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IMBEDDING THEOREMS

FOR GENERAL SOBOLEV WEIGHT SPACES

ALOIS KUFNER

o. Introduction.

Let, Q he a hounded domain of the N-dimensional Euclidean space RN ;
we assume that the boundary of Q may be locally described by a

function fulfilling tlie Lipsehit z condition.

Let 11 (x) be a function defined a,nd positive almost everywhere on the

doinain Q and called the weight function. We define the space for

1J &#x3E;_ 1 as the set of functions it defined almost everywhere on Q and such

that the norm
p ".. - I

is finite.
N

Ijet i = (i 1 i2 , ..., be a multi index ivitli I i I = 2: where (S _--
s=l

=1, 2,... , N) are non-negative integers. We denote by Diu the (generalized)
derivative of order I i I :

For each positive integer m we define the general Sobolev weight space
(Q) as the Banach space of all functions 1(, defined almost everywhere

on Q and such that generalized derivatives belong to the space 
for all multi-indices i with I ¡I ( __ ~rz. In the space we have the norm

= 0 we define (D) = Lp, h (~).

Pervenuto alla Redazione il 3 Gennaio 1969.



374

0

Let (Q) denote the set of all infinitely differentiable functions in
o

RN with a compact support in Q. Then we define the space (Q) as
0

the closure of C~°°~ (Q) in the norm (0.2).
The imbedding problem in these general Sobolev weight spaces is the

problem of determining the (best) weight function k (.x) [depending on h (x)]
such that the inclusion

holds and that this imbedding is continuous, i. e. that an estimate of the type

holds with a constant c not depending on the function u.
In this paper, this problem is solved for the case

where 0 = a (t) is an almost everywhere positive function of one variable

t E (0, oo) and o = e (x) is the distance between the point x EQ and the

boundary aS~ of Q.
For some special functions o there exist result in this direction: So

for a (t) = ta with a a real number, this problem was solved by J. NECAS [1] :
Under some assumptions concerning the valne of a (a &#x3E; p -1 for the space
w (1) 

0 
(1)(Q) and a p -1 for the space he has shown that if h(x)=

with a (t) = ta then the weight function k is of the form k (x)=
= x (e (x)) with

His results were extended in the papers of ~T. KADLEC and the author [2]
and [3]. E, g., it is shown, that for a = p -1 the imbedding

holds with h (x) ==== f7 (p (x)), a (t) = ta - tp-1 and

with R a positive constant.
For weight functions of the type
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with )4 (.r) the distance between the point and a fixed point on the
boundary similar results were obtained by the author [4] : for g (t) = I,n
there is k (,t~~ = x (r (x)) with x (t) = ta-p.

There also similar results concerning, e. ~., unbounded domains D.

KUDRJAVCEV [5]) or weight functions defined as a power of the distance

from a n-dimensional manifold (~z [ ~l ) (see G. N. JAKOVLEV [6]) etc.

1. A generalization of Hardyr’s inequality.

Important for the proof of an imbedding of the type (0,.~) with weight
functions of the forin (x) or It (x) = ,.0. (x) is the inequality of HARDY

which holds

"

(see [71, Theorem ua0) ; the value a --- p - 1 is a singular value.
For the proof of imbedding theorenls with It (x) = n (Lo (x)) and k (x) =

= x (e (.r)), where i arnl x are more general, we need a generalization of

Hardy’s inequality [see (1.4)]. We will state it here as a Lemma:

LEMMA. Let be t~ ) 1 and a = Q (t) defined and positive almost every-
where on (a, b) [- oo  ~r,  b  00]. Let us define a function by (~) by the

formula

Further let ./* = f (t) be a function differentiable in (a, b) and such that

Let at least one of the following two conditions be fulfilled :
b 

-

(i) and the function S. (t) . = S(r) dr is finite for every
t --- b f-6 t

t E (a,b);
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I

(ii) Jim J. (t) = 0 and the function S*(t) = dr is finite for every
t-a f

a

t E (a, b).
It’ we define the function x by

then the generalized inequality of Hardy holds :

The proof of the generalized Hardy’s inequality is similar to the proof
of inequality (1.1), e. g. in [8]. A proof of (1.4) has given, e. g., V. N. SEDOV
in his (yet unpublished) Thesis. We will give here two simple examples:

EXAMPLE 1. For (a, b) = (0, oo) and o (t) = ta (a =F p - 1) we have by
condition (i) of the Lemma for m &#x3E; p - 1 and by condition (ii) for a  p -1
the following expression for x :

In this wa~y, we obtained the Hardy’s inequality (1.1).

EXAMPLE 2. For (a, b) = (0, 1) and a (t) = tp-1 ’ ’ t
we obtain by condition (i) for 03B2  -1 and by condition (ii) 
the following expression for the function x :

This is exactly the inequality (4.4) from [3] (see also formula (0.7) which is
a special case of our function x (t) for # = - p).

2. Imbedding theorems in a special case.

For the points x E RN we use the notation x = (x’, xN) where x’ =
= (x 17 X21 ..., 9 XN-1). In this section, special cylindrical domains will be con-
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sidered : Q = 2T ’ (0, 1) with I~ the nnit ball in 

Further, it will be supposed in this Section, that all functions u = u (x’, 
vanish in the neighbourhood of the part of the boundary aS~ described by

(i. e. the functions cmiqh in the neighbourhood of the sides and of the

upper base of the cylindre S2).
For such functions U we define the space as the space of all

functions u, for which the norm

is finite. Here, the weight function depends on X.v only. Sobolev weight

space (S~) is the apace of all functions 1t for which

the norm

Further, we set (similarly as in Section 1)

with p &#x3E; 1 and suppose that

and define a new weight function x by the formula
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we snppose that the space [i. e. the space of functions
infinitely differentiable in D and continuous with all derivatives in the clo-

sure Q] ] forms a dense subset of the spaces (S~) and Let us

note that in the paper of 0, y’. BESOV and the author [9] conditions are

given which guarantee the density of smooth functions in weight spaces.
Under all these assumptions, we have the following

THEOREM 1. For all 1t E w (1) (Q) the inequality

holds with x given by (2.6).

PROOF. At first, let us prove (2.7) for a function u E C~°°~ (Q) which

vanishes in the neighbourhood of points x = (xl, xN) with =1 or 
We want to estimate the integral

Let us denote by ~l the inner integral and by the function 
for a fixed x’ E 1.~. The function f vanishes for values xN near to 1. So, we
can use the I..Jemma, condition (i) [with (a, b) _ (0, 1)] and have from inequa-
lity (1.4)

1 1

Because f (x.~,) = it, (x’, xN) and we can write the last

inequality in the form

Integrating this inequality by x’ over B’ we obtain

Using the obvious estimation

we have (~.7) for a smooth function u.
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Now, we suppose 1t E Wp,’Q (S~). Because ( f2 ) forms a dense subset in
this space, a sequence of functions ’Un E C(CX)) (Q) exists such that --~ u

for n - oo in the norm (2.3). In the first part of the proof we have shown
that (2.7) holds for un, rc =1, 2, .... The functions u" form a Cauchy se-

quence in (S~) and by (2.7) also in Lp, x (,f~). So, a limit of Un exists in

Lp, x (S~)~ and we obtain (2.7) for u by a passage to the limit for n --~ 00

in (2.7) for un.
Theorem 1 shows that for weight functions a fulfilling the condition

(2.5) ~ tbe imbedding

o 

holds with x given by (2.6). If we define the space as the closure

of Ct°° (Q) in the norm (2.3) (see also Section 0), then obviously c
o

c and so, the irnbedding (2.8) holds for too :

An imbedding ut’ the form (2.9) holds also if the weiglit function o

fulfils the condition

instead of (2.5): then the weight function x is given by

o

THEOREM 2. For all functions u E 1$1,, 0 (1) (,Q) the inequality (2.7) holds
with x given by (2.11).

PROOF. We can use the same method as in the proof of Theorem 1.
0

Using the fact that, for u E C~~°~ (S~), it is f’(xN) = ~i (x’, x~~.~ = U for xN
near to 0, we obtain from inequality (1.4) [condition (ii) of the Lemma] the

0

estimate (2.7) for functions Un E (Q) and by a limit procedure with 11 --&#x3E; oo
o 

(ilalso for u E (Q).
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EXAMPLE 3. From Example 2 it follows that the estimation

holds (i) for u E W~ (D) with o (xv) = 19a+p (xÑ1) if 0153  -1 (by using
Theorem 1 ) ;

(ii) for u E with the same a if 0153 =4= - 1 (by using Theorem
1 for a  -1 and Theorem 2 for x &#x3E; 2013 1).

The just mentioned results may be carried over to the spaces (D)
with 1n &#x3E; 1, defined as the spaces of functions 1t with a support of the de-
scribed type [i. e. vanishing in the neighbourhood of the part of the boundary
aS~ given by (2.1)] and such that the norm

is finite. Bat this is a technical question only, how may be seen from the

procedure for tn = 2 :
If u E (Q) with o fulling the condition (2.5), then u E (Q)

= ::i E for j = 1. 2, ... , N, Using now Theorem 1 for the
i 

’

functions u and ’vi, we obtain

with x given by (2.6). It means E ~~~;~ (~)~ and ~o, we have the

imbedding

(2.12)

Let us denote

and suppose
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Setting now

Theorem 1 gives the imbedding

From this inclusion and from (2.12) now immediately follows the main result :

BB’ith À from (2.13). O

Let now u = a (.1:’) be a function defined and lipscbitzian tor K with IT

the unit ball in RN-l. We can repeat all considerations made in Theorems
1 and 2 for S~ X (0,1 ) and a = o (xN)’ x = x (xN), also for S2 defined by

and for weight functions

because here

Also for such domains S~ Theorems 1 and 2 hold (with function u va-

nishing in the neighbourhood of points with ~ I x’ =1 or with xN = a (x’) + 1).
This fact will be used in the following Section.

3. Imbedding theorems in the general case.

The domain Q considered in Section 2 were rather special and also
the condition concerning the support of functions u was very restrictive.
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But results analoguous to Theorems 1 and 2 hold also for general So-
bolev weight spaces defined in Section 0 with weight functions of the type

For such spaces, we must make some additional assumptions concerning
the weight function a :

(I) a = a (t) is a non-negative function defined for t E (0, oo) and such
that for every interval [c, d] with 0  c  d  oo a number q exists (q &#x3E; 1

and depending on the interval [c, d]) such that

(II) if C, and c2 are positive constants such that el  tls  c2 , 7 then
there exist positive constants C1 and 02 such that for this s and t the ine-

qualities

noia.

Some conditions for a under which (3.2) holds are given in [9].
Now, we again define S (t) by (2.4) and suppose that (2.5) holds. We

define a new weight function x by (2.6) and suppose that conditions (I) and

(II) hold for both functions a and x and that functions from C(-) (S~) are
dense in IV , p, (1) h (.fJ) and in Lp, k (S~) where

Then we have

THEOREM 3. Let p &#x3E; 1. Let Q be a bounded domain with locally lip-
schitzian boundary aD. Then a constant c &#x3E; 0 exists such that for all

tt E W§i11 (0) the inequality

holds.

PROOF. For ’It E (Q) a sequence of functions Un E C~°°~ (without
assumptions about the support of exists such that 

for Thus, it suffices to prove (3.4) for functions from 0~(D).
The boundary ôfJ may be described locally by functions fulfilling the

Lipschitz condition ; more precisely (see [1]) :
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(i) Coordinate systems (x~. , xrlv) (t == 1,2 ... R) and functions a~r = ar(xr)
defined and lipscliitzian on (N-1) - dimensional balls Kr = 

xr (  1 } exist such that for every point x E aSl at least one index r exists
such that the point x has the coordinates (xr , ar (xr)) [i. e. that the boundary
aQ is in the neighbourhood of x described by the function ar : xrN : = ar (x;.)],

(ii) A constant fl (0  1) exists such that the « cylindrical » domain

is contained in S~ tor r = 1, 2, ... , R and that the domains

cover the boundary a Q and Q = Br (r = 1, 2,..., R).

(iii) An open set DR+, exists such that and

Then functions c~r (ae), r = 1, 2,..., R -~-1, exist such that :
o - R+1

0 c (x)  1, Coo) (Dr) and for x E S~ it is I (x) = I (the functions
_ 

r=l

wr form a partition of the unity in ~2).
Let now be u E C(-) (Q) and let us denote ur = u 92, . Let us fix the index

l’ between 1 and R. We want to estimate the integral

[We can integrate over Br instead of the whole Q, because ur vanishes in
o

for cpr E C~°°~ (Dr),·
Because the function ar (xr) which describes the boundary aQ for x;. E gr

is lipschitzian, the distance of the point a? === (xr , E Br from ~~2 in the
direction xrN [this distance is given by ar (x~) - is equivalent with the

11 Annali della Norm. Sup.. Pisa.
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usual distance from given by 0 (xr , xrN), i. e. constants c 1 and c2 exist
such that

for all Using now condition (II) for the weight function
x [see (3.2)] we have

and from (3.5) it follows

But for a fixed x’r E K" the function ur (x;. , vanishes for near to

ar (xr) - fl, and so, u (xr , ar (xr) - t) = 0 for t near to 03B2  1. Thus, we have
the situation considered in Section 2 and Theorem 1 gives immediately

Now, we again use condition (II) - in this case for the function a -

and have

So we have
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and

because from the properties of cp". it follows immediately that

Inequality (3.6) holds for r = 1, 2,..., R ; but it holds also for r = R -~-1~
i, e for the function with compact support in 

Setting ð1 = dist (DR+l , a~~ ~ 0, ð2 = diam S~ ~ oo~ we have

and from property (I) ot’ the weight functions o and x it follows, that then

q &#x3E; 1 and q* &#x3E; 1 exist such that

for x E So, for these x we have (x) (x) and

Thus (3.6) holds for r = ly 29 ... , R -~-1. Because u (x) = u (

we have from (3.6)

what is (3.4) for u E C~°°~ (S~). So, Theorem 3 is proved.
Theorem 3 shows that the imbedding
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holds for the general’ Sobolev weight space with h (x) = u (~ (x)) and k (x) =
= x (o (x)). If we suppose that (2.10) holds instead of (2.5) and then define
x = x (t) by (2.11), we obtain by the same way as in Theorem 2 the imbedding

Analoguously as in Section 2 we can now derive imbedding theorems
for the spaces 2.

REFERENCES

[1] J. NE010DAS: Sur une méthode pour résoudre les equations aux dérivées partielles du type ellip-
tique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa, ser. 3, 16, 4

(1962), 305-326.

[2] J. KADLEC, A. KUFNER: Characterization of functions with zero traces by integrals with

weight functions I. 010Casopis pest. mat. 91 (1966), 463-471.
[3] J. KADLEC, A. KUFNER : Characterization of functions with zero traces by integrals with

weight functions II. 010Casopis pest. mat. 92 (1967), 16-28.

[4] A. KUFNER: Einige Eigenschaften der Sobolevachen Räume mit Belegungsfunktionen. Cze-

choslovak Math. J. 15 (90) (1965), 597-620.

[5] L. D. KUDRJAVCEV: Direct and inverse imbedding theorems. Applications to the solution

of elliptic equations by variational methods. Trudy Mat. Inst. Steklov. 55 (1959).
(Russian).

[6J G. N. JAKOVLEV: Density of finitary functions in weight spaces. Dokl. Akad. Nauk SSSR,
170 (1966), 797-798. (Russian)

[7] G. H. HARDY, J. E. LITTLEWOOD, G. PÓLVA: Inequalities. Cambridge 1934.

[8] A. ZYGMUND: Trigonometric series. Vol. I. Cambridge 1959.

[9] O. V. BESOV, A. KUFNER: On denaity of smooth functions in weight spaces. Czechoslovak
Math. J. 18 (93) (1968), 178-188 (Russian).


