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ON QUASI-INJECTIVE MODULES
By L. Fuoms

Dedicated to B, H. NevsMaNN on his 60 th birthday

The purpose of this note is to point out certain analogies between
injective and quasi-injective left modules over an arbitrary ring K with
identity.

We shall show that quasi-injective modules can be characterized in the
gsame way as injective modules M by the extensibility of homomorphising
L — M (where L is a left ideal of R) to KX — M, but in the quasi-injective
case only homomorphisms are admitted whose kernels contain the annihilator
left ideal of some a€ M.

The uotion of I-bounded module (with K an ideal of R) is introduced
as a module M which is annihilated by K and which contains an element
whose annihilator is exactly A, Ior K-bounded modules quasi-injectivity
turns out to Le equivalent to R/ IK-injectivity., A K-bounded module is a
direct summand of every module containing it as a pure submodule where
purity can be taken in two, inequivalent ways.

Finally, the so-called exchange property will be proved for quasi-injec-
tive modules.

1. By a ring we meau an associative ring with 1 and by a module
a unital left module over a ring E.

An R module M is said to be quasi-injective (') if every R-homomorphism
of every R submodule of M into .M is induced by an R-endomorphism of M. A
module is quasi-injective exactly if it is a fully invariant submodule of its
injective hull.

For an R-module M, we deunote by 2 (M) the set of all left ideals L
of R such that L contains Anna=(r€R | ra = 0] for some a€ M.

Pervenuto alla Redazione il 24 Dicembre 1968,
() For properties of quasi-injective modules we refer e.g. to Faith [5].
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LEMMA 1. The following conditions on an R-module M are equivalent :
(i) M is quasi-injective ;

(if) if B is a submodule of a cyclic submodule A = Ra of M and if
B: B— M is any R-homomorphism, then there is an extension o: A — M
of B;

(iii) if B is a submodule of any R-module A with Q(A)C Q (M), then
every R-homomorphism B: B— M can be extended to an R-homomorphism
a:A— M.

The implication (i) =—> (ii) is trivial. To prove (ii) => (iii), assume (ii)
and let A, B, 8 be given as in (iii}. We use the standard argument and
consider submodules C of A and homomorphisms y: C — M such that B
Cc A and y | B = p. If the pairs (C,y) are ordered in the obvious way,
then we can pick out a maximal pair (C,, y,) in the set of pairs (C, y). By
way of contradiction, suppose there is an a € A not in C,.

Clearly, L = [r€ R | ra € Oy} is a left ideal of R contained in Q(4),
and hence in Q (M). Choose some x € M such that L D Anna D Ann 2, and
consider the submodule N = Lx of M. The correspondence rx |— y, (ra) with
r €L defines a homomorphism ¢’: N— M which can be extended, in view
of our hypothesis (ii), to a homorphism ¢: Re — M. Now let C'= C; 4 Ra
and let y': ¢/ — M be defined as y’:¢ 4 ral—y,(c) 4+ @ (ra) for ¢ € C,,
r€ R. It is easy to check that y’ is a well-defined homomorphism, so
(Cyy 7o) < (C’y y’) contradicts the maximal choice of (C,, y,). Hence C, = A
and y, = « i8 an extension of f.

The choice A = M in (iii) yields (i). This completes the proof.

Condition (ii) may be reformulated to give a characterization of quasi-
injectivity which is similar to a well known characterization of injectivity [1].

LEMMA 2. An R-module M is quasi-injective if and only if for every left
ideal L of R and for every R-homomorphism n: L — M with Kern€ Q2 (M)
there exists an R-homomorphism y: R —> M that extends 7 (?).

If a€ M is such that Ann a-C Ker, then 5 induces an E-homomor-
phism fB: La — M, and the equivalence with (ii) becomes evident.

In connection with Lemma 2 let us notice that £ (M) can be replaced
by the filter (i.e. the dual ideal) Q (M) generated by 2 (M) in the lattice
of all submodules of M. In fact, if M is quasi-injective, then so is M P ...
@ M with a finite number n of summands and (M @ ... G M) contains all
L, n..NnL, with Lj€ Q(M). Together with M P ... © M also M must have
the property stated in Lemma 2 for the finite intersections L, N...N L, .

(®) Notice that the stated condition makes sense only for L€ Q (M).
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2. Next we introduce the notion of bounded modules.

Let K be a left ideal of B. An R-module M will be called K-bounded
it (M) consists exactly of the left ideals of R which contain K. That is,
K € Q(M) is the unique minimal element of (M), or, in other words,
$2(M) is the filter generated by K (3).

It follows at once that K must be two-sided, since it is the annihilator
of M. We can thus form the factor ring R/K and may consider M as an
R/K-module in the obvious way. If we do so, then we are led to

THEOREM 1. A K-bounded R-module M is quasiinjective if and only if
it i8 injective as an R/K -module.

In the K-bounded case, the condition in Lemma 2 amounts to R/K-
injectivity. Ilence Theorem 1 holds.

For K = 0, we have: a 0-bounded quasi-injective is injective.

If we drop the hypothesis of K-boundedness, then — under rather res-
trictive conditions — a similar result can be established with R/K replaced
by a topological ring which is constructed as an inverse limit [4].

3. Following Cohn [2], we call a submodule N of the R-module M pure
if for all right R modules U, the homomorphism U @r N — U @z M [indu-
ced by the inclusion N — M] is monic. This is equivalent to the following
condition which is more suitable for our purposes: if

n
(1) Zryw=a; €N (i=1,2,..,m)
j=1

is a finite set of equations in the unknowns «,,...,, where r;€ R, and if
‘this system has a solution in M, then it has a solution in N too.
An R-module A is called algebraically compact (see [6], [8]) if it is a

direct summand in every R-module in which it is a pure submodule. Or,
equivalently, if

(2) Zrijw,-=a.-EA (’LEI)
j

is an arbitrary set of equations in the unknowns x; (j€J) [where I and J
are arbitrary index sets and each equation contains but a finite number of

(3) For Z-modules, i.e. for abelian groups, K-boundedness means that the group is a
direct sum of cyclic groups of order n and orders m dividing n or it contains an element
of infinite order, according as K = (n) or K = (0).
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non-zero 7€ R), and if every finite set of equations in (2) has a solution in
A, then the entire system (2) is solvable in A.

THEOREM 2. A K-bounded quasi-injective R-module is algebraically compact.

Let A be a K-bounded quasi-injective R-module and (2) a system of
equations which is finitely solvable in A. If we consider A as an R/K-mo-
dule and replace r; by ry; + K = 7.-,-, then (2) may be viewed as a system
of equations over the R/K-module A. Finite solvability implies that this sys-
tem is compatible in the sense of Kertész (7], thus it has a solution in the
injective RE/K-module A. This is evidently a solution of the original form
(2), hence the algebraic compactness of A follows.

Algebraic compactness is preserved under direct products and direct
summands, hence

COROLLARY 1. Let M; (i € I) be Kibounded quasi-injective R-modules and
M a direct summand of their direct product II M;. Then M is algebraically
compact (4). :

4, There are various definitions of purity for modules which all reduce
to ordinary purity for abelian groups. We are going to show that Theorem
2 holds if we replace purity in the sense of P, M. Cohn by the following one.

A submodule N of the R-module M is now called pure if

LN =NnLM

for all two-sided ideals L of R. Algebraic compactness can be defined in
the same way as in 3 by using this definition of purity. ‘

Next we prove Theorem 2 for this algebraic compactness. Let 4 be a
K-bounded quasi injective R-module and let M contain A as a pure sub-
module. The module M/KM is annihilated by K, thus £ (M/KM) contains

only left ideals containing K. In view of 0 = KA = AN KM, the natural
homomorphism ¢: M— M/KM maps A isomorphically upon @A which is
thus quasi-injective. The two last sentences imply, by Lemma 1, that the
identity map of @A extends to a homomorphism M/KM — @A showing that
M/KM = pA @ N/KM for a submodule N of M. Hence M = A & N, and
A is algebraically compact.

(*) Notice that for abelian groups the converse also holds: every algebraically com-
pact group is a summand of a direct product of K-bounded quasi-injectives.
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5. Next we turn our attention to the so-called exchange property which
was systematically discussed by Crawley and Jénsson [3].

Recall that an R-module M is said to have the exchange property if
for every R-module A containing M and for submodules N and A;(i€T)
of A, the direct decomposition

(3) A=MPN=O 4A; (I = arbitrary index set)

tel
implies the existence of R-submodules B; of A; (i€ I) satisfying

(4) A=MO (D By

el
It is known [3] that M has the exchange property if it has the stated pro-
perty with the A; subject to the condition that each A; is isomorphic to
a submodule of M. The following result generalizes a theorem of Warfield
[9] from injectives to quasi injectives.

THEOREM 3. A quasi-injective module has the exchange property.

Let M be a quasi-injective R-module and assume (3) holds for R-mo-
dules N, A;(i€I) with A; isomorphic to submodules of M. Select a sub-
module B of A which is maximal with respect to the properties: (i) B =
= @ B; with B;C A;, and (ii) M N B = 0. We claim (4) holds with these B;.

[}
Denote by ¢ the natural homomorphism A —- A/B. Because of (ii),
@ | M is monic, so ¢ (M) is a quasi-injective submodule of the R-module
A/B = @ Ai/B; where A;/B; has been identified with (4; -4 B)/B under the
:

canonical isomorphism. The maximal choice of B guarantees that no 4;/B;

has a non-zero submodule with O intersection with ¢ (M), that is, @ (M) N

N (4,/B;) is essential in A;/B;, and so @ [ (M) N (4;/B;)] and & fortiori ¢ (M)
)

is essential in A/B. Now ¢ maps A; into A4/B, but since A; is isomorphic
to a submodule of ¢ (M) and ¢ (M) is fully invariant in its injective hull
(which contains 4/B), we see that ¢ (4;) must be contained in ¢ (M). Con-
sequently, ¢ maps the whole A into ¢ (M), i.e. ¢ (M)= A/B, so M and
B generate A. This proves 4 =M P B.

An immediate consequence is :

COROLLARY 2. Assume that

A=M, .0 M,= D N;

sel

are two direct decompositions of an R-module A where every M; and every
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N; i8 a quasi-injective R-module, and I i8 an arbitrary index set. Then they
have isomorphic refinements, i.e. there exist R-modules Aj(j=1,..,m;i€l)
such that

M PA; and NRQAD..D Adm
tel

for every j and 1, respectively.
An application of Theorem 3 yields A = M, @ (6 N;') for submodules
)

N of N;. Write Ny=N;' D Ay to get M\; > P A and M, S ... G M,
tel

o @ N;'. A simple induction completes the proof.
i

It is an open problem whether or not two infinite decompositions have
isomorphic refinements (5).

(3) This holds for injectives as was shown by Warfield [9].
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