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ON THE ASYMPTOTIC BEHAVIOR OF RESOLVENT
KERNELS, SPECTRAL FUNCTIONS
AND EIGENVALUES OF SEMI-ELLIPTIC SYSTEMS

YAkAR KANNAI (%)

Introduction,

This paper deals with the asymptotic properties of resolvent kernels,
spectral functions and eigenvalues of systems of semi-elliptic differential
operators.

The asymptotic behavior of spectral functions was first investigated by
Carleman [11] for a class of second order elliptic operators. Carleman sho-
wed that this behavior is closely related to the asymptotic properties of
the resolvent kernels of such operators. Later the problem was studied by
many authors for more general elliptic operators (for references see Agmon
[3] and Bergendal [8]). Denote by e(x,y;?) the spectral function of a self-
adjoint realization of a positive elliptic operator of order m, defined on an

open set Qc R" (x,y are points in £, ¢ is a real number). G;rding [16]
proved that

n n

(0.1) e, @5 t)=c(2)t™ + o (t™),

t— oo

where c¢(x) depends on the coefficients of the operator. G;rding has also
shown that if the differential operator has constant coefficients then the

Pervenuto alla Redagione il 21 Ottobre 1968.

(*) This research is essentially part of a Ph. D, thesis written under the direction
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n n—1
remainder term o (¢™) in (0.1) may be replaced by the term 0(¢ ™ ). In some
special cases of operators which have discrete spectrm it was shown ([13],
[14], [15]) that one can integrate (0.1) over £ and get

(0.2) ‘ Z 1=qt™ + o (™),

st t-+oco

where {4 is the sequence of eigenvalues, each repeated according to its
multiplicity. Remainder estimates in the asymptotic formulas (0.1) for ope-
rators with variable coefficients were known in special cases only (Avaku-
movic [6]).

Agmon ([1], [2], [3]) developed a powerful method for the study of re-
solvent kernels which makes it possible to deduce asymptotic formulas such
as (0.1) and (0.2) in very general situations. He also found (in [1] and in
other unpublished works) that by a close investigation of resolvents in the
complex plane one can derive the asymptotic formula :

n—0

(0.3) ewx;ty=ct™ 0 (t™),

1
where 6 is any positive number less than 3 in the general case and less

than % if the principal part of the operator has constant coefficients.

In a joint paper of Agmon and the author [4] it was proved that (0.3)
1
holds for general semi-bounded elliptic operators with any 6 << 50 and that

if the principal part has constant coefficients then (0.3) holds with any
6 < 1 (actually a somewhat more general result was proved in [4]). Identi-
cal results for the remainder were also obtained by Hérmander [11] using
a different method. (Very recently, Hormander proved that (0.3) holds in
the general case with 6 ==1; his method would not, however, yield easily
results for general semi elliptic systems).

In a recent work [5], Agmon developed asymptotic formulas with re-
mainder estimates for the eigenvalues, extending the remainder estimates
of [4]. Agmon also obtained results for elliptic systems and removed the
assumption of semi-boundedness.

F. Browder [9] derived a formula similar to (0.1) for semi-elliptic dif-
ferential operators. In [9] and [10] Browder obtained results similar to those
of [3]; in particular, he proved the formula (0.2) for the elliptic case. Let
us note here that, unlike the situstion in the elliptic case, the highest
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order of differentiation which appear in a semi-elliptic operator varies with
the direction; precise definitions are given in section 4 of the present pa-
per and in [9]. (See also [7], [12], [17] and [26]).

Substantially, the present paper is an extension of [4] for semi-elliptic
systems. The first chapter treats, as a natural preliminary study, the fun-
ction spaces appropriate for the treatment of semi-elliptic systems and inte-
gral operators acting in these function spaces. The proof of the kernel
theorem is similar to the proof of Agmon’s kernel theorem [3] and to
Agmon’s unpublished proof of his matrix kernel thecrem. In the first section
of chapter two (section 4) the semi elliptic operators are defined and elemen-
tary properties of resolvent kernels and spectral functions associated with
such operators are briefly discussed (this section corresponds to sections 1
and 2 in [4]). In section 5 it is shown that asymptotic formulas with remain-
der estimates for spectral functions follow from an accurate asymptotic
expansion theorem (in the complex plane) for the resolvent kernels. The
rest of chapter two is devoted to the proof of this expansion theorem. In
gection 6 relevant properties of fundamental solutions and related kernels
are discussed. Since we are dealing here with systems of operators and
not with single (scalar) operators, commutation does not necessarily lower
the «order » of an operator ; this difficulty exists also in the case of elliptic
systems. The commutator technique, introduced and described in [4], is
sharpened in section 7 so that it yields results also for systems. Some loca-
lization and comparison lemmas (some weaker versions of which suffice in
the elliptic case) are proved in section 8. Using these tools we finish the
proof of the asymptotic expansion theorem in sections 9. Thus, section 5, 6, 7
and 9 of the present paper are extension of sectionss 3,4,5 and 6 of[4],
respectively. ,

The kernel theorems (of section 3) used in the semi-elliptic case do not
yield sufficiently strong estimates up to the boundary for the spectral function.
Consequently, one cannot obtain results on the distribution of eigenvalues
by integration of the asymptotic formula for the spectral function (analog
of (0. 1)) over £, as is possible in the elliptic case ([3], [5], without further
justification. In special cases one can use some of the older methods — of

G;rding [14], [15], or of Ehrling [13]. In other cases the situation improves
if some conditions on the geometry of {2 and on the « global» (up to the
boundary) regularity of functions in the range of the resolvent are imposed.
This global regularity is also connected with the geometry of 2. The
problem of estimating near the boundary is discussed in section 10 — the
first section of Chapter Three. In section 11 the application to the eigen-
value distribution is made. The analog of formula (0.2) which is obtained
is new even in the case of a single semi-elliptic operator. It is curious
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that all the new difficulties appear already in the derivation of the analog
of (0.2) whereas the extension of the remainder estimates of [5] (for the
eigenvalue distribution) to the semi-elliptic case presents no serious additio-
nal difficulties.

In the semi-elliptic case terms which do not belong to the principal
part of the operator may influence the asymptotic expansion of the resolvent
kernel in a manner which has no analog in the elliptic case. This, and the
fact that we are dealing with systems. of operators, makes several arguments
and theorems appear less transparent than in the case of a single elliptic
operator.

Several arguments have been sketched briefly in the present paper, if
they are identical to the proof of known elliptic theorems. This has been
done in order to keep the size of the paper under control.

1 would like to thank Professor Agmon for his encouragement ang
advice and for making me acquainted with his ideas during all the stages
of the preparation of this work. I would like to thank also Professor
L. Hormander for several very helpful suggestions, and Dr. R. C. Lacher
or a topological discussion related to section 10.
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CHAPTER ONE

THE FUNCTION SPACES
AND INTEGRAL OPERATORS OPERATING IN THEM

1, Notation and definitions.

Let £ be an open set in real space R with generic point x= (x,,..., ).
We shall deal with p-vector functions :

%y ()

1.1) u (@) =

uy ()

where the components wu;(x) of u(x) are complex valued functions defined
on . We denote by u (unless otherwise explicitly specified) a column vec-
tor; u = (U;,...,%p)~ (M~ denoting the transpose of a matrix M). We set :

1
2

(1.2) |u (@) | = [ZL, | uj (2) 2]

and we denote by L, (£2)? the space of vector functions (1.1) having com-
ponents u;(x) in L, (2), 1<j<<p (i.e., L,(2)? is the direct sum of p co-
pies of L, (4)). Thus L, ()7 is a Hilbert space with the scalar product

(1.3) (u, ’D)L. @r = zfp=l (U5, V)14 () «

Denote the L, (£2)?-norm of « by ||« |lo, 2. The subclass of vector functions
defined on 2 and belonging locally to (L,)? will be denoted by Ly’ (2)”.
For scalar functions we shall use also the notation L, (£2)(L;°(Q)) instead
of Ly (D) (Ly" ()Y).

We use the standard notation for differentiation :

3.
Dj=—ir,i={—1, D=(D,,..,D;
J
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for a multi-index o = (2, ,..., &),

a — pa %n
x _wli..,wn y

D = ])‘l"l D:” .

Set D*u=(D*wu , ..., D*u,)~.

Let m = (m,,...,m,) be a multi-index with positive components. We
denote by |« :m| the number 3 a/m;. If mi=1 for 1<<i<n then
|e;m|=a; + ..+ an =] a| coincides with the usual «length » of a. Other-
wise it is a « reduced length».

We denote by H,(£2)? the subclass of vector functions wu€ L, (2)?
with distribution derivatives Dj u € L, (2)? for all i << m;, 1 < j < n. Hy'(Q)?
is defined to be the class of functions defined on £ and belonging locally
to H,. In H, (2)? we introduce the norm

1

2
(1.5) | %]|m e = % /[ |u @) * 4 S5, | (D;"’f' w) (@) [ dat .
a

Under this norm H, (£2)? is a Hilbert space.
In the special case 2 = R" we consider also the spaces H,, where s
is an arbitray real number. These spaces are defined by means of Fourier

transforms. As usual, we denote by :;(E) the Fourier transform of u,

(1.6) W) =(2n) 2 / e—i&7 g (2) dw

Rn
where § = §&,,..,&, & x =¢, 4,4 ... + & 2. The sm-norm of u is defined by

1
2

a0 1 o, = [ / |Z @R+ 2 | & |2"‘f)'de
Rn

If =0 then the subclass of functions u € L, (R")? with [|u]|,, z<<oo is
a Hilbert space under the norm (1.7). This space will be denoted by
H,,(R*». If 8 <0 then H,,(R")? denotes the Hilbert space which is the
| |lsm-completion of L, (R")?. Obviously,

[l flom = 1] 2 []g, zn
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and

lllim=|u ”..., Rv

We note for further use the interpolation inequality

(18) R T (T

5 <8, < 8y, uEHem(h,,.)p,

which follows immediately from Holder’s inequality.
Let 2 be an open subset of R*. In addition to (1.5) we shall use the

following norms :
1
:

)

(1.9 [ lgra = [ L@+ BP0 0
]

and semi-norms :

1
(1.10) | |y, 5,0 = [-/I(D}"f u) () 2 dxr
2

for 1 << j << m. In the special case 2 = R" we shall also use the semi-norms
(for 8 > 0)

1
~ 2
(1.11) K7 ]mj’j’R,,=[f|§j|2mjiu &) d&-‘] .

R

Let T be a bounded linear operator in L, (£2)? such that the range of
T is contained in H, (£2)?. By the closed graph theorem 7 is also bounded
when considered as a linear transformation from L, (2)? into H, (2)?. The
norm of 7 when considered as an operator: L, — H, will be denoted by

(1.12) | Tlme=_sup [ If|nq-
sl @=1

The norms || 7 |lm;,;, @ and the seminorms |7 |w;,j o, 1 <j < n, are
defined similarly. If 2 = R" we use also the norm

(1.18) L) N (|
'0, R" =1
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and the semi-norms |T|.m,, e for 1 <j<<n Let 2, £ be open subsets
of R* and let T: L, (2)» — H, (£2,)?. We set:

(1.14) “ T ”0; o,Q= 8sup “ Tf”o 2
Sfllp, 9=1
(1.15) I Tllm 0= sup | If|ln a-
11/ 1o, @ =1

We remark finally that a bounded linear operator 7 in L, (£)? may be
represented by a p > p matrix (7; ;) of bounded linear operators in L, (£).
This matrix is determined by the equation

(1.16) (7, g)],, @r = Z?,j-_-l (Tg' jf; ’ g;)},’ @
Clearly,
(1.17) (T*)i5 = (Tj5,9)*.

2. Some properties of the H, (£2)? spaces.

In this section we shall discuss several simple properties of the H,, (2)?
spaces which will be needed later. We shall also begin with the proof of
the kernel theorem in this section.

We shall use the following simple extension property in order to be
able to treat H, (£)? space in case £ == R".

LEMMA 2.1: Let 2 be an n-dimensional box (i. e. a rectangular paral-
lelepiped), the edges of which are parallel to the coordinate axes. Then there
exists a bounded linear transformation V: L, (2)? — L, (R")? such that Vf
i8 an extension of f and V is a bounded transformation of H,(2)? into
H, (R")?. Moreover there exists a constant C (depending on X and on m)
such that

(2.1) | v lmj.j,R”s Y Hf”mj,j,z’ lsj<mn

This lemma is essentially well known [26]. One may use the same con- .
struction as in [3] in order to prove the lemma, since in every stage (of
extending across a planar face of a box) an inequality similar to (2.1) is
satisfied by our assumption on 3. It is obvious that it is impossible to re-
place in the right hand side of (2.1) norm by semi-norm | |,,.j‘ j, =
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We shall need in the sequel a somewhat more delicate dimensional ar-
gument than the one that suffices in [3]. Let r,, ..., r, be positive numbers.
Define a unitary operator U (v, ,..,7s): L, (R"? — L, (R™? by

1
(2.2) [Ty ey 1) L@y 5 vny @n) = (7 e )2 f g &)y ony 70 @),
Then

(2.3) (U@ry,eyr =T, ., r?
and

(2.4) | U gy ey ta)f |omj, jEn =1y lfl'mj’j‘ E™.
Let

Q=(n0<ss<<rialig<n,Q=[@;0<s<<a;, 1 <1< n

The transformation U (r,..,7n; $2,) Ly : (2,)? — L, (2,)? defined by

1
(2.5) [Ty ey 103 Q) 1@y 0oy Ba) = (ry e 1) 2 f(1r, @y 0¥y )

is isometric. Its inverse is the transformation U(r,..., v Q,). If D2f€ Ly(Q,)?
for a multi-index a«, then D* U (r,, ..., rn; 2,)f € L, (£2,)? and

(2.6) ” DU (ryye, "MQi)f”O’ Q=1 H D“f“ 0,4 -

In particular it follows from (2.6) that

(2.7) RACPRNEY Ql)f'mj_ Jr 2 =7‘;"j |f lmjf: @

LEMMA 2.2: If Q is an open subset of R" and if € H, (2)? then
D= ue Ly (2)? for every multi-index « satisfyng |a:m | < 1. If either 2= R»
or if Q is an n-dimensional box, the edges of which are parallel to the
coordinate axes then the assumption € H, (2)? implies D*u € L, (£)? for
|@:m|< 1. If in the latter case the lengths of the edges of £ are r,,...,7,,
then (for |a:m|<1)

@8) | D= ulo, 0 << Or==[|| o, 2 4 (| llo, @)= 1= ([ 0 lm, @) = "y 5™ )],

where the constant C depends only on m.
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ProOF : The assertion of the lemma for the case that 2 — R™ iswell
known [26] and it follows easily from formula (4. 1.15) of [18] and Holder’s
inequality (using of course Fourier transform), that

(2.9) | ])au||0’ wm=C(] u“m'Rn)laiml (]| w ||0 e LI

for u€ H,(R"? and |a:m|<<1.

Set S={r:0<<x;<1,1<i<n} It follows from the extension lem-
ma 2.1 and from (2.9) that there exists a constant C, depending only on m,
such that the inequality

(2'10) 1D v |0, << C (]| 0 ||m )2 ™1 (|| ¥ ]Jo, Vil

holds for every v€ H,(3)? and |«:m|<1.

Let now 2 be an n-dimensional box, the edges of which are parallel
to the coordinate axes and their lengths are r,,..,7,. We may assume that
Q=|r:0<a<<r,1<i<n}. The tranformation (2.5) U (ry,...,r.;):
L, (£)? — L, (2)? is an isometry, and (2.6) and (2.7) hold. For € H, (92)»
set v = U (), ., 7y} £2) u. Then v € H,, (2)?. Combining (2.10), (2.6), (2.7) with
the obvious estimate

Il

ln, 2 <[ llo, 2 + Zj=1 | ¥ |m; 5. =

we get (2.8).

If Q is an arbitrary open-subset of R*, x,€ £, there exists an n-dimen-
sional box Uc Q (the edges of which are parallel to the coordinate axes)
containing «, in its interior. If w€ H,, ({)? then wu€ H,(U)?, so that

Deue L, (U)?. Hence D*u€ Ly (Q)e.

REMARK : If Q satisfies the assumption of the Aronszajn-Smith coer-

civeness theorems [2], then D®u € L, (2)? for |« | < min m;
1Sj<n

The following is a «Sobolev’s lemma ».

LEMMA 2.3: Let m be a multi-index and let s be a positive number,
1
28 > i, — - Let u € H,, (R")?. Then u is (equal almost everywhere to) a
j
continuous bounded function satisfying

_zn 1 n 1
j=1 28mj j=1 28m.
! ( ”ulllm,R”) j'

1
(2.11) [u(@) | < C(|lull, z)
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Moreover « is Holder continuous of order u.
(2.12) u@) —u@) | < Cle—a" |*|u ”sm.R"
for every z, 2’ € *. Here 0 << u <1 and C depend only on m and on s.

PROOF : For every multi-index « set

(2.13) ea (1) = f 22 g,
1
(R 18 12 <

Then it follows from a simple « homogeneity » argument that

x}l:”;:' +2la:m
(2.14) cald) co €2 M

A + o0

C depends on m and a.
According to Fourier integral formula,

(2.15) w(w) = (2n) ? / 658 (£) dE.
R”

Hence by Cauchy-Schwarz inequality and (1.7),

1

| (a) | < ofms) |2 < ¢l[u ]y g / (1 S0 |2mj)_’d5]2.

Rn, R’ll
But
(2.16) /(1 - 2};1 l & 2,"'5)-8 dé =fl—2" de, ..., ) (A).
I.:" 0

From (2.14) it follows, using integration by parts and the assumption
1 . .

28 > ZF’ that the integrals in (2.16) converge. Therefore v may be re-
J

defined on a null set so that (2.15) is true for all x € R (compare also

theorem (2.27) in [18]). After tbis correction u is continuous and the estimate

(2.17) [u(e) | << O ull,y g
holds for every x € R".

3. Annals della Scuola Norm. Sup. - Pisa.



574 YAkAR KaNNAI: On the asymptotic behavior

‘We deduce the estimate (2.11) from (2.17) using dimensional argument.
Set v = U(r,,...,7s) . Combining (2.2), (2.4), and (2.17) we find that

1
(2.18) sup |u(@)|=(r,..7) 2 sup |v(@)|<<

ze R" ze R®

1
< O(ry . m)? [JJullp+ Zjmy r™ | u |mj'jv )

We may assume without loss of generality that » is not identically zero.
Choosing

1

”"=(“u“0' R"/lulamj,j' Rn)’mj ’ 1 Sjén;

we obtain (2.11) from (2.18).
It remains to prove the Holder continuity of the function u. Let
x, ' € R* . Then

|u (@) —u (@) | << C/l et — giv"t | |/1;($) | dE <<
Rn
L
2
< C “ U Hm' . [f[eiz.ﬁ —_ 8:‘:::'.5]2 (1 _|_ Z?=1 I 5]‘ i'zmj)_: dE .
E"

Let ¢t be a sufficiently large positive number. Then

(2.19) f | e — g8 2 (1 4 S | & ™) dE <
R®

= [ get—espats [ agsngsre
1 1
A+27_ 18 P2 a+2t_ g 1Pmy 2=

But by definition (2.13), the second term in the right hand side of (2.19)

is equal to f A= de, ... o) (4), which is (by (2.19) and integration by parts)
t
L g

i1
0t ) a8 t — oo. Also

e — et | <o —a'| 5],
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Hence
(2.20) f | s — =€ |2 dE <
1
A+ 112 s e
<|x—2" [Pleg,o...0) + « F €0, 0] = 0(|x—2" [Pt9),

where

i ax |37 ! + 2 ]

d = Ima: j=1 —— .

1<i<n =t m; m;

Choosing

_ . 1
t=|x—a l_zl(hw_zy"“ )

we find by (2.19) and (2.20) that

|u@ —u@)|<<C|lu]

’
om, 21X — % |

17 ] ) . . .
where u =1 — d/(‘z.s' +d— 2 F) , which proves (2.12). (The inequality
J

(2.12) is obviously true by (2.17) if | — 2’| is not small).
The following is a generalization of a part of Lemma 2.1 of [3] (Brow-
der-Maurin’s kernel lemma).

LEMMA 2.4: Let T be a bounded linear operator in L, (E")? . Suppose
. . . M |

that the range of 7 is contained in H,, (R")? where 21‘:1W<28- Then
j

there exists a p >< p matrix K (r,y) = (K;;(x,¥) i,j=1,..,p of kernels
such that for every f€ L, (Lk")?

(2.21) T = [ K (5, 9) F () dy,

B

(Kf stands for the action of a matrix on a column vector). The kernels
K; j(x,y) on R* > R™, (1 <<1i,j<p) have the following properties :

(i) For each fixed z,€ E* the function K (z,y)€ L, (E").

(ii) The function Kj ;(»,:) from R* to L,(R™ is uniformly conti-
nuous in R".
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(iii) The following estimate holds :

l_ N 1 1—3n 1
2 “i=1 m =1 28my
e2n) ([180 @ nra) <ol Tl w07l

o
R"

where C is a constant depending only on m and s.

1t is obvious (cousidering the matrix representation of 7T introduced at
the end of section 1) that it suffices to prove lemma 2.4 for the special
case p = 1, In this scalar case the proof is entirely simiiar to the proof of
Lemma 2.1 in [3] (since we have already proved a « Sobolev’s lemma » in

our case), only one has to substitute sm, R* for m, £, and instead of E%

1
28m,

We recall that it is usual to denote by 8 the class of (* functions
in R* which together with their derivatives die down faster than any power
of |« | at infinity. It is well. known that the Fourier transform maps S onto
itself and that & is dense in H,, (R")? for every real s. For any complex
number 2z introduce the operator L’ which acts on functions in S in the
following manner :

one has to set 3,

(2.23) L= (2n) ? / WO S &P

R
It is immediate that L? maps S onto itself and that if Re 2 = ¢ then for

every real ¢,

(2.24) L g g < 1 Lo gy, en -

It is also clear that a necessary and sufficient condition for a function
J € Ly (B™? to belong to H,, (R")? is that

(2.25) N = szlg) Ifs LF) ey | < o0
el n=1

and if N < oo then || f||, = N.
The following lemma generalizes lemma 2.2 of [3].
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LEmmA 2.5: Let T be a bounded linear operator in L, (R")? satisfying
the conditions of lemma 2.4. Suppose in addition that

(2.26) Il Tf“,,,., m=Cls “_...., R"

for all f€ L,(R")?, C a constant. Then 7 is an integral operator with a
matrix kernel K (z, y) = (K ; (x, y)) possessing the properties of Lemma 2.4.
Moreover every K; ;(», y) is a bounded and a nniformly continuous function
on R" < R" and the following estimate holds :

(2.27) | K j (@, )| < yC 1<ij<p

where y is a constant depending only on m and s.

As in the proof of Lemma 2.4, it suffices also here to treat only the
case p = 1. For this case the proof coincides with the proof of Lemma 2.2
in [3), except for the substitution of L° instead of A™, sm, B* instead of
m, E,; — sm, R" instead of — m, E, .

3. A class of integral operators with a hounded matrix kernel.

In this section we shall obtain the main theorems of the first chapter
of the present paper. These theorems play a basic role in our study of re-
solvent kernels and spectral functions. The following theorem is a partial
generalization of Theorem 3.1 of [3] (and of Agmon’s matrix kernel theorem).

THEOREM 3.1: Let £ be either R* or an n-dimensional box whose ed-
ges are parallel to the coordinate axes. I.et 7 be s bounded linear operator
in L, (2)?. Suppose that the range of 7' and the range of its adjoint 7* are

contained in H, (2)? where m is a multi-index with positive components
1 . .

such that 3, oy < 1. Then there exists a p > p matrix K (z,y) = (K; j(2,y))
4

1 <14, j <p, where the K; ; (x, y) are continuous and bounded scalar ker-
nels on 2 < O, K; j(x, y) belongs to L, (2) as a tunction of y for x fixed
and as a function of x for y fixed, and

(3.1) Tf=fK (x, y) f (y) dy, J €Ly (D2,
Q2
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(Kf stands for matrix multiplication). Moreover, if £ = R" then there exists
a constant C depending only on m such that

1 n 1

* z?:er 1_2:t=lT
(3.2) | Kis @ 9) | < C(| T |ln,a+ | T*[|m, 2) (|| T llo, @) ¢
1<i,j<p.

If Q is an n-dimensional box whose-edges are parallel to the coordinate
axes and their lengths are r,,...,r,, then

1

(3:3) | Kij(y ISCH (1T o, 2+ 1| T*lln, 2+ 7™ | T o, ™ -

1
~Zietmy

-(IlTllo,g) ) 1<i,j<p.

REMARKS : i) For most applications it suffices that (3.2) is valid for
boxes satisfying the conditions of the theorem, with a consant ¢ which
depends, not only on m, but also on the length of the edges of the box.
For other purposes the exact dependence, as given by (3.3) is needed.

ii) If Q= R” it is possible to replace m by s m (s > 0) and to ass-

ume that i, — <s. The conclusion of Theorem 3.1 will hold with sui-

table modlﬁcatlons We shall not use this extension in the sequel

PROOF : Let us consider first the case £ = R", Then T satisfies the
conditions of lemma 2.5 (with 8 replaced by %) The proof of this fact

is similar to the first part of the proof of Theorem 3.1 in [3]. One con-
giders the analytic function F (z2) defined by

( )—-—(TL‘“, v)L (RMP

where u and v are two fixed (arbitrary) vector functions in S and L? is
the operator deflned by (2.23). Applying Hadamard’s three lines theorem

to F and the three lines Rez = 0, Rez=% and Rez=1 (Rez =0, Rez

—2— Re 2z = s in the case described in Remark ii), using (2.24), (2.25), and

1
setting u =1L 3 Jy we find (in complete analogy to [3]) that the constant
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C appearing in the assumptions of lemma 2.5 may be estimated by
3.4 1 | *
<) CS?(HTI,..,R"'I"IIT ”,,.,l;")‘

lHence there exists a matrix K (z,y) == (K ;(x,y)) of bounded and uniformly
continuous scalar kernels such that K; ;(r,y) belongs to L, (R™ as a func-
tion of y for x fixed and (3.1) holds. Since T*is represented by (Kj i(y,x)),
K; j(x,y) also belongs to L, (R")as a function of « for y fixed. From Lemma
(2.5) (estimate (2.37)) and (3.4) it follows that

(3.5) B @< LTyt 1 T ) <

S 71 (|| T l|0 U + 2:1=1| Tlmt,t' R" + Z?=l' T* ,mt.t, lﬂ") 1 S i’j Sp?

where y, depends only on m.

We obtain (3.2) from (3.5) using a somewhat more delicate dimensional
argument than the one used in [3]. Without loss of generally assume p = 1.
For arbitrary positive numbers »,,..., 7, denote

(3.6) Trpyoiry=U 0y, ) TUGT oy 13

where U (r,,...,7,) i8 the unitary operator defined by (2.2). Then T, . .,
is an integral operator with a kernel

n

(3.7) an.,r,, (Bg yoeay T3 Yg yurosYn) =Ty W B (9 2y 5 oory Tn T 5 ¥y Yy yoeny TnYn)-

Applying the inequality (3.5) for the operator T,,..  r, and its kernel
K, .. ., (and using (2.3), (2.4)) we find that

(3.8) | K, . .+, (2 i<
< St VU Ty o0 1 T Ly ) 1 T g, ]

Assuming without loss of generality that T is not the zero operator, we

choose
1

“ T”o, R" ™

'Tlmt,t,R”-l—lT*lm,,t,R”

1=
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and we obtain (3.2) from (3.7) and (3.8), for the case £2 = R". As a matter
of fact, we obtain the (slightly stronger) estimate

(3.9) | K (=, 9) | <
"1 1

oI (|T ™ T e
= (I I"‘v‘» R" + I |m‘,t, R") (” ”0. R") 9

=1

-

where C depends only on m.

Let 3 be the box (#:0<<w;<<1,1<<i<n|. Let V be the extension
operator L, (X)—> L, (R") whose existence is guaranteed by Lemma 2.1. Set
T,= VIV* where V*: L,(R") — L,(2) is the adjoint transformation of V.
Using (2.1) and (3.9) we find that T, is an integral operator with a conti-
nuous and bounded kernel K, (z,y) satisfying

1 n 1

n b 1—2=m
| Ko@) [ < O I (I Tllmg, 24 I % flmg e 2™ (1T [lo, 2) e

It is easy to see (as in [3]) that for »,y€ 3 < X it is possible to define
K (x,y) = K, (z,y) and to show that K is the kernel of 7T, and to obtain
the estimate

1
(3.10) | K@< OO T|m, x4 " mgex+ [ T D"

l—2?=1mi
([ T lo, ) ty

where C depends solely on m.

Let now £ be a box satisfying the assumptions of the theorem and
let the lengths of the edges of Q be r,,...,r,; without loss of generality as-
sume that Q= {2r: 0 <<@;<< 7, 1<<i<n}. Define an operator ﬂl,,,,,,n in
L, (2) by

(3.11) T, = U1y, tn; QTUET, n, 175 3)

1 ...,f”

where U (ry,..,7r,; 2): Ly (8)— L, () is the isometry defined by (2.5)
and U (rl,..,r;1; 2) is its inverse. If follows from (2.7) and (3.10) that

~

T,,..,r, 18 an integral operator with a continuous and bounded kernel
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INL’,,,,‘,‘,-H (x,y) (#,y€2 < ) and

1

@Ba1) | K, . @y < O’tI_Il (7" (] T* lmng,t0 + 1 T'lngt,0) + 1 T o, o™ -

n 1

1—2'~t=l m,
(1T lo. 2) .

Hence T is also an integral operator (in L, (£)) with a continuous kernel
K(x,y) (r,y€ 2 < 2) given by K (@, e, @nj Yy oy Yn) = (e ?y)! -
Ky 7 @ e Ty, L, v ) and by (3.11),

1

(12) [ E@9|< O[T |n.cad [T .o+ e T o, 0] ™ -

L 1

1—2;_:1 my
(Il Tlo, 2) .
The estimate (3.3) follows immediately from (3.12).

REMARK : If we assume min m; > n then it follows directly from [3]
1<sj<n

that 7 is an integral operator with a continuous and bounded kernel so
that it is possible to start the proof with the dimensional argument. The
arguments at the end of section 2 and at the beginning of the proof of
Theorem 3.1 are needed for the general case where not all the m; are
greater than n. (These arguments, as noted above, are actually slight mo-
difications of arguments of [3] and of an unpublished work on systems by
Agmon).

We shall need occasionally a theorem which is true for n-dimensional
manifolds 2 that are more general than the domains considered in Theorem
3.1. We shall use the notations and terminology of [18], sections 1.8 and
2.6. The manifolds considered will have a positive C> density dr, kept
fixed throughout. By L, (£2)? we denote the space of vector functions whose
components are square summable with respect to dx.

THEOREM 3.2: Let {2 be a n-dimensional C> manifold. Let T be a
bounded linear operator in L, (£2)? satisfying the following condition: there
exists a complete set of C* coordinate systems x such that if » is either
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in the range of T or in the range of 7* then the composite function
~ n 1 . .
wox—1e€H, Q). If 3, pves <1 then there exists a matrix kernel K(»,y)=
t

== (K; j(®,y), 1 <=1, j<"p, where the K;;(x,y) are bounded scalar kernels
which are continuous in the interior of 2 < Q, K; j(x,y) belongs to L, (£2)
as a function of y for fixed » and as a function of x for fixed y and

(3.13) ﬂ=mewﬂw@ FeL, (@),
Q

(Kf denotes matrix multiplications).
Denote by T. the operator L, (2)? — H, (ﬁu)l’ defined by T.f=

= (Tf)ox"1. If ZC @, is an n-dimensional box obtained by translation
from the box (z: 0 <<x;<<7:,1<Ci<n}, then

n 1

1_El=lrn
(3.14) | K j (e, y) | < O ” T. “0,2,9) L.

1

(| Ta .0 4 1T w0+ 7™ T o5, 0™

for x,y€x—1(2), 1 <<i, j<p, C is a constant depending only on m and x,
(We use the obvious extensions, in the case where £ is a manifold of the
definitions (1.14) and (1.15)).

REMARKS : i) If 2 € R" and » is the identity, the theorem has a much
simpler form. It is compulsory to consider general » even if £ € R", since
the H, spaces are not invariant even under very simple coordinate trans-
formations. )

ii) Sometimes it suffices to have instead of (3.14) the weaker estimate

s L
(3.15) | Kij@®9)| << O()| Tu lln, 0+ [ (T [lm, 5,0) T ™ -

n 1

1-2"
(I Tulloza) =™

valid for @, y€x—1 (%), 1 <<i, j<<p, with a constant ¢ which depends on
the dimensions of X in addition to its dependence on m.
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ProoF. The proof of (3.13) is very similar to the proof of Theorem 2.1
bis in [4]. One must only replace the sets £2; of that proof by unions of
n dimensional boxes whose edges are parallel to the coordinate axes which

are contained in ?)',,. We only have to prove the estimate (3.14).
Define an « extension » operator E: L, (X)? — L, (2)? by

fox(x if zex—1(2)
(3.16) (Bf) () =
0 otherwise,

and define a «restriction » R: L, (2)? — L, (2)? by

(3.17) Rf=fox',

Then T.= T'E. Consider the operator T,: L,(3)? — L, (2)? defined by
= RTE. Let L* represent the given density on £ with respect to the
coordinate system x (see [18], p. 28). A simple calculation shows that the
1

1
= L*(T*), E ——— . We assumed
L* o %

Ly (2)? adjoint of T, is L* RT*E T o n

that L* is positive. Hence
| Tollo, << Cl Tlo =0,
| To llm » < Cf| To [lm, =, 2,
T |lm 2 << C (T *) |m. >0 029

O depending on L*. Applying (3.3) we obtain (3.14) for the kernel of T ;
this kernel coincides with K (x, y) for x,y € x~1(2).

An operator T: L, (2)? — L, ()7 represented by (3.1) where K =
= (K; j(»y), 1<<14,j<p is a continuous matrix kernel such that K; ;(x,y)
is in L, (£2) as a function of y for « fixed will be called «an integral ope-
rator with a continuous matrix kernel ». In the sequel we shall denote by
the same letter an operator and its matrix kernel.

REMARK: For 2 = R" it is possible to define spaces, more general
than the H,, spaces, defined by the norm

~ T2
[y, 2n = Ulu (&) PR ) e

R"
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where k is a weight function which is a (fractional) power of a hypoelliptic
polynomial. One can prove « Sobolev’s lemma » for these spaces using a
theorem of Nilsson [22] and it is possible to find classes of integral opera-
tors with continunous kernels. However, one can obtain only an extension
of the inequality (2.17), and it is impossible to have an analog of (2.11)
nor is it possible to extend (3.2) to the case of general k’s. The dimensional
arguments do not carry over to that case.
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CHAPTER TWO

ASYMPTOTIC PROPERTIES OF KERNELS ASSOCIATED WITH
SEMI-ELLIPTIC OPERATORS

4. Semi-elliptic differential operators and integral operators connected
with them.

Due to the non-invariant character of semi elliptic operators, it seems
worthwhile to introduce the concept of semi-ellipticity by two steps.

Consider, to begin with, a linear difterential operator & acting on p-
vector valued functions defined on an open set 2 c B". We assume that
<( is of the form :

(4.1) A= ul(x, D)= 2 ol, (x) D*
where
da (w) = (da, i, (1‘)) 1 g i’] SP

is a p < p matrix whose entries g{ff (x) are complex C* functions defined
in £2, and where o, = 0 for all but a finite number of multi-indices o.
We shall also write

(4'2) sz(‘t) D)z(dl,j(”vb)) 13%]£P

where o; j(x, D) are scalar differential operators. Let now m = (m,,..,m,)
be a multi-index having positive components. The reduced order, w (4), of
a scalar linear differential operator A = 3 4, (x) D* is (temporarily) defined
by

w(4)= max |a;m].
A, (2)5=0

(Clearly w (A) depends on m). Note that if m; =1, 1 << k << n, then w (4)
coincides with the (usual) order o(4) ot A. The reduced order of a matrix
operator of is defined by

w () = max w ().
1=<4, j=sp
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The semi-principal part of «{ is by definition the operator :

A =o' (x, D) = b Hy (x) D* == z Ha, i, j (2) D),
jasm|=w(A) la;m|=w(A)

1<i,j<p.

Recall that of is elliptic at a0 if the determinant of the characteristic
matrix of the principal part of «{ does not vanish. The operator < (z, D)
is said to be semi-elliptic in the restricted sense at z0 if

det o’ (2%, &) = det ( z Ha, i, 5 (%) &) =0

|a;m|=1w ()

for all real & = (£, ,..., &) 9= 0.

This definition of semi-ellipticity in the restricted sense generalizes the
definition of semi-ellipticity given in [18] for scalar operators with constant
coefficients. Several authors (e. g. [7], [12], [17]) call these operators quasi-
elliptic.

We note that whereas the (usual) order of a differential operator is in-
dependent of the coordinate system and ellipticity is invariant under non-
singular coordinate transformations, even very simple coordinate transfor-
mations may make it impossible to recognize the semi-principal part of a
differential operator, let alone its semi-elliptic character. We would also like
to consider semi-elliptic operators defined on manifolds.

Using a generalized definition of semi-ellipticity given by F. Browder
[9], we shall be able to overcome these difficulties.

We recall that a differential operator (with C= coefficients) in a C* ma-
nifold £ is a linear mapping of of C*(£)? into itself, for which to every
coordinate system x there exists a differential operator of. such that
(Au) o %=1 = o, (wo »x~1) in a, , if we 0> (2)?. The operator of is said to
be semi-elliptic (in the extended sense) in £ if there exists a complete set F
of coordinate systems such that for each » € %, the operator o«f. is semi-el-

liptic in the restricted sense at every point of Q.. Such a family & will
be called «a complete family belonging to o ». The reduced order (in the
extended sense) of the differential operator of defined in a manifold £, with
respect to m and % is defined to be sup w (<{,). The reduced order is in-

x €T
dependent of < only if all the m; are equal, 1 << i< n.
We emphasgize that the manifold {2 may be occassionally a subset of
R, but nevertheless the extended and the restricted senses are not the same.
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2
ExAMPLE : The operator 5‘% + 8% , defined by polar coordinate (r, 6) in

a plane annulus is semi-elliptic there in the extended sense but not in the
restricted sense (when written in the usual (x, ,x,) plane coordinates).

Let us note that if the reduced order of the semi-elliptic operator of
with respect to m is w, then the vector wm has integral components (see
also [7]). Hence ¢{ has reduced order 1 with respect to the multi-index wm.

Let ¢{ be semi-elliptic in the restricted sense, with respect to m, of
reduced order w. It follows from lemma 2.2 that ¢ acts on functions
we Hy' (8)? and that the mapping  — <{u is linear mapping from Hoe (2)¥
into Ly (2) .

It is well known ([9], [18], [26]) that semi elliptic (in the extended sen-
se) differential operators are hypoelliptic, i.e. if € C*(2)? and Hu = f (in
distribution sense), then u € 0~ ()7 .

We denote by C¥ (R") the class of functions u € C>(R") such that » and
all its derivatives are bounded on R". Let the coefficients of the differen-
tial operator ¢f be matrices, the entries of which are in CP (R") and let the
reduced order of < with respect to m be w. I'or every real s and for every
u € H(8+10)m (Rn)p y

(4.3) A N, gn < O 1 sy, 0

where C depends only on s,w, m and on a common bound for the coeffi-
cients of ¢« and their derivatives up to a certain order depending on s, w
and m (compare Theorem 2.2.5 in [18]).

Let ¢{ Dbe a linear differential operator defined on a manifold Q. The
formal adjoint «(* of o« is the differential operator satisfying

(st V) o0 = (1 A* V).

for every u, v € €5’ (£2)” (class of infinitely differential p-vector functions with
compact support in £). The operator o is said to be formally self-adjoint
if o = A*-o{ is formally semi-bounded from below in £ if

(Au, W pegp =€ (W U)oy

for all u € Cy° (£2)*, with ¢ a real constant. If ¢ = 0 then <{ is said to be
positive. Note that if of is semi-elliptic in the extended sense in £ and is
formally semi bounded from below in £, a complete family & belonging to
o may be chosen, such that for each » € F the matrix ofy (x (x), &) is posi-
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tive definite [8] and L~ (the function representing locally the given density on
Q) is positive (in !NJ").

We denote by A a self-adjoint realization of o in L, (£2)?. That is, a
is a self adjoint operator in the Hilbert space L, (£2)? with domain of defi-
nition D;i such that any uED;{ is a solution in the distribution sense (a
weak solution) of the differential equation :

(4.4) A (2, D) u = Au.

Let m be a multi-index with positive components. If o is semi elliptic
in the restricted sense with respect to m in £ (c R"®) and w (s{) == 1 (a8
one may assume without loss of generality) it follows from (1.4) according
to well-known interior regularity results for semi-elliptic operators ([9], [17],

(18], [26)) that D, < HY (Q)?. Moreover, if of is semi-elliptic in the exten-
ded sense on the manifold Q, then u € Dy implies u o x~1 € HX*(3 ) foreve-

ry = in the complete family belonging to «{. More generally, since A is a
realization of o(*,

(4.5) Do © Hiw' (G for k=1,2, ...

Let now R, = (5;{ — A)~1 be the resolvent of A defined for every com-
plex 4 not in the spectrum of A. Then range (R;) = range (R}) = D;{, 80

M | . .
that if 2‘,',,7n— < 1 it follows from (4.5) and Theorem 3.2 that E; is an
t

integral operator with a continuous matrix kernel R, (x, y). We shall refer
to R, (x, y) as the resolvent kernel of A.

Next assume that of is formally semi bounded from below and that A
is also semi bounded from below, and let m be a multi-index with positive
components, ¢{ semi-elliptic in the extended sense with respect to m. Let
{E,} be the spectral resolution of o which we normalize so that it is con-
tinuous to the left. It is well known ([8], [19]; it may be also proved easily
using the kernels theorems in the same way as in [4]) that E, is an inte-
gral operator with a continuous (actually C*) matrix kernel. Since F; is
self adjoint it follows, using (1.17) that the matrix kernel of E, is hermitian.
This matrix B, (z, y) = (E,:,j (%, y)), 1 =< 4,5 << p is called ([8]) the speciral
Junction of A.
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It is well known ([8], [16]) and easily seen that not only is E,; ;(x, x)
real monotone non decreasing function of ¢, but also the function

(4.6) o(t)= By i(@,2)|2>+ 2 Re[E, ;= x) 2] + Ej ;(x)

is real monotone non-decreasing function of ¢t for all (fixed) complex 2, with
z,i,j fixed.

Suppose that o is semi-bonnded from below (and w.l o. g A is posi-

\ n 1 .
tive) and that Z,=,;n— < 1. In this case both the resolvent kernel and the
¢

spectral function exist, and the following relation holds :

(4.7) Riij@y)=f" @t — N"dB,; (9

for 1 <<1i,j <<p, where the Stieltjes integral converges absolutely. Formula
(4.7) is well known for elliptc systems (see e. g. (8]). A simple proof of (4.7)
can be given with the aid of the theorems of section 3, in the same way
as in [4].

If { has a compact resolvent then the spectrum of A consists of a
discrete set of eigenvalues. Let {1} be the sequence of eigenvalues, each
repeated according to its multiplicity, and let {¢(x)} be the corresponding
sequence of normalized eigenfunctions. Denote by &k the vector function
(P, 13+ » Pr,p)~ Where @r,; is the complex conjugate of g ;. The spectral
function in this case is given by

(4.8) Ey(w,y) = i, <t Pk (@) 01 ()

By orthonormality it follows that

(4.9 21 =2, [B, 0

lk<£

One has to use formula (4.9) if one wants to get information about the
agymptotic behavior of eigenvalues from information about the spectral fun-
ction.

5. The main theorems.

The key result of this chapter (and one of the main results of this
apaper) is n asymptotic expansion theorem for resolvent kernels of semi-

4. Annald della Scuola Norm. Sup. - Pisa.
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elliptic operators. We introduce the following notations (in order to be able
to formulate this theorem for the general semi-elliptic case).
Let m = (m,, .., m,) be a multi-index with positive components. Set

1
b=>b(m)= min —, and let a = a (m) denote the reciprocal of the lowest
12i<aMy

common multiple of m,,...,m,. Set Q ={q real; g= b, % is a natrual number).

The function u € C*(£2) has a zero of type q with respect to m at a point

xz €9 where g€ QN {4 oo} if v and all its derivatives D*u with |a;m| <g¢

vanish at «. If % () 3= 0 we say that » has a zero of type ¢ =0 at .
Let o{ be a differential operator defined on 2c R*, w ()= w,

A= 23 As(x)Da

lam| s w

Denote by g, == g, («°) the maximal element in {g € Q U {4 oo} ; all the entries
of the matrices o, (x) — o, (x°) have a zero of type ¢ at 2°} and by ¢; =
¢: (@°) (i > 0) denote the maximal element of {g€ QU [0} U (-4 oo}; all the
entries of the matrices o{, (z) have a zero of type ¢ at «° for | a; m| = w — ia}.
We associate with < a rational number 6 (%) defined by

5.1 0(z°) = min gitia
6-1) ) osiswae i+ Db

¢ + ia . . e e
where we agree thatm=1 if g;=o00. If o is semi-elliptic in the

extended sense on a manifold £, we define a number 6 (x) for x € {2, where »
is in a complete family belonging to o to be the number 6 (x (x)) associated
with ..

We denote by d (1) (for a complex number 1) the distance of 1 from
the positive axis (d (1)=|1|if Red<<0, d()=|Im 1|if Re i > 0).

THEOREM 5.1: Let £ be a manifold, let &{ be a positive self-adjoint
operator in L, (£2)? which is a realization of a formally self-adjoint differen-
tial operator of. Assume tbat of is semi-elliptic in the extended sense in £

N 1
(with respect to m), w (&) = w, and 2h=1;n_ < w. Let < Le a complete fa-
h
mily of coordinate systems belonging to o such that for each x €  the
matrix o, (%(x), £) is positive definite and L* is positive in Q.. Let R; (x,y)

be the resolvent kernel of . Then R, (x,z) has an asymptotic expansion



of resolvent kernels, spectral functions ete. 591

of the form :
1 N3

1
~——1
(5.2) Ry, @) co /— 1) "= 3205 (@) (— Hyehe

b
—0 () — ¢ .
valid for 1 — oo in the region |1|>1,d (1) > Il!l @t where ¢ is any

given positive number and 0 (x) is the number associated with < according
to (5.1), uniformly in # in every compact subset of 2. That is, for any in-
teger N >1,

1 n 1
1— - ‘\:h—

G2y =D T R () — S5 G @) (— )| <
< Const, | 4 [~¥aiw 1<st<p

for 2| =1,d () =|4|!=9@bw+e where the constant in (5.2”) depends on N
and & but is indipendent of x in any compact subset of £2. In these for-
mulas (— A)~/%* gtands for the branch of the power which is positive on
the negative axis while Cj(x) are certain p < p matrices of C* functions on
§2 depending only on the differential operator «f (and on the family ). In
particular,

(5.3) o )= ()= (L e [ [t o, &)+ T

R®

where [ofi + I|7) is the inverse matrix of of, + I(I — the p > p identity
matrix). Moreover, C;(x) = 0 for all 0 < j < b/u satisfying ¢; > 0 for 0 <<i<j.
This theorem is an extension of Theorem 3.1 in [4] which deals with
a single elliptic operator. Before going on, it is worthwhile to elucidate
several points related to Theorem 5.1 by means of examples.
In the elliptic case m = (1,..,1), so that « =b =1 and w is the or-

dinary order of the operator (usually designated by m), 0(x) is just ﬁ—l(pzqo)

as in [4]. If the largest m,; is divisible by all the other m; (as is the case
for the heat operator) them a = b and again only ¢, is interesting, hence

1
0 (x) = 9o _>_? in the general case and 6 (r) =1 if the semi-principal

gt

part of & has constant coefficient. If, however, the largest m; is not divi-

sible by all the other m; then a =0, e. g. m = (4,6); then a = _1_1_2 wlereas

1
b = —. Differential operators which have reduced order no larger than
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w — b, are, in a sense, unimportant (compare [22]); they are dominated (in
the sense of [18]) by det «{’ and (which is crucial) they are weaker than
| grad; det o’ (£) | (this is not a polynomial, but a symbol of a pseudo-diffe-
rential operator). On the other hand, differential operators of reduced order
w, with w — a << w, <w, while dominated by <’ are not weaker than
| grad; det o{” (£)|, so that their influence (if occurring in <) is not negligi-

ble. In the above example, the (single) operator f(x, ,x,) D D, is dominated
by D} + Dj and the uperator of == D{ + D -+ f (z, , ;) D} D, is semi-elliptic,
but properties of f will influence the results of Theorem 5.1, since w (D} D,) =

-.--g > 1 — b, This fact made the formulation of the main theorems cum-

bersome,

It was pointed out to the anthor by L. Hormander that similar «in
between » terms may wcour even in the elliptioc oase, if one permits the
inclusion of pseudo-differential terms. Then an operator of fusnal) order m
may contain terms of order m — ¢t with 0 < ¢t < 1; these terms have neo
« negligible » influence on the asymptotic expansion of the resolvent kernel
since their order is greater than m — 1.

We shall demonstrate now how Theorem 5.1 together with a tauberian
theorem of Malliavin [21], yields the estimates for the remainder in the
asymptotic formula for the spectral function. A simple proof of Malliavin’s
theorem is due to Pleijel [23] who also gave a slight extension of the theo-

rem, It is the following: .

Tauberian theorem : Let o(t) be a non-decreasing function for ¢t =0
such that f do (% < + oo. Suppose that

14t
0
(5.4) Je=traom—c—ar=o0(ap)
0

a8 41— oo in the complex plane along the curve: |Imi|= |1, Rei=0,

where —1 < <<a <0, 0<<y<<1l; o, some non-negative constant. Then

gin 7w (& 4+ 1)

(5.5) o(t)= 7@+ 1)

oo 1 + 0 (t+47) + O(tA+)

as t—» oo.
‘We shall now prove the following result :
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THEOREM 5.2: Let all the assumptions of Theorem 5.1 be satisfied,
except that we do not require now that S, -’—;— < w. Let E,(x,y) be the
h
spectral function of ¢f{. Then for every 1< r,s<p,

1. 1 1 o 1 g(x)b
= Zh=1 5 = Sholpr — Tt

(5.6) Ez, re (JL', xr) — Dr, s (a;) Y " — O (t w mp, w )

as t— oo for any &> 0, uniformly in # in any compact subset of £. The
matrix D (x) is defined by

-y 1
(5.7) D (@) = (2m) T (% (@) f AL @) &) ().
Here w (£) is the differential form
1 &, &n .
0 @) = ——7 (E A A AdE o (— DB AL A
n m my
Zh=1 P !

in R®, the integration takes place over the sphere (R® — {0})/R, , oriented
by w > 0.

In particular (5.6) holds if we replace 6 (x) by min (—;—, %—) . If the semi-

principal part of o, has constant coefficients and the matrices <., , vanish
b

identically for w > |a;m|>w —i5a (io S-;), it is possible to replace

0 (x) by i,a/b. In the elliptic case or any other case where a =1"> it is

1
possible to replace 6 by > in general and by 1 if the semi-principal part

has constant coefficients.

PROOF : Without loss of generality we may assume that A is positive.

b
Suppose first that 3j_, %<w. Set ¢, = min (—a—, min z) Using the re-
h

=0
presentation formula (4.7) and the first term which does not vanish in the
asymptotic expansion (5.2), we have

b 1 1
— ey — —1
(5.8) f (6 — AL dB, .y (@, @) — Cors(@) (— H* "
0
! ;:=1—lioa/w—l

=o0(|a" " ) 1<rs<p
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h
1-0 — s -
as A—> oo along the curve |[Im1|=|4| @t , Re A =1, for any ¢>0.

Let now, 7, 8 be fixed and let 2 be any (fixed) complex number. According
to (4.6) and using the hermitian character of C,(x) and E,(x,x) it follows
from (5.8) that we may apply the tauberian theorem to

o(t)=Ey . @ )| 2>+ 2Re[E, (¥, x)2] + B, , (x, )

1. 1 1 1 iya _9(:Uv)b+£.

a=—Shm———1, f=—Sh— =2 —1, y=1
w h

By definition always 6 (x) <<i,a/b, so that « + y = f 4 1. Hence it follows
from (5.5) that

i 1
69 o0="22CE (0, @)z} +2 ke [Curi (@) 2]+ On s o)
1 ,n_ i 1 n== _I__O(z)b .
-t"’zh—l""'+0(t’” M=ty T e +)

as t — oco. By checking the constants in Pleijel’s proof of Malliavin’s theo.
rem [23] one also finds that the O estimate in (5.9) is uniform in # in any
compact subset of Q. If we let z vary in the unit disk in the complex
plane (compare [8] and [16]) we get (5.6) from (5.9) with

__sinz(a+1)
D (x) = 2@+ 1) O, (x) .

I learned from I. Hoérmander that transforming suitably (5.3) one gets (5.7)

which is the analogous form of the wellknown formulas of the case of a

single operator.

no 1 .

Suppose now that 33—;—— =w. Choose an integer k >—1—Z;,'=1-l—

mp w my

and consider the spectral function Eﬁk’ (x, y) of A*, Clearly E® (@, y) =

= B, (v, y). Noreover, A is a self-adjoint realization of o{*, a semi elliptic

1
differential operator of reduced order kw > S, rk Let now xz€ L. It is
h

easy to see that the number 0 (x) related to of* is not less than the 0 (x)
associated with of. Hence this case follows from the special case of the
theorem just proved in the same way as in [4].
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The remainder of chapter two is devoted to the proof of a general
asymptotic formula for resolvent kernels containing Theorem 5.1 as a spe-
cial case.

6. Fundamental solutions and related kernels.

In this section we consider integral operators acting on functions de-
fined on K", We denote by Hy, , = Ho (R™)? the class of functions u € 0 (R™)?
such that D®wu € L, (R™? for all a.

From now on through the remainder of this section we shall assume .
that of is a semi elliptic (in the restricted sense) differential operator of
reduced order w with respect to m = (m, , ... , my), that A = o/, that A
is formally positive and that o has constant coefficients.

A fanction f(z) is said to be semi-homogeneous of reduced order w
(with respect to m) if for any d > 0 we have

1 1

@M @y ey A" @y =d0 f () ee s Tn).

By assumption the matrix of (¢) is Hermitian for all £ € R* and is
pogitive definite for & &= 0, and its entries are semi-homogeneous of reduced
order w. We shall denote by {u. (&)}, k¥ =1, ..., p, the eigenvalues of of (&)
(with multiplicities) arranged in non-decreasing order: u, (§) << u, (&) <<
e pp (£). The functions u;(£) are positive for § 4= 0 since «f (£) is positive
definite and are semi-homogeneous of reduced order w since the elements
of o (&) are such. Hence there exists a constant y = 1 such that

6.1)  p (L4 S GNP 1w O =y (U Zie &Py

for 1 <<i<p.
Tt is clear that there exists a unitary p ><p matnx (u; ; (&), 1<<t,j<<p
for & &= 0, such that

(6.2) A 7 (&) = Zhoy wi, 1 (&) i (6) 4 1 (8), 1<i,j<p,

and the scalar functions wu; ; (§) are semi-homogeneous of reduced order zero.
It is well known (e. g. [16]) that of has a unique self-adjoint realization

in L, (R )? which we shall denote by A. The operator A is positive and
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its domain of definition is H,,, (R*)?. For any u € H,, (R")? we have:

—
~

(6.3) Au=dE)n @&).

Let F, = (s{ — A)~! be the resolvent of <{ which exists for any com-
plex 4 not contained in the non-negative axis. We denote by F; (j) a (sca-
lar) operator of the form

(6.4) Fl (j) = (Fl)m N1 (FA)(h ) Ty o0 (Fl)qj V15

1<, n<p, 1 <<i<), for a natural number j. We denote the class of
operators F, (j) by F,(j). As before we denote by d (1) the distance of A
from the positive axis.

LEMMA 6.1: Let F,(j)€ F,(j), j a natural number. The operator F, (j)
defines & one-to-one map of H, onto itself. For any two real numbers s, ¢
with 8 <<t <8 - jw the following inequality holds :

, e
(6.5) | E2 () S llg, g =< Bp7) lJT 1 1y, 20

for fe H, and |A|=1 where y is the constant occurring in (6.1). For
== § the constant in (6.5) can be replaced by p’.

PRrROOF: By Fourier transformation,
(6.6) Frg (&) =[oA (&) — ] g (&)
for any g€ H, . Using (6.2) and unitarity we have that
6.7) (A @) — ALY g, = Sty g, 1 (6) (k&) — ™" 4y, 1 ()
8o that by (6.6)

(6.8) (Forr 9 (&) = SEertig 1 (&) ar (&) — A" w1 (6) 9 ()

for & == 0.
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Hence F;(j)f may be expressed by
(6’9) Fl(j)j f) = Zkl v k= 1 “q:, k (E) oo qu. k](é)'
i (8) s Uy iy (8) (s () — D™ iy (6) — DTV T8, £ 0,

for all f€ H, . This implies that F,(j) yields a one-to-one map of H, onto
itself. It is clear that |u, ,(¢)|<<1 for §3=0,1<Cq, r <p. From (6.9) and
(1.7) it follows further after a simple calculation that

(6.10) (N F2 () S N, o < 27 Gy n)?

where

_ [1 + z;:=1 |5h |2mh ]t—a
o= ?:11?" |, (8) — A% oo | pua (H) — A2

Olearly C; =d(A) for ¢t =s. Using the estimate | u () —1|=d (1) and
(6.1) we have for |1|>1and 1<<k<p:

(14 Shay | &[0y (14 e (8)
(&) — 2 | px (&) — 4|

gr|1+ i1l Is?»ylzl/d(z)

Since t — s << jw we get
O} << (By | A|)pe=o0w a (1)~%

and inserting this in (6.10) we obtain the desired inequality (6.5).

Every element of the matrix F} is sum of operators in F;(j). There-
fore it follows from Lemma 6.1 that for s, ¢, j satisfying s <<t << s+ jw
there exists a constant C depending on r, j, p but independent of A such
that for |A|>1 and f€ Hy,, We have:

|~

i
.11 1 FLF N < O 0 U

1
Suppose now that wj > Z;._lm— It follows from (6.9) that F; (j) is a

class of integral (convolution) operators and that any F, (j) € F; (j) has a
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continuous and bounded kernel F, (j) (x, y) = F, (j) (r — y, 0) given by

F; (j) (@, y) = (2n)~" f @) . &,
(6.12)

C IR kgt Uk (6) e gy k(B 2y k(€)1 (8) ¢
(o, () — A1 (g (§) — A A8

Moreover the kernel (6.12) has continuous bounded derivatives up to
1

the reduced order wj — 3, ool a. In particular it follows from the se-
A

mi-homogeneity of u (¢) and u, , (§) by a straightforward computation that

. 1
forla;mlswj—zra.:l;n—;—“

1 |a;m|_

a . 2:—1 wmy w J »
6.13) [D§ Fy(j)] (@, 2) = (— 1) "= ™ P38 byt Oy ey T

where

1'M

Oky sy by) = (2;:)—»[.5* ctg k (€) r tgy,by (8) trk (£) sty ay (6)
R®

[, (&) 4171 [y (8) - 1)1 6

1 1
—Z—+|a;m|]—]j
and (— 4)° - ™A ] is the branch of the power which is positive on

the negative axis. As a particular (and even simpler) case we get that F,{
has a continuous and bounded kernel given by

(6.14) F} (@, y) = (2n)™™ f ee—vE (A (&) —AIT dé.
R™

This kernel has continuous bounded derivatives up to the reduced order

wj — Zh=1 mih — a. It is simple to calculate that for |o;m |<Z wj— 27,':1—;—; —a,

« S [ et laiml] =
(6.15) (D2 Fl)(@,0)= (— 4) ) (2m)=" f s [oA (&) + I1 dé
R®

where the determination for the power in (6.15) is the same as in (6.13).
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We consider now (following [4], pp. 11-13) a scalar operator 8; of the
form :

(6.16) Sy = Byt (2, D) Fy (ji) Bi (xy D) F; (jioy) o.. F1(jy) B, (@, D)

where the B, (v, )) are (scalar) differential operators of reduced order I, =0,
1<<»< k-1 with coefficients belonging to C¥ (R"), and F)(j,) € F1(j,)
1<<v<<k We set

l = Z:‘=l Iv’j = Zf=ljv .

Using (4.3) and Lemma 6.1 we find that §; which is a well-defined
operator: I, — H, is (after completion) a bounded linear operator :
Hy, — H,y for any, 8, ¢ such that ¢t << s 4w, — L.

By an alternate application of (4.3) and Lemma 6.1 to the factors of
S; it is easy to see that the following estimates hold for s —I<<t<<s-+w; —1;

t—s+1
. ,1 w .
(6.17) 180/ o, i < Go9)? € dl @7 1 N, 20

for f€ Hy,,|1| =1, where y is the constant occurring in (6.1) and C is a
constant depending only on w, m, I, j and on a common bound for the coef-
ficients of {B,} and their derivatives up to a certain order. The verification
of (6.17) follows immediately from the interpolation inequality (1.8) and the
estimates for the norms of the operators F, (j,) in the appropriate spaces,
exactly as in the proof of inequality (4.10) in [4].

Let us assume now that wj = I. Thus we may regard S; as a bounded
linear operator: L, (R") — L, (R"). It is clear that 8%, the adjoint of &§; in
L, (R"), is an operator of the same type:

8t = B} F;(j) .. F; (j,) B,

where BY denotes the formal adjoint of B , and Fj(j)€ FZ (J,) is the

L, (B") -adjoint of the operator F;(j,); this adjoint can be represented in

the form (6.4) when A is replaced by 1 (since the elements of the operator
matrix F; commute). We have

~1

1
THEOREM 6.1 : Suppose that wj — I > w > 2,,,._1?. Then §; is a(sca-
h

lar) integral operator with a continuous bounded kernel S, (#, y) on R" < R*,
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satisfying the following estimate :

1 1 :
| 15(27.;1 )
(6.18) | 82 (=, ¥)| < Bpy)! O, ¥ 7Y — [ =1
where y is the constant appearing in (6.1), and C, is a constant depending
only on m,j, !, w and on a bound for the coefficient of {B,} and their de-
rivatives up to a certain order.

REMARK : It is possible, in analogy to Theorem 4.1 in [4], to obtain
differentiability properties for the kernel 8; (#, y), and to weaken the assum-
ptions on wj — l. However, Theorem 6.1 is sufficient for the sequel.

PROOF : According to a remark made after the definition of semi ellip-
ticity we may say that w (#{) = 1 with respect to the multi-index wm. The
sum of the reduced orders of the differential operators B, with respect to
wm is l/w. It is clear that the norms of H,, (R") based on m a8 a multi-
index and w as an exponent (1.7) or those which are based on the multi-
index wm, are equivalent. From (6.17) the estimates

[
14—
2] _*®

[l 8 "’wm = ¢ d (1)

]

14—
Al " ®
(6.19) 1S N, 20 < € =g 57~

A
d(3)?

[l 8ally, n =< ©

follow for |A| =1, where C is a constant which depends only on m, w, j, |
and on a bound for the coefficients of B, and their derivatives up to a cer-
tain order. Theorem 3.1 implies that §; is an integral operator with a con-
tinaous kernel. Using (6.19) in inequality (3.2) (with wm replacing m) we find

that
1

P (L J——
|83, 9) | << O (| 84 llyym, 70+ 1 83 g, ) """ -

1 l
h=1 wmp, + w

. 1_2;:=l _'wfln_h ‘ l \
(I 8 “o, ) < G, 3pyY FIRY

and the theorem is proved.
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REMARK : It is possible to get estimates similar to (6.10) and (6.11) for
several classes of hypoelliptic differential operators which are more general
than the class of semi-elliptic operators. Perhaps even some formulas similar
to (but weaker than) (6.13) could be obtained for certain classes of hypoel-
liptic operators. Ilowever, since an analogue to Theorem 3.1 and especially
to inequality (3.2) is lacking for operators with ranges in Hj, spaces for
more general hypoelliptic weight functions k (see remark at the end of sec-
tion 3), we have no sufficiently strong analogue for Theorem 6.1. Therefore,
the present author does not know whether a complete asymptotic expansion
exists for resolvent kernels of more general hypoelliptic operators.

7. Some properties of commutators.

In this section we shall extend the method of commutators, introduced
in [4] to deal with scalar operator, so as to be able to treat semi-elliptic
systems. The main trouble lies, of course, in the fact that the (reduced)
order of AV — B is in general no less than the sum of the (reduced)
orders of of and B — if of and B are matrix differential operators. In
the following we shall see how to overcome this difficulty.

Although the case of interest to us is that of differential operators, it
will be convenient (as in [4]) to start by considering a more general situation.

Let M be a linear space over a field K, and let M? be the direct sum
of p copies of M. Let o : M? — M? be a linear operator. We may regard
o as a p < p matrix of operators «; ;: M— M, 1 <1, j<<p. Denote by
A the collection of the operators «;j;, 1<Ci, j<<p. Let B be a set of
linear operators. If C, D are sets of linear operators mapping M into itself,
we define the following sets by :

C+D={CH4D:CcC DeDj
C—D={0—D:CeC, DeD)
CD={0-D: CeC, De D).

As in [4], denote by S (r,t) the set of r-vectors J = (j,,..,j,) with inte-

gral components 0 <<j;<<t, 1 <<i<<r. (The elements of S (r,t) are multi-
indices in R"; to avoid confusion we use here Latin and not Greek letters).

Set |J|=j, + .. 4Jjr, S0)= U S(r,0) and denote by J U (jr4r) (J €S (r)
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the vector (j,, .., jr,Jjr+1) €S(r 4 1). Define a zero dimensional vector
(belonging to 8 (0, ¢)) to be the empty vector. For the empty vector J = @
set: |J|=0 and @V (j,)=/(j,). .

Let us recall the operation of commutation (ad D) C = {CD — DC:
CeC, DeD}|. We define now classes of multiple commutators: [C, D; J),
J € 8 (r) non-emptly, by

(1.1) [C,D; J] = (ad D) C ... (ad D) C.

Note that [C, D ; (1)] = [C, D] = (ad D) C is the class of usual commutators
of members of C and members of I). Note also that if both C and D con-
tain just one element (C and D respectively) then [C, D; J] as defined ac-
cording to (7.1) is the same operator as defined inductively in section 5 of [4].
Let 1€ K be such that of — il is a oneto one mapping of M? onto
itself and let Fy = (¢ — AI)~!. We denote by F, (j) the set of products

(Fl)n,a, (Fl)rs,h"- (Fl)rj.ajy 1< 'riajis.p: 1< ’SJ

(In our notation F; (j) == [F;(1)}Y). For any set E of linear operators M — M
we denote by (E} the additive semi-group generated by elements of K, i.e.
the set of finite sums of elements of E.

THEOREM 7.1: Let » and k be positive integers. Then
(1.2)  [Fa() B € Zjyesiri—n (B A5 Fa(|T| + 1)) +
+ ZiZ0[Fa (1) BY (Fi (1) Zyesip—s—n, i) [ByA;J U (O] Fi (| |+ k+r—s —1)).

PrRoOF¥ : The proof proceeds inductively in several steps as the proof
of theorem 5.1 in [4]. Consider first the case r = k= 1. A typical element
of Fi(1) B, is (F,),s B, where 1 <C¢, s <<p and B;€ B. One may regard this
element as the ¢, s element of the matrix F; B; I (where I is the unit opera-
tor in M?),

The identity

(7.3) F;,BLI:‘—BzIF;,—l—F;,(BzISZ{—.S?{BII)F;,

is immediately verified by applying «{ — 11 on both sides of (7.3) from the
left. The matrix (operator in M?) identity (7.3) implies equality of the ¢, s-ma-
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trix elements :
(7.4) (F), s Bi= Bi(F),s + Zi i1 (F)e, 1 (BiAp. i — An i B (Fai, s -

But the right-hand side of (7.4) is contained in BF; (1) {Fi(1)[B, A ;(1)] Fi(1)}.
Therefore

(1.5) Ei(1) B BF, (1) + (Fi (1) [B, A5 (1] Fa = (1) ]

which is (7.2) reduced to the special case »r =k = 1.

It is in (7.5) that the main difference between the scalar and the ma-
trix cases lies. The rest of the proof is very similar to the corresponding
parts of the proof of theorem 5.1 in[4], and will be sketched only.

One may rewrite (7.5) as

(7.6) Fi(1) Be BF, (1) + {Fi (1) [(ad A)t B] F; (1))

Suppose that (7.2) has Dbeen established already for » =1 and some
k, i.e. (according to definition (7.1)) suppose that

(7.7 Fi (1) Be 3520 ([B, A5 G) Fa (G +1)) 4 (Fa(1) [(ad A B] F; (k).

Using (7.6) for (ad A)* B replacing B and applying definition (7.1) we get
easily (7.7) with k 4+ 1 replacing &, which proves the theorem for r =1.
Assume now that the theorem has been proved for some r. Then

(1.8) [Fy(1) B = Fy(1) BIEy() BICF (DB, cs rampl[B, A 57 Fa( 17| 4 )+
+ SZHE) BI (F2 (1) S st [ByAsTU(0) Fa(| |+ k4r—s—1)).

According to (7.7) with B replaced by B|B, A;J] we may rewrite every
set of operators which generates the classes in the first sum in the right-
hand side of (7.8) in a form which (after repeated use of definition (7.1))
will lead us to (7.2) with » replaced by » -4 1, in essentially the same way
which leads from (5.8) to (5.9) in[4], and this concludes the proof.

REMARK : It would be possible to replace the inclusion (7.2) by an equa-
tion generalizing (7.4), but then the quantity of indices would have been
discouragingly large. The less explicit form of theorem 7.1 is adequate enough
for our purposes.
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Assume now that there exists a subring R of the ring of linear tran-
sformations from A to M and a function w from R to the real line so that
the following conditions hold:

(7.9) w(0) = — oo

(7.10) w (AB) < w(4) + w (B)

(7.11) 1w (AB — BA)<<w(A) 4+ w (B) — b, b a positive constant
(1.12) w(I)=0.

We denote also (for Cc R)

(7.13) w (C) = sup w (0).
deC

THEOREM 17.2: Let J € 8(r),r > 0. Then
(7.14) w (G, D;J)<<|J]|w D)+ rw(C)—|J|b.

ProOF: the agsumption (7.11) implies that w ((ad D) ) << w (C) 4 w (D) — b.
The assumption (7,10) implies that w (CD) << w (C) + w (D). The conclusion

(7.15) w (ad DY C... (ad D) €) < j, 10 (D) — j,ae(D) +
4+ w(C) + ... + 4,0 (D) —j1 b 4 w (C)

follows immediately. By definitions (7.15) is (7.14).

Theorem 7.2 is a (trivial) generalization of lemma 5.1 of [4].

Theorems 7.1 and 7.2 will be applied in the sequel to the case where
M is the linear space H.(R™ and R is the ring of (scalar) differential ope-
rators with O coefficients. For any multi-index with positive components m
a function w (A) is defined (A4 € R) to be the reduced order of A with re-
spect to m. (The property (7.11) follows immediately from Leibnitz’s rule,
where b ==0b(m) is defined as at the beginning of section 5).

It is possible to generalize theorem 5.2 of [4] (which describes zeros of
coefficients of commutators of differentiai operators), but this generalization
would not be explicit enough to yield the same results as in [4], since (in
the semi-elliptic case) it is impossible to have a good estimate for the order
of coefficients in a multiple-commutator which do vanish.
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8. Several localization and comparison lemmas.

It is well known (e. g. [16],[19]) that the asymptotic behavoir of the
resolvent kernel is essentially a local property of the coefficients of the
differential operator. We shall need the following lemma which is an exten-
sion of lemma 4.2 of [5] to semi-elliptic systems. Note that for results in
the interior a weaker localization property (lemma 6.1 of [4]) suffices in the
elliptic case. (See semark at the end of the preceding section).

LEMMA 8.1: Let m be a multi-index with positive components and let
w be a rational positive number such that w is a reduced order of a po--
gitive semi-elliptic differential operator with respect to m. For every complex
A which is not on the non-negative axis, let T; be a bounded linear ope-
rator in L, (2)? (2 ¢ k") with range contained in H,, (£2)? . Suppose that

, c
(8.1) | Zilhasgob 1T lmas %0, 12121
where O, is a constant.
For any point y€ R* and positive r set
1 .
(8.2) Sy =[RER": | —y| <™, 1< i<<n)

(i) Assume that there exist %€ £ and a positive » such that 3, , <R
and there exists a positive differential operator ¢ which is semi elliptic in
the restricted sense with respect to m with reduced order w, such that

(8.3) (A (x, D) — A) (T, f) (@) =0

for #€ 3, o and f€ Ly ()7 .
Then for every integer j =0 and every u, 0 << u <1, there exists a
constant ¢ (independent of 1 and r) such that for all fe€ L, (2)?

o | 17

d (1)

ClA A1=blw
d!(/l)| ,lb/u',d ] 1/ 1lo. @

(8.4) | 22 f llo, zury o0 < v llo, 2

(8.5) T3S Mliem, Zur, a0 <

. 1
for |1|21( ==mm—).
1sism My

6. Annali della Scuola Norm. Sup. - Pisa.
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. - 1 .
(ii) Suppose in addition that Zj_, pova < w. 1f the range of T)* is
h

also contained in H,, (£2)? then T, is an integral operator with a continuous
matrix kernel. If the inequality

Cyl4]

(8‘1,) “ T;'* ”'“’"" d ('1)

holds for |A| =1 and if there exists a positive differential operator of,
which is semi-elliptic in the restricted sense with respect to m with reduced
order w, such that

(8.3 (A, (@ D) — ) (T* ) (@) = 0

for 2 €5, » and all f€ L, (£2)?, then for every integer j = 0,

1
c|a Izh—l YT A |1t
a4 rbhvd (.1)

(8.6) | Th0 @ 9) | <

for 1<<s, t<<p, |A|=1, and #,y€ 3, ». (C depends on u and j).

PRroOOF : Without loss of generality assume x° is the origin. We prove
first (8.4) and (8.5) by induction on j. For j= 0 they follow immediately
from assumption (8.1). We may assume that » = |i|~!, since (8.4) and (8.5)
are otherwise weaker for j > 0 than for j = 0. Let ¢ € 00°° (RB™ be such that

@(®)=1 for max |xy|<<p, @ (@ =0 for max |xr,|= +’u—,u1. Then
1Shsn 1<hsn 2
_ 1 _ 1
A—=De@r "™, ar "I f=
1 -
(8.7) = @@ r "™, o, Ty ) (ol — A T, f +
1 1

+ I CopDrg(mr ™, war W) DTS
a>0
|(“+ﬂ)>: m| Sw

(The matrices C, s depend only on o). The first term on the right-hand
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side of (8.7) vanishes, and the second one may be estimated by

(8.8) ¢ Z  rTlem | DET Sz,
ot om0

The induction assumption is that (8.4) and (8.5) have been proved already

1
(for j) for all 0 << u < 1, in particular for u, = -;—,u .

Using the local
interpolation inequality (2.8) with wm replacing m we get (from the induction
assumption) for all B satisfying | f:m | << w,

(8.9) | DA Lo f o200 =

nro

Cr—18:w Y
| B:em| g f:om |
= d(l [1 + ‘ll r ][’I'b/'”d '1) ”J"'OQS

0'1i|ﬁ:w'n| !1|l—b/w j
=@ |wmam| e
the last inequality following from the assumption » > |1|~!. Hence we
may estimate (8.8) by

[afiorem)

M p—la:rmijfw
¢ = i

a>0
| (a4B):m | <w

I A Il—b w
o q M) I |0 Q2

But a > 0 implies |a:m|=0 so that for || =1, » = |4 |~! we have that

Il ||—b/m

r—ia:mlfw ll ||ﬂ:wm] < o

Therefore we find, by (8.7), (8.8) and (8.9), that

1 1

(8.10) ” (A —A) @ (e, 7 winy ey T T ) T/l o< C[

A p=bw it
L2 ] 1 o, 2 -

rb/w d (l)
It is easily shown that, for o{ positive,

(A =2 v]oe

(8.11) 2]l << )

fro all v€ H,,, (2)? with compact support contained in . Hence, (8.4) fol
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lows from (8.10) for j -+ 1, since

1 1

l| Tlf“o, 2;41'. 0 S " ¢P (wi r wmy oy o T wm”) Tlf”o' Q.

Let us note that from (8.11) and well known a priori estimates for semi-
elliptic systems ([26]; (1], [9]) that if v€ H,, (£2)? has a compact support
contained in £, then

812) || V]lum o< O([[Av]o,0a+ 2l C((A—=Dvo o+

0|
AR P [E S T PR TIEE

The inequality (8.5) follows (for j 4 1) from (8.10) and (8.12), since

1 1

| T2 S {liom, S0 = @ r “™, ey @nr “™) T4 flom 2

and (i) is proved.

If the assumptions of (ii) are also satisfied the estimates (8.4) and (8.5)
follow with T,* replacing 7% from (8.1’) and (8.3’) in the same way as above
(one has to substitute of, for of and i for ). Using theorem 3.2 in the
special case » = identity we find from inequality (3.14) (with wm replacing
m) and (8.4), (8.5) that

¢ |l|l—b/wj Ld l'w;L]
|Tl,a.¢(‘”ay)|gm‘)‘lm] hg(lll—l—’i ) <

n 1
o l 1 |2h=1 wmp, l' l |l—b/w]j

=7am e q )

for 1<<s, t<<p, r=|A|"'. If r<|A|! the desired inequality follows
immediately from (8.4) and (8.5) and theorem 3.2.

REMARK: Lemma 8.1 replaces the exponential decrease outside the
diagonal of the fundamental solution ([16] in the elliptic case, [19] in the
elliptic case with 1 in the complex plane, [22] in general hypoelliptic case).
In our case it is inconvenient to proceed as in [16], [19] and [22], i.e., to
estimate kernels directly, since it is not a simple matter to do this for
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operators with non-constant coefficients, especially in those regions of the
complex plane where we need the estimates.

Let now m, w, o and ¥F; have the same meaning as in section 6. Let
@, be a linear operator in L, (R™? defined for complex 1 not contained in
the non-negative axis, such that the ranges of @; and G} are contained in
H,, (R"? and such that the inequalities

Cla|
ng—_

” GA “wm I (l)

C
H a, ”o = m ’
(8.11)
Cli]

“ G ”wm R® =37 (l)

hold for |1| =1, with a constant O. Let 8 be a differential (matrix) ope-
rator with coefficients whose entries are 0> (R") functions, and let w (B)= w.
Let & be a positive integer and assume that all the elements of the matri-
ces P, with |a: m|=1w — ia (a = a(m) is defined at the beginning of sec-
tion 5) have a zero of type g¢; (at least) at 2% O0<<i<<k— 1. Let »; be
positive numbers 1<<i<<k—1 and let ¢ be a (fixed) Cy° (R") function

1
such that @(2)=1 for max |, |<< —, @ (r)=0 for max |z, |=1. De-
1<h=n 2 1<h<n
note 93; = by DB, () D* and set

la:m|=w—ia

1 1

%j =@ «""1 —_— w?) To ™ y oeey (B — -’vg) L —ﬁ) C}3() -+

1 1

(8.12) + et @ (@, — xy) 7k_1 y eeey (g — ) Vk ") B +

+2|a:m|5w—ka Ba (x) D

n 1 i .
LeMMA 8.2: Let w > 25 pro Then the operator (F) <B,)7 G4 (j a po-
N L

sitive integer) is an integral operator with a continuous bounded matrix
kernel and the following inequality

1
| I’Lx Y

(8.13) U B @il 9) | < =

94!
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holds for 1 <<s,t<<p,|A|=1and1=r=>|4|"!, where g(1)is defined by

_ max (o 1AL g LA (A [
(8.14) ¢ ()= max (ro aa)’ ri im0 L i , ik

and C is a constant which depends only on the coefficients of 3, m, w, @, j,
the constant appearing in (8.11), and the constant y which appears in (6.1).
Here and in the sequel we agree to replace r{* (where ¢; is a zero type)
by r¥ with any positive N, if ¢, = oo.

PROOF: Without loss of generality assume that 2° = 0. Note that if
# € 0 has a zero of type ¢ at the origin then
w@)= 0 ([Zi= |&|™9)
z-0

(and if ¢ = oo then u (#)= O (3 |x;|™|¥) for every N > 0). Using (6.11)
and completion it is easy to see that

(8.15) | B, Fi |, zn < Cg (4)

where here and in the following C denotes a constant depending only on
m, w, ¢, j, y, the constant appearing in (8.11) and the coefficients of 8.
Using (8.11) and interpolation we see in the same way that

(8.16) 1B Gs ly, gn < Cg (A).

Let us point out that

1 1

B =B @ @yrg ™ yoyarg ") 4+

1 1

+ %It-x /4 (-1’1 rk—':'l yree sy &y 7'k—;n") + (2| a:m|<w—ka B ])a)*-

From (6.11) and Leibnitz’s rule it follows that

1 1

“ %:¢ ("”1 ’l'i 1"17 ceey T ”". m.n) F). “0' R" =

1 1

SI ' |2-1 l.asuzpl(D"‘75«)(00)1)'<)0(wm My ™
ﬂ-Frga—
| 4 |1iafo— | (Bn):m]|

d (4)

(We recall that + y << a if B +ypo<<ayp for all 1 <<h < n).
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Since the coefficients of “B; have a zero of type ¢; at the origin we
may estimate the right-hand side of the preceding inequality by

| A |l—ia/w | y |l—t‘a/w

C Al r)—1B+n) m| T
> ( l I ") 7" d (l)

or’
1 (B+Y) :m| S w—ia d (l) = 4

where the last inequality follows from the assumption ;> |4|~!. Combi-
ning this and the obvious estimate for (2a.n|<w—ksBa D** F; we obtain
the estimate '

(8.17) [|Br Fally po<Cg ().

Using (6.11), (8.15) and (8.16) we see that

. Cg ()}
(8.18) || (E2 B Gally yon < | Fully, o (Nl Br Fallg, )= 1| By G, R»S—gz—,&
B19)  [[(FaDBeY Gall . 10 <1 Fill e 0l Be Fillg, = 1| Br Gally, gn =
Ola] s
Sm 7.

Using (8.11) and (8.17) we find that
H [(Fz %ﬁ)j G;,]' me g = || at [(F;. %r)']j “u.m, g =

(8.20) = GF (B! FD ||, n < || O [, 0 (1 7 Fy [, e <

wm, wm,

Ol4]

i g,

Applying theorem 3.1 and formula (3.2) (with the multi-index wm), together
with (8.18), (8.19) and (8.20), we obtain the desired inequality (8.13).

In order to prove theorem 5.1 in a general case we need an estimate
for the kernel of the operator (F;B) @;, at least near «° The difference
between this kernel and the kernel estimated in lemma 8.2 is treated in
the following :

LeEmMMA 8.3: Suppose that all the assumptions of lemma 8.2 are fulfi-
lled. Suppose also that there exist positive differential operators of, and «,,
semi-elliptic in the restricted sense (in R") with respect to m and of redu-
ced order w, such that

(A — ML) G f =F, (A, — ) G f=TF
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1 wm
for all f€ L, (R"?. Set r =| min (—) h][ min r}”] . Then for all positive
1Sh=n 0=<i<sk—1

integers j and ! and for all u, 0 < u <1, there exists a constant C which
depends on u, m, w, @, I, j, y, A,, Ay, ‘B and the constant appearing in
(8.11), but which does not depend on r and A (for |i|=1), such that the
estimate

| [F2 BY Gi — (F2B,) Gils, e (2, ) | <

(8.21) o L
C l 1 I h=1 wmy,
=

[A]Y [LAp=)
() (d (1)) L""" d (4)

holds for x, Yy €2 ,r w, 1 <8t < p.

PROOF: We may assume that » =|4|~! since otherwise (8.21) is im-
mediate. From now on let O denote a generic constant having the same
dependence as the constant in the statement of our lemma. Set

F(rydyq) = (F, By G, — (F,B,1 &,

for q integer. Denote by K, the restriction operator, E,: L, (R")? —
—> L, (Zur, 0)? , and let E, : L, (2, 0)P—> L, (R")? be an extension operator
extending f€ Ly (S, »)? 88 zero in B* — X, ». We have:

(8.22) F(ir he+1)=F, E#Ru%F(z’ 49+

+ Fy (I — B R)BF(r,4,9) + Fi (B — By) (F, B 6 -

Using part (i) of lemma 8.1 (the estimates (8.4) and (8.5) for T}, = F;, (I—E,R,))
we find that for any 0 < u << pu, <1 there exists a C such that for all
SeLy (RBY)?,

| Fs (I — B Ry, BE(r, 4y ) f o, 5,y o0 =<

pry 20

' C [|Af-de
(8.23) = [m—)

§

C [|A|-bm]if| 4]\t
Sd(l) lr"/w d(l)] (d (;_)) ”f“o Rn*
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We use also (8.15) and (8.16)). We find also that
(

i 7+2 A= blw
820 || FoT — By, B B2 om0 = 0 (S |51

d(l) ,,.b/wd( ] I “0}6"

By assumptions the differential operators <13 and B, coincide in Xy ». Ap-
plying lemma 8.1 once again we see that

|| F, (% - %1_'_) (Fl C}3r_)q'G/1f“0- Zyr, 20 =

= || Fs (T — By Ry) (B — B (Fy B @i S Il 2, o<

(8.25)
I A Il—b/n j F q ¢
Sm 7b/u) d(l ” A }'-f I\um ) 2 g
4= (1] ) ‘
= d (1 lrb/w (1) (/1) ' ./ ”o, A
and

lll q+2 Illl—blw
(8.26) HFA(% B, HFA(B )1 @Gt “wm 2Zur, o= 0( 1)) [,,b/w d ,1)] ’ ”0 K"
Furthermore, we know that
. c
(8.27) | B2 Eu Ry BE(ry 4 ) f ]y, on < i 1 F ()2 q) Nom, 2,4y, 0

OII

(8.28) ||FiE.R,B F(r, by @) f iy 10 < — v |l F(r, A @) [[uom, Zyr a0t

wm,

Since the right-hand sides of (8.27) and (8.28) vanish for ¢ = 0, we get
estimating the terms in (8.22) recursively using the inequalities (8.23) through
(8.28) and choosing a sequence 0 << u < u; <<... < py, < 1, that

y) 1-bjw]j A
(8.29) IF(W-', f”o,-ur’xog d(l) ,’l_b/,_l,, d(}») ((l:l l) ”.f ”0 R®
“' q+1 H Il—b/w j
830 N F0 407 e 200 = O (55 ) T S| 17T e

We can treat the adjoint operator in the same way, since the differential
operator 3* — (93,)* also vanishes identically on 3, » and the inequality
(8.16) (and an analogous inequality for |[(B,)* G ||, z») are known to hold.
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(To apply lemma 8.1 we use of course also the additional assumptions on
G, made in lemma 8.3).

The conclusion (8.21) follows now by application of theorem 3.2 and
inequality (3.14) in the same way as at the end of tbe proof of lemma 8.1,
using the condition |1|>=1, 1 =r=|1|".

9. The asymptotic expansion of resolvent kernels.

We shall discuss first a class of operators on R". Since we wish to
treat operators connected to operators which are semi-elliptic in the exten-
ded sense, we use L, spaces with a weight function. These spaces are di-
scussed in [4]. We shall repeat here briefly their definition and some of
their properties.

Let o (x) be a function in C% (L") such that ¢ (x) =d > 0,d some con-
stant. We denote by L, ,(R")? the Hilbert space which is the completion

112
of Cy° (R™? under the norm |32, f | us () 2 o (&) dx] . The differential ope-
Rn

rator o{ is said to be p-formally self-adjoint if

Z.-i,f(d u), () vi (@) @ () dx = Eeixfus(W)(sfl v) (%) o (@) dx

for all u, v € Cy (R™)?,

Let o (x, D) a o-formally self-adjoint defferential operator, semi-elliptic

: 1
in the restricted sense with respect to m with reduced order w > 35—, pron We
h

assume that the coefficients of ¢{ are matrices whose entries belong to
C? (R"), and that at every point € R", the matrix o’ (z, &) is positive
definite for all &€ R* & =3 0. We also assume that o{’ is « uniformly » semi-
elliptic. That is, we assume that the inequalities (6.1) hold for the eigenva-
lues u; (w, &) of o{’ with a constant y which is independent of x.
Considering < as a symmetric operator in the Hilbert space L, ,(R")

with a domain O (R*)? we denote its closure by A. The a priori estimate

(9.1) 119 1] s, << Const (|| g zn + ||, gn)

which holds for w € H,, (R*)? is essentially well known ([26]; compare also
(8.12)). The L, regularity theory of weak solutions of semi-elliptic equations
is parallel to the regularity theory for elliptic equations (e. g. [9],[17]; it
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is clear that the proofs of the usual elliptic theory [1] carry over easily
with some modifications to the present situation). From this it follows easily

(and this is also essentially well-known) that Ais a gelf-adjoint operator
in L, , (E*)? with domain of definition H,,, (R")?, and that o{ is the unique
self-adjoint realization of & in L, , (R™)?. The Ge‘:rding inequality for semi-
elliptic (scalar) operators is demonstrated in [17]; it is not difficult to prove
that it holds for <{. Hence o is bounded from below, and we shall assume
in the following without loss of generality that A is positive.

~

Consider now the resolvent operator R; = (o{ — )Y Ry: Ly, ,(R")? —
—> Ly, (R")?. The range of R; is contained in H,., (BR")?. Since L,, (R")? and
L, (R"? are the same function spaces on which two equivalent Hilberte -
norms are defined, we may regard A and R, as operators in L, (E")?. We
shall denote by @; the resolvent operator R; when considered as an opera-
tor in L, (R™?. Note that G}, the L,(R"?-adjoint of G;, is given by

(9.2) Gf = 0G; o~

The norm of @; is contained in H,, (R")? and the following estimates hold

Cli Cli
=2 e < AL g =y

9.3) |Gl e aQ) )

» |1 Gall e

c
d(@)

where O is a constant. The estimates (9.3) are completely analogous to the
estimates (6.1) of [4] and may be proved in the same way (or in another
fashion).

It follows from the properties of @G; described above and from theo-
rem 3.1 that G, is an integral operator with a continuous matrix kernel.
‘We are interested in the asymptotic expansion of the kernel G;(x,y). In
order to derive this expansion we fix an arbitrary point z° in R™ and set:

Ay (D) = oA’ (@°, D)

B (x, D) = A’ (2% D) — A (x, D).

As in section 0, we denote by 91: the (unique) self-adjoint realization of

‘o, in L,(R"? and by F, the resolvent of of,, Fy = (A, — AI)~!. It is
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easily seen (as in [4]) that for every integer I,
(9.4) Gy =F, + F,BG;, = F; + F,BF, + (F, ‘B ¢, =
= .= 3,20 (F, DBy Fy + (F, B 6 .

The formula (9.4) (which is really the Neumann series expansion of @, in
terms of F;) is a matrix equation. Written out explicitly for the matrices
elements, it reads :

G).,:,t = Fl,s,t+

l—-1
(‘) 5) + Zr’=l 2153,-, t;<p Fl, 8t %tl,al Fl,a,.&, oo %t,.,c,F}.,t,, t +
Je Isisr

(F2 B) @y, for 1 <<s,t<p.

Denote by B the set {9y )<y <, and by A, the set {oy s thi<se<p-
(The elements of A, and B are scalar operators). We can consider o, , B
and F, as linear operators in H,, (R"?. Using the notation of section 7
we rewrite (9.5) as

(9.6) Grot— Frsi— [(FL D) @i, € 220 (Fi (1) B Fy (1))

Noting that «{, — AI is one-to-one from H,,(R")? onto itself, we apply theo-
rem 7.1 for [F; (1) B"]. After completion in L,(E")? is follows from (9.6)
and (7.2) that

9.7) Gost— Froo— [(Fr DB Gl €
€32 Zresen (B, Ag; JIF (I + 7+ 1)) +

4 S SR () BYFFr (1) Zyespmim 1, —k— 1) [By Agy JUR) Fi (| | +o4-r—))

where k is an arbitrary positive integer, 1 <Cs, ¢ < p.

We proceed now (in analogy to [4]) to use (9.7) in order to get the
desired asymptotic expansion. According to theorem 7.2 the reduced order
of a differential operator in [B, A;;J] for J €8 (r) is at most |J | (w — b) 4
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-+ rwe (B). We have w (B) << w hence
(9.8) w(B,Ag; J)<<(|J |+ r)(w—b) 4 rd.

It follows from section 6 that F, is an integral operator with a continuous
bounded matrix kernel. From theorem 6.1 and (9.8) it follows that every
operator in [B,A,;J]F,(|J |+ »+ 1) which appears in the sums which
generate the first sum in (9.7) is a (scalar) integral operator with a con-
tinuous bounded kernel. It follows from the results of section 8 that
(F, B)' G, is an integral operator with a continuous bounded matrix kernel.
Hence the terms in the last sum of the ight-hand side of (9.7) also describe
an integral operator with a continuous bounded kernel.
Applying theorem 6.1 to an operator §; which is in

(Fx (1) By By (1) [B, Ag; J U (B Fa (|| 4+ & 47— i)

where 1 <r<<!l—1,0<i<r—1,JeS8S(r—i— 1,k—1) we find that
(since w (B, Ay;Ju®)<<(|J |4 %) (w—Db)+ (r — i)w(B) 8, is an inte-
gral operator with a continuous kernel such that

1 o 1

o] Gimrmg HO7 1T R0 tres)

(9.9) [ 8 (2, 9) | < 4 (1) T —

for |4 | = 1. Here and in the following C denotes a generic constant which
is independent of 1, #, y and «° (but depends on & and 1),

If, in particular, the coefficients of o’ are constant and the matrices
Aa vanish identically for w > |a:m| > w — i, a, we may rewrite (9.9) as

2" 1
CI“ h=1 wmy, |l|l—b/m | T |+k Mln—ioa/w r
d (1) ad) ] ( d (1) }

(9.10) [ Si(x,y) | <

for |A| =1, since in this case w (B) << w — i, a. In the general case i, = 0
- l—1)b
and w (B) = w. If we choose k >l 4 (—E—QE)— for some fixed ¢ > 0 it fol-

lows from (9.9) (since » << ! — 1) that in all cases

.

n ;
C | i , h=1 wmp “ ,l—//u‘ l
d (1) d (4)

(9.11) |8 (@,9) | <
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for A which is in the domain of the complex plane given by d (1) = |4 [\—/w+e,
o b .
|A| = 1. (Note that if i, = vy then (9.11) holds in the larger domain d(1) >

= |APYe for k =1 — 1). We get from (9.11) that under the same restric-
tions (on k, | 4], d (1)) it is possible to estimate the kernel S; of an operator
belonging to

VTV STV R (1) BF Fa(1) Zrespiot, iy By Ag; JUEN Fi (| T |+ k4 r — )

by the right-hand of (9.11). We remark that the number of the operators
which generate the terms in the curled brackets in (9.7) depends only on
k, 1 and p. .

Consider now the last member of the left-hand side of (9.7). Here also
matters simplify if o{’ has constant coefficients and the matrices ¢, vanish
identically for w > |a: m|> w — i;a, since then w (B) << w — i, a, 80
that (by interpolation) the L, (R"? norms of the operators BF, BG, , B* F;

1—iajw
G PB* are all bounded by ﬂ}dl(T
theorem 3.1 that for all «, y € R",

. Hence it follows immediately from

n 1
o 1|2h=1 YT (| 4 [1—toafw]t
a4 [ d (4) ]

(9.12) |[(F2 B Gils, ¢ (=, y)| <

(Compare (6.8) in [4]).
For the general case (where w (99) = w) we shall use lemmas 8.2 and
8 3. By construction the leading terms of <3 have a zero of type b (at least)
at the point z°. Let {¢;} be the (finite) sequence of type of zeros (at x0) as-
sociated with of, ¢: € Q U {4+ oo} (see the beginning of section 5) and let ¢,
be min (b/a, min {i}). Then the operator <3, defined above by B = A, — A,
g =0

the operators F,, G, and the sequence {g;}, 0 << i << ¢, — 1 satisfy all the
conditions of lemma 8.2 (with i, replacing k). Moreover the assumptions of
lemma 8.3 are also satisfied by definition of @;. Hence, combining the ine-
qualities (8.13) and (8.21) we find that, given a sequence {r;} of positive

numbers, 1 = 7, =>|4|™!, and with r defined as in lemma 8.3 {by

. 1\*™n .
r=[ min (-—) ] |min rw]),
1shsn\2 0Sisio—1

n 1

0l h=1 wmy, AN [ A [1=blw 14
(9.13)  |[(F2 By @iy, ¢ (2, Y) | S—L,!m;— {-‘7 @' + (%‘(II)) llrb_ll’d(}.) }
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for @, y € 3y 0, |2 =1,=0 arbitrary, and ¢ (1) is defined in (8.14), with
C depending also on j and u, 0 < p <1

In order to utilize (9.13) set r; = |A]|7%. Then it follows from (8.14) that

g(d) = J(LAI) max (| 4|t | A [~eho—na . | & [0l - 010iqy | gioafu
whereas .
= 2 g [0
Hence the optimal s; satisfles — ia/w — 8;¢;= — b/w + s b, so that s, =.
=%,' :._121? If gi=o00 we choose »;=|A[~* with an arbitrary positive s
(but independent of x°), and we use the convention qq"i%’ =1. With these

optimal s;- s,

4] ek, _ 30w
A= _—L max ([4] "ty =121 "
74 4) osi=i, (1] ) d (1)

(we use the notation of the beginning of section 5) and

l A 'l—b/w b ’ A ll—-O 20)b/w
i S max 24 I°L
rble g (l) = 1<hsn ) d(4)

(Note that the numbers #; defined by n=|l|"" for optimal s; satisfy
1=7=]4[""). Hence, we get from (9.13) that

(9.14) | [(F2 B} Gy, (2, 9) | <

1
c|2 |2:=‘ o

I A I )l I A |l—0(n:0)b/w)j ) (‘ A |1—9(=v0)b/w ll
=0 [(d @ ( an ) T\Taw )

for x, y€ %, » where

b—ia

wm — min —
r =[ min (—1~) " |4] osisibtai
1sh=sn 2
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For any given ¢ > 0 we choose j=1-4 :—;O(w") and find from (9.14)
that

z;:=l 'T_l'—
o | 1 | wmp, l ) ||._9\z0)b/'w i
(9.15) [ [(F2 D) Gas, o (2y9) | < a) a) ]

for @,y € 3, 00 and || =1, d(1) = | A[|'-9=w+e. Combining the estimates
(9.10), (9.11), (9.15), and applying them to the representation (9.7), we get
in concluswn the following result:

THEOREM 9.1: The kernel G, (r,y) of the resolvent R; = (ﬁ' — Al
(considered as an operator in L, (R")?) has an asymptotic representation of
the form :

n 1

(A5 1|2 oo
(9.16) G;(w,y)=Fz(w,y>+Ha(w,y;l)+0( d(3) [d(l) ] )

where F; = (o, — AI)~! with of, = of’ («°, D) (2° a fixed point),
H 5@ y; )€ Srese - (B Ags JIF1 (|| + 7 4 1))

1<i,j<<p (B is the set of the entries of the operator matrix o, — &)
such that:

(i) If oA’ has constant coefficients and the matrices «f, vanish identically
for w>|a:m|> w—1i, a where 0 < i, << b/a, then 6 = ¢,a/b and the O
estimates hold for any positive integers k, 1 satisfyng k =1 and for A — oo
in the region d (1) =|4|'~®%,|1| =1, uniformly in x,y and a9

(ii) If «{’ has variable coefficients then 6 is the number 6 (2°) given

b
by (5.1), k and ! any positive integers with ¥ =14 s for any given ¢>0;

the O estimates hold for A — oo in the region |1| =1, d () =| 4 |t—0d/wte,
for any x,y restricted to the neighborhood of «° where (9.15) holds. Under
these restrictions the O estimate is uniform in @,y and 0

On the diagonal of R™ <X R" the formula. (9.16) takes a much more

]_
explicit form, since in this case (— A) - 1"’"’" H; («°% 2°; 1) is really a po-
lynomial in (— 2)—%*, It follows from (6.13) and (9.8) thab every (matrix)

1—Zp g —
function (— 1) M=t oy 8, (x,x) where 8;(»,y) is the kernel of a matrix

operator S; whose entries belong to the set [B, Aj; J)Fi(|J|+r+1)is
a polynomial in (— A)~%* with coefficients which are matrices whose entries
are O functions of #°. Moreover, by (6.13) the coefficients of (— 2)—‘/v
are the sums of coefficientsof differentiations Dg which occur in differential
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operators contained in [B, A,; J] with Ii%»l — |J | — r =1{a. Using (9.8)

it is easily seen that all such coefficients vanish for ¢ <i,. Also, by (6.15),

1 Zy
(9.17) Fy (2%, a°%) = C (2°) (— 4) '

where

0, (#9) = (27)= j (o (@, &) + T de.

R®

These observations and theorem 9.1 show that on the diagonal the kernel
@; has an asymptotic expansion

Z‘n= 1___1
(9.18) @; (2% 2% co (— 4) "=t o, 32, (— A)—iale O (x°)

where the coetticients C;(a®) are matrices whose elements are C functions
of 2% Moreover C;(a% =0 for 0 <1t <i,(x°. In general, C;(2°) (i > 0) is
n 1
the coefticient of (— Ay~ in the polynomial H; («° a;1l) (— ,1)1 e wTh
with ! satisfying (!l 4+ 1)60 > ia (for such /-8 no additional terms of the
i-th power can enter). The asymptotic expansion (9.18) holds in the complex
plane regions of 4 described in parts (i) and (ii) of theorem 9.1 and in those
regions the expansion is uniform in 2°€¢ R*. (Note that in order to demon-

strate that the remainder decreases at least as |1|~¥*" one has to apply
N
(9.16) with ! satisfying ! 41> a"

The asymptotic expansion (9.18) is the asymptotic expansion (5.2) of
theorem 5.1 for the special case of differential operators which are semi-el-
liptic in the restricted sense in K" (for this special case it is sufficient to
prove theorem 9.1 with ¢ = 1). We now extend theorem 9.1 to the case of
a self-adjoint realization of a differential operator which is semi-elliptic in
the extended sense on a manifold (2.

Let 2 be a manifold, let « be a positive self-adjoint operator in L,()?
which is a realization of a formally self-adjoint differential operator of. As-
sume that <f is semi-elliptic in the extended sense in £ (with respect to

m), w () = w, and S, ;;;— < w. Let & be a complete family of coordinate
systems belonging to «{ such that for each x € & the matrix o, (x (x), &) is
positive definite (for real & == 0) and L* is positive in 3.. Let R, (x,y) be
the resolvent kernel of &f. Let #° be a (fixed) point in £, and let %€ 2,

6. Annali della Scuola Norm. Sup. - Pisa.
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with » € ¢~ It is obvious that

(9.19) f L* (A, u) v dx = f L* u (A, v) dae
a, a,
for u, v € Cy° (ﬁu). Let Q% c Q, be an open neighborhood of z° which has
a compact closure contained in £, . Let us choose a real positive function
o(x)e 02 (R™) such that g ()= L* (x) on @ (where Q= % (£27), o(@)=d>0
on R*, and then choose a g-formally self-adjoint differential operator o,
defined on R" with coefficients whose entries are O (R") function such
that o> coincides with of, on & and of° is uniformly semi-elliptic in the
restricted sense on R" (compare the proof of theorem 6.2 in [4]). Thus o
satisfies all the assumptions listed at the beginning of this section. Let A
be the unique self-adjoint realization of o in L, o, (R")? . Then A° is semi
bounded and without loss of generality Ay is positive, Let R?, 1 be the re-
solvent of A in Ly, o (R™? and let @) denote RSJ when considered as
an operator in L,(R")?. We apply theorem 9.1 to G‘,’,, 1 and find that the
kernel of G?‘,l may be represented in the form (9.16) and more explicitly
on the diagonal of R"™ < R" it has the asymptotic expansion (9.18). On
@) the kernels H; (,y; 1) and the matrices C;(x) are determined by «A,,
since of, coincided with ofs there. Using the comparison lemma (8.1) it is
easy to see (a8 in the proof of theorem 6.2 in [4]) that
T 1

h=1

|2 wmy, | A |1=vhe
d(4) d(4)

j
(9.20) | Gua(@,y) — L* () By (1 (@), 2~ (y) | < C

for any positive integer j, |4| =1, and &,y restricted to a compact subset

of &%. Hence we have an asymptotic expansion of R, which, restricted to
the diagonal of © >< £, have all the properties asserted in theorem 5.1.
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CHAPTER THREE

ASYMPTOTIC DISTRIBUTION OF EIGENVALUES

0. Obtaining «rough estimates up to the boundary».

We now turn our attention to the problem of the asymptotic distribution
of eigenvalues. It is well known that one way of obtaining asymptotic
formulas for eigenvalues is to integrate the formulas for the eigenfunctions
(spectral function) over £, (using (4.9)). However, the formulas for the
spectral functions (such as (5.6), or even weaker formulas such as (0.1)) are
obtained for compact subsets contained in the interior of £, so that it is
not obvious why (if £ is not a compact manifold without boundary) it is
permissible to pass to the limit (as ¢ — oo) under the integral sign.

The Agmon kernel method has been particularly successful in overco-
ming this difficulty. In [2] and [3] it was shown (among other things) that
one has only to assume that the domain of definition of a self-adjoint rea-
lization A of an elliptic operator A is contained in H, (£2), where £ sati.
sfies the (very mild) cone condition, in order to be able to integrate (0.1),
80 as to obtain (0.2). In [5] it was shown that if £ satisfies a not too
restrictive additional condition (condition (3.4) of [5]) then it is possible to
integrate the formulas of [4] for the spectral function of an elliptic operator
and to obtain remainder estimates for the eigenvalues. That those integra-
tions are justified follows from the relatively easy rough estimate (which
follows easily from the Agmon kernel theorem) for the spectral function :

n
(10.1) | B j(a,y5t) | < Ctm 1<ij<p

with a € which is independent of x,y € £2, or from the similar estimate for
the resolvent kernel

|4

(10.2) | Risj (@, 9) | < Cd @

(4] <1).

By contrast, the asymptotic distribution of eigenvalues has been un-
known in the semi-elliptic case ([9], [10]). The kernel theorems of section 3
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yield estimates only for very special kind of domains: n-dimensional bhoxes
whose edges are parallel to the coordinate axes. Hence one cannot expect
to have an estimate

s L
(10.3) | Bisj (2, y) | < Ot =™
/

with C independent of x,y€ £, even .if we know that Dj; c H,(2)?. It is

possible to have C in (10.3) replaced by an integrable function if £ satisfies
a certain geometric condition (see below). But it is not obvious at all that

there exist realizations of of in L, (Q)? such that D};c H, ()7, since re-
gularity theory for semi-elliptic boundary value problems (for a curved
boundary) is not a simple matter. Since the differential operator is not
elliptic, the boundary of a bounded smooth domain in RE" must contain
points where this boundary is characteristic. These points are bound to
cause trouble in trying to prove « coerciveness », see [20] for a treatment
of elliptic-parabolic second order case.
Let us note, however, that several of the older methods may be applied
to various special cases also in the semi-elliptic situation.
(i) Consider first the Dirichlet realization of a semi-elliptic positive

. . 1 , . .
operator with constant coefficients, where w >3 et o ‘We consider for sim-
h

plicity a scalar operator A. For ue H (R"), (Au + Au,u) is well defined.

(w[2)m
Following Garding [14] we note that for such w,

n

um=®f7ﬂwﬁm@=

U ~ 1 _ 1
=mfﬂﬁw@mm+mmm+ﬁzﬁﬂ>a

So that by, the Cauchy-Schwartz inequality and Parseval’s theorem,

n
2

(10.4)  |u(@)|<<(27) 2 (An + tu, w) / [4 (&) + (71 d& <

1

Zhet Ty
< Ct h (Au + tu, u)

for t > 0 sufficiently large. Since Dj; is the intersection of H,,, () with
the closure in H . (R") of CF (£) it follows easily from (10.4) (compare
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[14]) that
1

z”::l wmy !
|Gy (2, @) | < O b

for ¢ > 0 sufficiently large, where G, (x, ) is Green’s functions (the resol-
vent kernel) of ;flv, uniformly in x € Q. Hence it follows in a standard way
(using Lebesgue convergence theorem and the 1lardy-Littlewood tauberian
theorem) that

g 1 wn 1
h=1 wmp “h=] wmpy,
(10.5) Sl=adt 4ot )
).j =t
t — oo

where {4;] is the sequence of eigenvalues of A and

d=fd(.t)d.v
Q

where d (x) is defined as in (5.6) and (5.7).
o]
(ii) In [15], p. 251, Garding describes a method which works for Di-
richlet realizations of general elliptic operators, removing the assumptions

11 1 .
that w > 2,,=,;r and that 4 has constant coefficients. The essence of the
h
method lies in comparing f(;"i(a;. x) de with the integral (over £) of (EG,E’)"

(%, x), where G, is the Gr%en function of an operator A, which is defined
on a set 9, containing € in its interior and such that A = A, on Q. This
method can be extended without change to the semi-elliptic case.

(iii) A variant of a method due to Ehrling [13] may be used for a
certain type of problems. Assume that A4 is of the form

A=D1, m|=wpDF Aq s(x) D°
|B:m|=w/2

and that there exists a positive constant y sneh that for all complex num-
bers &, |a:m|=w/2 and all x€Q,

(10.6) Y 2 |§a|222[a:m]=1(’/2 Au,ﬂ(w)5a502

la:m|=w/2 |B:m|=w/2

__>_)’_1 z|a:ml=w/2]§a |2'
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Assume also that the domain of definition of the self-adjoint realization A
is such that for all w€ Dy, one has (e. g. by integration by parts)

(10.7) (zu, u)=f2'|¢.-...|=w/2 A, p(x) D* u D8 wda.
|B:m|=w/2

1t follows from (10.6) and (10.7) that for #>> 0 sufficiently large there
exists a positive constant O such that

1
(A +u,u)? =C[|| u|jwma+t|«loa] -

Let now Jc Q be an n-dimensional box, the edges of which are para-
llel to the coordinate axes and their lengths given by »,,..,r,. Using

1
a local form of (2.11) it follows easily that if w>22=1"7, then u¢€
h

€ Dy is a continuons function and

1
P 1 ~
(10.8) |u(x) 2< Ct AT (g e 1) (A -ty )

for vx€ 2.

The estimate (10.8) is the analogue of the basic inequality (4) in [13].
It follows easily from (10.8) (compare (33), (35) in [13] and the method of
[14])) that the resolvent kernel R, of 4 satisfies, for ¢ positive and suffi-
ciently large and x € 2, that

bl —‘l——l
(10.9) | R (@, )| < Ot """ (r) vyt
We see from (10.9) that the following condition is of importance :

DEFINITION : Let Kc R"be a bounded measurable set. For each x€ K
denote by h(xr) the supremum of the (n-dimensional) volumes of boxes
2 c R* whose edges are parallel to the coordinate axes, which contain x.

If the function ﬁ—(ly) is integrable over K, then the set K is said to satisfy
the condition (I).

If the set 2 satisfies the condition (I) then, using (10.9) and Lebesgue
dominated integration theorem, we may arrive at (10.5).
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Let us note that condition (I) is not invariant under rotation, so that
this condition is not strictly « geometric ». (The condition that K satisfies
condition (I) for every coordinate system is geometric. Is it equivalent to
a known geometric condition ?). It is very easy to see that a plane convex
domain with a smooth boundary satisfies condition (I). The non-convex
plane set hounded by the parabolar z, = 2?,x, == — #} and the line #;, =1
has the property (I). A triangle with at least one angle which does not
contain a ray which is parallel to one of the coordinate axes, does not
satisfy condition (I). I did not find any condition which is equivalent to
(D) nor any simple sufficient condition. It is clear, however, that there exist
families of domains in R which satisfy the condition (I).

T.et us turn our attention now to the problem, whether it is possible
to have a theory of eigenvalue distribution for semi-elliptic operators which
generalizes the more modern theories of Agmon [3], [5] (or of Browder [10];
compare also the elliptic part of [9]. The answer is, that it is possible to
have such a theory for certain manifolds, but not (in general) for subsets
of R", it the operator is semi-elliptic in the restricted sense.

We recall that the definition of a manifold with boundary ([18], p. 32)
coincides with the definition of manifold except for the fact that the sets

55,, are required to be open subsets of the closed half space Rj‘ =|(w:x€
€ R*, x, = 0}. The set of all x € Q2 such that x (x) belongs to the boundary

of I_En"' for some (and hence for every) » with x€ £, forms a manifowi o
dimension »n — 1, called the boundary of £, and is denoted by 0£2. The
interior of Q2 is 2 — 94

A regularity theory for certain hypoelliptic (or even more general)
boundary value problems does exist-for the case of a plane boundary
[23], [25]. A corresponding theory for curved boundaries is lacking.
However, for a special type of surfaces, called « normal » by Cavalluei [12],
it is possible to have a regularity theory for semi elliptic operators. Let
A (&) be a semielliptic polynomial with respect to the multi-index m =
= (m; ,w.,My). A major cause of trouble lies in the fact that semi-ellipti-
city is not invariant under general coordinate transformations. Consider
the real invertible linear transformation

X}.l = 2',':=] a;.k v, l<j<mn.

Denote by A!'(D') the operator A (D) in the transformed coordinates. The
transformation is called stable with respect to A (&) if (i) A (&) and A! (&)
have the same order with respect to each variable. (ii) The equations
(in &) A&y, ey &y, &) =0,4" (&, ..., &,.., &) =0 have the same num-
ber mj+ of solutions with positive imaginary part for real (¢,,..,&—,,
Ei1y e yEn) — 0o, Cavallucci proved that it the transformation is stable
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then A! (&) is also semi elliptic with respecto m. Moreover, a necessary and
sufficient condition for the transformation to be stable with respect to the
positive semi-elliptic polynomial 4 (£) is the vanishing of aj ; for m; < my .
The transformation a:; = f].(w), 1 <<j < is called stable if at every point x

the linear transformation «} = 2,:‘___1% (r)@p 1 <<j <<n is stable. A surface
k

S in R" is called normal if there exists (locally) a stable transformation

mapping S into a coordinate hyperplane. Cavallucci proved also that a

surface § ¢ R* is normal with respect to A (¢§) if and only if § can be

represented (locally) by means of the equation x;= g () with g independente
o9

of x¢ such that 5:0—5 0 if mp>m;. (Note that a non-characteristic surface
k

is normal.)
Hence it is obvious from ([23], [25] that if the positive semi-elliptic

operator A and the boundary operators B,,... ,Bm+ satisfy the regularity

(analogs of the «complementing» or Lopatinsky’conditions) hypotheses
1,2,3,4,56 of [25] ((7) of [23]) for the hyperplane x; = 0 then they are
satisfied also for a normal surface ;=g (¢), so that the a-priori esti-
mates are valid also for functions u with B;u=0, 1 gigmj‘*.

If Q2 is a bounded open subset of R" with a smooth boundary and the
m; are not all equal, it is impossible for 6£2 to be normal everywhere.
Consider however the following example. Let n=2 and m, >m,. Let
g, and g, be (> functions of a single variable such that the functions g,
and g, — 1 have zeros of infinite order at x =0 and =1 and g, > g, .
Let each one of the systems (B{',..., B, (BY,..., B&)} of ordinary diffe-
rential operators with constant coefficients «cover» the operator D™,
Assume moreover that if (B w)(a) = (B{v)(a) = (B@u)(b) = (BPv) (b) =0
then

b b
f u () D™ v (x) de = f (D* ) () v (x) da.

Define D; to be the Hsp,, sm, closure of C* functions » which are periodic
with period, in the variable x, and which satisfy (B§”(D1) u) (X, x) =0
on z =g, (%), (BP(D)u,(2,, ) =0, on &, = g, (x,),1<<j<m;, and let
A be the semi-elliptic operator D™ + D%,
Then
|[llem, 2ma, << O[] At [lo. @ + || 2o, o]

for uEDl, if 2 is defined to be the strip obtained from the subset of
RE: (@, , @) ; g, () << #y << g, (%), 0 << @, << 1} by identifying [0, 1] > {0}
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with [0,1]:< {1}, We note that the boundaries of £ are normal everywhere.
Note also that if we required that wu(r,,0)==u{1—wx,,1) instead of requi-
ring periodicity in a,, we should obtain a Mibius strip.

Let ns point out that using the transformation r =x, + 1, 0 = 2n x,,
we map £ into a deformed annulus in the plane, and A is transformed into

a 2m, 1 ('; 2Mmg
(8—7) ypise (%> , which is semi-elliptic in an extended sense. It is

easy to see by means of the well known Hopf’s theorem about the sum
of indices of singularities of vector fields that no differential operator A
which is semi-elliptic in the extended sense in £2 and such that the boun-
dary is normal with respect to A exists, if £ is a bounded plane domain
which have more than one «hole » or which has no holes at all. This fact
shows that topological obstructions exist for constrncting semi-elliptic diffe-
rential operators on manifolds with boundary such that the boundary will
be normal. It might be interesting to find out the nature of these obstructions.

11. Asymptotic formulas for eigenvalnes of semi-elliptic operators.

We shall prove now a theorem about asymptotic distribution of eigen-
values. The discussion of the preceding section explains, first of all, why
some of the assumptions of the theorem are necessary, and secondly, that
there exist non-trivial cases to which the theorem applies.

THEOREM 11.1: Let £ be a compact manifold with a non-empty boun-
dary 09. Let A be a self-adjoint semi-bounded operator in L, (£2)? which
is a realization of a formally self-adjoint difterential operator <. We assume
that of is semi-elliptic in £ with respect to the multi index m, where m; > 0,
1<<i<n, and that of has a complete family . ILet w (o)== 1w. Assume
that if Q.0 52 is non-empty for x € ¥ then the set 0, satisfies the condi-
tion (I). Assume also that there exists a constant C, independent of #,
such that for all ¢ Dg?

(11.1) lwoxt|, 5 <CllAwloo+]|ul]oal

wm, Q,

1
If w < Shoy —— ussume that if w€ D ., then
mp A

(11.1') o %= ||ewm 3, < C[|| A*ulo, 2 + || o, ]
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for some positive integer %k such that kw > 3h—, El— Then { has a discrete
h

spectrum. Let {4;] be the sequence of eigenvalues, each repeated according
to its multiplicity. Then

1

1
o s
(11.2) lz:$1t=dt h=1 wmh+0(t h—l'wmh)
]

at t — oo, where
(11.3) d= 2L, [ D; i (x) dx
a

and D (x) is the matrix defined in (5.7).

PrOOF: According to the formula (4.9)

2 1= Zg,p=l Eg' [ (w, z) dzr
).jSt

where E,(x,y) is the spectral function of A By theorem 5.2,

n ._1_ x>n _l__
(11.4) B i@ a)=D; @t """ ""r4f o@ "1™,

a8 t— oo, for x in the interior of £, and the o estimate is not uniform.
Assume without loss of generality that A is positive, and assume at

first that w > S —;—h . The operator E, is a self-adjoint bounded projec-
tion by definition. Hence

(11.5) | Bello,0 <1

(11.6) | A B o, 0 <t

since o is positive. It follows by (11.1), (11.5) and (11.6) that theorem 3.2
may be applied to the self-adjoint operator E,. Let 3 be an n-dimensional

box whose edges are parallel to the coordinate axes, 3 c 3, for x€ %, From
the inequality (3.14) it follows that

1
(11.7) | By, j, (@ @) | < C ;.H 4ty vma
=]
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for 1<<j<<p,x€x'(2), where r,,..,r, are the lengths of the edges of
Z and ¢t = 1. (Recall that the numbers twm, are integers). Since ¢t =1 and
the numbers r; are bounded, it follows that there exists a constant C, with

—wmng

t+’)',‘

< ( r.--wmi t. Hence we may rewrite (11.7) as

1
z’n
(11.8) | B, jj (@, @) | < O (ry eyt "0 ™0,

We choose a finite covering of 90: 092 c U.-L .Q,,... For each x € £,

choose an n-dimensional box 3 c ﬁm. whose edges are parallel to the coor-
dinate axes such that the volume of 3 is greater than h; (x(xz))/2 and such
that » (r) € 3, Here h; (x) is the function defined in condition (I), which is

associated with &, . It follows from (11.8) that

1
n
02 zh:l wmy,

2
(1L.9) | B s @ 2) | < ot

On Q2 — Uﬁv__., £,; the o estimate in (11.4) is uniform. From condition (I) and
the strict positivity of the density on (2 it follows that the function
1
m is integrable over £, . Hence we may use the Lebesgue dominated

s\
convergence theorem to obtain (11.2) from (11.4).
In the general case we consider (as usual) the operator A* which is a

self-adjoint realization of of* in I, (£2)?. The eigenvalues of A* are {ljk]. We
have proved already that

1 n )

):;:=1 kwmp, 2h=1 kwmp
Z/I]’?szl:dt “+ o (t )

as t — oo. Replacing ¢ by t* we obtain (11.2) in the general case.

We now indicate briefly how to obtain extensions of the remainder
estimates for the eigenvalues, due to Agmon [5]. Essentially, no new idea
(beyond those of Agmon) is required in order to make the extension for the
semi-elliptic case. First we state a « geometric » condition which stands for
condition (3.4) of |5]).

DEFINITION : The bounded measurable set K < R” is said to posses the
strong (I) property if for every 0 < g << 1 the function & (x)~! § (x)—° is in-
tegrable over If. Here h(r) denotes the same function (supremum of certain
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volumes) as in the definition of the (I) condition (in section 10), whereas
é (r) = min ({1, dist (z, 6K).

It is clear that smooth convex planar sets have the strong (I) property.
We now state the following:

THEOREM 11.2: Suppose that all the conditions of theorem 11.1 hold.

Assume moreover that each set ﬁ,, fo;' which 2 € & and £, N 62 is not em-
pty possesses the strong (I) property. Set

6 = min 0 (z)
zeQ

where 0 (r) is the number associated with o« (defined in (5.1)). Then for
every ¢ > 0,

1 1 6b

m N ——— =
51 = dt h=1 wmp, + O(t h=1 wmy w )
ljSt

as t — oo.

To prove this theorem one first has to prove an extension of theorem
3.2 of [h]. This is done by means of theorem 5.1 (which plays the role of
theorem 4.1 of [5]) and the localization lemma 8.1 (which corresponds to
lemma 4.2 of [5]). Thus, it is easy to see from lemma 8.1, that if |1|=>1,
“d (3) =| A|\—%lv+e (i e., in the same region of the complex plane where the
interior asymptotic formula (5.2) holds) we have, with a constant which de-
pends on N, ¢ and p, that

1

AL10) (=) "Ry (@0) — S5 O ) (— )| <

_NO/w 1 I A Il-—blw ?
= Const \| [~ + s (6 ( (w))d(l))

13"

for any p > 0, if x€ $2, (x € F) such that 2, N 082 is not empty, and & (x (x))
is defined with respect to the set Qﬁ;. Note that one applies lemma 8.1
with » = 6%/, Theorem 11.2 follows from (11.10) in exactly the same way
as theorem 3.1 of [5] follows from theorem 3.2 of [5].
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