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CLUSTER DIRECTIONS OF EUCLIDEAN SETS

by JACK G. CEDER

An uncountable subset A of Euclidean 3-space, .E3~ (or of .E2) is said

to have a cluster direction .L at x provided x E A and L is a line con-

taining x such that whenever S is a sphere centered at x and .g is an

open convex cone which has vertex x and contains a half ray of L, the
set A n S n g is uncountable. The main result of this paper, Theorem 3,
asserts that a countable set C can be deleted from each uncountable sub-

set A of (and hence .E2 too) so that at each point of A - C there is

a cluster direction. This result extends and generalizes several results

found in [1], [3] and [4] and, for instance, immediately implies that each
convex body has at most countably many corners. We also apply this
basic result to the graphs of real-valued functions of two variables and

show that the points at which there are cluster directions in all directions

are numerous in the sense of category and measure.
First we establish the following conventions and definitions. All func-

tions considered in the sequel will be real-valued and, moreover, a function
will be identified with its graph. We say that a point x of an uncountable
planar set A is a (bilateral) corcdensation point of A if each open square
(resp. each vertical half of an open square) centered at x contains uncoun-
tably many points of A. Finally, the left derived set x) and the

right-derived set DR (f, x) of a function f (defined on a set of reals) at x
are defined to be the sets of all possible sequential limits (as extended real

numbers) ) of the difference quotient f (y _ f x (x) as y approaches x from they
left and the right respectively.

Theorem 3 generalizes the fact (see Lemma 1 of [3] that a countable
set may be deleted from each function which has an uncountable domain

of reals so that each point of the new function is a bilateral point of
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condensation of that function. Moreover, Theorem 3 also strengthens the

following refinement of a result due to Bagemihl [1], which will be used
in the sequel.

THEOREM 1. (Ceder [3]) Let f be a function defined on an uncountable
set A of real numbers. Then there exists a countable set C such that if

g is the restriction of f to A - C, then for each x E A - C

and each point of g is a bilateral point of condensation of g.

If g is a function each point of which is a bilateral point of conden-
sation of g and if and I is neither + oo nor - oo,
then obviously the line of slope A which passes through (x~ g (x)) is a clu-

ster direction of g. However, if + o0 or - oo is the only common point
of the left and right-derived sets then the vertical line through (x, g (x))
may not be a cluster direction of g. For example, if g is given by: g (x) --- 0
when x  0, g (x) = 2 when x ) 0 and 9 (0) = 1, then x) n DR (g, x)
yet g has no cluster direction at 0.

As the first step leading to the proof of Theorem 3 we have the fol-
lowing lemma.

LEMMA 1. Let f be a function defined on an uncountable set A of the
reals. Then there exists a function 9 C f with uncountable domain such

that at each point of g there is a cluster direction.

PROOF : If the range of f is countable, then there exists an uncoun-
table subset D of A on which f is constant. In this case let B consist of

the bilateral condensation points of D. Then the restriction of f to B will
be the desired function g.

If, on the other hand, the range of f is uncountable we can find an
uncountable subset of A on which f is one-to-one. So let us assume witho-
ut loss of generality that f is one-to-one on A itself. First of all, apply
Theorem 1 to f to obtain an with uncountable domain H such that

for each x E H. Next apply Theorem 1 to the

function h-I to obtain a function k c h-1 with uncountable domain g such

that for all 

We consider g = and let (x, y) E g. Suppose that there is no cluster

direction of g at (x, y). Then clearly there is no cluster direction of k at

(y, x) This means that But this in turn

implies that h has no cluster direction at x, which is a contradiction.

Thus g is the desired function.
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Next we prove the main result for the planar case. As a consequence
of this, Lemma 1 ean be strengthened to assert that the set difference

f - a is actually countable. _

THEOREM 2. Let A be an uncountable subset of the plane. Then there
exists a subset B of A such that A - B is countable and at each point
of B there is a cluster direction.

PROOF: Let 9 consist of all uncountable subsets G of A for which

G has a cluster direction at each of its points. First we show that g is
non-empty. Denote by n the projection mapping onto the x-axis. If n (A)
is countable we may find an xo E ~ (A) for which (A) is uncountable.

Letting G consist of the bilateral condensation points of ~-~ (xo) we have
g E ~. On the other hand, if zc (A) is uncountable let F be a choice func-

tion for the family (x) : x E n (A)) Now apply Lemma 1 to the function

.F to for which G E G. Hence, in either case G is non-empty.
By Zorn’s Lemma there will exist a maximal disjoint subfamily 9k

af ~. That is, if C)3 and each two distinct members of CJ3 have empty
intersection, then % C Define B = u 9N. If A - B were uncountable
then the proof of the fact yelds an B C A - B for wich

HE (j. Then would belong to @, which contradicts the maximality
of 9N. Therefore A - B is countable and since the theorem is proved.

When specialized to a function having an uncountable domain, Theo-
rem 2 asserts that there is a cluster direction at all but a countable num-

ber of points. Accordingly, Theorem 2 implies Theorem 1 and also the

fact [3] that each function with an uncountable real domain has, except
for countably many points a bilateral condensation point at each of its
points. As another immediate consequence of Theorem 2 we have

COROLLARY 1. A planar convex body can have at most countably
many corners.

Surprisingly, it can happen that a function has only « one » cluster
direction. For example, choose f to be a strictly increasing function on

~0,1] such that f’ = 0 a. e.. Let A=={.r:/’(J?)==0). Then A is uncoun-
table and the restriction of f to A, g, is one to-one on A and g has a
zero derivative everywhere in A. Therefore, g has only horizontal cluster

directions.

Now we proceed to extend the planar case, Theorem 2, to the spatial
case.

THEOREM 3. Let A be an uncountable subset of E3. Then there exist
a subset B of A such that A - B is countable and at each point of B
there is a cluster direction.
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PROOF : Since the non-condensation points of A are countable (see
Lemma 2 of [4]), we can assume without loss of generality that each point
of A is a point of condensation. We divide the proof into two cases.

Ca-ge I: Suppose that there is no uncountable subset of A which is

coplanar.
Let denote the sequence of all rational planes through the

origin (that is, a plane one of whose sets of direction numbers is a ratio-

nal triple) Let denote the open sphere of radius about x. Let

m be the set of all points x E A for which there exists a rational plane
.Rn and sphere 8m (x) such that Rn is countable and one of the

two components of has empty intersection with A. Put C =
00 00

= U U Cnm. Clearly each Cm can not have a point of condensation. The-
n=1

refore each is countable and C itself is countable.

Now put A’ - A - C and denote by pm the projection mapping onto

the plane Rm. Let 1 be a countable basis for the Euclidean

topology in E 3. To each set of the forn pm (vknA’), which is either empty
or uncountable, we may apply Theorem 2 to obtain 

where is countable and at each point of Bk there is a cluster direction

in Next put

Then B has the following properties : (1) A - B is countable; (2) each
point of B is a condensation point ; (3) B n C = 0 ; (4) there is no uncoun-
table subset of B which is coplanar ; and (5) for any x E B and open set
V (x) and rational plane R, the projection of B n V (x) has a cluster direc-

tion in R at the projection image of x.
If .g is any open convex cone with vertex x, we say that .g is a

B-cone if for each sphere S centered at x we have K n S n B + 0 (or equi.
valently .g n bY n B is uncountable by (2)).

Choose any x E B and let P2 and P3 be the tranlates of the coor-
dinate planes which pass through x. Consider the four cones which are the
components of .E3 - P2. Among these four cones there will exist a
pair consisting of « opposite » B cones. If this were not the case, it is

easy to see that we must have (1) x E C or (2) there exist some sphere
8 (x) whose projection upon P3 has no cluster direction at x. Denote these

two opposite B cones by g1 and Next consider the four cones which

are the components of (~1 U K1*) - P3. By the same argument there must
exist a pair of opposite B-cones among these four cones. Denote these

cones by and .g2 where .g2 C g1.
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Continuing in this fashion by induction we will obtain sequences

of cones (K.]’ 1 and (K))18=1 such that (a) gn and for

each n ; (b) B’n and are opposite B-cones at z ; 3 (c) if U denotes the

surface of the unit sphere centered at x, (Kn n and 1 are

nested sequences of closed sets in U whose diameters tend to zero as

n --~ oo.

By property (c) we can find a line .L through x such that

By property (b) it is obvious that L is a cluster direction of B at x. This

finishes the proof of Case I.

Case II: Now consider the case of an arbitrary uncountable set A.
Let 12 be the family of all uncountable subsets D of A such that there

exists a plane P such that D C P and at each point of D there is a cluster
direction. Assuming Case I does not hold, choose by Zorn’s Lemma M to
be a maximal disjoint subfamily of -0 and put Clearly
each point of u 9N has a cluster direction. In case N is countable, u 9N
will serve as the desired set B. On the other hand, when N is uncoun-

table N has, by the maximality of 9N, the property that it contains no

uncountable coplanar subset. Therefore we may apply Case I to obtain a

C C N such that N - C is countable and each point of C has a cluster

direction. Now put B = 0 u (u crIl) to get the desired set B. This completes
the proof of the theorem.

As an immediate consequence of Theorem 3 we have

COROLLARY 2. A convex body in E3 can have at most countably
many corners.

In sets of second category or of positive Lebesgue outer measure in

.E2 or .E3 it turns out that there are many points such that each line thr-

ough the point is a cluster direction. More precisely we have the following
result.

THEOREM 4. Let A be an uncountable subset of B2 (or .E3). Then the
subset of A consisting of all points which do not have cluster directions

in all directions through the point is a subset of a first category, null

F,-set in .E 2 (resp. E3).
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PROOF : We carry out the proof only for the E3 case and note that

the E2 case is similar. Since the non-condensation points of A are coun-

table we may without loss of generality assume that each point of A is a

condensation point. Let Rand R+ denote the set of all rational numbers

and the set of all positive rational uumbers respectively. Let 9 = R X .R X
X R - ((0, 0, 0)). Let C consist of all points in A at which at least one

direction is not a cluster direction. For 8 E I~+ n (o, ~) and r E R+ let

C (T, 8, r) denote the set of all points z E A such that A n Sr (z) n .g (T, 8, r) = 0
where Sr (z) is the open sphere of radius r centered at z and K (T, 0, r) is

the right circular cone with vertex z, with axis having T as a set of direc-
tion numbers and with 0 as its angle. Clearly.

To complete the proof it suffices to show that the closure of each

C (T, 9, r) is a nowhere dense, null set. First of all, it is obvious that each

C (T, 8, r) is nowhere dense. Let us now show that any C (T, 0, r) has mea-
sure zero. Without loss of generality we may assume that T = (0, 0, 1) and
r &#x3E; 1. Let B be the closure of C (T, 8, r). Note that if z E B, n

n $,, (z) = 0. ·
We will now that B has Lebesgue measure zero. First enumerate the

set of all closed intervals with consecutive integral endpoints as 
Now put = iz E B : z E It will suffice to show that each Bn has mea-
sure zero. Choose any n. Then clearly Bn is the graph of some function

f with some domain D c E2 and range contained in In. Since (the graph
of) f is closed its projection D upon the xy-plane will be a Ku set. It also

follows that f w (F) is a Baa set for each closed F C Ih. Therefore, f is a

Borel measurable function of class 2 relative to the Ka set D. Consequently
f can be extended to a Borel measurable function g of class 2 with domain
all of E2 (see p. 341 of [7]). Hence, if is a subset of a Lebesgue measu-

rable function g. However, the graph of a Lebesgue measurable function

has measure zero, as can be seen quickly by considering sequences of sim-
ple functions approaching from above and below. Hence, f or B~, has mea-
sure zero. This complete the proof of the theorem.

A different proof of Theorem 4 minus the F, stipulation can be based

upon Hunter’s proof [6] of a result of Young [9] which asserts that for a

real valued function f with domain a planar set B there exists a first

category null set A such that for each x E B - A the cluster set of f at x
is the intersection of the sectoral cluster sets of f at x. (See [6]).

If we specialize the set A in the above Theorem to be a function from
.E 2 into then Theorem 4 doesn’t give much information. For example,
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the graph of a continuous function is itself a first category null set. A
much more natural question to consider is whether at a given point there

is a cluster direction in each vertical plane through the point. We conjec-
ture that for all functions from ~2 to E1 the domain of the set of points
through which there exists a vertical plane containing no cluster direction
is indeed a first category null set in the plane. However we are only able
to prove it for continuous functions as shown by Theorem 5 below. If this

conjecture is true it implies easily Young’s theorem.
Before proving Theorem 5 we need the following lemma of Marcus [8],

a direct proof of which may be patterned after that of Theorem 7.

LEMMA 2. (Marcus [8]) . If G is a planar second category set having
the property of Baire, then there exists a horizontal line .L such that Z n G
is residual in Z n G.

Lemma 2 is not valid for arbitrary second category sets as shown by
the following example.

EXAMPLE 1. There exists a second category set in the plane which

intersects each line in at most two points. To show the existence of such

a set, let e be the collection of all perfect sets which are contained in some
circular arc. Let e be well ordered by the ordinal c so that e = 
Given a planar set A let L (A) denote the set of all points collinear with

a pair of points of A. Pick zo E 00 arbitrarily. By induction suppose  c

and we have chosen z. for each a  ~ such that za E Ca and no three points
of are collinear. Since the set Op - L ((za ; a  fl)) is non-empty we
can pick a point zp in it. Clearly no three points of (za : a  fl) are colli-

near. Hence, letting Z = we have that Z intersects each member of

eand no three points of Z are collinear.
If Z were of the first category, then Z would be a subset of a first

category Fa set, whose complement B is a residual G3 which contains no

perfect subset lying in a circular arc. Consider the conformal mapping F

given by F (z) _ (t - i) -[- i/z. It maps each circle tangent to the y-axis at
the origin into a horizontal line. If ~ = E 2 = 0), then 1~ restricted
to H is a homeomorphism of .H onto E 2 - (z : z2 = 0). Therefore F maps

the residual B n H, onto a residual Applying Lemma 2 there exists
a horizontal line .L which intersects F (B n H) in an uncountable set. The-

refore B n .g intersects the circular arc (L) in an uncountable Borel

set. Consequently, there exists a C E C such that (Z) n B n H C B.
This is a contradiction so that Z must be of the second category.

THEOREM 5. Let f be a continuous function from E2 into E1. Then

there exists a first category, null Gaa set C of .E2 such that for each x ~ C
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and vertical plane P passing through (x, f (x)) f has a cluster direction

lying in P at the point (x, f (x)).

PROOF. If z is a point of/ for which there exists a vertical plane Q
through z having no cluster direction lying in Q at z, then we can find a
rational vertical plane P through z for which there is no cluster direction

at z in Q. (If all rational planes through z had cluster directions, one could
find a sequence of planes with Pn having a cluster direction in
and some A. Then clearly A is a cluster direction in Q).

If P is any vertical rational plane passing through the origin, let P~
be the translate of P which passes through z. For P a vertical rationai

plane and z E f let S denote the unit circle in Px centered at z and let

~ and Sz be the right and left, closed, vertical half circles of S (right
and left are determined relative to the plane P). Define to be the

set of all Â. E SR such that the line in Pz passing through z and I is a

cluster direction for the set f u I where I is the interval joining z to - A.
Similarly we define DL ( f, Pz).

From the continuity and will be closed inter-

vals contained in SR and SL , respectively. Moreover, let (I, Pz) ==

=(2013~:~6~(/,~)j. If f has no cluster direction in Pz at z then

‘DL(fipz)nDR(f,Pz)= 0.
Now let C be the set of all points such that there is no cluster

direction at (x, f (x)) in some vertical plane through (x, f (x)). For P a ratio-
nal vertical plane, let C (P ) consist of those x E C such that Px contains
no cluster direction at z = (x,f (x)). Clearly 0 = u I C (P) : P a rational ver-

tical plane). If x E C (P) and z = (x, f (x)) we can find disjoint closed ratio-

nal intervals I and J in SR such that DR ( f, and - DL ( f, J.

For a pair of disjoint closed rational intervals, (I, J) in SR let C (P, I, J)
denote the set of all x E C (P) for which DR ( f, Pz) c I and - DL ( f, Px) c J
where z = (x, f (x)). Since 0 (P) is the union of the countable family of such

it will suffices to show that each C (P, I, J) is a first category,
null Ga set in .E2.

Let us consider a specific C (P, I, J ) and suppose I = [a, b] and J =
== [c, d] where a  b and c  d in the positive orientation in SR . For n a
positive integer define
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and

Clearly each W~ is a closed set disjoint from C (P, I, J). Moreover, it is

not difficult to see that

From this it follows that C (P, I, J) is a Ga set.

If O(P, I, J) were dense in some disc D, then each would be now-
- here dense in D and C (P, 11 J) would be a residual Ga in the open set D.

Now applying Lemma 2 we have for some z Px n D n C (P, I, J) is of second
category (hence uncountable) in the line Pz n D. Next apply Theorem 2 to
the function f restricted to Pz n D to obtain a cluster direction at some

point (w, f (w)) for w E Pz n D n 0 (P, I, J). This is a contradiction so that

C (P, I, J ) is nowhere dense.

Now we proceed to show that C (P, I, J) is of measure zero. For this

we need the following lemma, whose proof immediately follows from Fubini’s
Theorem : Lemma: Let B be a Lebesgue measurable subset of E2. If for

each horizontal line L, .L n B has zero measure in L, then B has measure

zero. By this lemma, if the Ca set C (P, I, J) had measure zero there would
exist a plane Pz such that is uncountable. Now applying
Theorem 2 as above we obtain a contradiction.

This finishes the proof of the theorem.
We can also consider cluster directions in a more restricted sense. For

example, we could stipulate that the cluster direction L is also a cluster

direction for A n L or for P n P for some plane P containing L. Obviously
the analogues of Theorem 2 and 3 do not hold for these notions. However,
we do have the following result.

THEOREM 6. (Bruckner and Rosenfeld [2]). Let B be a Lebesgue mea-
surable subset of the plane. Then for almost all points x of B, .L is a clu-

ster direction for B n L for almost all lines L passing through x.
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Example 1 shows that there is no analogue of Theorem 6 for arbitrary
second category sets. However, for second category sets which have the

property of Baire we have the following theorem.

THEOREM 7. Let B be a planar set of second category having the

property of Baire. Then there exists a first category set A such that for
each x E B - A, there exists a set D everywhere of second category in the
unit circle Cz centered at x such that each line .L passing through x and
a point of D is a sluster direction for .L n B.

PROOF. Clearly it suffices to prove the theorem for a set B residual

in some open set, which, without loss of generality, we may assume to be
00

the whole plane. Let E2 - B - U Fn where each Fn is a no-where closed
n=1

set. Let be an enumeration of all the rational open intervals in

(0, + oo). We shall show that for each x E B there exists a set D everywhere
of second category in Cx such that for each line L passing through x and
a point of D L n B is everywhere of second category in L.

Assume the contrary, so that there exists an x E B, an arc J of Cx 
-

and a first category set A C J such that for each line L passing through
x and a point of J - A, L n B is of first category in some subinterval of
L. Let L~ denote the open half ray emanating from x and passing through
y E Ca;. For positive integers n and k let Cn, k consist of all points y E C for
which Vk c fn where Yk is considered in Obviously, we have J -

00 00

- A = U U Cn, k, whence it follows that some Cn k is dense in some
n=1 1 k=1 

’ ’

subinterval I of J. Since Fn is closed, Fn contains the open « sector &#x3E;&#x3E; de-

termined by Vk and the two rays through x and the endpoints of I. This
contradicts the fact that Fn is no-where dense. Therefore the theorem is

proved.
It is unknown whether Theorem 7 can be improved to assert that D

is residual.

It is also unknown whether the analogue of Theorem 5 is valid for

cluster directions in the restricted sense: that is, given a continuous fun-
ction F from E2 into .E1 the set of all x E E2 for which there exists a

vertical plane P through (x, F (x)) such that F n P has no cluster direction

at (x, F (x)) is a first category null set. This proposition, however, is not

valid for non-continuous functions as shown by

EXAMPLE 2. There exists a function F from E2 into .E1 such that

through each z E F there exists a vertical plane P containing no cluster
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direction of F n P. Let be an enumeration of all rational lines

through the origin and let -0 be the familly of all translates of the members
of the sequence )L~)~ 1. According to a result of Davies [5] there exists a
one-to-one function g from .E2 into Z such that x E g (x) for all x E E2. Let

An = (z E E2 : g (x) + x). Define F (x) = 2n whenever x E An. Then

clearly for each z = (x, F (x)) has no cluster direction where P is the

plane and On the other hand it is clear that for

each vertical plane P through z E F the horizontal line in P through z is

a cluster direction for F.
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