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IMBEDDING THEOREMS
FOR GENERAL SOBOLEV WEIGHT SPAOCES

AL01IS KUFNER

0. Introduction.

Let Q be a bounded domain of the N-dimensional Eunclidean space RY;
we assume that the boundary 402 of Q may be locally described by a
tfunction fulfilling the Lipschitz condition.

Let h (r) be a function defined and positive almost everywhere on the
domain Q and called the weight function. We define the space L, ;(£2) for
p =1 as the set of functions u defined almost everywhere on £ and such
that the norm

1p
(0,1) | o, p,n = [ fl u (2)|? h(r)de

is finite.
N
Let i =(iy,iy,..,1y) be a multi-index with |i|= 3 i,, where i, (s =
s=1
=1,2,.., N) are non-negative integers. We denote by D'« the (generalized)
derivative of order |i|:
alvlu
Duw= - = - o
0xt 0%2 . O

For each positive integer m we define the general Sobolev weight space
W,ff”;{ (2) as the Banach space of all functions » defined almost everywhere

on 2 and such that generalized derivatives D'w belong to the space L, ,(£2)

(m)

for all multi-indices ¢ with [i| =< m. In the space W, 1 (£2), we have the norm
m . 1/p

(0,2) | % llm, p,n = I'Z l D'““(fp,n
11=0

For m =0 we define W,°)(2)= Ly, 1 (2).

Pervenuto alla Redazione il 3 Gennaio 1969.
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o
Let € (Q) denote the set of all infinitely differentiable functions in
o
RY with a compact support in Q. Then we define the space W;,',"}.(.Q) as
o

the closure of C() (L) in the norm (0.2).

The imbedding problem in these general Sobolev weight spaces is the

problem of determining the (best) weight function % (x) [depending on h(z)]
such that the inclusion

(0.3) WAh(Q) € Ly i (2)
holds and that this imbedding is continuous, i. e. that an estimate of the type

(0.4) e llo.pe = clleflipn

holds with a constant ¢ not depending on the function w.
In this paper, this problem is solved for the case

(0.5) h (@) = o (¢ («))

where o = o (t) is an almost everywhere positive function of one variable
t€(0,0c0) and o = o (x) is the distance between the point x€ £ and the
boundary 682 of £.

For some special functions ¢ there exist result in this direction: So
for ¢ (t)=1t* with a a real number, this problem was solved by J. NE&As [1]:
Under some assumptions concerning the value of « [« >p — 1 for the space
W,f,”h () and « <p — 1 for the space v(i’p(";. ()] he has shown that if h(x)=
=0 (p (x)) with o (t) = t* then the weight function k¥ is of the form k(x)=
= % (p (x)) with

(0.6) x == % (l) = t* ",

His results were extended in the papers of J. KADLEC and the author (2]
and [3]). E.g., it is shown, that for « =p — 1 the imbedding

WMD) € L (2)
holds with h(z) = o (¢ (a)), o () = t* = t?~! and
(0.7) k(@) =x(o @),  x(t)=t=?lg— (Rjt)y = _1_ lg-* (_Iti)

with R a positive constant.
For weight Afunctions of the type

h (¥) = o (r (%))
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with #(z) the distance between the point x €2 and a fixed point x, on the
boundary 64, similar results were obtained by the author [4]: for o(¢) = (*
there is k (v) = » (r (x)) with 3 (f) = t*—P,

There also similar results concerning, e.g., unbounded domains (I.. D
KUDRJAVOEV [5]) or weight functions defined as a power of the distance
from a n-dimensional manifold (n < N) (see G. N. JAKOVLEV [6]) etc.

1. A ‘generalization of Hardy’s inequality.

Important for the proof of an imbedding of the type (0.3) with weight
functions of the form h(x)=p® (x) or k(x) = r* (x) is the inequality of HARDY

»
t* dt

- e P ml"l
(1.1) f|.7(f)|p‘ Pt é(T“_'*EU—'F i l) | at
0 0

which holds
i) for a > p—1 if lim f(t)=

t-+ oo

i) for o« <p —1if lim f(t) =

t -0
(see |7], Theorem :330); the valne a =p — 1 i a singnlur value.
For the proof of imbedding theorems with & (x (o (x)) and k(x)=

= #(p(r)), where o and » are more general, we need a generalization of
Hardy’s inequality [see (1.4)]. We will state it here as a Lemma:

LEMMA. Let be p > 1 and o = o (t) defined and positive almost every-
where on (@, b) [— o0 = a < b < oo]. Let us define a function S(z) by the

formula
1

(1.2) 8 (1) = o'=7 (7).

Further let /= f(¢t) be a function differentiable in (a, b) and such that

Let at least one of the following two conditions be fulfilled :

(i) lim f(¢) = 0 and the function S*(¢) _f t) dzr is finite for every
t-—+b

te(a,b);
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t

(ii) lim f(t) = 0 and the function S"‘(t)=[S(t) dr is finite for every
t—+a
a

t € (a,b).
It we define the function x» by

(1.3) x (1) =8 () [8* (O]

then the generalized inequality of Hardy holds :

(1.4) f[j(t |7 () dt<( ) f‘ "o (t) dt.

The proof of the generalized Hardy’s inequality is similar to the proof
of inequality (1.1), e. g. in [8]. A proof of (1.4) has given, e. g., V. N. SEDOV
in his (yet unpublished) Thesis. We will give here two simple examples:

ExAmMPLE 1. For (@, b) = (0, c0) and o () = t* (« = p — 1) we have by
condition (i) of the Lemma for « >>p— 1 and by condition (ii) fora < p—1
the following expression for x:

_(le+1—p\?
"(t)—(——p__:—l-—) te—p,

In this way, we obtained the Hardy’s inequality (1.1).

1
EXAMPLE 2. For (a,b)=(0,1) and ¢ (t) = tr—1lgftr ' with 3= —1

we obtain by condition (i) for << — 1 and by condition (ii) for > —1
the following expression fer the function x:

(1B 1,0
"“)—(T_—l) P

This is exactly the inequality (4.4) from [3] (see also formula (0.7) which is
a special case of our function x(t) for § = — p).

2. Imbedding theorems in a special case.

For the points x€ R¥ we use the notation = (z’, z,) where 2’ =
= (®y, &3 , ... , y—;). In this section, special cylindrical domains will be con-
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sidered : Q = K < (0, 1) with K the unit ball in R¥-1:
N1
K= {r'eRV-1: 5 x}?<] .

j=1

Iurther, it will be supposed in this Section, that all functions w =u(z’, x,)
vanish in the neighbourhood of the part of the boundary 02 described by
(2.1)- jx’|=1 or zy=1

(i. 6. the functions vanish in the neighbourhood of the sides and of the
upper base of the cylindre 0Q).

For such functions » we define the space L, ,(£2) as the space of all
functions », for which the norm

1
. 1p
(2.2) Jully p o= ‘ [d.r'] @ xy)|?o (.L'N)d.l'x\
K 0

is finite. Ilere, the weight function depends on z, only. The Sobolev weight
space W,f.”,, (Q) is the space of all functions » for which

W€ Ly o (@) and (;’—;f €Lp,(Q) for j=1,2..,N
<L

” ‘I'z’
0 pa

with the norm

‘ AT
(2.3) Nl p.o =l u ,|(Cp‘a + ,f] 9—1,

Further, we set (similarly as in Section 1)

1
(2.4) S(t) = o=P(t)

with p > 1 and suppose that

1

(2.5) [:S(t) dt < oo for t>0

7

and define a new weight function » by the formula

1
(2.6)  (t) = S(t)[ f 8 (2) dz]—".

t
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Finally, we suppose that the space € () [i.e. the space of functions
infinitely differentiable in £ and continuous with all derivatives in the clo-
sure 2] forms a dense subset of the spaces W', (Q) and I, .(2). Let us
note that in the paper of O. V. BEsov and the aunthor [9] conditions are
given which guarantee the density of smooth functions in weight spaces.

Under all these assumptions, we have the following

THEOREM 1. For all we W', (Q) the inequality

(2.7 ” 2 ”o pox = < I |‘ W, p, o

p—
holds with » given by (2.6).

PROOF. At first, let us prove (2.7) for a function u€ O (2) which
vanishes in the neighbourhood of points » = (2’, #z,) with |2’|=1 or z, =1.
We want to estimate the integral

1
I=|u M}m =fd.v'f| w(x',xy) P u(@y) de
K 0

Let ns denote by J the inner integral and by f(x,) the function u @’y xy)
for a fixed x’ € K. The function f vanishes for values x, near to 1. So, we
can use the Lemma, condition (i) [with (a, b) = (0, 1)] and have from inequa-
lity (1.4)

1

=/ Ij(xNHP x(J‘N) é_ ‘p-_] fl d.’L’N.
0

. , ar on .
Because f(vy) =u(2’,2y) and m(‘%) = E(x ‘y@y), we can write the last
inequality in the form

1

P ou
J=/| w (@', x,) | % (xy) dey = (p — 1) / ax (@yay) | o(xy) dry.
0 0

Integrating this inequality by z’ over K we obtain

a2 S(__P_) LN
0, = p——l GxN 0,p, 0
Using the obvious estimation
ou |,
e I L

we have (2.7) for a smooth function w.
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Now, we suppose u€ W, . (). Because €' (£) forms a dense subset in
this space, a sequence of functions u,€ C (!_2) exists such that w, —u
for n — oo in the norm (2.3). In the first part of the proof we have shown
that (2.7) holds for u,,n=1,2,.... The functions u, form a Cauchy se-
quence in W,f,lf, (£2) and by (2.7) also in L, ,(£). So, a limit of u, exists in
L,,.(£), and we obtain (2.7) for v by a passage to the limit for n— oo
in (2.7) for u,.

Theorem 1 shows that for weight tunctions ¢ fulfilling the condition
(2.5) the imbedding

(2.8) Wl (Q) € L, ()

o
holds with x» given by (2.6). If we define the space W,ﬁfi,(!)) as the closure
o (]
of C*) () in the norm (2.3) (see also Section 0), then obviously W,,“l (2) c

c W, (2) and so, the imbedding (2.8) holds for W,") (%) too:
o 1)
(2.9) We(Q) € Ly . (Q).

An imbedding of the form (2.9) holds also it the weight function o
fulfils the condition

t
(2.10) J S(tydr < o0 for t< 1

v

instead of (2.5): then the weight function » is given by

t

(2.11) w(t) = S (1) US(:) d:]—p:

0

o
THEOREM 2. TFor all functions u€ W,,('ll, (£2) the inequality (2.7) holds
with » given by (2.11).

Proor. We can use the same method as in the proof of Theorem 1.

Using the fact that, for w¢€ ) (Q), it is f(x,) =u (@', 2,) =0 for z,
near to 0, we obtain from inequality (1.4) [condition (ii) of the Lemma] the
estimate (2.7) for functions u, € (?(‘"’) (2) and by a limit procedure with » — oo
also for ue W, ().
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ExAMPLE 3. From Example 2 it follows that the estimation

p
” w “o. ?, val 9@ (:r;]) = |_ac——|-1| “ u “l,p, xﬁr_l getp (z;‘)

holds (i) for u € W;E.l)a (2) with o(xy) = 2§~ lg**+? (a3?) if « << — 1 (by using
Theorem 1);

(ii) for u € ﬁ’,ﬁ,”, (£2) with the same ¢ if « &= — 1 (by using Theorem
1 for « < — 1 and Theorem 2 for o > — 1).

The just mentioned results may be carried over to the spaces W,,(f",,)(Q)
with m > 1, defined as the spaces of functions » with a support of the de-
scribed type [i. e. vanishing in the neighbourhood of the part of the boundary
0% given by (2.1)] and such that the norm

1
m ) 1/p
| lm, p.a = [mio fdx' [l])‘u(m’, zy)|?o(xy) dzy,
K 0

is finite. But this is & technical question only, how may be seen from the
procedure for m = 2:
If we W%, (@) with o fulfilling the condition (2.5), then u € W, (£2)
and v = Z—gr € W,f,”, () forj=1,2,..,N. Using now Theorem 1 for the
)
functions w and v;, we obtain
ou ,
€Ly, ($) and vJ=EELP,~(Q) (j=1,2,..,N)

with » given by (2.6). It means that w € W, (2), and so, we have the
imbedding

(2.12) w2, (@) e Wi ()

Let us denote
1

K (t) == 515 (1)

and suppose
1

[K(t)d1<oo for t> 0.
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Setting now

1
-y
(2.13) A(t) = K (t) [[K(r) dr] ,
t
Theorem 1 gives the imbedding
W (2) € L, i ().
From- this inclusion and from (2.12) now immediately follows the main result:
(@)
W, (82) € Ly, 5 ($2)
with 4 from (2.13).
*

* *

Let now a = a (2’) be a function defined and lipschitzian for ' € K with K
the unit ball in R¥-!', We can repeat all considerations made in Theorems
1 and 2 for Q= K < (0,1) and o = o (r,), x = x (x,), also for {2 defined by

Q=jr=@"zy): 2’ €K a@)<a,<a@)4 1}
and for weight functions
h@)=h(, xz,)=o0(a@)+ zy),

k(x) =k @, xy) = x(a (@) + x,),
because here
a(@)+1

1
[v (x)dxzfdw'J v (@, ) de=fdw’fv(w',a(x’)+t)dt.
Q K ) K 0

a(x’

Also for such domains £ Theorems 1 and 2 hold (with function » va-
nishing in the neighbourhood of points with |2’ | = 1 or with z, = a (x") 4 1).
This fact will be used in the following Section.

3. Imbedding theorems in the gemeral case.

The domains 2 considered in Section 2 were rather special and also
the condition concerning the support of functions u# was very restrictive.
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But results analoguous to Theorems 1 and 2 hold also for general So-
bolev weight spaces defined in Section 0 with weight functions of the type

h (2) = o (¢ (¥)).

For such spaces, we must make some additional assumptions concerning
the weight function o¢:

(I) 6 =0 (t) is a non-negative function defined for ¢ € (0, co) and such
that for every interval [c, d] with 0 < ¢ < d < oo a number 7 exists (y > 1
and depending on the interval [¢, d]) such that

(3.1)

I

, o)y =y for tefe, d];

(IT) if ¢, and ¢, are positive constants such that ¢, = t/s = ¢,, then
there exist positive constants C, and C, such that for this s and ¢ the ine-
qualities
(3.2) c. <D,

1= als) = 2
hold.
Some conditions for ¢ under which (3.2) holds are given in [9].
Now, we again define S(f) by (2.4) and suppose that (2.5) holds. We
define a new weight function » by (2.6) and suppose that conditions (I) and
(II) hold for both functions ¢ and » and that functions from C© (Q) are

dense in W% (£2) and in L,  (2) where

(3.3) h@y=o0(o@); k@ =x(@®); o) =dist(x, 09).

Then we have

THEOREM 3. Let p > 1. Let 2 be a bounded domain with locally lip-
schitzian boundary 0. Then a constant ¢ > 0 exists such that for all

u€ W,f,l);. ($2) the inequality

(3.4) 1o llo, ok = ¢l ® iz

holds.

PROOF. For we W, (2) a sequence of functions u, € ¢ (2) (without
assumptions about the support of u,!!) exists such that w,— uin W' (L)
for m — co. Thus, it suffices to prove (3.4) for functions from € ©)(Q).

The boundary 02 may be described locally by functions fulfilling the
Lipschitz condition ; more precisely (see [1]):
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(i) Coordinate systems (x, ,x,y) (r =1,2,..., R) and functions a, = a,(x;)
defined and lipschitzian on (N — 1)-dimensional balls K, = (€
R¥-1:| a, | =<1} exist such that for every point x € 982 at least one index r exists
such that the point x has the coordinates (x,, a, (x;)) [i. e. that the boundary
04 is in the neighbourhood of x described by the function a, : .y = a, (2,)].

(ii) A constant §(0 << § < 1) exists such that the « cylindrical » domain

Br = [.’t‘ = (w;‘ 9 -TrA') : w;‘ € Kr y Qy (-T;') - ﬂ < wrN< ar (wtl')}
is contained in £ for » =1, 2, ..., R and that the domains

D, = {.’l) = (¥ ,axyn): 2, €K, a, (@) — B < wry < 4y (7) + ﬂ]

cover the boundary 62 and D, N2 = B, (r=1,2,..,R).

— R+1 —
(iii) An open set Dgy, exists such that Dpyy ¢ 2, !‘—,1 D, o £ and

R
Q=U B, + Duy:.

Then functions ¢, (x), r=1,2,.., R4 1, exist such that :
[ — R+41
0<=¢ (®)=<1, ¢, € C®(D,) and for z€ Q it is 3 ¢,(®)=1 (the functions

r=1
¢, form a partition of the unity in £).
Let now be u € € (L) and let us denote u, = u ¢, . Let us fix the index
r between 1 and R. We want to estimate the integral

(3.5) I, = H u, “3) p k= fl Uy (xll s Zry) lp k (x; 7wrN) dr =
Bf
a, (2,
=fd-l'1,*f| Uy ('T;' y Xr8) |p % (o ('l':‘ y ZrN)) dex,y .
K, ar(x,',)—ﬂ

[We can integrate over B, instead of the whole {2, because u, vanishes in

Q— B, for g, € ) (D,)).

Because the function a, (x;) which describes the boundary 69 for x, € K,
is lipschitzian, the distance of the point x = (x;, x,y) € B, from 92 in the
direction x,y [this distance is given by a, (x,) — »,5] is equivalent with the

11. Annali della Scuola Norm. Sup. - Pisa.
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usual distance from 5%, given by ¢ (x,,,n), i.e. constants ¢, and ¢, exist
such that

o (xy , ®,x)
Qy (W:') — ¥rN

0 =

=<

for all ¥ = (»,,x,5)€ B,. Using now condition (II)for the weight function
% [see (3.2)] we have

k (.’l‘;. y wrN) =% (9 (w:' y zey) = 02 % (a, (a';') — &N)

and from (3.5) it follows

a"(x"‘)
I, < C2fdw£f|u, (xr y 2,8) |2 % (ar (X)) — 2px) A2y =

K,  a,(z,)—8

8
= szdx}f| Uy (@, ar () — 8) |P % (t) dt.
k 0

But for a fixed «; € K, the function u, (z,,2,5) vanishes for x,y near to
a, (¢;) — B, and so, u (x;,a, (¥;) —t) =0 for ¢ near to § << 1. Thus, we have
the situation considered in Section 2 and Theorem 1 gives immediately

B
p \? ) ou,
< /
o) [
K, 0
_ p
_02(10—1) Bf

r

»
a, @) —t)| o(t)ydt =

8@1,
0x,y

V4
(@r  25) | 0 (@ (1) — @) da.

Now, we again use condition (II) — in this case for the function ¢ —
and have
1 '
o (a (Xr) — @) =< — o (e (r y XrN)) = — bk (xy , 2, n).
O’ C,

So we have

f'u’ nr ke éﬁz<p£ )1,!

r

ou,
awrN

(®)| h(x) dx
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and

(3-6) [ llo.p.k = ¢* [ wr |lpn = ¢ [ ]y, 5.0

because from the properties of ¢, it follows immediately that

I flapon = llwgr | = ¢l wflipn-
Inequality (3.6) holds for » =1, 2, ..., B ; but it holds also for r = R 41,

i. e for the function Upy =UQPp) with compact support in DR—H:
Setting 8, = dist (Dgy,, 692) > 0, §, = diam 2 < oo, we have

=)= (32 for @ € Dyt

1 =

and from property (I) of the weight functions ¢ and x» it tollows, that then
n > 1 and 2* > 1 exist such that

1
Sh@=0c@)=7; —

1 < k@)= xlo (@) < o*
Ui n -

for ® € Dy, . So, for these x we have () k =< * n h(x) and

| Upir ilgp,k-_.—fhakﬂ (:r)|Pk(x)dx§1]“nf|uR+l ()| h () de =

Drt Dpt

=n*n|||lu (x)tv+§!§fﬁi(p)'y h () do =
=117 R+1 | j=1‘| oz, J r —
D

R41
=77”7 ” uR+1 “]l:p,hén*nc“u”lz.’p,h'

Rt1
Thus (3.6) holds for » =1, 2, ..., R + 1. Because u(z) =u(z) = ¢, (v) =
r=1

R41
= 23 u,(x), we have from (3.6)

r=1

. Il R-!:l 1 = R+1 < (B *»
Il llo,p.x = 12" e, =2 e llop # = (B4 1) ™ || lipn
| r= r=

0.pk

what is (3.4) for u € O (?2). So, Theorem 3 is proved.
Theorem 3 shows that the imbedding

Wh(Q) e L, (2)
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holds for the general Sobolev weight space with h (z) = o (o (¢)) and k (x) =
= % (o (x)). If we suppose that (2.10) holds instead of (2.5) and then define
% == % (t) by (2.11), we obtain by the same way as in Theorem 2 the imbedding

o
W}gf)h (2) c Lp' (£).

Analoguously as in Section 2 we can now derive imbedding theorems
for the spaces W, ™ (£2) with m = 2.
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