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DIFFERENTIABLE DISTRIBUTION SEMI-GROUPS

by VIOREL BARBU

Introduction.

Distribution semi groups of operators in a Iianach space were introdu-
ced and studied by Lions [1] J (cf. also Foia~ [2], Yoshinaga [10], [11], Peetre
[3]). J. L. Lions has obtained the characterization of the infinitesimal gene-
rator of an exponential distribution semi group and recently his result has

been generalized by Chazarain [4], [5] (cf. also Foia§ [2], Larsson [9]), for

regular distribution and hyper- distribution semi-groups. In their works, Da
Prato-Mosco [6], [7] ] and Fujivara [8] have generalized the notion of holomor-
phic semi-group (cf. Yosida [14]) to that of holoniorphic distribution semi

gronps and have given a characterization of the infinitesimal generator of
such a distribution semi-group.

Iu this paper ve extend some of their results for differentiable distri-

button semi - g’rou ps.

§. 1. General results on distribution semi-groups.

We use the notations and the terminologies of L. Schwartz [12], [13]
for infinitely differentiable functions and for distributions. We set R =

= ~t ; - oo  t  oo) and denote: Q) the space of all infinitely differentiable
functions with compact suppport in R, (f the space of infinitely differentiable
function on 1-7)+ the space of all cp E CD such that supp q; c [0, oo) topolo-
gized as in Schwartz [12]; (’5 the space of rapidly decreasing 6 functions
and ~’ the space of scalar distributions with compact support. We denote
also by the strict inductive limit of’ the spaces supp aH.
Let X be a Banach space and L (X, X) the space of all continuous linear

Pervenuto alla Hedazione il 20 Gennaio 1969 ed iu forma, detinitiva il 27 Febbraio 1969.
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operator on X topologized with the operator norm. We denote also by
CJJ’ (L (X, X)), Q) (L (X, X) and cS’ (L (X, X)) the vector-valued distribution

spaces : L (CD, L (X, X), L L (X, X)) and L L (X, X)) respectively.
A vector-valued distribution is called a distribution

semi-group (D. S. G. in short) if it satisfies the following conditions :
i) ~’ (~’~ 1p) = T (-p) T (y~) for any 99, V E 

ii) The support of T is contained in [0, oo).
iii) The linear subspace generated by is dense in X.

iv) If r E X and for then x --- 0.

Let R+ (t ; t &#x3E; 0) and .R+ (t ; t ~ 0). If (f’ (R+) then we de define a
closable and densely defined operator T (p) on [T (c7)+) X], by the formula

Let us denote the closure of T (,u) again by T (~u). The linear operator
is called the infinitesimal generator of T. Here bi is the

Dirac measure concentrated and D is the derivation symbol.
For any cp (t) defined on R we denote by (t) the function

We say that a D. S. G. T is regular if T (q~+) = T (cp) for any g~ E A

regular D. S. G., T is called of exponential growth (E. D. S. G. in short) if

there exists a number a such that T E cS’ (L (X, X)).

THEOREM 1 (Lions). A closed linear operator A in X with domain D (A)
dense in X, generates an E. D. S. G. if and only if there is a number a ~ 0
such that

i) for any 1 with a, ~,I + A de6nes an isomorphism of D (A)
onto X.

where pol (11 ~) ) denote a

polynomial with non-negative coefficients.

For the proof see [1] and [10]. The following theorem is due to Chaza-

rain [4] (cf. also Foial [2]).

THEOREM 2. Let A be a closed and dense operator on X. Then A is

the infinitesimal generator of a regular S. G. D. if and only if the following
conditions hold :
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i) There exist the constants il y ~:, 0 such that

E L (...:1, .1) ton ajiy A in tlie domain

We shall give a sketch of the proof for this theorem.

Since T E (L (-Y, X)) is regular it follows (cf. Yoshinaga [10])
that T E Q) (L (X, D ..4.)) and

where DA is the domain of A topologized by the norm I.............
and Ix (resp. ID,) is the identical application on X (resp. D A). Let e (t) be
a D-function such that Lo (t) =1 on I t  1 } and e (t) = 0 for I t ) 2.

-

We denote by E (resp. 0) the distribution oT (resp. e’T) and set 
for any complex ~. From (1.3) we have

Since 0 E d’ (L (X, and supp ø ¿ J, by a well known argument it follows

for any l E C.

From (1.4) this implies that - A)-’ E L (X, X) for 1 E A = (I ; Re A ~
&#x3E; a log I + f3; Re A &#x3E; y~, with a, y &#x3E; 0 convenable chosen. Moreover

we get

But supp B c [0, 1] and by a Paley-Wiener theorem argument it follows

11 E (2) 1 for any I E A.

This inequality together (1.6) proves (ii).

Sufficiency. Define T E (X, X)) by the f’ormula
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where F is the frontier of d and

From (i), (ii) it follows that T is a regular v. S. G.

§. 2. Ditferentiable distribution semi-groups.

DEFINITION. A regular D. S. G. T. is called differentiable if for every
t &#x3E; 0, T (6t) E L (X, X) and the application t - T (6t) from ~+ in L (X, X)
is differentiable.

REMARKS. 10 If T is differentiable, then the distribution T E (L (X, ~))
is given on R+ by a differentiable L (X, X)~valued function. In fact for

any we have

Since the space J is dense in X, this implies that on R+.
2° Let T be a differentiable D. S. G. and A = T (- ~o) its infinitesimal

generator. Then for every t &#x3E; 0, T (~~) X c DA and

(2.2) for any x E X 0.( dt ( )

To prove this, we consider x an arbitrary element of X and set y (t) = 
for t &#x3E; 0. Let Xn be a sequence of [ T (CD+) X ] such that x,~ --~ x. It is

obvious that AT (bt) x,1= d/dt T (6t) xn - d/dt T (6t) x for n ---~ oo. Since A

is closed, this implies that y (t) E D (A) and y’ (t) = Ay (t) for any t &#x3E; 0.
The following theorem gives a characterization for the generator of a

differentiable D. S. G.

THEOREM 3. I,et A be a closed operator on X with domain DA dense
in X. A necessary and sufficiente condition for A generate a differentiable
regular D. S. G. is : for every ~ ) 0 there exist positive constants Ca and

such that - E .L (X, X) for any complex A in the domain
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and for ~, E ~ ~ ,

vhere y is a non-negative constant independent of 3.

PROOF. Necessity. be a D-function so that supp
and I)enote by ~(~ ~&#x3E;0, the fnnction and

by the vector-valued distribution tpE T and respectively. It is

obvious that is differentiable and supp 1

It is ea~sy to see that

Hence for any ;omplex I in the domain

Remembering (1.4) this implies that

for

On the other hand, since snpp E c [0, Fl have (see L. Schwartz 12, 

Hence

where the degree of the polynomial pol (( I À I ) is equal to the order of the

distribution T in a neighbourhood of the origin. Therefore i
and satisfies (2.3) for From theorem 2 it follows then, that
there exists a non-negative constant y such that
for If we choose N~ so that log y, we deduce that the
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estimate (2.3) is verified for any in the domain

Choosing ~S = ~-1 this implies that (lI - A)-’ satisfies (2.3) in any domain 

It is obvious that T is an E. D. S. G. Hence we may write

As is holomorphic in every Ad and I
pidly tends to zero at infinity, we can change the path of integration and
obtain

where r6 is the boundary of the domain 6 log
be a sequence of regularization for Dirac di-

stribution, and supp gn -~ 0. We have

for any non-negative integer k. We set where ~8 is given
by and I~
by We write

It is obvious that T2(k) (t) is defined for every t ~ 0 and
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where is another non negative constant. Let A = a + itl ; then since on
we have

Ilence

Therefore we find a constant Mk, j such that

uniformly en every compact. Since the space [T(Q’) X J is dense in X this

implies that T (6t) E .L (X, ~ ) for t &#x3E; (m + k + 1) ~-1. Since 6 is arbitrary
this proves the differentiability of T. Moreover we have proved that

for any t &#x3E; 0 and k = 0,1, .... Combining with the first
part of the proof it follows that if a regular D. S. G., T is differentiable
then the application t - T (6t) from R+ in L (X, .1~) is infinitely differentiable.

COROLLARY. Let A be a closed and densely defined operator on the
Banach space X. If the conditions of Theorem 3 are satisfied, then the

abstract Cauchy problem (A C P)o :

has a solution u E C °° (R+ , ~ ) for every x E X.

PROOF. Let T be the D. S. G. generates by A. Then from remark 2
it follows that solves (ACP)° for any 

REMARKS 10 If T is a differentiable regular D. S. G., then

and k = 0,1, .., , where yo is a non-negative constant.
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2° In particular if T is a strongly continuous semi-group of bounded
linear operators on X, then according to formula (2.5) it follows that T

is differentiable if and only if 

Thus we find a result proved by Pazzy [16].

§ 3. Analytic and non·quasianalytic D. S. G.

Let Y be a Banach space and L = and increasing sequence of

non-negative numbers such that

where 1n and n are non-negative integres aild r - q (r) is a positive and
monotone increasing function. If Q is an open set of R we denote by

Y) the space of infinitely differentiable Y-valued functions 11(t) in
0, such that for any compact subset .~ there exists 3f &#x3E; 0 such that

The space is topologized as projective limit of all (K, Y) ;
The function class CL (Q, Y) is called non-quasi-analytic if it con-

tains a non-trivial regular function with compact support contained in S~,

The Carleman-Denjoy criterion states that CL is on.quasianalytic if and

only if

If Y = R we often omit R and write OL (Y). In particular, if Lj = 
CL is the classical Gevrey class G which is non-quasianalytic for 1 

For ~O =1 we obtain the class of real analytic functions. It’ L is a non-

quasianalytic sequence we denote by C~ (~, Y) the space 
DEFINITION. A D. S. G., ~’ E ~D+ (L (~, ~ )) is said to be of class C L

if the mapping t --~ T (31) is of class C z on R +.
In particular, fort the semi-group T is called p-hypoanalytic;

1 ~-, Lo  oo. As above we remark that if the semigroup T is of class 0-r,
then the distribution is defined on 1~ + _ (t ; t ~ 0~ by a

function of class C L,
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Let L = be a non-quasianalytic sequence and (OL (t) be a scalar

function defined by 
-

Then we have

THEOREM 4. Let T be a regular D.S.G. and A = T (- do) be its infi-

nitesimal generator. T is of class CL if and only if for every 0  e  1

there, exist C. and Jf, &#x3E; 0 such that

i) - A)-’ E L (X, X) for any A in the domain

and

where

y is a positive constant independent of -.

PROOF. Necessity. Assume that for every

We choose rp E Ct such that supp q&#x3E; c j; (t) = 1 2, and
denote : = ~i = f(J1J T where = From (3.4) we obtain

where 31 &#x3E; 0 and = 2 max Or,

Thus for complex in the domain

we have Here and r. are another non-negative cons.

tants. Since the semi group T is regular we may assume that ya = oo . As
in the proof of theorem 3, this implies that - E L (X, X), and
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where p, is a polinomial with non-negative coefficients. Since the sequence

(.Lk) satisfies (3.1), the function r -+ (r) is sub.additive. Hence we

may find another constant 0, &#x3E; 0 such that (3.6) to be satisfied for any
in the domain

Without loss of the generality we may assume that E --~ C, is bounded and

lim MFl = 00 . Let ac be a non-negative constant such that for
£-0

0  E  °I. Using the above argument it follows that there exist b &#x3E; 0

such that

for &#x3E; - log (l)L (a + b. For e enough small we may suppose
b C MEl. Hence

for Re I &#x3E; - log and,
Using (3.8) we get that the estimate (3.3) satisfied in the whole domain ¿ E
withy = b.

Sufficiency. From (3.3) it follows that II - A)-’ II = 0 (pol ( I A I )) for

Re ~ &#x3E; y. Hence, as in the proof of theorem 3, we get

where (on) is a sequence of regularization of (D+ and 1’E is the frontier of

the domain

It is easily verified that

where m is the degree of the polynomial pol ( I A )·
Since, for any non-negative integer i t follows that.

the right side of (3.11) is bounded by
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where p is the 1argest integer smaller then (t - ~)-1. Because of the pro.

perties of the sequence ( Lk) we find another constant we such that

for t &#x3E; ~ and k = 01 1, ... According to an argument used in the proof of
theorem 3, this implies that

Since s is arbitrary, the proof is complete.

COROLLARY. Let T be a regular 1),S.f7. and A its infinitesimal gene-
rator. The semi group 7" is e-hypoanalytic ; 1 - C)  00, if and only if for

every E&#x3E;O there exist constants CE and such that (Al - A)-’ E L (X, X)
and satisfies

for

where y is a non-negative constant independent of 8.

PROOF. The non-quasianalytic case p &#x3E; I is a consequence of theorem 4.

We assume that o = 1. It is easily proved that there exists a sequence

7’k E (7), k = 0, 1,... such that

and

Put

then as in the proof of theorem 4 we find a

constant 0 such that



424

for any non-negative integer k. Take k equal to the largest integer smaller
than Thus from (3.17) we obtain

As above this implies that, (~I - A)-’ E L (X, X) and satisfies

for 
°

and

Since k is arbitrary, y this implies that satisfies the estimate

(3.14) in a domain of the form

Sufficiency of (3.14) follows just in the proof of theorem 4.

§ 4. Distribution semi-groups of class A~.

If a D.S.G. T is differentiable, then for any integer
is of exponential growth for t - oo. In this section we also impose a res-

triction of the origin for (6t).

DEFINITION. Let 1 m o  oo. A regular D. S. G., T is said to be of

class I if for t &#x3E; 0,

where M, y are non-negative constants and p (r) is a polynomial with non
negative coefficients.

The semi-groups of class A fJ can be characterized in the following
way (see theorem 4).

THEOREM 5. Let A be a closed operator on X with the domain DA
dense in X. Then A is the infinitesimal generator for a D.S.G. of class A()
if and only if there exist positive constants a and fl such that

for
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I’ROOF. From (4.1) it is obvious that T E c5’ (L (X, X ))
where y is a non-negative constant. Therefore the semigroup T is of expo-
nential growth and from Lions’s theorem it follows that (Al - A)-’ exists
and satisfies the estimate (ii) for Re 1 ~ y. Moreover by a well known re-

sult (cf. Schwartz [12], Yoshinaga [11]) there exists a function f E Cu (L (X, X))
and an integer m &#x3E; 0 such that

and T may be expressed as

The function .1’(t) is regular on R+ and from (4.1) we have

and

Let j and k be two non-negative integers such that ~
where p is the degree of’ p (~u), Since supp f c [0, oo), for j and k taken as.

above we have

where E is an arbitrary positive number. Then (4.5) and (4.6) imply that

tor Ite A &#x3E; E and Hence

Then the analyticity of’ f’ (À) in the domain &#x3E; 01 and the estimate (4.7)

imply that f (A) can be extended holomorphically in a domain of the form
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and for A E 1. We observe that

for Re A &#x3E; y.

n

Hence we have proved that T (À) exists and satisfies the estimate

for Because

for the analyticity of (Al - A)w implies that it satisfies the esti-

mate (ii) for

Sufficiency. From (i) and (ii) it follows that the operator A generates
en E. D. S., G. and

where e is an arbitrary positive number. As in the proof of theorem 5
we have

where is the curve given by

Then our estimates of (Al - and en (- A) imply that

for any and k = U~ 1 ~ ." . Hence

Here r(~y~) is Euler’s function and C is a positive constant independent
of e. Consequently the semi- group T is of class A0 and the proof is complete.
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h’or N h 1 and y h 0 we denote by A; the class of regular D. S. G.,
T such that for 0

As a consequence of theorem 5 and its proof we obtain (see also Da
Prato Mosco [7]).

COROLLARY. A closed and densely defined operator A on X generates
a D. S. G. of class if and only if there exists a &#x3E; 0 such that

(AI - E L (X, V) and satisfies

for Re A &#x3E; - ex I 1111 Â. Ille -f- y 8, where e is an arbitrary non-negative
number.

Let T E Qj (L (JT, X)) be a regular D. S. G. T is said holomorphic (cf.
Fujiwara [8], Da Pi-ato-Mosco [6]) in the sector £ - p; arg I  a i
0  a  ~/2) if t --~ T (6,) can be extended at an holomorphic function T~
in this sector. It is obvious that a D. S. G. ot’ class Ae with p = 1 is ho-

lomorphic in a sector of the complex plane. Conversely from Cauchy’s for-

mula it follows that any holomorphic D. S. ft. in a sector Z is of class A1.

We can now formulate the following result (cf [8]).

THEOREM 6. A closed and dense linear operator A generates a D. S. G.
which is holomorphic in the sector -Y = I argu  a  n/2) if and only
it’ there exists a real y such that for any e &#x3E; 0 and any I in the sector

we have (Al - A)-’ E L (X, X) with the estimate

PROOF. The sufficiency of condition (4.12) is a consequence of theorem

5. Also the necessity can be obtained by an adaptation of the proof of
theorem 5, but we shall give a direct proof. Il the semi group T is holo-
morphic in the sector Z = arg p I  a  then according to theo-
rem 3, there exists a real y such that e-Yt T = Dm f where f’ (t) is a CO
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(L (4¥, X))-function satisfying (4.3). Put

Because is analytic in f and II e~~t II rapidly tends to zero at

infinity, we may write

where

and

This implies that j°(I) can be extended at an holomorphic function
-

f (I) in the domain

Again following the proof of theorem 5 we obtain that (Al - A)w E (L (X, X
and satisfies (4.12) for

Thus theorem 6 is proved.
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