ] h R) oriented from ooeiÐ2!2m to

00 and let a"R be that part of OR which joins neiÐ2/2m to 

LEMMA 3.3. The exists in for

every f E Ho (8+).
2m

PROOF. To prove this lemma it is sufficient to check that lim . ·00 

. C (q) fdq exists, in for It follows from the de-

an2
finition (3.5) that C (q), considered as a family of operators from to

is analytic in q throughout I ¿ 2}. As a result

Therefore in view of (3.7) there exists a constant C such that for n = 3,4,...,
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Also if f is a C°° function with support in

E C°° (S’). It is now easily seen that

Hence

and

so that exists in Ho (8+).

The rest of the proof follows from (3.19) when combined with the

Banach-Steinhaus theorem.

We turn now to the proof of Lemma 3.1.

. 

N

THE PROOF OF LEMMA 3.1. As in (3.11) let Po(q) =I Po(q, (pj, 1pj).
j=1

Assume that the supports of q~j, j =1, ... , .I~, do not intersect aG and
that the supports of = K + 1,, ... , intersect a G. Then :

where

and

By Lemma 3.3 the limit exists in Bo (G) for
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every f E Ho (0) and therefore

where Ki is a bounded operator from (G) to .go (G).
and let y be C°° with support in G. From Lemma 3.2

one sees that lim exists in ) and that there
n - co 

.1

an
exists a bounded operator K2 from .go (G) to .go (G) such that

It follows from (3.23), (3.26) and (3.27) that if f E D (A) then for every
C°° function y with support in G

Hence Ba f = (g1-~- .g2~ f. Therefore Bo is bounded.

4. The Reducibility of A.

Let G) be a regular elliptic boundary value problem sati-

sfying the assumptions mentioned at the beginning of Section 2.

We assume in addition that there exist rays Arg Â = =1, ... , N
which are rays of minimal growth of the resolvent of A and are such that
the angles into which they divide the complex plane are all less than

21n:n/n.
As in the introduction let be rays of minimal

growth of the resolvent of A and assume that y. belongs to the resolvent
set of A. Let M be the algebraic subspace of spanned by the gene-
ralized eigenfunctions of A and let M+ (M-) be the algebraic subspace
spanned by the generalized eigenfunctions of A with eigenvalues inside

(outside) Tx .
Let P+ and P- be the projections of M on M+ and M- respectively,

corresponding to the direct sum decomposition 
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Let us first verify :

LEMMA 4.1. For every f E M

where Bf is given by (3.2).

PROOF. We first show that for 

Using (3.2)

Let (A - A)-’ P + = Rz and let (~2013A)-ip-==~ . It follows from

the definitions of P + and P - that for f E M, Rtj is holomorphic for

I i TR and R7 f is holomorphic for A E Consequently

Here Rt f denotes the analytic extension of (Â - P+ f, It;: f denotes
the analytic extension of (~ - P " f, Cj is }A~ ~ ~ - ~z~ oriented
from nei8, to nei81 and Cn is the complementary arc of Cn oriented from

to 

Observe the following relations :
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Also note that for every f E M there exists a constant Cf such that for

We point out here that Ilf 11 denotes (throughout this section) the norm of

f in Ho (G).
Similarly for ~, E 1’R

(4.7)-(4.10) now imply that:

which proves (4.3). Now (4.4) together with the identity P+ ~- P- = I (in
M) lead to the conclusions (4.1), (4.2).

The following theorem is a consequence of Lemma 4.1 and Theorem 3.1.

THEOREM 4.1. There exists a constant C such that for every f E ll

Let E + and .E ~ be the extensions of P+ and P -, respectively, to

bounded projections defined in Then the range of .E + is M+, the

range of .E- is M - (~VI+, M- being the closures of M + respectively)
and, as the generalized eigenfunctions are complete in Ho (G), the following
holds :

THEOREM 4.2.

THEOREM 4.3. For every f E D (A) we have and AE + f =
_ .E +A f, Let A+ be the operator, in ~1+ which is the restriction of A

to D (A) n M +. Let a (A) (o (A+)) be the spectrum of A (A+).
Then and
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PROOF. It follows from (4.2) and (3.2) that for 20 in the resolvent set
of A (Ao - A)-1.E + = E+ (Ao - A)-1. Therefore if feD (A) then E +f E D (A)
and AE +f = E +A f . (Â - A+)-1 is a meromorphic function of A and

(~, - A+)-1 f is holomorphic for and for f E ~I + . Since M + is

dense in Jf+, (Ao - is holomorphic for A E rR . The relation

o (A+) = a (A) n T’R then follows from the obvious inclusion relations

Q (A) n 6 (A+) c 6 (A).
It is a consequence of the assumptions on the ai’s that if Arg A = ai

I is large enough, then I is in the resolvent set of A+ and

It is shown in [I] ] that if ~o is in the resolvent set of A, then for

every c there exists a sequence of positive numbers ,uk with pk -~ oo such

that

if I = ,uk k -=1 ~ 2~ ,... Hence if then

As in [1], (4.13) follows from (4.14) and (4.16) applying the Phragman-
Lindelof principle to the intersection of the complement of TR with each
of the angles determined by the rays Arg A = =1 ~ ... , N.

THEOREM 4.4. The limit exists, in Ho (G), for

every f E .go ((~).

PROOF. Since exists for every f E D (A), to prove

Theorem 4.4 it is sufficient to demonstrate the existence of a constant C

such that for every f E (G) and n = [R] + 1, + 2 ...

Let A- be the operator, in 1~-, defined as the restriction of A to

By a reasoning similar to that of Theorem 4.3, if Â E rR then
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A is in the resolvent set of A- and furthermore

as and

Let A be in the resolvent set of A ; then

and therefore

It follows from (4.20) and from the properties of i
mentioned above that

Here is oriented from to and Cn is the

complementary arc oriented from neie2 to neiel and (4.13).
As a result (4.17) follows from (4.21 )~ (4.18) and (4.13).
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