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AN EXISTENCE THEOREM FOR BOUNDED
VECTOR-VALUED FUNCTIONS

S. ZAIDMAN (*)

Introduction.

In professor’s L. Amerio paper [1], supposing existence of bounded

solutions for t &#x3E; 0 (t-time), of non-linear almost-periodic differential equations,
one proves existence of bounded solutions which are defined on the whole

time axis, -  od,

In our paper [2] we proved a very similar result for solutions of the

heat equation, with almost-periodic known term. We shall see below that

this situation can be extended to a certain class of Banach-space valued
functions admitting a certain representation through a given semi-group
of class C°.

§ 1. Let us consider first a reflexive Banach space X ; then, a one-

parameter semi-group of operators in L (X, X) : Tt, t &#x3E; 0 ; such that To = I,
Tt+~ = Tt E L (X, X) ~ t &#x3E; 0 and Tt x is continuous from 0 S t  o0

to X.

Consider also a continuous function - oo  t  oo to X, which is

almost-periodic in Bochner’s sense, that is :

Each sequence ( f (t + a.))-, n= contains a subsequence ( f (t + u·hich is

uniformly convergent on - oo  t  oo, in strong topology of X.
Let now u (t) be a continuous function :

representation
to X, admitting
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and let us assume

Then we have

THEOREM. There exists a continuou8 function
X, such that

PROOF. Let us consider the sequence of translates

They are defined for t h - n, and we have

As well known, reflexivity implies weak sequential compactness of bounded
sets in X. Then, using almost-periodicity of f (t) and the diagonal procedure,
we obtain a sequence of positive integers with following properties:

(1.6) lim f (t -I- nk) = g (t), uniformly on - oo (and consequently

g (t) is an almost-periodic function)

For each .1’ is defined for

and

(1.8) (w) lim unk (- N) = WN exists and belongs to X (here (u.) - means
k-oo

weak topology in .X’; remember that a reflexive space is weakly
sequentially complete).

Remark now, that for each real t, unk (t) is defined for k 2 kt. Then we
shall see that, V t E (- oo, 00)
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In fact (1.10) is a consequence of (1.9) and (1.5). To prove (1.9) we use
following

LEMMA 1..Let t E (- oo, oo) be given, and N integer such that
N, we have

t

This Lemma is a Corollary of a slightly more general result

LEMMA 2. Let u (t), t :.-::. 0 -~ x (arbitrary Banach space), be a continuous
function; Tt; t ~ 0 -+ L (X, X) be a strongly continuous one parameter semi-
group of linear bounded operators f (t), - oo  t  oo --~ 9C be a
continuous function.

Suppose

Then, i, is given and i we have

REMARK. Lemma 1 follows from Lemma 2 if we take b = nk, a = N.

PROOF OF LEMMA 2.

we have using (1.1)



88

Next remark, again by (1..1), the representation

Introducing in (1.14) the value of (0) we get

Now, set a = ~ -~- b ; it follows which

b-a -a

proves our Lemma, and consequently Lemma 1 too.

Actually we see that (1.9) is true in the following way : Fix an arbi-

trary real t ; then take N a positive integer, such that t + N ] 0, and

take k &#x3E;.iN’. We use then (1.12); as f (t + nk) --~ g (t) uniformly on (- oo, oo)
and in X strong, we have obviously

.

Then we have also

because a linear continuous operator in a B-space is continuous also in

respect to the weak convergence.
Now, we shall see that for function V (t), - oo  t  oo --~ ~’ defined

by (1.9), the representation formula (1.11) holds for each semi axis 

Take in fact two reals t ~ to , 1 and choose an integer N such that
- N  to. Apply Lemma 1 to t, to , N, We have
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Then, reasoning as above, we obtain

Trying now to get (1.11) we write

Hence

-.

that is (1.11). 
-v

Now we give the idea of the final step in the proof. Using uniform
(on real axis) convergence of sequence f (t -~- nk) to 9 (t), we obtain uniform
convergence of sequence g (t - nk) to f (t). Starting now with V (t) and re-

peating above procedure, we obtain function - oo  t  oo which is

continuous, bounded, and admits representation (1.3) ~/ t &#x3E; to.
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