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ON THE ASYMPTOTIC BEHAVIOR OF RESOLVENT

KERNELS, SPECTRAL FUNCTIONS
AND EIGENVALUES OF SEMI-ELLIPTIC SYSTEMS

YAKAR KANNAI (*)

Introduction.

This paper deals with the asymptotic properties of resolvent kernels,
spectral functions and eigenvalues of systems of semi-elliptic differential

operators.
The asymptotic behavior of spectral functions was first investigated by

Carleman [11] for a class of second order elliptic operators. Carleman sho-
wed that this behavior is closely related to the asymptotic properties of
the resolvent kernels of such operators. Later the problem was studied by
many authors for more general elliptic operators (for references see Agmon
[3] and Bergendal [8]). Denote by e (x, y ; t) the spectral function of a self
adjoint realization of a positive elliptic operator of order m, defined on an

0

open Rn (x, y are points in Q, t is a real number). Garding [16]
proved that

~ 
0 

where c (x) depends on the coefficients of the operator. Garding has also
shown that if the differential operator has constant coefficients then the

Pervenuto alla Redazione il 21 Ottobre 1968.
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n n 1

remainder term in (0.1) may be replaced by the term In some

special cases of operators which have discrete spectrm it was shown 

{14], [15]) that one can integrate (0.1) over Q and get

where Ili) is the sequence of eigenvalues, each repeated according to its

multiplicity. Remainder estimates in the asymptotic formulas (0.1) for ope-
rators with variable coefficients were known in special cases only (Avaku-
movic [6]).

Agmon ([1], [2], [3]) developed a powerful method for the study of re-
solvent kernels which makes it possible to deduce asymptotic formulas such
as (0.1) and (0.2) in very general situations. He also found (in [1] and in
other unpublished works) that by a close investigation of resolvents in the
complex plane one can derive the asymptotic formula

where 0 is any positive number less than 1 in the general case and lessyp 0
2than : if the principal part of the operator has constant coefficients.

In a joint paper of Agmon and the author [4] it was proved that (0.3)

holds for general semi-bounded elliptic operators with any 0  1 and that2

if the principal part has constant coefficients then (0.3) holds with any

0  1 (actually a somewhat more general result was proved in [4]). Identi-

cal results for the remainder were also obtained by Hormander [11] using
a different method. (Very recently, Hormander proved that (0.3) holds in
the general case with 0 = 1 ; his method would not, however, yield easily
results for general semi elliptic systems).

In a recent work [5], Agmon developed asymptotic formulas with re-
mainder estimates for the eigenvalues, extending the remainder estimates
of [4]. Agmon also obtained results for elliptic systems and removed the
assumption of semi-boundedness.

F. Browder [9] derived a formula similar to (0.1) for semi-elliptic dif-
ferential operators. In [9] and [10] Browder obtained results similar to those
of [3]; in particular, he proved the formula (0.2) for the elliptic case. Let
us note here that, unlike the situation in the elliptic case, the highest
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order of differentiation which appear in a semi-elliptic operator varies with
the direction; precise definitions are given in section 4 of the present pa-
per and in [9]. (See also [7], [12], [17] and [26]).

Substantially, the present paper is an extension of [4] for semi-elliptic
systems. The first chapter treats, as a natural preliminary study, the fun-
ction spaces appropriate for the treatment of semi-elliptic systems and inte-

gral operators acting in these function spaces. The proof of the kernel

theorem is similar to the proof of Agmon’s kernel theorem [3] and to
Agmon’s unpublished proof of his matrix kernel theorem. In the first section

of chapter two (section 4) the semi elliptic operators are defined and elemen-
tary properties of resolvent kernels and spectral functions associated with

such operators are briefly discussed (this section corresponds to sections 1

and 2 in [4]). In section 5 it is shown that asymptotic formulas with remain-
der estimates for spectral functions follow from an accurate asymptotic
expansion theorem (in the complex plane) for the resolvent kernels. The

rest of chapter two is devoted to the proof of this expansion theorem. In
section 6 relevant properties of fundamental solutions and related, kernels
are discussed. Since we are dealing here with systems of operators and
not with single (scalar) operators, commutation does not necessarily lower
the « order » of an operator; this difficulty exists also in the case of elliptic
systems. The commutator technique, introduced and described in [4], is

sharpened in section 7 so that it yields results also for systems. Some loca-
lization and comparison lemmas (some weaker versions of which suffice in

the elliptic case) are proved in section 8. Using these tools we finish the

proof of the asymptotic expansion theorem in sections 9. Thus, section 5, 6, 7
and 9 of the present paper are extension of sectionss 3, 4, 5 and 6 of [4]
respectively. ,

The kernel theorems (of section 3) used in the semi-elliptic case do not
yield sufficiently strong estimates up to the bouitdary for the spectral function.
Consequently, one cannot obtain results on the distribution of eigenvalues
by integration of the asymptotic formula for the spectral function (analog
of (0. 1)) over Q, as is possible in the elliptic case ([3], [5]), without further
justification. In special cases one can use some of the older methods - of

0

Garding [14], [15], or of Ehrling [13]. In other cases the situation improves
if some conditions on the geometry of S~ and on the « global &#x3E;&#x3E; (up to the
boundary) regularity of functions in the range of the resolvent are imposed.
This global regularity is also connected with the geometry of S~. The

problem of estimating near the boundary is discussed in section 10 - the
first section of Chapter Three. In section 11 the application to the eigen-
value distribution is made. The analog of formula (0.2) which is obtained
is new even in the case of a single semi-elliptic operator. It is curious
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that all the new difficulties appear already in the derivation of the analog
of (0.2) whereas the extension of the remainder estimates of [5] (for the

eigenvalue distribution) to the semi-elliptic case presents no serious additio-
nal difficulties.

In the semi-elliptic case terms which do not belong to the principal
part of the operator may influence the asymptotic expansion of the resolvent
kernel in a manner which has no analog in the elliptic case. This, and the
fact that we are dealing with systems. of operators, makes several arguments
and theorems appear less transparent tha.n in the case of a single elliptic
operator.

Several arguments have been sketched briefly in the present paper, if

they are identical to the proof of known elliptic theorems. This has been

done in order to keep the size of the paper under control.
I would like to thank Professor Agmon for his encouragement and

advice and for making me acquainted with his ideas during all the stages
of the preparation of this work. I would like to thank also Professor

L. Hormander for several very helpful suggestions, and Dr. R. C. Lacher
or a topological discuss ion related to section 10.
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CHAPTER ONE

THE FUNCTION SPACES

AND INTEGRAL OPERATORS OPERATING IN THEM

1. Notation and definitions.

Let D be an open set in real space ~’~ with generic point x =- ~xi , .., , xn).
We shall deal with p-vector functions :

where the components of u (x) are complex valued functions defined
on D. We denote by u (unless otherwise explicitly specified) a column vec
tor ; u = (u1 , ... , (M denoting the transpose of a matrix M). We set :

and we denote by L2 (g2)p the space of vector functions (1.1) having com-
ponents uj (x) in L2 1 p (i. e., L2 is the direct sum of p co -

pies of L2 (D)). Thus L2 is a Hilbert space with the scalar product

Denote the L2 of u 110, n. The subclass of vector functions
defined and belonging locally to (L2)p will be denoted by 
For scalar functions we shall use also the notation instead

of L2 (Q)(L2loc(03A9)1)
We use the standard notation for differentiation :
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for a multi-index a = (al ... , 

Set ... , Do. z~p)^~ .
Let be a multi-index with positive components. We

denote by a : m I the number If mi = 1 for 1 S i S n then

m = 091 + --- + an =|a coincides with the usual « length &#x3E;&#x3E; of a. Other-
wise it is a « reduced length ».

We denote by the subclass of vector functions 

with distribution derivatives D) u E L2 (0) P for all mj, n. 

is defined to be the class of functions defined on Q and belonging locally
to In Hm (Q)P we introduce the norm

Under this norm Hm (D)p is a Hilbert space.
In the special case S~ _ .Rn we consider also the spaces H,. where s

is an arbitray real number. These spaces are defined by means of Fourier

transforms. As usual, we denote by u (E) the Fourier transform of u,

where The sm-norm of u is defined by

If s ~:&#x3E; 0 then the subclass of functions u E L2 (Rn)p with is

a Hilbert space under the norm (1.7). This space will be denoted by
(Rn)P. If 8  0 then (Rn) p denotes the Hilbert space which is the

I I ||, m-completion of L2 (Rn)p. Obviously,
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and

We note for further use the interpolation inequality

which follows immediately from Holders inequality.
Let 0 be an open subset of In addition to (1.5) we shall use the

following norms :
1

and semi-norms :

for 1 --- j  ’In. In the special case S~ = R" we shall also use the semi-norms
(for s ~ 0)

1

Let T be a bounded linear operator in L2 (Q)p such that the range of

T is contained in Hm (D)P. By the closed graph theorem T is also bounded
when considered as a linear transformation from L2 (Q)P into 1~m (Q)P. The
norm of T when considered as an operator: .L2 --~ Bm will be denoted by

° 

The and the semi-norms j~ are

defined similarly. if S) = R" we use also the norm
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and the semi-norms I T Rsz for 1 ~-, j z-.- 7z. Let Q, S~1 be open subsets

of Rn and let T: L2 (Q)P --+ Hm We set :

We remark finally that a bounded linear operator T in L2 may be

represented by a p X ~ matrix (Ti, j) of bounded linear operators in L2 (S~).
This matrix is determined by the equation

Clearly,

2. Some properties of the gm spaces.

In this section we shall discuss several simple properties of the Hm 
spaces which will be needed later. We shall also begin with the proof of
the kernel theorem in this section.

We shall use the following simple extension property in order to be
able to treat Hm (S2)P space in case 92 ~ Rn .

LEMMA 2.1 : Ijet Z be an n-dimensional box (i. e. a rectangular paral-
lelepiped), the edges of which are parallel to the coordinate axes. Then there
exists a bounded linear transformation V : L2 (Z)P --~ L2 (Rn)p such that Vf
is an extension of f and V is a bounded transformation of Hm (I)P into
Hm Moreover there exists a constant C (depending on Z and on m)
such that

This lemma is essentially well known [26]. One may use the same con-.
struction as in [3] in order to prove the lemma, since in every stage (of
extending across a planar face of a box) an inequality similar to (2.1) is

satisfied by our assumption on Z. It is obvious that it is impossible to re-

place in the right hand side of (2.1) norm by semi~norm ~ I 
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We shall need in the sequel a somewhat more delicate dimensional ar-
gument than the one that suffices in [3]. Let r1 , ... , rn be positive numbers.
Define a unitary operator U (rt , ... , rn) : L2 (R-)p - .L2 (Rn)p by

Then

and

Let

The transformation defined by

is isometric. Its inverse is the transformation 1’;1; (J2). 
for a multi-index a, then D~ U (r1, ..., rn ; S~i) f E L2 (S~2)p and

In particular it follows from (2.6) that

LEMMA 2.2: If Q is an open subset of Rn and if (D)p then
Da u E L;oC for every multi.index a satisfyng a : m S 1. If either Q = R1~
or if S~ is an n-dimensional box, the edges of which are parallel to the

coordinate axes then the assumption implies for

I a : m S 1. If in the latter case the lengths of the edges of ,1~ are f~...,~ y
then (for a : m I ~ 1) }

where the constant C depends only on m.
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PROOF : The assertion of the lemma for the case that Q = Rn iswell

known [26] and it follows easily from formula (4.1.15) of [18] and Holder’s
inequality (using of course Fourier transform), that

for u E Hm (Rn)p’ and ) a : m s 1.
Set ,~ _ (x : 0 ~ x; S 1,1 S ~ S It follows from the extension lem-

ma 2.1 and from (2.9) that there exists a constant C, depending only on m,
such that the inequality

holds for every v E ,Hm and a : m S 1.
Let now D be an n-dimensional box, the edges of which are parallel

to the coordinate axes and their lengths are rt, ..., r,,. We may assume that
Sl = (x : 0 ~ x~ S r~,1 ~ i ~ n~. The tranformation (2.5) U (ri , ... , r"; D) :

is an isometry, and (2.6) and (2.7) hold. For 
set v = U (r1, ... , r,z ; D) u. Then v E Hm (2’)~. Combining (2.10), (2.6), (2.7) with
the obvious estimate

we get (2.8).
If D is an arbitrary open-subset of Rn, there exists an n-dimen-

sional box Uc D (the edges of which are parallel to the coordinate axes)
containing xo in its interior. If then u E Hn (U)P, so that

Hence Da u E L2°c (~) p.

REMARK : If 0 satisfies the assumption of the Aronszajn-Smith coer-

civeness theorems [2], then Da u E L2 for s min ntj.

The following is a «Sobolev’s lemmas.

LEMMA 2.3 : Let m be a multi index and let 8 be a positive number,

2s &#x3E; ~~=i 2013. Let u E H’m Rn) p . Then u is (equal almost everywhere to) a
9

continuous bounded function satisfying
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Moreover it is Holder continuous of order p.

f’or every x, x’ E Iln. Here 0  fl  1 and C depend only on m and on s.

PROOF : For every multi-index a set

Then it f01l0"’8 from a simple « liomogeneity &#x3E;&#x3E; argument that

0 depends on rn and a.

According to Fourier integral formula,

Hence by Caueby-Schwarz inequality and (1.7),

But

From (2.14) it follows, using integration by parts and the assumption

2s&#x3E; E 1 , that the integrals in (2.1G) converge. Therefore u may be re-
mj

defined on a null set so that (2.15) is true for all (compare also
theorem (2.27) in [18]). After this correction u is continuous and the estimate

holds for every x E Rn .

3. An1lali della Scuola Noi-m. Sup.. Yiea.
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We deduce the estimate (2.11) from (2.17) using dimensional argument.
Set v = U(r1 ~ ". , rn) u. Combining (2.2), (2.4), and (2.17) we find that

We may assume without loss of generality that u is not identically zero.
Choosing

we obtain (2.11) from (2.18).
It remains to prove the Holder continuity of the function u. Let

Then

Let t be a sufficiently large positive number. Then

But by definition (2.13), the second term in the right hand side of (2.19)
00

is equal to f W28 deo,..., 0) (03BB), which is (by (2.19) and integration by parts)
t

Also
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Hence

where

Choosing

we find by (2.1 !t) una (2.20) that

where ) , which proves (2.12). (The inequality

(2.12) is obviously true by (2.17) if x - x’ ~ I is not small).
The following is a generalization ot’ a part of Lemma 2.1 of [3] (Brow-

der.Maurin’s kernel lemma).

LEMMA 2.4 : Let T be a bounded linear operator in L2 (R")P . Suppose

that the range of T is contained in Hsm (Rn)p where Ej= 1 1  2s. Then
m

there exists a _p xp matrix K (,x, y) = (Ki, j (x, y)) i, j = 1, ..., p of kernels

such that for every f E £2 (Rn)p

(Kf’ stands for the action of a matrix on a column vector). The kernels

(1 S i~ j  p) have the following properties :
(i) For each fixed the function 

(ii) The function from R" to .L2 (Rn) is uniformly conti-
nuous in 
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(iii) The following estimate holds :

where C is a constant depending only on m and s.

It is obvious (considering the matrix representation of T introduced at
the end of section 1) that it suffices to prove lemma 2.4 for the special
case p = 1. In this scalar case the proof is entirely simiiar to the proof of
Lemma 2.1 in [3] (since we have already proved a « Sobolev’s lemma &#x3E;&#x3E; in

our case), only one has to substitute sm, R’a tor and instead of #2))t

n 1
one has to set one has to set Et=1 

We recall that it is usual to denote by 8 the class ot’ C°° functions

in R?’ which together with their derivatives die down faster than an,y power
of I x I at in6nity. It is well-known that the ronrier transform maps 8 onto

itself and that 8 is dense in Hdm (R")P for every real ~·, For any complex
number z introduce the operator L2 which acts on functions in S in the

following manner :

It is immediate that I~z maps S onto itself and that if Re z = o then for

every real t,

It is also clear that a necessary and sufficient condition for a function

j8 E L2 to belong to 118m (lln)p is that

and if N  oo then II f R’n 
= ~’T.

The f’ollowing lemma generalizes lemma 2.2 of’ [3].
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LEMMA 2.5 : Let T be a bounded linear operator in L 2 (Rn) psatisfying
the conditions of lemma 2.4. Suppose in addition that

for all/6 L~ I C a constant. Then T is an integral operator with a
matrix kernel K (x, y) = (x, y)) possessing the properties of Lemma 2.4.
Moreover every (x, y) is a bounded and a nniibrmly continuous function
on 2~ and the following estimate holds :

where y is a constant depending only on m and s.

As in the proof of Lemma 2.4, it suffices also here to treat only the
case p ---- 1. For this case the proof coincides with the proof of Lemma 2.2
in [3J, except for the substitution of L8 instead of 8m, Rn instead of

’In, En; - sm, R n instead of - m, En .

3. A class of integral operators with a bounded matrix kernel.

In thy section we shall obtain the main theorems of the first chapter
of the present paper. These theorems play a basic role in our study of re-
solvent kernels and spectral functions. The following theorem is a partial
generalization of Theorem 3.1 of [3] (and of Agmon’s matrix kernel theorem).

THEOREM 3.1 : Let D be either Rn or an n-dimensional box whose ed-

ges are parallel to the coordinate axes. Let T be  bounded linear operator
in 1~2 (D)p . Suppose that the range of T and the range of its adjoint T* are

contained in Hm where m is a multi-index with positive components

such that 1 1 ~ 1. Then there exists a x p matrix .K(x = ) ’
1 ~ p, where the (x, y) are continuous and bounded scalar ker-

nels on S~ x S2, (x, y) belongs to L2 (Q) as a function of y for x fixed
and as a function of x for y fixed, and
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(Kf stands for matrix multiplication). Moreover, if D = R’~ then there exists

a constant C depending only on m such that

If D is an n-dimensional box whose edges are parallel to the coordinate

axes and their lengths are r, , r,,,, then

REMARK : i) For most applications it suffices that (3.2) is valid for

boxes satisfying the conditions of the theorem, with a consant C which

depends, not only on m, but also on the length of the edges of the box.
For other purposes the exact dependence, as given by (3.3) is needed.

ii) If S~ = Rn it is possible to replace m by 8 m (s &#x3E; 0) and to ass-

ume that EL=i20132013s. The conclusion of Theorem 3.1 will hold with sui-1 
mt 

0

table modifications. We shall not use this extension in the sequel.

PROOF: Let us consider first the Rn . Then T satisfies the

/ s 
conditions of lemma 2.5 with s replaced by 8 . The proof of this factB 2
is similar to the first part of the proof of Theorem 3.1 in [3]. One con-

siders the analytic function defined by

where u and v are two fixed (arbitrary) vector functions in S and Lz is

the operator defined by (2.23). Applying Hadamard’s three lines theorem

to F and the three lines 0, and Re ? == 1 Re x
2 ( ’

8=- 8 , t Re z = s in the case described in Remark ii), using (2.24), (2.25), and2

j_
setting u = L 2 f~ we find (in complete analogy to [3]) that the constant
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C appearing in the assumptions of lemma 2.5 may be estimated by

Hence there exists a matrix K (x, y) r-~= (x, y)) of bounded and uniformly
continuous scalar kernels such that belongs to .L2 (Rn) as a fanc-

tion of y for x fixed and (3.1) holds. Since T * is represented by i (y, x)),
also belongs to L2 (Rn) as a function of x for y fixed. From Lemma

(2.5) (estimate (2.37)) and (3.4) it follows that

where 1’1 depends only on m.
We obtain (3.2) from (3.5) using a somewhat more delicate dimensional

argument than the one used in [3]. Without loss of generally assume p =1.
For arbitrary positive rrl denote

where U ~ri , ... , r?~~ is the unitary operator defined by (2.2). Then 
is an integral operator with a kernel

Applying the inequality (3.5) for the operator and its kernel

(and using (2.3), (2.4)) we find that

Assuming without loss of generality that T is not the zero operator, we
choose
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and we obtain (3.2) from (3.7) and (3.8), for the case S~ = Rn. As a matter
of fact, we obtain the (slightly stronger) estimate

where C depends only on m.
Let Z be the box (.ri0~~l~l~:,~j. Let V be the extension

operator L2 (1:) -~ L2 whose existence is guaranteed by Lemma 2.1. Set

To = VTV. where V*: L2 (Rn) --~ L2 (2’) is the adjoint transformation of V.

Using (2.1) and (3.9) we find that To is an integral operator with a conti-
nuous and bounded kernel ~o (x, y) satisfying

It is easy to see (as in [3 J) that for x, y E I X E it is possible to define

and to show that K is the kernel of T, and to obtain

the estimate
11

where 0 depends solely on m.
Let now 0 be a box satisfying the assumptions of the theorem and

let the lengths of the edges of N be ri 7... , r. ; without loss of generality as-
sume that D = (x : 0~~~~,~ 1 --,- i -,- it). Define an operator ~~ , ,,, , r~ in

by

where U (r, , ... , rn ; 0): .L2 (D) -+ .L2 (~) is the isometry defined by (2.5)
and IT (ri 1, rn 1; Z) is its inverse. If follows from (2.7) and (3.10) that
- 

1 

an integral operator with a continuous and bounded kernel
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Hence T is also an integral operator (in L2 (D)) with a continuous kernel
K (x, y) (x, y E given by K (xi , ... , Xn ; y1 , ... , yn) = (r, ... 

The estimate (3.3) follows immediately from (3.12).

REMARK : If we assume min mj &#x3E; n then it follows directly from [3]
1jn

that T is an integral operator with a continuous and bounded kernel so

that it is possible to start the proof with the dimensional argument. The

arguments at the end of section 2 and at the beginning of the proof of
Theorem 3.1 are needed for the general case where not all the mj are

greater than n. (These arguments, as noted above, are actually slight mo-
difications of arguments of [3] and of an unpublished work on systems by
Agmon).

We shall need occasionally a theorem which is true for n-dimensional
manifolds S2 that are more general tha,n the domains considered in Theorem
3.1. We shall use the notations and terminology of [18J, sections 1.8 and

2.6. The manifolds considered will have a positive C °° density dx, kept
fixed throughout. By L2 (S2) I’ we denote the space of vector functions whose
components are square summable with respect to dx.

THEOREM 3.2: Let S2 be a n-dimensional C °° manifold. Let T be a

bounded linear operator in .L2 satisfying the following condition : there
exists a complete set of C °° coordinate systems x such that if u is either
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in the range of T or in the range of T* then the composite function

U o E Hrn If  1 then there exists a matrix kernel K(x, Y) ==
»it

== (Ki, j (x, y)), 1 --- i, j :!:::-:: p, where the are bounded scalar kernels

which are continuous in the interior of Q belongs to 
as a function of y for fixed x and as a function of .x? for fixed y and

(Kf denotes matrix multiplications).
Denote by Tx the operator .L2 (S?)p --+ defined by T,, f =

= (Tf) o M-1 - If Z is an n-dimensional box obtained by translation
from the box I x : 0  x~ S r~ ~ 1  I  t1), then

for x, y E x-1 (~), 1 C is a constant depending only on m and m.
(We use the obvious extensions, in the case where S~ is a manifold of the

definitions (1.14) and (1.15)).

REMARKS : i) If 0 c Rn and x is the identity, the theorem has a much
simpler form. It is compulsory to consider general x even if S~ c R" , since
the Hm spaces are not invariant even under very simple coordinate trans-
formations. 

-

ii) Sometimes it suffices to have instead of (3.14) the weaker estimate

valid for 1 ~ ~, j s p, with a constant C which depends on
the dimensions of Z in addition to its dependence on m.
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PROOF. The proof of (3.13) is very similar to the proof of Theorem 2.1
his in [4]. One must only replace the sets Qj of that proof by unions of
’It dimensional boxes whose edges are parallel to the coordinate axes which

are contained in We only have to prove the estimate (3.14).
DeSne an «extension» operator E: L,, (Z)P -+ 1-,2(0) P by

and define a « restriction »

Then Consider the operator TQ : L2 (~~n --~ .L2 (~)p defined by
To = RTE. Let L, represent the given density on D with respect to the
coordinate system x (see [18], p. 28). A simple calculation shows that the

L2 adjoint of T is Ll RT* .E 1 = .Lx  T*)x BL’ 1 0 n . w’e assumedJ o Zxox x 0 x

that El i8 positive. Hence

C depending on Lx. Applyiny (3.3) we obtain (3.14) for the kernel of To ;
this kernel coincides with K (x, y) for (2*).

An operator T : L2 (Q)P - L2 represented by (3. 1) where .K =

(x, y)), 1 S i, j  p is a continuous matrix kernel such that y)
is in .L2 (~3) as a function of y for x fixed will be called « an integral ope-
rator with a continuous matrix kernel ». In the sequel we shall denote by
the same letter an operator and its matrix kernel.

REMARK : For S~ = R" it is possible to define spaces, more general
than the H,. spaces, defined by the norm
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where k is a weight function which is a (fractional) power of a hypoelliptic
polynomial. One can prove « Sobolev’s lemma » for these spaces using a
theorem of Nilsson [22] and it is possible to find classes of integral opera-
tors with continnous kernels. However, one can obtain only an extension
of the inequality (2.17), and it is impossible to have an analog of (2.11)
nor is it possible to extend (3.2) to the case of general The dimensional

arguments do not carry over to that case.
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CHAPTER TWO

ASYMPTOTIC PROPERTIES Uh’ KERNELS ASSUCIATEh WITII

SEMI ELLIPTIC OPERATORS

4. Semi-eUiptic diiterentiat operators aiid integral operators connected
with tlieiii.

Due to the non-invariant character of semi elliptic operators, it seems

ivortliwliile to introduce the concept of semi -ell il)ti(,-ity by two steps.
Consider, to begin with, a linear differential ol)ei-ator -(;I acting on 1)-

vector valued functions defiiieti on an open xet 10 e Rn’ . We assume that

is of the iorm :

where

is a p x p matrix whose entries (x) are complex C °° functions defined

in D, and where 0 for all but a unite number of multi-indices a.

We shall also write

where (x, D) are scalar differential operators. Let now m = ... , ,1nlt)
be a multi-index having positive components. The reduced order, it, (A), of’

a scalar linear differential operator A (x) 1)« is (temporarily) defined
by

(A) depends on m). Note that if 1nk = l, 1 ~ )c, ~ it, (A)
coincides with the (usual) order o (A) ot’ A. The reduced order of a matrix

ol)ej,ator -gi is defined by
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The semi principal part of A is by definition the operator : *

Itecall that stl is elliptic at x° if the determinant of the characteristic

matrix of the principal part of .!1l does not vanish. The operator. (x, D)
is said to be semi-elliptic in the restricted sense at x° if

for all real ~ = (~1, ... , ~ 0.
This definition of semi-ellipticity in the restricted sense generalizes the

definition of semi ellipticity given in [18] for scalar operators with constant
coefficients. Several authors (e. g. [7], [121, [17]) call these operators quasi
elliptic.

We note that whereas the (usual) order of a differential operator is in-

dependent of the coordinate system and ellipticity is invariant under non.

singular coordinate transformations, even very simple coordinate transfor-
mations may make it impossible to recognize the semi-principal part of a

differential operator, let alone its semi-elliptic character. We would also like
to consider semi-elliptic operators defined on manifolds.

Using a generalized definition of semi ellipticity given by F. Browder
[9], we shall be able to overcome these difficulties.

We recall that a differential operator (with C°° coefficients) in a C°° ma-
nifold SZ is a linear 1napping sf{ of C°° (S~)p into itself, for which to every
coordinate system x there exists a differential operator .9’lx such that

(9itt) o x-i = nlx (u o in S~k , if u E C°° (D)p. The operator A is said to

be semi elliptic (in the extended sense) in Q if there exists a coniplete set ’7
of coordinate systems such that for each x E the operator ntx is semi-el-

liptic in the restricted sense at every point of Such a family 7 will
be called « a complete family belonging to sfl». The reduced order (in the
extended sense) of the differential operator A defined in a manifold Q, with
respect to m and ’Y, is defined to be sup w, (A). The reduced order is in-

XEF

dependent of 7 only if all the i)zi are equal, 1 ~ i  n.

We emphasize that the manifold Q may be occassionally a subset of

Rn , I but nevertheless the extended and the restricted senses are not the same.
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_)2 
EXAMPLE : The operator a 2 a I defined by olar coordinate (r, 0) inyl

a plane annulus is semi-elliptic there in the extended sense but not in the
restricted sense (when written in the usual (x1, x~) plane coordinates).

Let us note that if the reduced order of the semi-elliptic operator szl
with respect to m is then the vector has integral components (see
also [7]). Hence 0 has reduced order 1 with respect to the multi-index wm.

Let gl be semi-elliptic in the restricted sense, with respect to m, of
reduced order ’IV. It follows from lemma 2.2 acts on functions

11 E and thut the mapping u -+ is linear mapping from Hw°" (D)P
into (Sl)~ .

It is well known ([9J, [18], [26]) that semi elliptic (in the extended sen-

se) differential operators are hypoelliptic, i, e. and = f (in
distribution sense), then u E C°° (S~) p .

We denote by (Rn) the class of functions u E G’°° (Rn) such that u and
all its derivatives are bounded on Let the coefficients of the differen-

tial operator nt be matrices, the entries of which are in C~ (RU) and let the
reduced order of s.-l with respect to m be 2c. For every real 8 and for every
it E 

where C depends only on 8, 1V, m and on a common bound for the coeffi-

cients of szl and their derivatives up to a certain order depending 
and m (compare Theorem 2. 2. 5 in [18».

Let A be a linear differential operator defined on a manifold Q. The
formal adjoint of .s~ is the differential operator satisf’ying

for every 11, v E C7 (S~)p (class of infinitely di1feI’ential p-vector functions with
compact support in ~3). The operator sIl is said to be formally self-adjoint
if s7l _ is formally semi bounded from below in Q if

for all it E C7 (S~)p, with c a real constant. If c &#x3E; 0 then gl is said to be

positive. Note that if A is semi-elliptic in the extended sense in D and is

tormally semi bounded from belov in (2, a complete family 7 belonging to
d may be cliosen, 7 such that for the matrix (n (x~, ~) is posi-
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tive definite [8] and Lx (the function representing locally the given density on

D) is positive (in 
-

We denote a self adjoint realization of A in L2 (D)P . That is, Yl
is a self adjoint operator in the Hilbert space L2 with domain of defi-

nition D A such that any is a solution in the distribution sense (aQi A

weak solution) of the differential equation :

Let m be a multi-index with positive components. If .91 is semi elliptic
in the restricted sense with respect to m in S~ (c R") and w (d) = 1 (as
one may assume without loss of generality) it follows from (1.4) according
to well-known interior regularity results for semi-elliptic operators ([9], [17],

[18], [26]) that (O)P . Moreover, if nt is semi-elliptic in the exten-
ded sense on the manifold Q, then u E implies u o x-1 E for eve-

ry x in the complete family belonging to szl. More generally~ since S?k is a
realization of 2

Let now RA = (ai - A)-’ be the resolvent of s7 defined for every com-
plex A not in the spectrum of Then range = range (R*) = so

that if  1 it follows from (4.5) and Theorem 3.2 that RA is an
Mt

integral operator with a continuous matrix kernel B, (x, y). We shall refer
to RA (r, y) as the resolvent kernel of ~.

Next assume that stl is formally semi bounded from below and that A
is also semi bounded from below, and let m be a multi-index with positive
components, -cl semi-elliptic in the extended sense with raspect to m. Let

be the spectral resolution of ~ which we normalize so that it is con-

tinuous to the left. It is well known ([8], [19]; it may be also proved easily
using the kernels theorems in the same way as in [4]) that Et is an into

gral operator with a continuous (actually 000) matrix kernel. Since Et is

self adjoint it follows, using (1.17) that the matrix kernel of Et is hermitian.

This matrix Et (x, y) = (Et, j, j (x, y)), 1 :!!5; i, jp is called ([8]) the spectral
function of A.
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It is well known ([8], [16]) and easily seen that not only is Et, j, i (x, x)
real monotone non decreasing function of t, but also the function

is real monotone non-decreasing function of t for all (fixed) complex z, with

x, i, j fixed.

Suppose that §il is semi-bounded from below (and w. 1. o. g is posi-

tive) and that  1. In this case both the resolvent kernel and the
tnt

spectral function exist, and the following relation holds :

for I -,- i, j -- p, where the Stieltjes integral converges absolutely. Formula

(4.7) is well known for elliptc systems (see e. g. [8]). A simple proof of (4.7)
can be given with the aid of the theorems of section 3, in the same way
as in [4].

If ai has a compact resolvent then the spectrum of ae consists of a
discrete set of eigenvalues. Let (2k) be the sequence of eigenvalues, each
repeated according to its multiplicity, and let be the corresponding

sequence of normalized eigenfunctions. Denote by q;k the vector function
(~k, ~ , I... where is the complex conjugate of The spectral
function in this case is given by

By orthonormality it follows that

One has to use formula (4.9) if one wants to get information about the

asymptotic behavior of eigenvalues from information about the spectral fun-
ction.

5. The main theorems.

The key result of this chapter (and one of the main results of this

apaper) is n asymptotic expansion theorem for resolvent kernels of semi-

4. Antiali della Scuola Norm. Sup, Pisa.
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elliptic operators. We introduce the following notations (in order to be able
to formulate this theorem for the general semi-elliptic case).

Let m = ..., in,,) be a multi-index with positive components. Set

b = b (m) = min 1 and let a - a (m) denote the reciprocal of the lowest( ) ( ) p

common multiple real; qb,q is a natrual number).
a

The function has a zero of type q with respect to m at a point
x E S~ where q E Q n 1+ oo) if it and all its derivatives Da U with a; m ~ 
vanish at x. I f u (x) # 0 we say that u has a zero of type q = 0 at x.

Let -of be a differential operator defined on w w,

Denote by qo = qo (x°) the maximal element in q E Q U j-)- oo) ; all the entries

of the matrices (x) - (x°) have a zero of type q at xO) and by qi =
qi (x°) (i &#x3E; 0) denote the maximal element of (q E Q U (0] U {-~- oo~ ; all the
entries of the matrices have a zero of type q at x° for a; m ~ = w - ial.
We associate with sil a rational number 0 (x°) defined by

where we agree -== 1 if If A is semi-elliptic in the
qi+b

extended sense on a manifold Q, we define a number 0 (x) for x E S-2,, where x
is in a complete family belonging to -4 to be the number 0 (m (x)) associated
with 

We denote by d (1) (for a complex number A) the distance of A from
the positive axis (d (1) = I Â if Re Â  0, d (A) = I 1m À.I ] if Re 1 &#x3E; 0).

THEOREM 5.1: Let ~3 be a manifold, let ai be a positive self-adjoint
operator in L2 (Q)P which is a realization of a formally self-adjoint difieren.
tial operator -4. Assume that A is semi-elliptic in the extended sense in S2

(with respect to m), w (A) = to, and Z" 1 1  w. Let 7 be a complete fa-
’nlh

mily of coordinate systems belonging to sfl such that for each n E iF the

matrix ~(~(~)~) is positive definite and L" is positive in 

be the resolvent kernel Then BA (x, z) has an asymptotic expansion
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of the form :

1-0 (z)b+8
valid oo in the region ||03BB||&#x3E;1,d(03BB)&#x3E;|03BB where 8 is any

given positive number and 0 (x) is the number associated according
to (5.1), uniformly in x in every compact subset of 0. That is, for any in-

teger N ~ l,

tor ~~1~(~)&#x3E; ,~ I1-a ~,x~ ~~2U+~ where the constant in (5.2’) depends on N
aml E but is indipeuueut of x in any compact subset of D. In these for-
mulas (- stands for the branch of the power which is positive on
the negative axis while C~(.x’) are certain p X p matrices of C°° functions on
fa depending only on the differential operator A (and on the family 7). In
particular,

vhere + 11-1 is the inverse matrix of + I (I - the p x p identity
matrix). Moreover = 0 for all 0 satisfying 0 for 0 S v ~ j.

This theorem is an extension of Theorem 3.1 in [4] which deals with

a single elliptic operator. Before going on, it is worthwhile to elucidate

several points related to Theorem 5.1 by means of examples.
In the elliptic case m = (1, ... ,1 ), so that a = b = 1 and 1C is the or-

dinary order of the operator (usually designated by »1), 0(x) is just 2013 -, (p=qo)p+1
as in [4]. If the largest nti is divisible by all the other ini (as is the case

for the heart operator) then a = b and again only qo is interesting, hence

0 (j?) = q° &#x3E; 1 in the general case and 0 ,x) =1 if the semi-principal() 
q0 ’ b 2 

(

part of A has constant coefficient. If, however, the largest 1ni is not divi-

sible by all the otller mi b, e. g. m = (4,6) ; then a = 1 whereas( 12

b = 1. Differential operators which have reduced order no larger than
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w - b, are, in a sense, unimportant (compare [22]); they are dominated (in
the sense of [18]) by det gf’ and (which is crucial) they are weaker than

I grad~ det sil’ (E) I (this is not a polynomial, but a symbol of a pseudo~diffe~
rential operator). On the other hand, differential operators of reduced order
W, with w - a  w,  w, while dominated by are not weaker than

I grad, det 0’ ($)1 , , so that their influence (if occurring in szl) is not negligi-
ble. In the above example, the (single) operator x2) Di -D2 is dominated

by D" and the + Di D2 is semi-elliptic,
but properties of f will influence the results of Theorem 5.1, since w (D~ Ds)
= I1 1-.. This fact made the formulation ol’ the main theorems oum.

12 ’

bersomo.
It was plated out to the author by L. B6rmander that similar 

between » term. may wur in the elliptic if o4a permita the
inclusion of pseudo-diffierential terms. Then an operator of 
may contain terms of with fl  t  11 J these terms have no

tufluenes on the Mymptotio expansion of the resolvent kernel
since their order is greater 

We ehall demonstrate now how Theorem together with a tauberian
theorem of Malliavin [21], yields the estimates for the remainder in the

asymptotic formula for the spectral function. A simple proof of Malliavin’s
theorem is due to Pleijel [23] who also gave a slight extension of the theo-
rem. It is the following: .

Tauberian theorem : Let a (t) be a non-decreasing function for t &#x3E; 0
00

such that 1 do (t) t  + oo. Suppose that0 T ~

oo in the complex plane along the curve : I 1m II Re A h 0,
where 2013 !~;cc0~0;/;l; ~ some non-negative constant. Then

8S t --~ oo.

We sball now prove the following reault :
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THEOREM 5.2 : Let all the assumptions of Theorem 5.1 be satisfied,

except that we do not require now that -yn 1  w. Let Be x y) be the
h

spectral function of Then for every 1 

as t --~ oo for any s &#x3E; 0, uniformly in x in any compact subset of D. The

matrix D (x~ is defined by

Here cu ($) is the differential form

in Rn, the integration takes place over the sphere (B~2013j0j)/~-~ oriented
by w &#x3E;0.

In particular 5.6 holds if we replace 0 x by min 1 y 2013). . If the semi-p ( ) P () y B 2 b
principal part of A has constant coefficients and the matrices -91.,. vanish

identically · m | &#x3E;w - i a i possible to replacey ( , o ( o a ) p p

0 (x) by i. a/b. In the elliptic case or any other case where a = b it is

possible to replace 0 b y 1 2 in general and by 1 if the semi-principal part
2

has constant coefficients.

PROOF : Without loss of generality we may assume that ~ is positive.

Suppose first that J~=i 20132013~. Set min ~). Using the re-pp h 1 ~ih 
C o 

presentation formula (4.7) and the first term which does not vanish in the

asymptotic expansion (5.2), we have
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as A -+ oo along the curve ] Im I I --- I A 1- e tx~ w +8, , for 
Y

Let be fixed and let z be any (fixed) complex number. According
to (4.6) and using the hermitian character of and Et (x, x) it follows

from (5.8) that we may apply the tauberian theorem to

with

By definition always 0 (x) so that a + y fl + 1. Hence it follows
from (5.5) that

as t --~ oo. By checking the constants in Pleijel’s proof of Malliavin’s theo-
rem [23] one also finds that the 0 estimate in (5.9) is uniform in x in any

compact subset of S~. If we let z vary in the unit disk in the complex
plane (compare [8] and [16]) we get (5.6) from (5.9) with

I learned from L. Hormander that transforming suitably (5.3) one gets (5.7)
which is the analogous form of the well known formulas of the case of a

single operator.

Suppose now that Choose an integer k ~&#x3E; 2013 ~=1 20132013pp h=l 
m~ w inh

and consider the spectral function (x, y) of 9í,k. Clearly (x, y) =

Noreover, 9í,k is a self-adjoint realization of silk, a semi elliptic

differential operator of reduced order kw &#x3E; 2’;:=1 . Let now x E O. It isp 
’tilth

easy to see that the number 0 (x) related to silk is not less than the 0 (x)
associated with ~. Hence this case follows from the special case of the

theorem just proved in the same way as in [4].
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The remainder of chapter two is devoted to the proof of a general
asymptotic formula for resolvent kernels containing Theorem 5.1 as a spe-
cial case.

6. Fundamental solutions and related kernels.

In this section we consider integral operators acting on functions de-
fined on .Rn. We denote by Hoo,p = ~~ (Rn) p the class of functions u E C°° 
snch that 1?a it E L2 (R’»P for all a.

hrom now on through the remainder of this section we shall assume
that fl is a semi elliptic (in the restricted sense) differential operator of

reduced order ,1c with respect to m = (1nl , ... , that = that -ci
is formally positive and that ,~ has constant coefficients.

A function f (x) is said to be semi-homogeneous of reduced order w

(with respect to m) if for any d &#x3E; 0 we have

By assumption the (~) is Hermitian for all $ E Rn and is

positive definite for # 0, and its entries are semi homogeneous of reduced
order 10. We shall denote by - 1, ..., p, the eigenvalues of -ci (~)
(with multiplicities) arranged in non-decreasing order : #1 (~) 1 92 (~) 1
... ,up (~). The functions ui (~) are positive for $ # 0 since fl (~) is positive
definite and are semi homogeneous of reduced order w since the elements

of sIl ($) are such. Hence there exists a constant y &#x3E; 1 such that

for 1 i p
It is clear that there exists a unitary matrix (~)), 1 

for ~ # 0, such that

and the scalar functions lil’i, j ($) are semi-homogeneous of reduced order zero.
It is well known (e. g. [16]) that nt has a unique self-adjoint realization

in L2 ( R ~ )P which we shall denote by sli. The operator -4 is positive and
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its domain of definitlon is For any u E H1vm (R~~)p we have:

Let Fi = (~ 2013 be the resolvent of s3l which exists for any com-
plex A not contained in the non-negative axis. We denote by Fi ( j) a (sca.
lar) operator of the form

1 ~9~ ~ ~ ~,~, for a natural number j. We denote the class of

operators by Fi (j). As before we denote by d the distance of l

from the positive axis.

LEMMA 6.1 : Let a natural number. The operator FJ,.(j)
defines a one to one map of Boo onto itself. For any two real numbers 8, t

the following inequality holds:

for IE Hoo where y is the constant occurring in (6. I). For
t = s the constant in (6.5) can be replaced by p~.

PROOF : By Fourier transformation,

for any g E Using (6.2) and unitarity we have that

so that by (6.6)

for E # 0
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Hence may be expressed by

for This implies that yields a one-to-one map of onto

itself. It is clear that S 1 for ~ =~= 0, 1 ~ q, r ~ p. From (6.9) and
(1.7) it follows further after a simple calculation that

where

Clearly 0). = d (À)-j for t = s. Using the estimate flk (~) - 1 ] h d (A) and
(6.1) we have I ¿ 1 and 1 S k  p :

Since t - s -,-jw we get

and inserting this in (6.10) we obtain the desired inequality (6.5).
Every element of the matrix F).’ is sum of operators in FA(j). There-

fore it follows from Lemma 6.1 that for 8, t, j satisfying s  t  8 + jUJ
there exists a constant C depending on r, j, p but independent of A such
that for I A |&#x3E; 1 and f E we have :

Suppose now that wj &#x3E; E=1 . It follows from (6.9) that is a
( 

) x (j)

class of integral (convolution) operators and that any Fi ( j) E Fi ( j) has a
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continuous and bounded kernel FA (j) (x, y) = PA (j) (x - y, 0) given by

Moreover the kernel (6.12) has continuous bounded derivatives up to

the reduced order wj - Enh 1 - a. In particular it follows from the 8e-h-1 
mh

mi-homogeneity of pk (E ) and Uq, r (E) by a straightforward computation that

for A-1 
A

where

and (- 1) ,- 
+ I IX; m I] - j is the branch of the power which is positive on

the negative axis. As a particular (and even simpler) case we get that Fll
has a continuous and bounded kernel given by

This kernel has continuous bounded derivatives up to the reduced order

?OJ - ~=1 2013 2013 a. It is simple to calculate that for I 0153 ; m - ~==1 2013 2013 ~
h h

where the determination for the power in (6.15) is the same as in (6.13).
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We consider now (following [4], pp. 11-13) a scalar operator 81 of the
form:

where the hy (,t~, h) are (scalar) differential operators of reduced order lv ~ 0,
1 C v s k -~- 1 with coefficients belonging to e- ( Rn), and Fi (j,.) E FA ( j~)

We set

Using (4.3) and Lemma 6.1 we find that S, which is a, well.defined

operator: 11. -+ ~oo is (after completion) a bounded linear operator:
for any, s, t such that t S s + - l.

l1y an alternate application of (4.3) and Lemma 6.1 to the factor,,4 of

s~ it is easy to see that the folIo"ring estimates hold -  .~ - 1 ;

for f° E /2 1, where y is the constant occurring in (G.l ) and C is a
constant depending only on ir, 1n, l, j and on a common bound for the coef-
ficients of and their derivatives up to ~t~ certain order. The verification

of (6.17) follows itnlnediately from the interpolation inequality (1.8) and the
estimates for the norms of the operators FA in the appropriate spaces,
exactly as in the proof of inequality (4.10) in ~4~.

Let ns assume now l. Thus we may regard 81 as a bounded
linear operator: L2 - L2 (RI~). It is clear that ~5 ~ , the adjoint in

L2 (R’6), is an operator of the same type :

where 13: denotes the formal adjoint of B", and PI ( jv) E Fi ( jv) is the

L2 -adjoint of the operator F~ (j,,); this adjoint can be represented in
the form (6.4) v.lien I is replaced by Â. (since the elements of the operator
matrix F03BB commute). We have

TBEOREM 6.1 : Suppose that II] - l &#x3E; 1(; &#x3E; E1 . Then S‘ is a (sea-THEOREM 6J : Suppose that is a 
mh

lar) integral operator wiHi a continuous bounded kernel 81 (x, y) on Rn X R’n,
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satisfying the following estimate :

where y is the constant appearing in (6.1), and 00 is a constant depending
only on m, j, l, w and on a bound for the coefficient of and their de-

rivatives up to a certain order.

REMARK: It is possible, in analogy to Theorem 4.1 in [4], to obtain
differentiability properties for the kernel SA (x, y), and to weaken the alsum-
ptions on wj - 1. However, Theorem 6.1 is sufficient for the sequel.

PROOF : According to a remark made after the definitions of semi ellip-
ticity we may say that to (.~) ~ 1 with respect to the multi-index wm. The
sum of the reduced orders of the differential operators B, with respect to
zom is It is clear that the norms of (Rn) based on rn as a multi-

index and w as an exponent (1.7) or those which are based on the multi-
index wm, are equivalent. From (6.17) the estimates

follow for [ 1 [ h 1, where C is a constant which depends only on m, w, j, I
and on a bound for the coefficients of Bv and their derivatives up to a cer-
tain order. Theorem 3.1 implies that S is an integral operator with a con-
tinuous kernel. Using (6.19) in inequality (3.2) (with wm replacing m) we find
that

and the theorem is proved.
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REMARK : It is possible to get estimates similar to (6.10) and (6.11) for
several classes of hypoelliptic differential operators which are more general
than the class of semi-elliptic operators. Perhaps even some formulas similar
to (but weaker than) (6.13) could be obtained for certain classes of hypoel-
liptic operators. Ilowever, since an analogue to Theorem 3.1 and especially
to inequality (3.2) is lacking for operators with ranges in spaces for

more general hypoelliptic weight functions k (see remark at the end of sec-
tion 3), we have no sufficiently strong analogue for Theorem 6.1. Therefore,
the present author does not know whether a complete asymptotic expansion
exists for resolvent kernels of more general hypoelliptic operators.

7. Seme properties of eoininutators.

In this section we shall extend the method ot’ commutators, introduced
in [4] to deal with scalar operator, so as to be able to treat semi-elliptic
systems. The main trouble lies, of course, in the fact that the (reduced)
order of 93sfl is in general no less than the sum of the (reduced)
orders of ,~ and C)3 - if and cl3 are matrix differential operators. In

the following we shall see how to overcome this difficulty.
Although the case of interest to us is that of differential operators, it

will be convenient (as in [4]) to start by considering a more general situation.
Let M be a linear space over a field K, and let MP be the direct sum

of p copies of M. Let A : MP be a linear operator. We may regard
sIl as a p X P matrix of operators --~ ill, 1 ~ i, j -,-.p. Denote by
A the collection of the operators 1 S i, j ~ p, Let B be a set of

linear operators. If C, D are sets of linear operators mapping 1lf into itself,
we define the following sets by :

As in [4], denote by S (r, t) the set of r-vectors J = ( j~ , ... , jr) with inte-

gral components 0 S j~ S t, 1 S i ~ r. (The elements of S (r, t) are multi-
indices in Rr ; to avoid confusion we use here Latin and not Greek letters).

00

Set I i = ji + ... M = tUl S (r, t) and denote by J U (J E S (r))
t=l
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the vector ( ji , ... , jr , S (r + 1). Define a zero dimensional vector

(belonging to r5 (0, t j) to be the empty vector. For the empty vector J = 4S
set: 0 

,

Let us recall the operation of commutation (ad D) C = CD - DC :
C E C, D E 1&#x3E;). We deiine now classes of multiple commutators: ~, D ; J],
J (r) non-empty, by

Note that [C, D ; (1)] = [C, D] = (ad D) C is the class of usual commutators
of members of C and members of D. Note also that if both C and D con-
tain just one element ( C and D respectively) then [C, D ; J] as defined ac-
cording to (7.1) is the same operator as defined inductively in section 5 of [4].

Let 1 E K be such is a one-to one capping of MP onto
itself and let FA = (A - We denote by Fi ( j) the set of products

(In our notation FA ( j) == [FA ( 1)J f). For any set E of linear operators M~--~ M
we denote by ~E~ I the additive semi-group generated by elements of l?, i. e.

the set of 8nite sums of elements of E.

THEOREM 7.1: I,et r and k be positive integers. Then

PROOF : The proof proceeds inductively in several steps as the proof
of theorem 5.1 in [4]. Consider first the case r = k = 1. A typical element
of is (F;.)t,8 Bi where 1 -,- t, s -,- _p and B1 E ,B. One may regard tbis

element as the t, s element of the matrix FAB, I (where I is the unit opera-
tor in MP). ,

The identity

is immediately verified by applying on both sides of (7.3) from the
left. The matrix (operator in identity (7.3) implies equality of the t, 8~ma-
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trix elements :

But the right hand side of (7.4) is contained in 7~(l)+~(l)[B~(l)]~(l)j.
Therefore

vhich is (7.2) reduced to the special case )- = k = 1.
It is in (7.5) that the main difference between the scalar and the ma-

trix cases lies. The rest of the proof is very similar to the corresponding
parts of the proot’ of theorem 5.1 in [4], and will he sketched only.

()ne may rewrite (7.5) as

Suppose that (7.2) has been established already for r =1 and some

lc, i. e. (according to definition (7.1)) suppose that

Using (7.6) for (ad A)k B replacing B and applying definition (7.1) we get
easily (7.7) with k + 1 replacing k, which proves the theorem for r = 1.

Assume now that the theorem has been proved for some r. Then

According to (7.7) with B replaced by B [B, A; J] we may rewrite every
set of operators which generates the classes in the first sum in the right-
hand side of (7.8) in a form which (after repeated use of definition (7.1))
will lead us to (7.2) with r replaced by r + 1, in essentially the same way
which leads from (5.8) to (5.9) in [4], and this concludes the proof.

REMARK: It would be possible to replace the inclusion (7.2) by an equa.
tion generalizing (7.4), but then the quantity of indices would have been
discouragingly large. The less explicit form of theorem 7.1 is adequate enough
for our purposes.
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Assume now that there exists a subring’ It of the ring of linear tran-
sformations from to M and a function 1V from 11 to the real line so that

the following conditions hold:

We denote also (for Cc R)

THEOREM 7.2 : Let J E 8 (r), r &#x3E; 0. Then

PROOF: the assumption (7.11) implies that w ((ad D) (I) C w (C) -~- ua (D) - b.
The assumption (7.10) implies that in (Cl)) __ w (C) -~ ~o (D). The conclusion

follows immediately. By definitions (7.15) is (7.14).
Theorem 7.2 is a (trivial) generalization of lemma 5.1 of [4].
Theorems 7.1 and 7.2 will be applied in the sequel to the case where

3f is the linear space and R is the ring of (scalar) differential ope-
rators with Cz coefficients. For any multi-index with positive components m
a function &#x3E;w (A) is defined (A E R) to be the reduced order of A with re-

spect to m. (The property (7.11) follows immediately from Leibnitz’s rule,
where b = b (m) is defined as at the beginning of section 5).

It is possible to generalize theorem 5.2 of [4] (which describes zeros of
coefficients of commutators of differentiai operators), but this generalization
would not be explicit enough to yield the same results as in [4], since (in
the semi-elliptic case) it is impossible to have a good estimate for the order
of coefficients in a multiple-commutator which do vanish.
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8. Several localization and comparison lemmas.

It is well known (e. g. [16], [19]) that the asymptotic behavoir of the
resolvent kernel is essentially a local property of the coefficients of the
differential operator. We shall need the following lemma which is an exten-

sion of lemma 4.2 of [5] to semi-elliptic systems. Note that for results in

the interior a weaker localization property (lemma 6.1 of [4]) suffices in the
elliptic case. (See semark at the end of the preceding section).

LEMMA 8.1: Let m be a multi-index with positive components and let
w be a rational positive number such that iv is a reduced order of a po-
sitive semi-elliptic differential operator with respect to m. For every complex
A which is not on the non-negative axis, let T~ be a bounded linear ope-
rator in L2 (Q)P (S~ with range contained in Hwm (O)P . Suppose that

where C~ is a constant.

For any point y E 2~ and positive r set

(i) Assume that there exist x° E S~ and a positive r such that 
and there exists a positive differential operator stl which is semi elliptic in
the restricted sense with respect to m with reduced order w, such that

for and f E L2 (Q)p . 
’

Then for every integer j ~ 0 and every u, 0  1, there exists a
constant (J (independent of A and r) such that for all f E L2 

for

5. Annali dedda Scuola Norm. Sup. 
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(ii) Suppose in addition that 2’=1 --.!:...  w. If the range of 2’i* is
nih

also contained in Hwm then T is an integral operator with a continuous
matrix kernel. If the inequality

holds for I À. I :2:: 1 and if there exists a positive differential operator silt
which is semi-elliptic in the restricted sense with respect to m with reduced
order w, such that

for x and all f E L2 (O)P , then for every integer j h 0,

for 1 ~ s, t S p, ~ ~ ~ ~ 1, and ( C depends on p and j).

PROOF : Without loss of generality assume x° is the origin. We prove
first (8.4) and (8.5) by induction on j. For j = 0 they follow immediately
from assumption (8.1). We may assume that r ~ ~ ~ ~-1, since (8.4) and (8.5)
are otherwise weaker for j &#x3E; 0 than for j = 0. Let 99 E (Rn) be such that

99 x _--. f’or max xh S P, 99 x « 0 for max &#x3E; 1 + _ . Then9’() 1 for max |xh|  ucp(x) = 0 for max |xh|&#x3E; =u Then1 2

(The matrices Ca o depend only on sfl). The first term on the right-hand
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side of (8.7) vanishes, and the second one may be estimated by

The iuduction assumption is that (8.4) and (8.5) have been proved already

(for j) for all 0  u  1 in particular for --. 1 + . Using the local( j)  ,u  1,in p 1 - 2 
g

interpolation inequality (2.8) with wm replacing m we get (from the induction
assumption) for all fl satisfying I f1 : m ~ ~ 

the last inequality following from the Hence we

may estimate (8.8) by

But a &#x3E; 0 implies a : m |&#x3E;b so that for I A 1, 1- h we have that

Therefore we find, by (8.7), (8.8) and (8.9), that

It is easily shown that, for stl positive,

fro all v E (Q)lJ with compact support contained in 03A9. Hence, (8.4) fol
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lows from (8.10) for j -~-1~ since

Let us note that from (8.11) and well known a priori estimates for semi-

elliptic systems ([26]; [1 ], [9]) that if (f2)P has a compact support
contained in Q, then

The inequality (8.5) follows (for j + 1) from (8.10) and (8.12), since

and (i) is proved.
If the assumptions of (ii) are also satisfied the estimates (8.4) and (8.5)

follow with Tx replacing from (8.1’) and (8.3’) in the same way as above
(one has to substitute A, for A and A" for 1). Using theorem 3.2 in the

special case x = identity we find from inequality (3.14) (with u?m replacing
m) and (8.4), (8.5) that

for 1 ~ 8, r ~ ~ ~, ~-~ , If r S ~ ~ ~ ’ the desired inequality follows

immediately from (8.4) and (8.5) and theorem 3.2.

REMARK : Lemma 8.1 replaces the exponential decrease outside the

diagonal of the fundamental solution ([16] in the elliptic case, [19] in the
elliptic case with A in the complex plane, [22] in general hypoelliptic case).
In our case it is inconvenient to proceed as in [16], [19] and [22], i. e.~ to
estimate kernels directly, since it is not a simple matter to do this for
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operators witch non-constant coefficients, especially in those regions of the
complex plane where we need the estimates.

Let now m, and F, have the same meaning as in section 6. Let

GA be a linear operator in .L2 (Rn)p defined for complex A not contained in
the non-negative axis, such that the ranges of GA and Or are contained in
Hwm (Rn)p and such that the inequalities

hold for ( ~, ~ ~ 1, with a constant 0. Let 93 be a differential (matrix) ope-
rator with coefficients whose entries are °.00 (Rn) functions, and let = w.

Let le be a positive integer and assume that all the elements of the matri-
ces ~a with ‘a : m ~ = ~a - ia (a = a (m) is defined at the beginning of sec-
tion 5) have a zero of type qi (at least) at x°, 0~t~20131. Let r; be
positive numbers 1 - 1 and let cp be a (fixed) function

such that ( (x) == 1 for max 2013 , (x) 0 for ~ 1. De.
~ 

note %; (x) Da and set
I a : m 

LEMMA 8.2 : Let w &#x3E; 2’hl=l 1 - Then the operator po-
Mh -

sitive integer) is an integral operator with a continuous bounded matrix

kernel and the following inequality
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holds for 1 S s, t S p, ( ~ ~ &#x3E; 1 and 1 &#x3E; ~y ~ ~ ~, B-1, is defined by

and C is a constant which depends only on the coefficients of CJ3, 
the constant appearing in (8,111, and the constant y which appears in (6.1).
Here and in the sequel we agree to replace rqi (where qi is a zero type)
by rN with any positive N, if qi = oo.

PROOF : Without loss of generality assume that x° = 0. Note that if

it E C °° has a zero of type q at the origin then

(and if q = oo then U (x) = 0 ([Z ) for every N’ &#x3E; 0). Using (6.11)
and completion it is easy to see that .

where here and in the following C denotes a constant depending only on
the constant appearing in (8.11) and the coefficients of 03.

Using (8.11) and interpolation we see in the same way that

Let us point out that

From (6.11) and IJeibnitz’s rule it follows that

(We recall that I
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Since the coefficients of Cf3i have a zero of type q~ at the origin we
may estimate the right-hand side of the preceding inequality by

where the last inequality follows from the assumption 1-1 . Combi-
ning this and the obvious estimate for we obtain

the estimate

Using (6.11), (8.15) and (8.16) we see that .

Using (8.11) and (8.17) we find that

Applying theorem 3.1 and formula (3.2) (with the multi-index wm), together
with (8.18), (8.19) and (8.20), we obtain the desired inequality (8.13).

In order to prove theorem 5.1 in a general case we need an estimate

for the kernel of the operator (F~ 9A, y at least near x°. The difference
between this kernel and the kernel estimated in lemma 8.2 is treated in

the following :

LEMMA 8.3 : Suppose that all the assumptions of lemma 8.2 are fulfi-
lled. Suppose also that there exist positive differential operators ~1 and sIl2 , I
semi-elliptic in the restricted sense (in with respect to m and of redu-

ced order 1V, such that
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for all Set r = min 2 1 
wmh 

Then for all positiveI 1 -1.1 h --. " 2.. 
integers j and I and for all p, 0  IA  1, there exists a constant C which
depends on P7 my wy 991 17 ii 77 7 -9f2 , y c)3 and the constant appearing in

(8.11), but which does not depend on r and A 1), such that the

estimate

holds for 1 1 ! s, t ! p.

PROOF: We may assume since otherwise (8.21) is im.

mediate. From now on let C denote a generic constant having the same

dependence as the constant in the statement of our lemma. Set .

for q integer. Denote by R~ the restriction operator, R", : L2 -

2013~jDg(~~~)~~ and let be an extension operator
extending IE L2 as zero in Rn - We have :

Using part (i) of lemma 8.1 (the estimates (8.4) and (8.5) for T~ = F~ 
we find that for any 0  ,u  ,u1  1 there exists a C such that for all
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(VTe use also (8.15) and (8.16)). We find also that

By assumptions the differential operators ~3 and coincide in -Y,, 0. Ap-
plying lemma 8.1 once again we see that

and

Furthermore, we know that

Since the right-hand sides of (8.27) and (8.28) vanish for q = 0, we get
estimating the terms in (8.22) recursively using the inequalities (8.23) through
(8.28) and choosing a sequence 0  p  ...  fly  1, that

We can treat the adjoint operator in the same way, since the differential

operator - also vanishes identically on and the inequality
(8.16) (and an analogous inequality for 11 G). 1101 Rn) are known to hold.



614

(To apply lemma 8.1 we use of course also the additional assumptions on
6~ made in lemma 8.3).

The conclusion (8.21) follows now by application of theorem 3.2 and
inequality (3.14) in the same way as at the end of tbe proof of lemma 8.1,
using the condition I A ~ 1, 1 h r ~ ~ ~,’-1 .

9. The asymptotic expansion of resolvent kernels.

We shall discuss first a class of operators on Rn. Since we wish to

treat operators connected to operators which are semi-elliptic in the exten-
ded sense, we use L2 spaces with a weight function. These spaces are di-

scussed in [4]. We shall repeat here briefly their definition and some of

their properties.
Let g (x) be a function in such that ~o (x) ~ d &#x3E; 0, d some con-

stant. We denote by L2, e(Rn)p the Hilbert space which is the completion
r /* .112

of Co under the norm (x) 12 Lo (x) dx . The differential ope-0 f 
Rn

rator .9l is said to be p-formally self-adjoint if

for all l u, v E C«° (RU)P.
Let A (;x, D) a g-formally self-adjoint defferential operator, semi-elliptic

in the restricted sense with respect to m with reduced order w ] Ehn=1 2013. Wep 
m h

assume that the coefficients of A are matrices whose entries belong to

C,~ (Rn), and that at every point x E Rn, the matrix ~ (x, ~) is positive
definite for all f6 Rn , ~ ~ 0. We also assume that gl’ is « uniformly » semi-
elliptic. That is, we assume that the inequalities (6.1) hold for the eigenva-
lues ui (x, E) of s7l’ with a constant y which is independent of x.

Considering A as a symmetric operator in the Hilbert space 

with a domain C~° we denote its closure by fi. The a priori estimate

which holds for u E H’wm (Rn)p is essentially well known ([26J; compare also
(8.12)). The .L2 regularity theory of weak solutions of semi-elliptic equations
is parallel to the regularity theory for elliptic equa,tions (e. g. [9], [17] ; i it
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is clear that the proofs of the usual elliptic theory [1] ] carry over easily
with some modifications to the present situation). From this it follows easily

(and this is also essentially well-known) that a self adjoint operator
in L2, p (lln)p with domain of definition Hwm and that sli is the unique

0

self adjoint realization of R in L2, 0 (Rn)P. The Carcling inequality for semi-

elliptic (scalar) operators is demonstrated in [17]; it is not di(hcult to prove

that it holds for sfl. Hence ~ is bounded from below, and we shall assume
in the following witbout loss of generality that 11 is positive.

Consider now the resolvent operator R = (. - 1)m, RA : L2, , (Rn)p -
--&#x3E; (Rn)P. The range of R is contained in Since ancl

L2 (Rn)P are the same function spaces on which tvo equivalent Hilberte

norms are defined, we may regard 2 and R03BB as operators in .L2 (Rn)p. We
shall denote by Gi the resolvent operator Ri when considered as an opera-
tor in L2 (R"’)r. Note that the L2 (Rll)v.arljoillt of GA, is given by

The norm of G, is contained in (R’¡)P and the following estimates hold

where C is a constant. The estimates (9.3) are completely analogous to the
estimates (6.1) of [4] and may be proved in the same way (or in another
fashion).

It follows from the properties of Gx described ahove and from theo-

rem 3.1 that G~ is an integral operator with a continuous matrix kernel.

We are interested in the asymptotic expansion of the kernel In

order to derive this expansion we fig an arbitrary point x° in Rn and set:

As in section 6, we denote by the (unique) self-adjoint realization of

- -gio in and by Fz the resolvent of = (,~~ - It is
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easily seen (as in [4J) that for every integer 1,

The formula (9.4) (which is really. the Neumann series expansion of Gi in
terms of FA) is a matrix equation. Written out explicitly for the matrices
elements, it reads:

" 

Denote by B the set and by Ao the set 

(The elements of Ao and B are scalar operators). We can consider 

and F03BB as linear operators in N00 Using the notation of section 7
we rewrite (9.5) as

Noting that is one to one from onto itself, we apply theo-
rem 7.1 for [Fl ( 1 ) Br]. After completion in L2 (Rn)p is follows from (9.6)
and (7.2) that

where k is an arbitrary positive integer, y 1 -- 8, t .c,- p.
We proceed now (in analogy to [4]) to use (9.7) in order to get the

desired asymptotic expansion. According to theorem 7.2 the reduced order
of a differential operator in [B, Ao ; J] for (r) is at most I J (w - b) +
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+ rzn (B). We bave u) (B)  w hence

It follows from section 6 that 2~ is an integral operator with a continuous
bounded matrix kernel. From theorem 6.1 and (9.8) it follows that every

operator in [B, Jj Fi ( ~ I J I + It + 1) which appears in the sums which

generate the first sum in (9.7) is a (scalar) integral operator with a con-

tinuous bounded kernel. It follows from the results of section 8 that

(Fx 6~ is an integral operator with a continuous bounded matrix kernel.
Hence the terms in the last sum of the ight-hand side of (9.7) also describe
an integral operator with a continuous bounded kernel.

Applying theorem 6.1 to an operator S03BB which is in

where 1 l,lc-1) we find that

(since u ([B, Ao ~ ~ ~ (k)l ~ ~ ( ~ ~ ~ -f - k) (w - b) -+- (·’ - i) ~~ (B)) S~ is an inte-

gral operator with a continuous kernel such that

for I A ~ 1. Here and in the following C denotes a generic constant which
is independent y and x° (but depends on k and l).

If, in particular, the coefficients of are constant and the matrices

da vanish identically for w &#x3E; a : m ~ ~ w - ~o a, we may rewrite (9.9) as

for ] I ] &#x3E; ly since in this case qv (B) iv - io a. In the general case io = 0

and iti (B) = If we choose k &#x3E; 1 + some fixed s &#x3E; 0 it fol-( ) ~ 
slv

lows from (9.9) (since i-  1 -1) that in all cases
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for Â. which is in the domain of the complex plane given by d (~) ~ ( ~, 

] I ] h 1. (Note that = b/a then ( 9.11 ) holds in the larger domain 
a

for k h I - 1). We get from (9.11) that under the same restric-
tions (~)) it is possible to estimate the kernel Sx of an operator
belonging to

by the right hand of (9.11). We remark that the number of the operators
which generate the terms in the curled brackets in (9.7) depends only on

k, I and p.
Consider now the last member of the left-hand side of (9.7). Here also

matters simplify if gl’ has constant coefficients and the matrices aia vanish
identically for w ~ m ~ since then w (~6) so

that (by interpolation) the L2 norms of the operators C}3. 

Gf W are all bounded by 2013’ I I d (4) . Hence it follows immediately from
theorem 3.1 that for all x, y E Bn ,

(Compare (6.8) in [4]).
For the general case (where w (~8) == w) we shall use lemmas 8.2 and

8 3. By construction the leading terms of Cf3 have a zero of type b (at least)
at the point x°. Lest lqi) be the (finite) sequence of type of zeros (at x°) as-
sociated with gi, qi E Q U (+ cxJj (see the beginning of section 5) and let i°
be min (bla, min (i)). Then the operator 93, defined above by 93 = 

q¡= 0

the operators and the sequence (q;), 0 S i s io - 1 satisfy all the
conditions of lemma 8.2 (with io replacing k). Moreover the assumptions of
lemma 8.3 are also satisfied by definition of Hence, combining the ine-

qualities (8.13) and (8.21) we find that, given a sequence (ri) of positive

numbers, 1 ~ r, ~ ~ I À.I-l, and with r defined as in lemma 8.3 (by
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for x, y E ~~r, ~ ~ ~ ~, ~ &#x3E; 0 arbitrary, and g (~) is defined in (8.14), with
C depending also on j and p, 0  u  1.

In order to utilize (9.13) set ri = I A (-ai . Then it follows from (8.14) that

whereas

Hence the optimal si satisfies so 
.

If qi = oo we choose ri = I A I--’ with an arbitrary positive gw qi+ b 
* IF qi == oo we choose r, = | |-s with an arbitrary posItIve 8

(but independent of and we use the convention = 1. With these
qi+b

optimal 8i - s9

(we use the notation of the beginning of section 5) and

(Note that the numbers ri defined by 7y = 1 |-si for optimal si satisfy
1 ~ ~"~ ~ ~ ~ ~ 1). Hence, we get from (9.13) that

for x, y E where
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For any given B &#x3E; 0 we choose and 8nd from (9.14)
that

for and ~ ~ ~ &#x3E; l, Combining the estimates
(9.10), (9.11), (9.15), and applying them to the representation (9.7), we get
in conclusion the following result:

THEOREM 9.1: The kernel of the resolvent 

(considered as an operator in L2 has an asymptotic representation of
the form :

where Fi _ with silo = (x°, D) fixed point),

1 (B is the set of the entries of the operator matrix sfl)
such that:

(i) If .sR’ has constant coefficients and the matrices da vanish identically
&#x3E; a : m - io a where 0 bfa, then 0 io a/b and the 0

estimates hold for any positive integers k, I satisfyng and for A -+ 00

in the region d (A) &#x3E; I À 11, uniformly in x, y and x°.
(ii) If -(2f’ has variable coefficients then 0 is the number 0 (x°) given

by ( 5.1 ) k and I any positive integers with k&#x3E;l + lb/ew for any given e&#x3E;0; ·
E w

the 0 estimates hold for A --&#x3E; oo in the region I Â |&#x3E; 1, d () &#x3E;| ( 03BB 
for any x, y restricted to the neighborhood of x° where (9.15) holds. Under
these restrictions the 0 estimate is uniform in r, y and x°.

On the diagonal of B" X R’n the formula (9.16) takes a much more

explicit form, since in this case (- A) x° · ) is really a p o-
lynomial in (- It follows from (6.13) and (9.8) that every (matrix)

1-En 
function (- A) (x, x) where SA (x, y) is the kernel of a matrix

operator SA whose entries belong to the set [B, A0; J 1B ( 1 ,J -E- r + 1) is
a polynomial in (- I)-al,v with coefficients which are matrices whose entries
are C,~ functions of x°. Moreover, by (6.13) the coefficients of (- 
are the sums of coefficients of differentiations Do which occur in differential
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operators contained in [B, Ao ; J ] with LL: III I -I - r = ia. Using (9.8)
w

it is easily seen that all such coefficients vanish for i  io . I Also, by (6.15),

where

These observations and theorem 9.1 show that on the diagonal the kernel

Gi has an asymptotic expansion

where the coefficients are matrices whose elements are 0.00 functions
of x°. Moreover Oi (x,o) = 0 for 0  i  io (x~°). In general, Oi (xO) (i &#x3E; 0) is

the coefficient of (- A)-ial,v in the polynomial 1/). (x’ I x0 ; 1) (- the coefticieut of (-03BB)-ia in the polynomial H03BB(xn,x0;l)(-03BB) wmh ,
with I satisfy ing (d -f- 1) 8 b &#x3E; ia (for such l - s no additional terms of the

i-th power can enter). The asymptotic expansion (tl,18) holds in the complex
plane regions of l described in parts (i) and (ii) of theorem 9.1 and in those

regions the expansion is uniform in XO E (Note that in order to demon-
strate that the remainder decreases at least one has to apply

Na
(9.16) with 1 satisfying I + 1 &#x3E; 2013 .

~w

The asymptotic expansion (9.18) is the asymptotic expansion (5.2) of
theorem ~~.1 for the special case of differential operators which are semi-el-

liptic in the restricted sense in lil"’ (for this special case it is sufficient to

prove theorem 1).1 with () =1). We now extend theorem 9.1 to the case of
a self-adjoint realization of a differential operator which is semi-elliptic in
the extended sense on a manifold Q.

Let D be a manifold, let 131 be a positive self-adjoint operator in 
which is a realization of a formally self-adjoint differential operator 4. As-
sume that -d is semi-elliptic in the extended sense in Q (with respect to

m), w (.9’l) = w and Z" 1  w. Let 9 be a complete family of coordinate), ( ) h=l nh p
Ilth

systems belonging to A such that for each HE F the matrix szlx (m (x), E) is

positive definite (for and LH is positive in DH. Let be

the resolvent kernel of;{. Let x° be a (fixed) point in D, and let x° E S~~

6. Annali dedla Scuola Sup.. Pisa.
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with x E 9. It is obvious that

E Co Let 00 n c Du be an open neighborhood of x° which has
a compact closure contained in Let us choose a real positive function

g (x) E such that e (x) « Lx (x) on Do (where iji = x (920), e (x) &#x3E; d &#x3E; 0
on and then choose a e-formally self adjoint differential operator gl2
defined on Rn with coefficients whose entries are C,~ (R’~) function such
that df coincides with on and is uniformly semi-elliptic in the
restricted sense on Bn (compare the proof of theorem 6.2 in [4]). Thus 9’Î~
satisfies all the assumptions listed at the beginning of this section. Let s§if
be the unique self-adjoint realization of sz1° in (RIl)P. Then is semi

bounded and without loss of generality A. is positive. Let Ri, i be the re-

solvent of ae in and let Gmo 1 denote Ro, A when considered as

an operator in L2 We apply theorem 9.1 to Go, A and find that the
kernel of may be represented in the form (9.16) and more explicitly
on the diagonal of Rn X Rn it has the asymptotic expansion (9.18). On

Do the kernels and the matrices Cj (x) are determined by 
since dx coincided with there. Using the comparison lemma (8.1) it is

easy to see (as in the proof of theorem 6.2 in [4]) that

for any positive and x, y restricted to a compact subset

of Hence we have an asymptotic expansion of R~ which, restricted to
the diagonal of S~ have all the properties asserted in theorem 5.1.
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CHAPTER THREE

ASYMPTOTIC DISTRIBUTION OF EIGENVALUES

o. Obtaining (t rougil estimates up to the boundary » .

We now turn our attention to the problem of the asymptotic distribution
of eigenvalues. It is well known that one way of obtaining asymptotic
formulas for eigenvalues is to integrate the formulas for the eigenfunctions
(spectral function) over Sl, (using (4.9)). the formulas for the

spectral functions (such as (5.6), or even weaker formulas such as (0.1)) are
obtained for compact subsets contained in the interior of Q, so that it is

not obvious why (if Sl is not a compact manifold without boundary) it is

permissible to pass to the limit (as t -+ oo) under the integral sign.
The Agmon kernel method has been particularly successful in overco-

ming this difficulty. In [2] and [3] it was shown (among other things) that
one has only to assume that the domain of definition of a self-adjoint rea-
lization :4 of an elliptic operator A is contained in Bm (D), where Q sati-
sfies the (very mild) cone condition, in order to be able to integrate (0.1),
so as to obtain (0.2). In [5] it was shown that if Q satisfies a not too

restrictive additional condition (condition (3.4) of [5]) then it is possible to

integrate the formulas of [4] for the spectral function of an elliptic operator
and to obtain remainder estimates for the eigenvalues. That those integra-
tions are j ustified follows from the relatively easy rough estimate (which
follows easily from the Agmon kernel theorem) for the spectral function:

with a C which is independent of x, y E 92, or from the similar estimate for
the resolvent kernel

By contrast, the asymptotic distribution of eigenvalues has been un-
known in the semi-elliptic case ([9], [10]). The kernel theorems of section 3
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yield estimates only for very special kind of domains : n-dimensional boxes

whose edges are parallel to the coordinate axes. Hence one cannot expect
to have an estimate

with C independent of even if we know that c Hm (!J)P. It is

possible to have C in (10.3) replaced by an integrable function if o satisfies
a certain geometric condition (see below). But it is not obvious at all that

there exist realizations of sti in .L2 such that Dd¡,c Hm (92)P, since re-

gularity theory for semi-elliptic boundary value problems (for a curved

boundary) is not a simple matter. Since the differential operator is not

elliptic, the boundary of a bounded smooth domain in Rn must contain

points where this boundary is characteristic. These points are bound to

cause trouble in trying to prove H coerciveness », see [20] for a treatment
of elliptic-parabolic second order case.

Let us note, however, that several of the older methods may be applied
to various special cases also in the semi-elliptic situation.

(i) Consider first the Dirichlet realization of a semi-elliptic positive

operator with constant coefficients, where w ] We consider for sim-
1nh

plicity a scalar operator A. For + u) is well defined.

Following Garding [14] we note that for such it,

So that by the Cauchy-Schwartz inequality and Parseval’s theorem,

for t &#x3E; 0 sufficiently large. Since D.1 is the intersection of (D) with
the closure in (R") of Co (Q) it follows easily from (10.4) (compare



625

(14]) that

for t ) 0 sufficiently large, where Gt (x, x) is Green’s functions (the resol-
vent kernel) of Ã, in x E Q. Hence it t’ollows in a standard way

(nsiy Lebe,,qgtie convergence theorem and the Hardy.Littlewood tauberian
theorem) that 

-

wliere ~~,;~ is the sequence of eigenvalues of A and

where 4 (x) is defined as in (5.6) and (5.7).
0

(ii) In p. ~51~ Garding describes it metlod which works for Di-

richlet realizations of general elliptic operators, removing the assumptions

that 10 ~ ~i~m ~ and that A has constant coefficients. The essence of the11lh
method lies in comparing with the integral (over Q) of (Eat E)k

, 0

(x, x), where Gt is the Green functions of an operator A 1 which is defined

on a set Di containing S2 in its interior and such that A = A1 on S~, This
method can be extended without change to the semi-elliptic case.

(iii) A variant of a method due to Ehrling [13] may be used for a
certain type of problems. Assume that A is of the form

and that there exists a positive constant y such that for all complex nnm-
bers ~a , ~ a ~ m ~ and all 
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Assume also that the domain of definition of the self-adjoint realization Z
is such that for all one has (e. g. by integration by parts)

It follows from (10.6) and (10.7) that for t &#x3E; 0 sufficiently large there

exists a positive constant C such that

Let now Ee 03A9 be an n-dimensional box, the edges of which are para-
llel to the coordinate axes and their lengths given by rt,..., rn . Using

a local form of 2.11 it follows easily that if w &#x3E; _,n 1 then u Em f
E Dd is a continaons function and

The estimate (10.8) is the analogue of the basic inequality (4) in [13 j.
It follows easily from (10.8) (compare (33), (35) in [13] and the method of

[14]) that the resolvent kernel 9, of 2* satisfies, for t positive and suffi-

ciently large and xE-Y, that

We see from (10.9) that the following condition is of importance :

DEFINITION : Let Kc Rn be a bounded measurable set. For each x E K

denote by h (x) the supremum of the (n-dimensional) volumes of boxes

Zc Bn whose edges are parallel to the coordinate axes, which contain x.

If the function )(- is integrable over K, then the set .8 is said to satisfy
the condition (I).

If the set D satisfies the condition (I) then, using (10.9) and Lebesgue
dominated integration theorem, we may arrive at (10.5).
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Let ii notp that condition (I) is not invariant under rotation, so that
this condition is not strictly « geometric ». (The condition that K satisfies
condition ( f ) tor every coordinate system is geometric. Is it equivalent to
a known geometric condition ~). It is very easy to see that a plane convex
domain with n smooth boundary satisfies condition (I). The non-conveg
plane set hounded by the parabolar x2 = X2 X2 1 and the line x1=1
has the property (I). A triangle with at least one angle which does not
contain a ray winch is parallel to one of the coordinate axes, does not

satisfy condition (I). I did not find any condition which is equivalent to
(1) nor any simple sufficient condition. It is clear, however, that there exist
families of domains in Rn which satisfy the condition (I).

Let its turn our attention now to the problem, whether it is possible
to have a theory of eigenvalue distribution for semi-elliptic operators which
generalizes the more modern theories of Agmon [3], [5] (or of Browder (10] ;
compare also the elliptic part of [9]). The answer is, that it is possible to
have such a theory for certain manifolds, but not (in general) for subsets

of Rn, I it’ the operator is semi-elliptic in the restricted sense.
We recall that the definition of a manifold with boundary ([18], p. 32)
coincides with the definition of manifold except for the fact that the. sets

fix are required to be open subsets of the closed half space R+ = 
The set of all x E 0 such that x (x) belongs to the boundary

of R+ for some (and hence for every) x with forms a manifotti tll
n

dimension called the boundary ot’ Q, and is denoted by aD. The
interior of ~~2 is S~ - aS2.

A regularity theory for certain hypoelliptic (or even more general)
boundary value problems does exist-for the case of a plane boundary
[23]~ [251. A corresponding theory for curved boundaries is lacking.
However, for a special type of snrfades, called « normal » by Cavalluci [12],
it is possible to have a regularity theory for semi elliptic operators. Let
A (~~ be a semi elliptic polynomial with respect to the multi-index m =

_ ... , A major cause of trouble lies in the fact that semi-ellipti-
city is not invariant under general coordinate transformations. Consider

the real invertible linear transformation

Denote 1&#x3E;9 the operator A (D) in the transformed coordinates. The
transformation is called stable with respect to A ($) if (i) A (~) and A1 1 (~)
have the same order with respect to each variable. (ii) The equations
(in ~~) A (~1, ... , ~j , ... , 

= 0, A 1 (~t , ... , ~~ , ... , 1&#x3E;,) = 0 have the Bame num-

ber 1nt of solut,ions with positive imaginary part for real (~1, ... , ~~_ ~ ,
oo. Cavallucci proved that if’ the transformation is stable
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then A1 (~) is also semi elliptic with respecto m. Moreover, a necessary and

sufficient condition for the transformation to be stable with respect to the

positive semi-elliptic polynomial A (~) is the vanishing of OJ, k for 1)lj  rrzk ·

The transformation S j is called stable if at every point x

the linear transformation Xjl = 1 n is stable. A surface

S in Rn is called normale if there exists (locally) a stable transformation
mapping S into a coordinate hyperplane. Cavallucci proved also that a

surface rS C Rn is with respect to A (~) if and only if S can be

represented (locally) by means of the equation x; = g (x) with g independente

of Xi such that ag - 0 if (Note that a non-characteristic surface
axx 

(

is normal.) 
’

Hence it is obvious from [23], [25] that if the positive semi-elliptic
operator A and the boundary operators B1, ... , B + satisfy the regularity

""j
(analogs of the «complementing» or Lopatinsky conditions) hypotheses
1, 2, 3, 4, 5 of [25] ((7) of [23]) for the hyperplane Xj = 0 then they are

satisfied also for a normal so that the a-priori esti-

mates are valid also for functions it with = 0, 1 

If D is a bounded open subset of Rn with a smooth boundary and the
m, are not all equal, it is impossible for aD to be normal everywhere.
Consider however the following example. Let 11 = 2 and itil &#x3E; ?it 2 1 Let

g1 and 92 be C°° functions of a single variable such that the functions 9{
and g2 -1 have zeros of infinite order at x = 0 and x -1 and g2 &#x3E; 91 .
Let each one of the systems Bml)y (812~ ~ ... , of ordinary diffe-
rential operators with constant coefficients K cover » the operator D2-1.

Assume moreover that if u) (a) = (B~1) v) (a) = (B~2) u) (b) = (B~z~ v) (b) = 0
then

Define -D~ to be the closure of C°° functions u which are periodic
with period, in the variable x2 and which satisfy 
on xi = 9i (x2)’ (Bj2) (JJ 1) U, x2) = 0, on x1= g2 (X2)’ 1 m1, and let

A be the semi-elliptic operator Dlml + 
Then

for u E Dl’ I if o is defined to be the strip obtained from the subset of

R3 : x 2) ; 9i (X2) s 92 (X2)’ 0 S x2 S 1) by identifying [0, 1] X 101
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with [0, 11 :&#x3E;( jlj. We note that the boundaries of’ §2 are normal every,vhere.
Note also that if we required that u (.1’{ o) = 1t (1 - xc ,1) instead of requi-
ring periodicity 111 x’2 , «e should obtain a M obi us strip.

Let ns point out that using the transformation + 1, 0 = 2a x2,
we map 03A9 iuto a deformed annulus in the plane, and A is transformed into
/ 1 / ?m2

- -4- - (2 1 ( ao a )27-112 ’ which is semi-elliptic ili an extended seiise. It is
I 

(2:7) 
’

easy to see by means of the well-known Hopf’s theorem about the sum

of indices oi’ singularities of vector fields that no differential operator A
vrhich is semi elliptic iii the extended sense in tJ and such that the boun-

dary is normal with respect to A exists, if 0 is a, bounded plane domain
which have more than one  hole &#x3E;&#x3E; or w hich has no holes at all. This fact

S110’VS that topological obstructions exist for constructing semi-elliptic diffe-

rential operators on manifolds with boundary such that the boundary will
be normal. It might be interesting to find out the nature of these obstructions.

11. Asymptotic formulas for eigenvalues of’ selui-elliptic operators.

We shall prove now a tlieorein about asymptotic distribution of eigen-
values. The discussion of the preceding sectiol explains, first of all, why
some of the assumptions of the theorem are necessary, and secondly, that

there exist non trivial cases to which the theorem applies.

THEOREM 11.1 : Let 03A9 be a compact manifold with a non-empty bonn.

dary Let ;1’ be a self adjoint semi-bounded operator in which

is a realization of a formally self-adjoint differential operator We assume

that at is semi-elliptic in Q with respect to the mniti index m, where 0,
1-~.K~ and that ~ has a complete family CJ. Let it, = to. Assume

that if aS~ is non-enlpty for x E ? then the set QH satisfies the condi-

tion (I). Assume also that there exists a constant C, independent of x,
such that for all it E D,~

If to  -1- assume that if u E D k then
~
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for some positive integer k such that kw &#x3E; 1 Then .if has a discretefor some positive integer k such that kw &#x3E; has a discrete
inh

spectrum. Let be the sequence of eigenvalues, each repeated according
to its multiplicity. Then

at t --~ oo, y where

and D (x) is the matrix defined in (5.7).

PROOF: According to the formula (4.9)

where Et (x, y) is the spectral function of s2l. By theorem 5.2,

as t --~ oo, for x in the interio1’ of 0, and the o estimate is not uniform.
Assume without loss of generality that A is positive, and assume at

first that w &#x3E; Eh=1 The operator But is a self-adjoint bounded projec-
mh

tion by definition. Hence

since s2l is positive. It follows by (11.1), (11.5) and (11.6) that theorem 3.2
may be applied to the self-adjoint operator Let Z be an n-dimensional

box whose edges are parallel to the coordinate axes, -Y c QH for x E 9. From
the inequality (3.14) it follows that
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tor 1  j p, x E ,,-1 (2*), where r, , ... , are the lengths of the edges of
I and 1. (Recall that the numbers U?1nh are integers). Since t ~ 1 and
tlle numl)ers ri are bounded, it follows that there exists a constant 01 with

S °1 ri t. Hence we may rewrite (11.7) as

We choose a finite covering of BQ : aD c l),,i , For each x E D.,i
choose an n-dilnensional box E c whose edges are parallel to the coor-

dinate axes such that the volume of ~ is greater than hi (n (x))/2 and such
that x (x) E Z. Here hi (x) is the function defined in condition (I), which is

associated with fix_. It follows from (11.8) that

On D - the o estimate in (11.4) is uniform. From condition (I) and
the strict positivity of the density on Q it follows that the function

li~, (x (x)) is integrable over Hence we may use the Lebesgue dominated

convergence theorem to obtain (11.2) from (11.4). 
In the general case we consider (as usual) the operator slik which is a

self-adjoint realization of SIlk in L2 The eigeiivalues of 2 k are I l.k We
have proved already that

as t -+ oo, Replacing t by tk we obtain (11.2) in the general case.
We now indicate briefly how to obtain extensions of the remainder

estimates for the eigenvalues, due to Agmon [5]. Essentially, no new idea

(beyond those of Agmon) is required in order to make the extension for the
semi-elliptic case. First we state a « geometric &#x3E;&#x3E; condition which stands for

condition (3.4) of’ ( 5J.

DEFINIT10N: The bounded measurable set hr c R?’ is said to posses the

strong (I) property if for every 0  Q  1 the function h (x)w 6 (x)-a is in.

tegrable over If. Here It (x) denotes the same function (supremum of certain
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volumes) as in the definition of the (I) condition (in section 10), whereas
6 (a~) = min (1, dist (x, aK)).

It is clear that smooth convex planar sets have the strong (I) property.
We now state the following:

THEOREM 11.2: Suppose that all the conditions of theorem 11.1 hold.

Assume moreover that each set Qx for which x E 7 and fJx n aD is not em-
pty possesses the strong (I) property. Set

where 0 (x) is the number associated with A (denned in (5.1)). Then for
every e &#x3E; 0,

as t - oo.

To prove this theorem one first has to prove an extension of theorem

3.2 of [,~J. This is done by means of theorem 5.1 (which plays the role of
theorem 4.1 of [5]) and the localization lemma 8.1 (which corresponds to
lemma 4.2 of [5]). Thus, it is easy to see from lemma 8.1, that if I A 11

. d ~~,) &#x3E; (i. e., in the same region of the complex plane where the
interior asymptotic formula (5.2) holds) we have, with a constant which de-

pends on N, e and p, that

for any p &#x3E; 0, if x E I)x (x E 7) such that Qx n 03A9 is not empty, and 6 (x (x))
is defined with respect to the set fix . Note that one applies lemma 8.1
with r = Theorem 11.2 follows from (11.10) in exactly the same way
as theorem 3.1 of [5] follows from theorem 3.2 of [5].
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