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THE BOUNDARY REGULARITY
OF MINIMAL SURFACES

by DAVID KINDERLEHRER

Suppose that the boundary of a mininal surface contains an open
arc, r whose tangent is (n - I).times differentiable with respect to arc

length (I’E C’z), 1. In this paper we determine the differentiability
properties of the conformal representation of the surface restricted to that

are V in the boundary of the parameter domain whose image is r. The
recent investigations of this question date from M. Tsnji [10] who extended
to minimal surfaces the theorem of F. and M. Riesz ([11~. p. 318). In 1951,
II. Lewy [5J proved that if ~’ is analytic, then the conformal representa-
tion is analytically extensible across y. To solve this problem, Lewy em-
ployed his method of connecting the conformal representation to its ana-

lytic extension with an auxiliary function constructed as the solution to

an ordinary differential eqnation. Although this method does not apply in
our case, the differential equation itself does play an important role.

Criteria insuring regularity of the conformal representation have been
given by S. ITildehrandt in [2], [3]. In his latest paper, he has proved
that if I’E C" and tlie (n -1) 81 derivative of’ the tangent vector satisfies
a Holder condition with exponent a, 0  a  1, (I’E C’~, "), for n &#x3E; 4, then
the conformal representation is of class on y. Hildebrandt’s proof
proceeds by « straightening &#x3E;&#x3E; the arc 7~ to a line segment by a suitable
’diffeomorphism of Euclidean space, thereby transforming the problem to a
quasilinear elliptic equation with certain boundary conditions. This new
problem is then solved with the assistance of methods in the theory of
elliptic equations. Unfortunately, this technique seems to require that 1’E C4, a ,
a&#x3E;0

The primary object of this paper is to prove that if then

the conformal representation is also of class el,a &#x3E; 0. In an elementary

Pervenuto alla Redazione il 14 Agosto 1969.
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manner, it follows that the conformal representation is of class when

The precise statements of these results are Theorems 4 and 5.

Motivated by the conformal character of minimal surfaces, the proof
given here utilizes methods of function theory. For each point of F, we
provide a special representation of a portion of the surface where oue of
the harmonic functions is Re = x + i~ and 1n an odd positive integer.
The points of r for which 1n ~ 1, corresponding in a sense to interior

branch points for a minimal surface, pose serious difficulties. None-the-less,
such « boundary singular points &#x3E;&#x3E; comprise a discrete subset of r. These

considerations only require that I’ has a continuous tangent. The use of
a special representation to describe a particular problem in the behavior
of minimal surfaces has been found useful by many authors. We mention
as examples L. Bers [1], J. C. C. Nitscle [7J, and Al. Shiffman [9].

The regularity is proven by estimating the special conformal repre-
sentation and applying Iiellogg’s Theorem (cf. )11) J or [12]). Higher deri-
vatives are discussed in § 6.

Each theorem we prove has an analogue for a minimal surface whose

boundary contains a cusp. As an example, we state Theorem 4’. The me-

thods used here provide some information about boundary behavior when
r is assumed to be differentiable at a single point or when the tangent to

A

r has a modulus of continuity m (t) satisfying f t-1 oi (t) dt  oo, for a 6 &#x3E; 0.
o

We do not discuss these questions here. The local character of the results

insure that the conclusions are valid for minimal surfaces bounded by
several Jordan curves which may even have self intersections.

§ 1. Definitions.

Denote by Q’ the upper half ( --- ~ -+- iq plane. Let S be a minimal
surface in three dimensional (x~ , x2 , x3) space which is the conformal image
of (~ under the triple of harmonic functions

which are continuous in G, the closure of G, and admit finite limits at
~ = ± oo, Suppose that the curve as ; r = r (~), - oo  ~  oo, the boun-

dary of ~~, is rectifiable and that r = r (s) is a strictly monotone map of
(- oo, oo) onto as. In the conformal representation, r (C) satisfies the isother-
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mal relation

Here, we have adopted the notations a. b = Q’2 b2 + a. b3 and a2 =
= a. a for = (b1, b2 , b,). The subacripta $, * denote
differentation with respect to $, q respectively.

Let Fj (~) = Xj (~) + ix! (~), with xj* (~) the harmonic conjugate of Xj (~’)
and Fj (0) = O,j = 1, 2, 3. According to the results of Tsuji [10], the F; (()
are bounded analytic functions in (~ assuming absolutely continuous boun-

dary values F~ (~) on Im ~ = 0. Their derivatives Fj (~), j =1, 2, 3, belong
to the Hardy class H’ of the upper half This implies there exists

an M, 0  oo, so that for 1 ~ j S 3,

The isothermal relations (1) hold almost everywhere (a. e.) on Im ~ = 0, null
sets on Im ~ = 0 correspond to null sets on 6S) and null sets on as cor-

respond to null sets on Im C = 0. In particular,

The assumption that as be rectifiable is a local one in this sense: if

the image C of -1  ,  1 under r (~) is rectifiable, then there is a

subset ( ~ ~ ~ I  1 j n (~ whose image under r = r (t) is bounded by a
curve of finite length. See, for example, Lemma 1.1 in [4].

§ 2. Geometric Considerations.

Let 8 be a minimal surface with rectifiable boundary as. Suppose that
8S contains the arc
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where the yj (~x1) are absolutely continuous ), a. e.

in [- B, B], and 1jJj (0) = 0, j = 2, 3. Here a) (t) is a modulus of continaity
at t = 0 (*). Since t = c (~) is a monotone mapping, we may assume that

1’ is the topological mage of -1   1 (- l ) and xi (1 ) = B.

It follows where is the arc length of I in S measured
d 
-

from 1. In this section, the behavior of S on I’ will be utilized to

provide a special conformal representation for a subset of S. The proofs of
Theorem 1 and the lemmas which precede it are only technical modifications
of those in § 2 of [4]. They are presented here for completeness.

LEMMA 2.1 : There is an absolutely continuous function such

that x* (~) = (~)), - B  Xt  B, and

(i) ~ H’ (.X’1) ]  (1(0 ( , ), a. e. - B  x1  B, where c is a constant

which depends on 1’,

PROOF: With the notations introduced above,  .&#x3E;0 a.e. in [20131,1]
(I 

by (3), so that

It follows that the inverse to Xi (~) oil [- 1,1] is

absolutely continuous. Since 9 (Xi) is also ITi0not011e, H (xl) = x? (g (xi)) is

absolutely continuous in [- B, B].
From (3) and (5),

where c depends only on r, Using the isothernal relations once more,

By modulus of continuity at t == 0 we understand a non-decreasing continuous
function co (t) with w (0) .= 0.
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Statement (ii) follows upon the integration of H’ from 0 to a point xi
and applying the estimate above.

LEMMA 2.2 : Recall that F, (~) = xi (~) -~- ix~ (~), Fi (0) = 0. Then
(i) lim Arg F~ (~) = 0 and lim Arg Pi (~) _ ~c, where Arg (x -~- iy)
-0+ $-o-

denotes the unique number in 3 a) satisfying x + iy = x +[ 2 2 /
+ iy ) fi Arg 

(ii) ~ I Pt (~) ~ I is strictly decreasing for - $0  ~ ~ 0 and strictly in-

creasing for 0 S ~  where $0 &#x3E; 0 is sufficiently small.

PROOF : For - 1  ~ ~ 0, Arg F~ (~) = Arg (x, + i H (x1)) _ ~ -~-

Hence lim by the previous lemma.
B XI / -o-

The same reasoning applies in the case I --&#x3E; 0+.
For -1  ~  0, set R (xi) = (~)~ -~- H (Xi (~))2. By an elementary

computation

Since x1 () is strictly increasing in [- () I is strictly decreasing
for - o  0, some $0. Analogously, I F1 () | I is strictly increasing for

0 S ~  some $0 .

LEMMA. 2.3 : The function Fi (C) has an isolated zero at ~ = 0.
The idea of this proof is due to Donald Sarason. It derives from a well

known theorem. If a function in the Hardy space H 1 of the disc 1

is real valued almost everywhere on an arc y of I z =1, then it can be

analytically continued across y,

PROOF OF LEMMA.. Let o = z (C) map f~ onto the unit z = x + iy disc,
z (0) = 1, and set g (z) = F1 (C)2. By Lemma 2.2, for some 00 &#x3E; 0 and a-,

0a ~c ~
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Here Arg has the same meaning as in Lemma 2.2. Let 99 (z) denote the

bounded, harmonic function in x ~  1 with boundary values

Again invoking- Lemma 2.2 (i), is continuous at z = l. Let cp. (z) de
note the harmonic conjugate of 99 (z), ~~ (0) = 0. The real part of the ana-

lytic function h (z) = is positive in  1.

Integrating

Hence h (z) belongs to the Hardy class H I so that the function g (z) h (z)
belongs to H I. Moreover for almost every 0, 9  90, lim g (rei’9) It (reio) =

, , 

r - I

real number. By the analytic extension theorem
for H’ functions quoted may be analytically continued

across 9 ~  0~ . Since h (z) is zero free, z = 1 is an isolated zero of g (z).
Therefore ( = 0 is an isolated zero of F1 (C).

THEOREM 1 : Let S be a minimal surface with rectifiable boundary as.
Suppose that aS contains the arc

where the 1/’j are absolutely continuous with l1pj (X’i) S ro ( ) a. e in

2013 ~ ~ ~ ~ B and ~ (0) = 0,~ == 2, 3. 
vi :- co ( I x, 1), a. e in

Then there is a subdomain U of G bounded by a segment [a, b] of

-1 C ~  1 and a Jordan arc a joining b to a in G such that log F1 is a

univalent map of U onto a region of bounded argument in the Riemann

surface of log (xi -~- ixt ).
The notations of the theorem and its proof are explained in § 1. The

function co (t) is a modulus of continuity at t = 0.
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PROOF. We may assume that x, (~) is strictly increasing in -1 

 $  1. Uhoose 1’1 &#x3E; 0 so that ~ = 0 is the only zero of P1 in { 
 r1 ~ n C~, and so that I is strictly decreasing in - r, ~ ~-,- 0 and
strictly increasing in 0 ~ ~ ~ ~ . This is possible by Lemmas 2.2, 2.3.

Choose a semicircle 0  0 ~ ;r, with r such that

For 0  1  L, it will be shown that the set

is a simple arc, analytic in G. By continuity and strict monotonicity of

I ~’1 (~) I, there are unique points a  0 and b &#x3E; 0 on a. By continuity of

F, , a n G ~ 0. Since (~) ~ I is not constant in G, a n G is locally one or
several branches of analytic curves. No more than one branch passes through
each point of a. Suppose that starting at a point of a and traversing a
in one direction necessitates passing through a point of a more than once.
Then a would sepa-rate G into at least two components. On the boundary
of at least one of these components, the harmonic function log ~ (f)) I
would be constant. Hence Pt would be constant in G, a contradiction.

Because F, (0) = 0, a does not contain the origin. Since h L ] ~,,
a does not intersect the semicircle rei8, 0  8 S ~c. Hence a c (0  ~ ~ ~ 
Therefore, starting at the point b and traversing a must lead to the point
a. Hence a is a Jordan arc from b to a.

Suppose that C E a is a point where Fl’ (~) = 0. Then in a neighborhood
of this (,

It follows that more than one branch of a passes through C. But this can-

not occur. Consequently, a is an analytic arc in G.

For a fixed E, 0   2"’ choose ro so small that2

and ro  r  1’1. Let a = 0153¡ ,,"here A = mill ( ~ (ro) I, 1 F, (- 11. Say
Â. _ ~ . Put ro = b, let a ~ - ro be the terminus of and denote

by U the 8imply connected subdomaill of C bounded and the segment

12. Ânnali delta Scuola Norm. Sup.. · PiBa.
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[a, b]. Since F1 (~) does not vanish in U, a single valued branch of log F1 (~),
~ E U may be defined by specifying that log F, (ro) = log’ iFt 1+ i Arg F, (ro).

According to the maximum principle, - log I  0 for E ai n G,g p 1’ dit g| ( )| 
where it denotes the outward normal derivative on Therefore,
with s as arc-length on measured from its right hand end point,

d
the Cauchy-Riemann equations imply that arg F, &#x3E; 0 for E aA. HenceY q pY ds g 1( )~

arg F1 (C) is strictly increasing on (Xl.

We now show that arg F, (E) is finite for any ~ E (a, 0). For a fixed

E (a, 0), choose 6 &#x3E; 0 so that the segment 

Since the total variation of F1 on segments parallel to the ~ and q axes
is bounded (cf. (2)) and since F1 is not zero in U, log F1 (~)  oo. Hence

for a given $ E (a, 0), there is a positive odd integer 1n, in view of (6), such
that

It also follows that log Fj (~) is continuous on [a, b] for ~ ~ 0. Given

6 &#x3E; 0, choose an interval I ~ - ~’ C e and a box B witli vertices ~ -~- e,
for some d &#x3E; 0 so that

Since Fi’ is in the Hardy space H 1,
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Therefore, - ~’ ~ C o,

This continuity implies that (6’) holds for all ~ E (a, 0) with m indepen-
dent of ~. Q. E. D.

Maintaining the assumptions and notations of the theorem, determine

a branch of F, by specifying F1 (b)l/m _ I F1 (b) Arg F1 (b) . Them /
image of U under the mapping z = F, is a domain in the (ordinary)
z = x + iy plane.

COROLLARY 1: With the hypotheses of Theorem 1, there is a subdo-
main U of C and a positive odd integer ’In such that z = Fi is a uni.

tn 
-

valent map onto S = V F1 ( U). Let y denote the image of [- 1, ]] n U under
this mapping. Then y is a simple rectifiable arc, null sets on CT n [- 1, 1]
correspond to null sets on y, null sets on 7 correspond to null sets on

and

PROOF : For y we have the representation

for suitable b’, b". Hence the strict monotonicity of x1 (~) in [-1, 1] n U in-
sures that y is simple. By (5),

4

which implies the correspondence between null sets. Rectifiability of y is

shown with Lemma 2.1 (i) and (7) is shown with Lemma 2.2 (i).

COROLLARY 2: With the hypotheses of Theorem 1,

(i) The arc a~ is rectifiable for almost all À, 0 S ~ S ~ I F1 (b) I, and
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(ii) For almost every A, 0    ) () , , there is a C ( oo such that

PROOF: For (i), let 99 (z) denote the inverse to (cf. [13]).
For each ~01~ _ ~ (b) 111m, let ce- denote the arc in lie Then

the length le of a&#x26;, _ ~ (c,), A = e- , satisfies

Hence

where A denotes the area of T7 c G. Since the integrand I§ / o is finite al-

most everywhere, lg is finite almost everywhere, 0  o  R.

To prove (ii) we utilize two well known theorems. Let E be the set of
e, 0 ~ e ~ R, such that

j = 1; 2, 3, and the limits are not zero when j = 1.
Since y is rectifiable, the set of points g not satisfyiug a. has measure

zero. By a Theorem of Lindelof ([11], p. 35?), ~ preserves angles at each
point where y has a tangent. It follows that the set a~ n ( ~ 2013 ~ I  6),
for a suitable 6 &#x3E; 0 depending on 11, is contained in a sector with vertex

at ae for almost every 0 s Lo  R. The same is true for almost every bg ,

According to a well known Theorem ([11], p. 314), a function h of Hardy
class satisfies lim h (i) = h (E) ( 0, oo) uniformly in any sector with

vertex at E for almost every $. Hence the complement of E has measure zero.
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, since Fl’ (C) is known not to vanish in U.

§ 3. Estimations.

Limitations for the conformal representation determined in § 2 are pro-
vided in this paragraph. In wha,t follows, let S be a minimal surface with

a rectifiable boundary which contains the arc r described by (4). For con-

venience, we suppose that the modulus of continuity c~ (t) satisfies a) 2- 5.

With m the positive integer and U the subdomain of ( determined in Theo-
5n

rem 1, we set z = x + iy = F~ (C)l/m, S~ = ýF1 (U), y the image of [- I,
1 ] n U, and fj (z) = Fj (C), j 19 2, 3. Since 1n is positive, Q does not inter-
sect the negative imaginary axis. We assume that D is bounded by y and
an arc of I z I = R &#x3E; 0, with R~ satisfying the conclusions of Corollary 2.
Note that f, (z) = zm .

LEMMA 3.1 : Set cr = 4 (2 + 4w (B)2)’~2 ~ with w (B) ~ 2-5.
(i) Let y : z = x (o) + iy (o), where a denotes arc length on y, Then

(ii) There is a Lipschitz function It (x) so that y : z = x + ih (x),
a  x  b, and

(iii) For t E y and fixed z E y, determine a branch of the logarithm so

that t - z = reie, y  9  -- for a fixed t satisfying Re (t - z) &#x3E; 0.2 2

Then cos 20 &#x3E; 1 and I d-° I  c  2 where c depends only Then COB 29 &#x3E; 2 and I dr 1  2 for t where 1 depends on]y on r.

(iv) For z z’ E Q there is a path C from z to z’ in j such that
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and there is a path Z from 0 to z in S~ such that

This Lemma is proven in a,n elementary manner. To begin, use the
parameterization

LEMMA 3.2 : Let 99 (z) be analytic in S and satisfy

Then there is a subdomain !J’ - D n (I z I C R’) and a ’ &#x3E; 0 such that

PROOF. Ijet z = x + iy E y and choose p &#x3E; 0 so small that z + ig E ~.
Then z Q ; hence,

4

Choose a branch of log (t - z) so that t -- z = reiÐ, t E y, as in

LEMMA 3.1 (iii). Then

Hence
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It is easy to see that there is an R’, 0 C ~ ~ ~ so that

independent of (p, when -~- ie S R. Set c’ = max (e, , c2).

LEMMA 3.3. I.et cp (z) be analytic in S~ and satisfy

Then there is a subdomain Q’ such that

PRooi’ : In view of the previous lemma, it suffices to show that

The domain Q’ and constant c’ will then be those of the previous lem-
ma. Lxpanding in partial fractions and integrating,

Note that all the integrals in the expression above are convergent. We

4!how that those on the right hand side vanish. For t = E y, I sin 8  S 12
by Lemma 3.1 (ii). Hence 0,

sin I

For t E sufficiently small we also have t -)- 2.2

Hence for sufficiently small,
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Therefore, the functions

pointwise a. e. as 6 --~ 0, and

Hence, since - 18 Y Q,

LEMMA 3.4. For

PROOF. With s as arc length of S on T and a as arc length on y,

Since the isothermal relations hold a. e. on y (cf. (3) and Corollary 1),

a. e. on 7

a. e, on y.

Hence, a, e. on y

a~, e. on y

a~. e, on y.

LEMMA 3.5. There is a subdomain such that

1// (z) I ---- M I z 11n-l, Z E = 2, 3, where 1~I &#x3E; 0 is a constant.

PROOF. We first show that is (essentially) bounded on For
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Since we have assnmed that «i satisfies the conclusions of Corollary 2,

1 fjl (z) S nt 012  oo for z ( _ R, z E = 2, 3. In view of Lemma 3.4,
jj’ (z) is essentially bounded on 8Q.

The ,t~ (z), ,j = 2, 3, are bounded analytic functions in D, continuous in
S~. Hence

Since by (8), the above expression may be in-

tegrated by parts to yield that

The Lemma follows from Lemma 3.3.

§ 4. Boundary Singular Points.

Let S be a minimal surface with a rectifiable boundary aS. In this

section, we show that when the arc r c as (cf. (4)) has a continuous tan-

gent, certain singular points, defined below, form a discrete subset of F.
The assumption that r be smooth is essential, as simple examples illustrate.
Suppose, then, that as contains the arc

.

where the and Let 

denote the modulus of continuity of the tp1 in [- B, B],
To I’ we associate a right handed moving trihedral ek (P ) = (akl, ak2, ak3),

Ic _-_ 1, 2, 3, where is the unit tangent vector to I" at P and the

functions = akj (P) are continuous. Note that lim akj (P) = ~k~ , the

Kronecker delta. For any figed P with the distance OP sufficiently small,
there is a subarc Fp C I’ which contains the origin and C1 1 functions (Y1)’
j = 2, 3, so that
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The Inodulus of continuity of is for a constant K~ 1,
independent of 11 for Oll sufficiently small. Moreover, for OP sufficiently
small, the arcs 1’j~, P E r, contain a coinmon subarc lo with 

Using the orthogonal matrix itp = (P)) we determine ; conformal
representation )2 (~) = (Y1 (C), y2 (~), Y3 (~)) by

Suppose that P = r (~p). Let = Yj (C) (~ ), ,? = l, 2, 3, where Yj. (C)
is the harmonic conjugate to y~ (~) and Q’~ ~~p) = 0, Then

The hypotheses of Theorem I are fulfilled for the conformal representation
)2 (~) at I == ~l, . Hence, there is an open subset Up of G, bounded by a
segment [a, b] of the = 0 axis containing ~~, and a Jordan arc in G
,joining b to c~, and an odd integer &#x3E; 0 such that 1t’ = 6~~ is a

conformal map of onto a domain Qp in the if, = 1£ + iv plane. We
refer to the parameter If defined in the domain Qp obtained in this way
as the local parameter at P. We call P a « singular point of S on
f’ », or briefly,  a singular point, », if 1.

In the case M.liere the tangent to I’ satisfies a Holder condition at a

singular point, the notion of singular point coincides with that of branch

point for a minimal surface ([8] p. 234). This, and related questions not

germane to the present study, will be developed elsewhere.
In our notation, we shall systematically snppress the dependence of

the and other functions on P. We assume that ) p ) 32

4t1’HEOREM 2. Let S be a minimal surface with rectifiable boundary S.
Suppose that ~S contains the C’ arc

Then the set of singular points of S on r is discrete.
As an immediate

COROLLARY 3. l,et S be a minimal surface with a C’ boundary aS.
If S has N interior branch points and M singular points on as, then

M+N00
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PROOF OF THEOREM. We assume yj (0) = 1pJ (0) = 0, j ---- 2, 3. Let z

be the local parameter at 0 E 1’ and in = ma be the integer determined by
Theorem 1. Let D = Do be the parameter domain of z, 7 = Yo the arc of
aS~ whose image is a subarc of V, and = 1, 2, 3, the analytic func-
tions whose real parts form a conformal representation of S at 0. We shall

show that for non-zero z E y n [ ] z  R), .~ sufficiently small, r (z) 
is not a singular point.

Let w be the local parameter at P = r (zp) E r. With 1np = n, there is

a subset - which is mapped conformally onto a subset
V = VP c Dp by 

.

The mapping ?? = 1{’ (z) is a topological map of U onto Y, According to (9),

for,j=2,3; 
First we establish a limitation on gj (~.c~) and which does

not depend on P E I’ for or sufficiently small. By Lemma 5.3, there is an

M ) 0 so that for z ( lzl ~ R’). Since the may

trix is orthogonal and lim we may choose p &#x3E; 0 so small
_ 

P- o 0

that PO  p implies

with

where c, -t&#x3E; 1 is the constant from Lemma 3.1 which depends only on r.

Therefore, for 1’0  p and z E S~’,
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Therefore, by differentiating and employing (10),

The inequality above and (12) arse valid except for a set of measure

zero in a V. By Lemma 3.1 (iv),

The remainder of the proof is a simple examination of the equation,
implied by (10),

I z I small and z =~ z y , zrn - 0. Hence a single valued

branch of log (z- - may be defined for 0  I  r, w E Y, with r

sufficiently small. Given 8 &#x3E; 0, choose points iv’ = ic (z’), - w (z") in y~
with 0  I  r so that

Let C be a path from a,’ to 1(’" in jo  1  r). Then the varia-
tion of the argument of z- - on C,
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When

1
and Im (att i + a2, 92 (w) + 93 (w)w-n) C 1 . Hence

Therefore, zo arg zm - &#x3E; n - 1 - n.° B (" 2 
°

Since h’ x)  2013  by Lemma 3.1, the complement of Q
4 8 ’

contains a sector with vertex at x and central angle q  2013 n." 4

Therefore

7
2. Therefore n = 1. Q. E. D.

’ COROLLARY 4. Let 8 be a minimal surface whose boundary contains
the Ci arc

JT: x2 = 1f’2 (x1)~ X3 = ("il’ - 13  B~ 1pj (0) = 1f’J (0) = = 2, 3.

(i) There is a p &#x3E; 0 such that if 0  for then P is not

a singular point of S on r.

(ii) Let .t) (z) and be the conformal representations for S at 0

and P, OP  p, respectively. Suppose that is a conformal map
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of Qo outo V c Qp. Then for iv E ~’ and almost all w E 8 V,

This follows from (11) and (13).

§ 5. Holder Continuity of the First Derivatives.

The Holder continuity is shown initially in the domain of the local
parameter with a diminished exponent. By applying Kellogg’s Theorem

([11], p. 361), the diminished exponent is repla,ced by the original one.

Using Kellogg’s Theorem once more, we prove Holder continuity of the
original conformal representation. The main result is Theorem 4.

Throughout we consider a minimal surface b’ whose boundary aS
contains the arc

v,here yyj (Xt) E 01, I ([ - B, Bn, 0  a  1 ; and y)j (0) = (0) = 0, j = 2, 3.
We assume that the Holder constant of the functions 99~ (Yi),j = 2, 3, the
derivatives of the functions defining the arc rP (cf. § 4), is the same as

the Holder constant for = 2, 3.
As a shorthand, we refer to the analytic functions (or gj (w)), j =

= l, 2, 3, whose real parts form the conformal representation for S at

(or P E r) as « the conformal representation of S at 0 (or P) ».
Let z denote tlie local parameter at S~ the domain of z, y the

preimage of the arc of I’ in and fj (z), j = 1, 2, 3, the conformal re-
presentation near 0. Let »1 &#x3E; 0 be the integer determined by Theorem 1.

4

LEMMA 5.1. Let o denote the arc length of y. Then

PROOF. For z E y, there is an absolutely continuous such that

11 (z) = x, (z) -~- iH (Xi (z)) by Lemma 2.1, Hence y : z = (Xi + iH 
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b’  x,  b", for suitable b’, b". Therefore

By (3) and the Corollary to Theorem 11 the arc length s of 8 on r

satisfies dq 2+ 0 a. e. on . It follows that # 0 a. e. on y. From the
. ( dg ) ag

isothermal relations, we obtain that

For this formulation, refer to [5]. With = 

Hence

e 1
By Lemma 3.1 2013 2013 1 1 a. e. on y ; so there is a branch of theI MO 1 2
square root such that

LEMMA 5.2. There are e &#x3E; 0 and Ao &#x3E; 0 such that when Of  e and

(i) ?v (z) = au + al 2 (Z) + a, 3 (f3 (z) - f3 (zp)) is a

conformal map of

onto a subset T~p of where r is independent of P.
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PROOF. We remark that for r &#x3E; 0 and A  9L

For z E Q,

Choose e, r &#x3E; 0 so small that

Hence (iii) is satisfied. Now for z, z’ E U~ ,

where C is the path from x’ to z determined in Lemma 3.1 (iv).

Hence,
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’fherefore 1£’ (z) is univalent in In addition,

An analogous conclusion holds for a set

Suppose that r = min ~~~, r’) and let Q’ = S~ n [ rl.
The estimate below is a well known fact in potential theory. We pre-

, 
,

I 

sent a proof’ because conclusion occurs in an unusual form. For efficiency,
"7e introduce the notations

LEMMA 5.3. Let ~p (~) (~) + iv (~) be bounded and analytic in

v (Lo . 1 , q). Suppose that for a fixed f~ 0 ~ ~o ~ ~2 and 0  ~  1

Then

The constant c depends 6, q, gj - e2 .

PROOF. With « chosen so that 0  1 ~ ~ (1- sin It (9 + «) ~ 1 ~ 0
for 0 0 S 7l. Therefore the harmonic function ic () = | - Eo 1,8 -j-r),
6 = is positive on aD ([&#x3E;1 q) except at ~ _ ’0. By hypothesis,

13. Anllali della Scuola Norm. Sup. - Pi8a.
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Integrating this inequality with respect to the Poisson kernal of D ~~1 ~ q),
we find that

Hence,

When I E J (~o , ~O2 , 6), D (et , q) contains the disc

Since by Green’s Theorem,

we have that

The same estimate holds for (~) and therefore w’ (~) ~ S C3 C ~ ~ -- ~o 
8). Although there is a general method for concluding that

99 E (Eo, 6)), (cf. [6], pp. 51-53), since C is restricted to a sector a

direct integration is possible. J (fo ? e2 , 6), let L : t = ~ + 8 (~’ - ~’),
0 1 be the line segment between them. Since t E arg (t - $0) =-
= 9 s a - 6. We define a branch of (t - Holder continuous in

d, by (t - Eo)P = for a fixed t. Consequently,
4
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Here, Op is the Holder constant of (t - ). The lemma follows.

IJEMMA 5.4. Let z = F(~) map ~=(Im~&#x3E;0,)~l) onto lii’ =

with and y n Q’ the image of [-1,1 J. Then F
and F-I are Holder continuous.

PROOF. Ilere, r is the radius from Lemma 5.2. This lemma is a con-

sequence of Warschawski [13] and [12], Lemma 1, once a certain chord-arc

length ratio for aQ" is established. We must show that there is a constant

~ &#x3E; 0 satisfyng’

where Jo denotes the length of the shorter arc of OQ’ between z and x’.

Since y : z = x -f - at x), with lit’ (1t) )  tan 2013 E r,0

For two points x, x’ on the arc I z = rt the condition (14) is obvious. So,
let z E z’ ! = r, and a be the end point of y n ii’ closest to z’. Then

the length .L of zaz’ in satisfies

Also,

Hence

LEMMA 5.5. Let I y = (~ E D, ~ ~ ~ C e) and i2g = F (De)· Let v = w (e)
= v’ (e) denote the Holder exponents of F I D(/, the restriction of
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F to and Then for 1 there is such that

PROOF. We note first that the existence of a tangent to y at z = 0

implies that F (C) is conformal at ~’ = 0 by a theorem of Lindelof. Conse-

quently, the image of

under C = F-’ (z) contains a sector

An analogous statement holds for the set = ~z : ~ - A  arg z  ~ -f - 1,

We derive an estimate for the local parameter representations of S.
With o as arc length on y, .

, 
dx

Since 2013 =]= 0 a. e, on r,

by Lemmas 3.1 and 3.4. Therefore, with d as the Holder constant of the

tangent to F,
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Hence

This estimate also holds if a =1.

Let w denote the local parameter at P = r (zp), I zp  r, and gj 
j = 1, 2, 3, be the conformal representation of 8 at P. Since A, that is

ro (t), does not depend on P, the conclusion of the computation above may
be applied to gj (10). Consequently,

At this point, the analysis is transformed to D. Set

~=~~)~~~,~’==2,3, and

By (15),

a positive constant, j = 2, 3. This estimate is easily extended to the semi-

circle I C = e1 , Im C &#x3E; 0 since Yj (C) is bounded. Namely, for a 02 ¿ °1,

So by Lemma 5.3, Yj (C) E 0°, fJ (A (0, ~02, ~ - q)), j = 2, 3, for 

0  02  Qi ’ y and any  2013  q  a. We choose q satisfyingz

6 g2 .  e1. Let p = F-I (zp) where r (zp) = P.
In view of (12), hj (~) = gjl a. e. for 0 -,- ~ -- 1. Using (15’) and Lemma
5.2 (ii), we obtain that for 0 S ep s o,
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with C3 independent of P. Since Yj (~) E 0°, fJ (A (0, e2 , q)),

with C4 independent of P. Consequently, for some C., &#x3E; 0, independent of P,

Applying Lemma 5.3 again, hj () E 0°, (p, Q, ), with H61der constant

independent of P.
In the sector 1~, the valid relations

imply that Yj (() E 0 0, P (A (~p , 6) n W), j = 2, 3, for each ~p , 0  ~y c ~,
but with Holder constant independent of P. Since n -- q 6  ,u, it is

already known that Ij(~)6C’~(J(0,p,~)), ~=2,3, and hence Yj (§) E
E 0°, ~(d Lo, ~)), with Hiilder constant independent of P. It follows in an

elementary way that Yj (~) E C°~ ~ (D (g, = 2, 3. Using the same argum-

ent, Yj (C) E C°, ( q)), D’ (e, q) = q  arg  C for q,
a -

0  q  . Hence ¥J(C) E C °, (D), j = 2, 3.
Therefore, f;’ (z) zl-1n E C°~ x (Qe), fJe = F (D~) , x = By Lemma

5. I, r n tie is a curve.

In the proofs of the next two theorems, we shall employ a well known,
and easily demonstrated, local variant of Kellogg’s Theorem : Let (~’ be a

simply connected domain whose boundary contains an open are L

and let F map DLo conformally onto Q’ so that (- o, e) corresponds to L.

Then for each $, - ~O  ~  e, there is a subdomain Y = (~’ E D~; ~ ~ - $ ] £ 6)
such, that F E C1· ~ ( V) and F-I E C’, " (F (V)). Here, as usual, ( ] (  p,

1m C &#x3E; 0).

THEOREM 3: Let 8 be a minimal surface whose boundary contains
the arc

where E 0 1, -m ([- B, BD, 0  1; = tpj (0) = 0, j = 2, 3. Let z

be the local parameter of S at 0 E the domain of z, and fj (z), j = 1, 2, 3,
the conformal representation for S at 0. Let m be the integer determined

by Theorem 1 and y the arc of aQ whose image is in 1~.
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Then there is a subdomain S~ such that fj’ (x) xl-m E 
j =1, 2, 3, and is a arc.

PROOF. Let z = F(~) map D onto S~’ = Iz E D, I z  r), as in Lemma 5.5.
According to this lemma, there is a ~Oi [ 1 such that r n Del is a C’~ x arc.

Hence, by the local invariant of Kellogg’s Theorem, there is s Lot such

and In particular, F and F-I are Lip-
schitz in these domains, so that v (~O2) = v’ (~02) =1. Applying Lemma 5.5

once more, there exists a Lo such that f~’ (z) E By Lemma

5.1, y n og is a arc. The theorem is proved with 

THEOREM 4. Let S a minimal surface whose boundary contains arc

where

Let Fj (~) be a conformal representation of S for 1m C ) 0 with Fj (0) = 0,
j= 1,2,3. 

’

Then there is a subdomain N = (I C I ~ R, 1m C ~ 0) such that

C’’"(N),~=~,2,3.

PROOF. We are assuming, of course, that the image of an interval

containing = 0 is monotonely mapped onto a subset of r con.
taining the origin by the conformal representation r (~) = Re (Fl , F2, 

By Theorem 3, y n S" is a Cl, a arc. Hence by the local variant of Kel-

logg’s Theorem, y there is a neighborhood N=jImf;&#x3E;0) such that
the conformal map z = F, from N to Pi is of class in N.

Here m is the integer determined by Theorem 1. So

It follows that Fl (C) E 0°, a (N) since F1 (~)’~m is Lipschitz. Now; for j = 2, 3,

Theorem 2. Q. E. D.
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We say that the piecewise ot, acurve r has a cusp at 0 if r is the
union of two curves

and

where

THEOREM 4’ : Let S be a minimal surface whose boundary contains the
piecewise arc 1~ =1’’ u 1"’ which has a cusp at 0. Let ~’~ (C), be a con-
formal representation of 8 for Im ~ ) 0 with .RJ (0) = 0, j ~ 1, 2, 3, such
that 1’’ and ~"’ are the topological images of (-1, 0] and [0, 1) respectively.
Suppose that the integer tn (determined by Theorem 1 » is positive.

Then there is a subdomain N = ~ R, Im ~ ~ 0) such that 
1,2,3.

For such a minimal surface, there is a theorem analogous to Theorem 1,
except that the integer is even or zero. This latter case occurs, for exam-
ple, in the conformal mapping of 1m C &#x3E; 0 into a domain bounded by a
curve with a cusp having exterior angle 2a. For such a conformal mapping,
the conclusion of Theorem 4’ also fails.

§ 6. Higher Derivatives.

Higher derivatives are obtained using the representations (9). A brief

description of this procedure is given here. The proof is valid also for con-
formal maps of plane domains. No attempt to reprove Lewy’s result [5] is

made here.

THEOREM 5. Let S be a minimal surface whose boundary contains the arc

where

C = 2, 3. Let Fj (C) be a conformal representation of S for Im ~ ) 0,
Fj (0) = 0, j ,~- 1, 2, 3. Then there is a subset N = {~ ~ ~ S R, Im C h 0)
such that Fj (C) E Cn, a (N), j = 1, 2, 3.

We proceed by Lemmas.
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LEMMA 6.1. Let op () = u () + iv () be analytic in .Duo and continuous
in Deo, ~ 1. Suppose that for a fixed ~o , ~ e1  and a, 0  a  1,

Then for any sector

v,here c depends on 03B4 ( j 0), a, Qo ·

PROOF : Since u () is bounded and harmonic in 1),,, , we may write

la (C) is analytic I  Oo . 1-tence

Since for’ E we see that

REMARK 1. For a function 2o E I an interval, let

Let g (t) E C"~ _ (~- o, 0]), f (x) E on+1, a ([- B, B]), 0  L-4 1: C 1 S n,
with 9 (to) = f (o) = f’ (0) = 0 for  B. Then there
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are a, b, c whose moduli depend 11&#x26;+ 1, a such that for u (t) = f (g (t)),

REMARK 2. (t) E Cn, r (~’- ~~~~)~ h (t) (~ - V (X) E en, a ([- B, B]),
with v (0) = g -(to) = 0 for I to I  P- Then there

are a, b, c whose moduli depend on that for

u (t) = v (g (t)) h (t)

LEMMA 6.2 : Suppose that r E and ~(~)6 C"~ _ (Duo) for each

1’, 0  T  1  n. Then (~) are bounded analytic functions in D~ for

each g  = 1, 2, 3.

PROOF : We shall show that () has bounded modulus, indepen-
pent of P, in each sector J (p , e, 8) for a suitable !. Given g, choose

e  Pi  ~oo 0. For each ~p E [2013 ~ there are functions

q;j Cn+1’ a ([2013 ~ ~]), gqj (0) = gq) (0) _ 0, j = 2, 3, so that a subarc 

is given by

Hence by the first remark, there co with moduli bounded inde-

pendently of ~p such that

Hence there is a constant and independent of P such that

By Lemma. 6.1, (~) cC in d (~p , e, B), j = 2, 3.
According to (3),
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The second remark applies to this case. Again by Lemma fi.l, we find that
(C) S cC’ in L1 (~p , o, 6), j = 2, 3. By (9), (~~ are bounded in

modulus in each J (P , p, 6), j = 1, 2, 3, with bound independent of P for
! ~! ~ ~0’

PROOF OF THEOREM 5: For a proof by induction, we assume that
F E On+1, a and for each 1:, 0  r  1  it. Choose 7

iet e = 1 Qn + Qn+i&#x3E;, and fix &#x26;, °  3  n F0r each lp , I ip I  Q,i+i ,
let p = 2 + n+1) and fix 03B4, 0  J  . For each Ep  ) O1+1 
there are bj such that

in view of the preceding Lemma and Remark 1. Hence by Lemma 5.3
(~) E C°’ a (d (~p ~ g, 6) with Holder constant independent of P for

=2,3.
By using the second remark, we see that (~6 C°, a (d (~p , o, 6)).

Hence E 0°’ Q (1 (~y , ~~ ~)) for each ~P , ~ ~ (’’’+1’ By an elementary
argument it follows that 6(7(J (*)J I 

’ ()n+l . ’ 

(*) This research was partially supposed by contract AF-ASOFR 883-67.
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