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NONEQUIVALENCE OF REGULAR BOUNDARY
POINTS FOR THE LAPLACE

AND NONDIVERGENCE EQUATIONS,
EVEN WITH CONTINUOUS COEFFICIENTS (*)

by KEITH MILLER

In [7] the author showed that the regular boundary points for the
uniformly elliptic equation in nondivergence form

when the coefficients are only required to be measurable, with the eigen-
values of the symmetric in [oc, 1 ], 0  a  1, are not necessarily the
same as those for Laplace’s equation, even though this equivalence of re-
gular points does hold for the equation in divergence form,

with the same class of coefficients, as proved by Littman, Stampacchia,
and Weinberger [5]. In fact, [7] gives examples of « both ways nonequiva-
lence » for a arbitrarily close to 1 when n = 3, and examples of  one way
nonequivalence » for a arbitrarily close to 1 when n = 2 and for a suffi-

ciently small when n &#x3E; 4.
Several of the author’s fellow workers (being of little faith in the future

of the nondivergence equation with discontinuous coefficients) have raised
the question whether continuity of the coefficients in (1) is sufficient to

Pervenuto alla Redazione il 16 Ottobre 1969.

(*) The research for this paper was partially supported by Air Force Contract Num-
ber AF-AFOSR 553-64.
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restore equivalence of regular points. We show in this note that it is not;
in fact, we exhibit a nondivergence equation in the plane with continuous

coefficients (analytic except at 0 and tending to those of the Laplacian at
0) for which the origin is an isolated regular point.

To be precise, a boundary point x° of the bounded domain 0 is a re-
gular point for the operator Z (or for the equation Lu = 0) if there exists

a barrier for .L at x°. Otherwise xC) is an exceptional point for L. A barrier
for L at x° is a function w, defined in some relative neighborhood N=
= U n Q (U an open neighborhood of x°;, satisfying

It suffices to deal with C2 barriers because we will be considering only
operators with smooth coefficients in the interior. If L has nonsmooth coef-
ficients then solvability of the Dirichlet problem is not known even for the

sphere. However, we proved in [6, p. 98J J that if L has Holder continuous
coefficients on compact subsets of S~ then solvability of the Dirichlet pro-
blem for every continuous boundary fnnction is equivalent to existence of
a barrier for L at every boundary point.

THEOREM. The)-e exist, for n = 2, nondivergence equations for which the
origin is an isolated regular boundary point, even though the coefficients are
continuous (analytic except at the origin) and tend at the origin to the coeffi-
cients of the Laplaoian.

PROOF. We investigate the case n = 2 because there we have from

Theorem 3 of [7] a particularly simple example (in fact radially symmetric)
of « one way nonequivalence » even when a is arbitrarily close to 1.

Consider radial functions w (x) = g (r). Now at each point xo chose the
following orthogonal coordinate system : let the y1 axis be in the radial

direction and let the y2 , y3 .,. Yn axes be in tangential directions. These

are directions of principal curvature i. e., the cross derivatives vanish. The-

refore L, with ellipticity constant a, applied to radial functions w, have
the representation
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where a (x), b (x) are measurable coefficients in [a, I]. When n = 2 and
a =1- ~ is any elliplicity constant  1, the equation

has the solution

which is a barrier at the origin for this equation.
Let us see if we can still get a barrier as a solution when we replace

the ellipticity  constant &#x3E;&#x3E; 1- ~ by (r) where fl is continuous and

positive and ~8 (r) - 0. We want a solution for some positive 6 of:

Two integrations then show that this is possible iffi fl is such that

is integrable on [0, bJ.

Well, a necessary condition is that

has no solutions if fl (r) tends Dini continuously to zero. However, a solu-
tion of (7) does exist if fl (r) tends only logarithmically continuously to
zero, for

satisfies (7) with This completes the proof.

REMARK. Landis [4] has recently introduced a sufficient criterion for

regularity in terms of « 8-capacity &#x3E;&#x3E; and has also discovered examples of

nonequivalence (with discontinuous coefficients) quite similar to those of [7].
The equivalence of regular boundary points for the Laplace and nondiver-
gence equations was established by Oleinik [8] with C3+a coefficients and
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by Herv6 [2] with Lipschitz continuous coefficients. Recently Krylov [3] has
extended this equivalence to Dini continuous coefficients, i. e. coefficients

a

with modulus of continuity fJ (r) such that the integral r dr convergesmthm y() g J g

t

as t --~ 0. On the other hand, our construction yields an example of non-

equivalence if the continuity is only slightly worse, i. e., if this integral
merely diverges sufficiently rapidly that (8) is integrable.

NOTES ADDED IN PROOF. We are indebted to D. Strook of NYU for

calling attention to an early paper by Gilbarg and Serrin [1]. We find in
it the same radially symmetric solution u = a + b/log r and equation with
continuous coefficients which has been constructed here; thereby converting
the present note into a largely expository exercise. This example therefore
also predates those (for nonequivalence in one of the two directions) in [7]
and [4]. The application in [1] was not specifically to regular and exceptional
points, but to the closely related topic of removable bounded singularities.

The present example shows only « one way nonequivalence » with

continuous coeffieients. We have just received a new paper by 0. N. Zo-
graf [9] contructing a difficult example in 3-dimensions of « other way non-
equivalence » with continuous coefficients ; this is closely related to the
previously mentioned example of Landis and uses an extension of his

s-capacity approach.
We point out that the present example is easily extended to n dimen-

sions, rc &#x3E; 3. In fact, let Lo be the operator

where r = ~/x1-~- x~ and where the and Y2 axes are chosen in the radial
and tangential directions in the x2) plane as before. Consider the func-
tion

Since WY2Y2 ~ wr~r = [r log r]-2 becomes infinite as r -~ 0, we can take care
of the added terms 2, etc., by changing fJ (r) slightly, now

being given by - 2 (log + 2 (n - 2) [r log r]2. The resulting operator Lo
with continuous coefficients then has w x2 , 9X3 - a3 , ..., Xn - an) as a
barrier at each boundary point (0, 0, a, .., an) of the domain S~ = (0 
 VX2 1 -~- x2  6). Such points are of course exceptional for Laplace’s equation.
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