Annali della Scuola Normale Superiore di Pisa Classe di Scienze

S. ZAIDMAN

An existence theorem for bounded vector-valued functions

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 24, nº 1 (1970), p. 85-89

http://www.numdam.org/item?id=ASNSP_1970_3_24_1_85_0

© Scuola Normale Superiore, Pisa, 1970, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

AN EXISTENCE THEOREM FOR BOUNDED VECTOR-VALUED FUNCTIONS

S. ZAIDMAN (*)

Introduction.

In professor's L. Amerio paper [1], supposing existence of bounded solutions for $t \ge 0$ (t-time), of non-linear almost-periodic differential equations, one proves existence of bounded solutions which are defined on the whole time axis, $-\infty < t < \infty$.

In our paper [2] we proved a very similar result for solutions of the heat equation, with almost-periodic known term. We shall see below that this situation can be extended to a certain class of Banach space valued functions admitting a certain representation through a given semi-group of class C^0 .

§ 1. Let us consider first a reflexive Banach space X; then, a one-parameter semi-group of operators in $L(X,X):T_t,\ t\geq 0$; such that $T_0=I$, $T_{t+\zeta}=T_tT_\zeta$; $T_t\in L(X,X)\ \forall\ t\geq 0$ and T_tx is continuous from $0\leq t<\infty$ to X.

Consider also a continuous function $-\infty < t < \infty$ to X, which is almost-periodic in Bochner's sense, that is:

Each sequence $(f(t+a_n))_{n=1}^{\infty}$ contains a subsequence $(f(t+a_{n_p}))_{p=1}^{\infty}$ which is uniformly convergent on $-\infty < t < \infty$, in strong topology of X.

Let now u(t) be a continuous function: $0 \le t < \infty$ to X, admitting representation

(1.1)
$$u(t) = T_t u(0) + \int_0^t T_{t-\zeta} f(\zeta) d\zeta, \quad \forall t \geq 0$$

Pervenuto alla Redazione il 21 Agosto 1969.

^(*) This research is supported by a grant of the N.R.C. of Canada and by Summer Research Institute, Queen's University, 1969.

and let us assume

(1.2)
$$M = \sup_{t \geq 0} \| u(t) \|_{X} < \infty.$$

Then we have

Theorem. There exists a continuous function $W(t), -\infty < t < \infty$ to X, such that

$$(1.3) W(t) = T_{t-t_0} W(t_0) + \int_{t_0}^t T_{t-\zeta} f(\zeta) d\zeta, \forall t \ge t_0$$

$$\sup_{-\infty < t < \infty} \| W(t) \| < \infty.$$

PROOF. Let us consider the sequence of translates

$$u_n(t) = u(t + n)$$

They are defined for $t \ge -n$, and we have

(1.5)
$$\sup_{t \geq -n} \| u_n(t) \| = M = \sup_{t \geq 0} \| u(t) \|$$

As well known, reflexivity implies weak sequential compactness of bounded sets in X. Then, using almost-periodicity of f(t) and the diagonal procedure, we obtain a sequence of positive integers $(n_k)_1^{\infty}$ with following properties:

- (1.6) $\lim_{k \to \infty} f(t + n_k) = g(t)$, uniformly on $-\infty < t < \infty$ (and consequently g(t) is an almost-periodic function)
- (1.7) For each N=0, 1, 2, $u_{n_k}(-N)$ is defined for k>N, and
- (1.8) $(\omega) \lim_{k \to \infty} u_{n_k}(-N) = W_N$ exists and belongs to X (here (w) means weak topology in X; remember that a reflexive space is weakly sequentially complete).

Remark now, that for each real t, $u_{n_k}(t)$ is defined for $k \geq k_t$. Then we shall see that, $\forall t \in (-\infty, \infty)$

$$(1.9) \qquad (w) \lim_{k \to \infty} u_{n_k}(t) = V(t) \text{ exists.}$$

$$\sup_{-\infty < t < \infty} || V(t) || < \infty$$

$$(1.11) V(t) = T_{t-t_0} V(t_0) + \int_{t_0}^{t} T_{t-\sigma} g(\sigma) d\sigma, \forall t \geq t_0, \quad \forall t_0 \in \mathbb{R}^1.$$

In fact (1.10) is a consequence of (1.9) and (1.5). To prove (1.9) we use following

LEMMA 1. Let $t \in (-\infty, \infty)$ be given, and N a positive integer such that t + N > 0. Then, $\forall k > N$, we have

(1.12)
$$u_{n_k}(t) = T_{t+N} u_{n_k}(-N) + \int_{-N}^{t} T_{t-\tau} f(\tau + n_k) d\tau.$$

This Lemma is a Corollary of a slightly more general result

LEMMA 2. Let u(t), $t \ge 0 \to \mathcal{X}$ (arbitrary Banach space), be a continuous function; T_t ; $t \ge 0 \to L(\mathcal{X}, \mathcal{X})$ be a strongly continuous one parameter semigroup of linear bounded operators in \mathcal{X} ; f(t), $-\infty < t < \infty \to \mathcal{X}$ be a continuous function.

Suppose

$$u(t) = T_t u(0) + \int_0^t T_{t-\tau} f(\tau) d\tau, \quad \forall t \geq 0.$$

Then, if $t \in (-\infty, \infty)$, is given and b > a > 0, a + t > 0, we have

(1.13)
$$u(t+b) = T_{t+a} u(b-a) + \int_{-a}^{t} T_{t-\zeta} f(\zeta+b) d\zeta$$

Remark. Lemma 1 follows from Lemma 2 if we take $b = n_k$, a = N.

PROOF OF LEMMA 2.

As t+b>t+a>0, we have using (1.1)

(1.14)
$$u(t + b) = T_{t+b} u(0) + \int_{0}^{t+b} T_{t+b-\zeta} f(\zeta) d\zeta = T_{t+a} T_{b-a} u(0) + \int_{0}^{t+b} T_{t+b-\sigma} f(\sigma) d\sigma .$$

Next remark, again by (1.1), the representation

$$u(b-a) = T_{b-a} u(0) + \int_{0}^{b-a} T_{b-a-\sigma} f(\sigma) d\sigma.$$

Introducing in (1.14) the value of $T_{b-a} u(0)$ we get

$$(1.15) u(t+b) = T_{t+a} \left(u(b-a) - \int_{0}^{b-a} T_{b-a-\sigma} f(\sigma) d\sigma \right) + \int_{0}^{t+b} T_{t+b-\sigma} f(\sigma) d\sigma =$$

$$T_{t+a} u(b-a) + \int_{b-a}^{t+b} T_{t+b-\sigma} f(\sigma) d\sigma.$$

Now, set $\sigma = \zeta + b$; it follows $\int_{b-a}^{t+b} T_{t+b-\sigma} f(\sigma) d\sigma = \int_{-a}^{t} T_{t-\zeta} f(\zeta + b) d\zeta$ which proves our Lemma, and consequently Lemma 1 too.

Actually we see that (1.9) is true in the following way: Fix an arbitrary real t; then take N a positive integer, such that t+N>0, and take k>N. We use then (1.12); as $f(t+n_k)\to g(t)$ uniformly on $(-\infty,\infty)$ and in X strong, we have obviously

$$\lim_{k\to\infty}\int_{N}^{t}T_{t-\zeta}f(\zeta+n_{k})\,d\zeta=\int_{N}^{t}T_{t-\zeta}g(\zeta)\,d\zeta.$$

Then we have also

$$(w)\lim_{k\to\infty} T_{t+N} u_{n_k}(-N) = T_{t+N} W_N.$$

because a linear continuous operator in a B-space is continuous also in respect to the weak convergence.

Now, we shall see that for function V(t), $-\infty < t < \infty \to X$ defined by (1.9), the representation formula (1.11) holds for each semi axis $t \ge t_0$.

Take in fact two reals $t \ge t_0$, and choose an integer N such that $-N < t_0$. Apply Lemma 1 to t, t_0 , N. We have

$$u_{n_k}(t) = T_{t+N} u_{n_k}(-N) + \int_{-N}^{t} T_{t-\zeta} f(\zeta + n_k) d\zeta$$

$$u_{n_k}(t_0) = T_{t_0+N} u_{n_k}(-N) + \int_{-N}^{t_0} T_{t_0-\zeta} f(\zeta + n_k) d\zeta.$$

Then, reasoning as above, we obtain

$$V(t) = T_{t+N} W_N + \int_{-N}^{t} T_{t-\zeta} g(\zeta) d\zeta$$

$$V\left(t_{0}\right) = T_{t_{0}+N} W_{N} + \int_{-N}^{t_{0}} T_{t_{0}-\zeta} g\left(\zeta\right) d\zeta$$

Trying now to get (1.11) we write

$$T_{t-t_0} V(t_0) = T_{t-t_0} \left(T_{t_0+N} W_N + \int_{-N}^{t_0} T_{t_0-\zeta} g(\zeta) d\zeta \right) = T_{t+N} W_N + \int_{-N}^{t_0} T_{t-\zeta} g(\zeta) d\zeta.$$

Hence

$$T_{t-t_0} V(t_0) + \int_{t_0}^{t} T_{t-\zeta} g(\zeta) d\zeta = T_{t+N} W_N + \int_{-N}^{t} T_{t-\zeta} g(\zeta) d\zeta = V(t)$$

that is (1.11).

Now we give the idea of the final step in the proof. Using uniform (on real axis) convergence of sequence $f(t+n_k)$ to g(t), we obtain uniform convergence of sequence $g(t-n_k)$ to f(t). Starting now with V(t) and repeating above procedure, we obtain function W(t), $-\infty < t < \infty$ which is continuous, bounded, and admits representation $(1.3) \ \forall \ t \ge t_0$.

REFERENCES

- [1] L. AMERIO: Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasiperiodici, o limitati, Ann. di Mat. Pura ed Appl., 39, pp. 97-119, 1955.
- [2] S. ZAIDMAN: Soluzioni limitate e quasi periodiche dell'equazione del calore non omogenea Nota I, Acc. Naz. dei Lincei, Rend. Scienze fisiche, matematiche e naturali, Serie VIII, vol. XXXI, fasc. 6, Dicembre 1961.