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AN ABSTRACT LEBESGUE-NIKODYM THEOREM

B. FISIIEL

The developement of the theory of Radon measures, continuous linear

forms on the vector space of continuous real-valued functions with

compact supports on the locally compact space T, endowed with a suitable
inductive-limit topology [B3], leans heavily on the order structure of 9((T).
We have shown elsewhere [F1,2] how some aspects of the theory of integra-
tion for Radon measures can equally be developed by availing oneself ot’
the algebraic structure of 9((T) rather than its order structure. We note,
however, that such a treatment does not yield a theory of integration in
that, for example, the objects which there correspond to the integrable
functions of the more familiar development are elements of an abstract

completion of 9((T), i.e. are not functions. Our object in investigating
the rôle of the algebraic structure was to explore the possibility of its
application to

(i) vector measures and the integration of vector - valued functions,
where rarely is there an order structure which arises in a natural way
from the structure of’ the space which we are concerned, and

(ii) the theory of distributions, where utilisation of a naturally-occur-
ring order imposes excessive restrictions - a positive distribution is a

measure.

In [ F2J we attempted to establish a Lebesgue-Nikodym theorem within
our order-free structure, but were unable to do so without the aid of a

supplementary hypothesis (loc cit Prop 2.3) which is not verified for Radon

measures, but which holds in the theory of distribution 
In the present paper we obtain a Lebesgue-Nikodym in a form ap-

plicable to the theory of integration. § 1.1 gives an account of some ideas
from the theory of duality for topological vector spaces, in particular, of
an extension of Grothendieck’s completion theorem. § 1.2 introduces the pre-

Perveuuto Redazione il 21 Ottobre 1968.



364

hilbert structure defined by a positive linear form on a normed algebra.
§ 1.3 describes dualities defined by a linear form on an algebra. § § 1.4-5

formulate a concept of absolute continuity of one linear form on a normed
algebra with respect to another such form and apply the completion theo-

rem of § 1.1 to establish an abstract Lebesgue Nikodym theorem. In § 1.6
this theorem is applied to give the Lebesgue Nikodym theorem for Radon
measures on a compact space. § 2.1 describes an extension of the results

of §§ 1.1-5 to the inductive limit (as a topological vector space) of a family
of normed algebras, and in § 2.2 we obtain the Lebesgue-Nikodym theorem
on a locally compact space.

§ 1.1 We make use of the ideas of the theory of duality for topologi-
cal vector spaces. We summarize here, briefly, the definitions and results

which we shall need.

Let  Et , be a dual system (pairing) of vector spaces E, , E2 over
the complex field C.

A family of subsets of = 1,2) is said to be saturated with respect
to  El ~’2 ) if it contains

(1) the subsets of each of its members,
(2) the scalar multiples of its members,
(3) the absolutely convex, weakly closed hulls of finite unions of

its members.

9x will denote the family obtained by saturating the family of finite
subsets of E;).

A saturated family 1:’t of weakly bounded subsets of Et defines a locally
convex topology arc! on E2 (the topology of uniform convergence on the

sets of If  is separated then is Hausdorff (separated) if

71 (The corresponding statements obtained by interchanging the

suffixes 1 and 2 also apply). With this notation we write aY2 for the weak
topology a (2~ ~ 

C)C2 denotes the family obtained by saturating the family of absolutely
convex weakly compact sets in E2 . 9g c C)(2 .

Let (7J be a saturated family in and let c) 9(2 (c 
be a saturated family in Ez , y both families being of weakly bounded sets.

We shall need the following form of Grothendieck’s conipletion theo14em:
if  E2 ) is separated,
G = f °9L2-continuous on the sets of M1} (1) is the (sepa-
rated) completion (E2 , of for the topology 

(1) F;~ denotes the algebraic dual of Ei.
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This result may be established by showing
(i) (as in [K] p. 272) that Q’ is complete, and separated for 

c M1 and  E1, is separated), 
and

(ii) that E is -dense in G.

The argument establishing the necessity of [S] Th. 6.2, p. 148 proves

(ii) when we put (E, r) = since (E, r)’ = (Eu o~ )~ == E 2(where (~ r)~
denotes the topological dual of E for the topology r) by the Mackey-Arens
theorem ([S] Th. 3.2, p. 131), since 92 c crl2 c ~C2 .

(A « proof » of this theorem given in [F2J is false. It relies on the

false inequality (3) of [IK] p. 272).

§ 1.2. We shall apply this theorem to a situation where we take (essen-
tially) for E2 two copies of a *-normed algebra A (i,e. a normed algebra over
C on which there is defined an involution. such = 11 $ 11 for all

EA, (see [R] p. 180). Elements f for are said to be self-adjoint.
We consider a linear form p on A having the properties

(this is equivalent to : IA is real on self-adjoint elements of A, and implies
that the sesqui-linear forms

and

are bermitian, it is an easy matter to construct an example for which
they do not coincide), and

is positive,

i. e.

(and so

so that the sesqui.linear forms are positiiTe-definite.
We shall henceforth consider only the first of these two forms de-

fined and shall write It defines a prehilbert structure on A
1

with corresponding semi-norm po (E) _ (p ($$*))2. If Z = t,: ,u (EE*) = 0) =
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~~ :,u (~~) = 0 the positive hermitian form an A/Z associated with
,u ( , ), (wlich we shall denote by It ( , ) defines a separated prehilbert struc-
ture. The norm p for this structure is that associated with the semi-norm

extends uniquely to the separated completion (which we
write of A/Z for po , and makes it a Hilbert space. We can equally
construct the separated completion (or A") of A for p, and

II § 3.7) (A/Z)" is isomorphic with A", to which we may therefore

transport the extended form Ï-t ( , ), and if i is the map of II § 3.7,
Th. 3, i (A) is dense in A^ (loc. cit. § 3.8). i is here a linear map, and is

in fact the canonical map A -~ A/Z, so that i (A) is isomorphic with A/Z.
We now impose upon a the further requirement

is continuous on A.

(If A has a unit and is complete, i.e. is a Banach *-algebra, the conti-
nuity of ,u follows from the hypothesis that it is positive ((N], p. 200)).
If

since

ind so

Now i ( V ) is contained in the unit ball of the Hilbert space A ^, and the

closed unit ball is compact for the weak topology a (A A, A A) defined by the
canonical duality ( A ^, A ^ ) of A ^ with its Hilbert-space dual A", so that
i ( Y) and therefore i (U) are relatively weakly compact in A". The the weak
closure of i ( U ) in A is compact for and is therefore compact for
the coarser topology a (A", i (A)).

§ 1.3. Our form p defines a duality (Do) on A X A - which it is con-

venient to write A1 x A2 - by

It is clear that this duality will not in general be separated.
Let 9N be the family obtained by saturating the family in A1 for

the duality ~Da), and let ck be the same family considered as a family in Az.
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’1’he sets of í)Jl and 9Z are weakly bounded for since

’rhe extension to .t11 X At defines a duality (1)} on X A2.

Let = i (’)/[). Since i is continuous for po and p, i (U) is bounded

for p and so for the weak topology a (i (A,), A2), which is the weak topology
defined hy (D). It follows that the sets of are weakly bounded for (D).

Since i is linear, to prove that is saturated for (I)) it suffices to

prove that the i-iinages of absolutely convex weakly closed (for (D,)) sets
of 9X are again weakly closed. Such a set ~I is closed for po, and since i

is the canonical map is closed, so that i (M) is closed for y.

Since it is absolutely convex and A~ _ (i (~11), p)^, i (M ) is also a (i(A 1)’ Ag)
- closed, i. e. is weakly closed for (I)).

Finally, we defines C)t2 to 1~e the saturate, for C i {A1), A~ ~ of It

is clear that the sets of are weakly bounded for (D).

~ 1.4. is another linear form on A we now define :

A absolutely continuous vith respect to a
to mean :

A is o -continuous on the sets of 

(where a~~~ is defined by the duality (1)0))’
It tolloBvs 0 :

Since E E for some ilf E 0rl (F c 9/C)y the o.continuity of y on M shows
that 1 (~) = 0.

~, is thus well-defined on A/Z. We shall denote by I the functional so
defined, and shall prove that it is (i, .2-continuous on the sets of For

z

this it suffices to establish continuity for the coarser topology °, (N).

10 dnaali della Scuola Norm. Sup.. Pisa.
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Since A = Ä o i and i is the canonical map of M onto M/Z, it suffices

([B1J §. 3.4) to prove that is the quotient by Z of This is imme-

diate from consideration of the neighbourhoods for the two topologies since
a D,y;-neighbourhood jsup: is saturated for the equivalence

~ 

relation defined by 1 II § 3.4).

§ 1.5 We now apply Grothendieck’s completion theorem to establish a

Lebesgue-Nikodym theorem.

o is coarser than the po-topology,

i 

is coarser then the p-topology.

PROOF. Since p is positive

Therefore

so that neighbonrhood defined by M = U contains a po neighbourhood,
i. e. o  c p-topolog.y. The second assertion is now immediate.

’’  ° 

defines a linear form A which is absolutely continuous with respect to p.

PROOF. p (¿.) is o’Tl¡ -continuous on A2 for all ~ E A1, I

E 0Jlt), and so extends (uniquely) to

This extension defines u (EE).
~y : ~ -+ 1* (~~) is clearly linear on A. To prove that it is absolute con-

tinnous with respect to ~~, let M E r ) 0. (a o minimal
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Cauchy filter on A2 (( B1] II § 3.7)), there exists P such that

Choose 03C0 E P. (a) E N and so III (8n) )  e/2 implies that

i.e., Cp is °Cf-continuous on u.

THEOREM 2. If A is absolutely continuous with respect there exists

C E (A, °C)/l) " such ~,u.

PROOF. A is N-continuous on the sets of by definition, therefore

y
. 

is 0. (0- -continuous on the sets o2-continuoust) N2

on the sets of 0Jlt since 0. (:")’" c o 1. by Grothendieck’s
. () "Ilt 

theorem.

Nov o e po-topology and so, if denotes the adherence of 0 in

by [F,l Prop. 2.3. It follows that

Since 
4 

is clearly the associated separated topology on ( A2 , " , we have

Finally, y since, denoting by Zo the adherence of 0 in (A2 , it is easy

to verify that Zo = we have

there follows, from (1) and (2),
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This shows that I, as a linear form an A2", is represented via the

duality (1)) Thus

where $ = I is a Cauchy filter on A2 .

since u(E) is oC1-continuous A2 , ({E) E and so

§ 1.6. We apply our abstract Lebesgue-Nikodym theorem to Radon

measures on a compact space.
Let T be a compact Hausdorff’ space. We take A to be CK (T), the al-

gebra of continuous real-valued functions with compact supports, (which
here coincides with C(T)-continuous functions). Our involution is the iden-

tity map, and the norm on A is the uniform = (t) I. (A
tET

has a unit and is complete for this norm). We take ,u to be a positive
Radon measure, and so ,u is continuous for the norm of A.

If A is a Radon measure on T which is absolutely continuous with

respect to ,u in the sense of [B.] V § 5.5 we have shown Prop. 3.1
that it is gcN-continuous on g (in the present context = cSp 9l = cS2 and
CK cS = cS, in the notation of [F2]). In order to apply our abstract Lebesgue-
Nikodym theorem we must show that y is °c52-continuous on 9N, the family
obtained by saturating { U). It clearly suffices to establish a62-continuity on
the weak closure of U for the duality (Do). However, U is already weakly
closed (in 9Ci), for if this were not so there would exist j E 9Q n U~

] 1 for some to E T) which is weakly adherent to U, i.e. given e &#x3E; 0
and T there would exist ja E U such that (Cf - h) g)  e, which is

clearly false.

Finally, we observe that the space (A, of Theorems 1 and 2 is

here by Prop. 3.4, since for compact T (/l) = L (p) and
fll c3 = cS. Now Prop. 2.7 and Prop. 3.4 ensure that ’p as here defined
for ~ E L (,u) is none other than the product $p of integration theory. Our

Lebesgue-Nikodym theorem now asserts that A is absolutely continuous

with respect to p if and only Clt.
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§ 2.1 We now consider an extension of Theorema 1 and 2 which will

enable ns to establish the Lebesgue-Nikodym theorem for Radon measures

on a locally-compact space. The extension has very little in the wa.y of

novel features now that the more restricted Theorems I and 2 have been

establisheil, but in the interests of ease of presentation it seemed worth-

while to establish the simpler results first.

We consider A winch is the inductive Hrnit, as a topolo-
gical, vector space ([B2J II 3 Ll), 01’ a directed family (Aj)J, of’ normed* sub-

algebras A; with norms I lij. Let It be a linear form ou .11 having the

properties of § 1.2. As in § 1.2 /t defines a prehilbert structure on

.4, with and associated norm p, and A" with norm

p is a Ililbert space. If’ and 

since

if ~ E A~ (where a is the norm ot’ the restriction of It to ~1,,), we have

It follows that if, as before, i is the canonical map of A into the separa~
ted completion A", then the weak closures in A" of the sets are

compact for 0 (A A, i (,1 )).
We define, iis a duality (1)0) on At x Az and now take as cg~

the saturate fOI’ (J)o) of Th),~ considered as a family of subsets of Ai, Cfl
wi ll be the same family considered as a family of subsets of A2 . and

rn.2, 1 tamilies irl and respectively, are defined as before. We de-

fine continuity of another linear form y with respect to p as in

§ 17 and TIh’orems ! I and 2 can then be established in this new context,
the only change on the argument that is needed is an obvious modification

of the proof of the lemma preceeding Theorem 1.

§ 2.2 In applying the theorems to Radon measures on a locally compact
space T we take the A~ to be the *normed algebras where are

the compact sets Radon measure It on 7’ has the properties 
If A is absolutely continuous with respect to u (in the sense of [BaJ V § 5.5)
we have seen ([F 21 Prop. 3.1) that it is OCK2 62-Continuous on the sets of

cSl, in the notation of’ [F 211 so that to show that A is absolutely conti-

nnous with respect to p in the present sense it suffices to observe i) that
each Uj is contained in a set of I A-1 cS1 of the form fso where f’E ’-K has the
value 1 on Kj and  1}, and ii) that ’K2 cS2 9’l since
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each gs is contained in a set gc So , where c is a constant, and 
for some constant d and support (g)c K; .

Finally, in interpreting the conclusions of our abstract Lebesgue-Niko-
dym theorem in the present context we note that = i) above,
shows that and ii) shows that oem. Thus is

isomorphic, as a topological vector space, with Llo, (p).
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