Annali della Scuola Normale Superiore di Pisa Classe di Scienze

B. FISHEL

An abstract Lebesgue-Nikodym theorem

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 23, nº 2 (1969), p. 363-372

http://www.numdam.org/item?id=ASNSP_1969_3_23_2_363_0

© Scuola Normale Superiore, Pisa, 1969, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

AN ABSTRACT LEBESGUE-NIKODYM THEOREM

B. FISHEL

The development of the theory of Radon measures, continuous linear forms on the vector space $\mathcal{K}(T)$ of continuous real-valued functions with compact supports on the locally compact space T, endowed with a suitable inductive-limit topology $[B_3]$, leans heavily on the order structure of $\mathcal{K}(T)$. We have shown elsewhere $[F_{1,2}]$ how some aspects of the theory of integration for Radon measures can equally be developed by availing oneself of the algebraic structure of $\mathcal{K}(T)$ rather than its order structure. We note, however, that such a treatment does not yield a theory of integration in that, for example, the objects which there correspond to the integrable functions of the more familiar development are elements of an abstract completion of $\mathcal{K}(T)$, i.e. are not functions. Our object in investigating the rôle of the algebraic structure was to explore the possibility of its application to

- (i) vector measures and the integration of vector valued functions, where rarely is there an order structure which arises in a natural way from the structure of the space which we are concerned, and
- (ii) the theory of distributions, where utilisation of a naturally-occurring order imposes excessive restrictions a positive distribution is a measure.

In $[F_2]$ we attempted to establish a Lebesgue-Nikodym theorem within our order-free structure, but were unable to do so without the aid of a supplementary hypothesis (loc cit Prop 2.3) which is not verified for Radon measures, but which holds in the theory of distribution $[F_3]$.

In the present paper we obtain a Lebesgue-Nikodym in a form applicable to the theory of integration. § 1.1 gives an account of some ideas from the theory of duality for topological vector spaces, in particular, of an extension of Grothendieck's completion theorem. § 1.2 introduces the pre-

hilbert structure defined by a positive linear form on a normed algebra. § 1.3 describes dualities defined by a linear form on an algebra. § § 1.4-5 formulate a concept of absolute continuity of one linear form on a normed algebra with respect to another such form and apply the completion theorem of § 1.1 to establish an abstract Lebesgue Nikodym theorem. In § 1.6 this theorem is applied to give the Lebesgue-Nikodym theorem for Radon measures on a compact space. § 2.1 describes an extension of the results of §§ 1.1-5 to the inductive limit (as a topological vector space) of a family of normed algebras, and in § 2.2 we obtain the Lebesgue-Nikodym theorem on a locally compact space.

§ 1.1 We make use of the ideas of the theory of duality for topological vector spaces. We summarize here, briefly, the definitions and results which we shall need.

Let $\langle E_1, E_2 \rangle$ be a dual system (pairing) of vector spaces E_1 , E_2 over the complex field C.

A family of subsets of E_i (i = 1,2) is said to be saturated with respect to $\langle E_i, E_o \rangle$ if it contains

- (1) the subsets of each of its members,
- (2) the scalar multiples of its members.
- (3) the absolutely convex, weakly closed hulls of finite unions of its members.

 \mathcal{F}_i will denote the family obtained by saturating the family of finite subsets of E_i).

A saturated family \mathcal{T}_1 of weakly bounded subsets of E_1 defines a locally convex topology $\sigma_{\mathcal{T}_1}$ on E_2 (the topology of uniform convergence on the sets of \mathcal{T}_1 . If $\langle E_1, E_2 \rangle$ is separated then $\sigma_{\mathcal{T}_1}$ is Hausdorff (separated) if $\mathcal{F}_1 \subset \mathcal{T}_1$. (The corresponding statements obtained by interchanging the suffixes 1 and 2 also apply). With this notation we write $\sigma_{\mathcal{F}_2}$ for the weak topology $\sigma(E_1, E_2)$ on E_1 .

 \mathcal{K}_2 denotes the family obtained by saturating the family of absolutely convex weakly compact sets in E_2 . $\mathcal{F}_2 \subset \mathcal{K}_2$.

Let $(\mathcal{F}_1 \subset) \mathcal{M}_1$ be a saturated family in E_1 , and let $(\mathcal{F}_2 \subset) \mathcal{M}_2 (\subset \mathcal{K}_2)$ be a saturated family in E_2 , both families being of weakly bounded sets.

We shall need the following form of Grothendieck's completion theorem: if $\langle E_1, E_2 \rangle$ is separated,

 $G = \{f \in E_1^* : f \ \sigma_{\mathcal{N}_2}\text{-continuous on the sets of } \mathcal{M}_1\}$ (1) is the (separated) completion $(E_2, \sigma_{\mathcal{N}_1})^*$ of E_2 for the topology $\sigma_{\mathcal{M}_2}$.

⁽¹⁾ E_1^* denotes the algebraic dual of E_1 .

This result may be established by showing

- (i) (as in [K] p. 272) that G is complete, and separated for $\sigma_{\mathcal{M}_1}$ ($\mathcal{F}_1 \subset \mathcal{M}_1$ and $\langle E_1, E_1^* \rangle$ is separated), and
 - (ii) that E is $\sigma_{\mathcal{M}}$ -dense in G.

The argument establishing the necessity of [S] Th. 6.2, p. 148 proves (ii) when we put $(E, \tau) = (E, \sigma_{\mathcal{H}_2})$ since $(E, \tau)' = (E_1, \sigma_{\mathcal{H}_2})' = E_2$ (where $(E, \tau)'$ denotes the topological dual of E for the topology τ) by the Mackey-Arens theorem ([S] Th. 3.2, p. 131), since $\mathcal{F}_2 \subset \mathcal{H}_2 \subset \mathcal{H}_2$.

(A « proof » of this theorem given in $[F_2]$ is false. It relies on the false inequality (3) of |K| p. 272).

§ 1.2. We shall apply this theorem to a situation where we take (essentially) for E_1 , E_2 two copies of a *-normed algebra A (i.e. a normed algebra over C on which there is defined an involution * such that $\|\xi^*\| = \|\xi\|$ for all $\xi \in A$, (see [R] p. 180). Elements ξ for which $\xi = \xi^*$ are said to be self-adjoint.

We consider a linear form μ on A having the properties

$$\mathbf{F}_{\mathbf{i}}) \qquad \qquad \mu\left(\xi^*\right) = \overline{\mu\left(\xi\right)},$$

(this is equivalent to: μ is real on self-adjoint elements of A, and implies that the sesqui-linear forms

$$A \times A \rightarrow C$$

$$(\xi, \eta) \longrightarrow \mu (\xi \eta^*)$$

and

$$(\xi, \eta) \longrightarrow \mu (\eta^* \xi)$$

are bermitian, it is an easy matter to construct an example for which they do not coincide), and

F.,) μ is positive,

i. e.
$$\mu\left(\xi\xi^{*}\right)\geq0\qquad\forall\ \xi\in\varLambda,$$

(and so
$$\mu(\xi^* \xi) = \mu(\xi^* \xi^{**}) \ge 0 \quad \forall \xi \in A,$$

so that the sesqui-linear forms are positive-definite.

We shall henceforth consider only the first of these two forms defined by μ , and shall write it μ (,). It defines a prehilbert structure on A with corresponding semi-norm $p_0(\xi) = (\mu(\xi \xi^*))^{\frac{1}{2}}$. If $Z = \{\xi : \mu(\xi \xi^*) = 0\}$

 $\{\xi: \mu(\xi\eta) = 0 \ \forall \eta \in A\}$ the positive hermitian form an A/Z associated with $\mu(\cdot,)$, (which we shall denote by $\mu(\cdot,)$ defines a separated prehilbert structure. The norm p for this structure is that associated with the semi-norm $p_0 \cdot \mu(\cdot,)$ extends uniquely to the separated completion $(A/Z, p_0)^{\wedge}$ (which we write $(A/Z)^{\wedge}$) of A/Z for p_0 , and makes it a Hilbert space. We can equally construct the separated completion $(A, p_0)^{\wedge}$ (or A^{\wedge}) of A for p, and ([B₁] II § 3.7) $(A/Z)^{\wedge}$ is isomorphic with A^{\wedge} , to which we may therefore transport the extended form $\mu(\cdot,)$, and if i is the map of [B₁] II § 3.7, Th. 3, i(A) is dense in A^{\wedge} (loc. cit. § 3.8). i is here a linear map, and is in fact the canonical map $A \to A/Z$, so that i(A) is isomorphic with A/Z.

We now impose upon μ the further requirement

 F_3) μ is continuous on A.

(If A has a unit and is complete, i.e. is a Banach *-algebra, the continuity of μ follows from the hypothesis that it is positive ([N], p. 200)). If

$$U = \{\xi : ||\xi|| \le 1\}, \qquad V = \{\xi : p_0(\xi) \le 1\},$$

since

$$(p_0(\xi))^2 = \mu(\xi\xi^*) \le \|\mu\| \|\xi\xi^*\| \le \|\mu\| \|\xi\| \|\xi^*\| = \|\mu\| \|\xi\|^2,$$

$$U \subset mV$$
 for some $m > 0$,

and so

$$i(U) \subset mi(V)$$
.

Now i(V) is contained in the unit ball of the Hilbert space A^{\wedge} , and the closed unit ball is compact for the weak topology $\sigma(A^{\wedge}, A^{\wedge})$ defined by the canonical duality $\langle A^{\wedge}, A^{\wedge} \rangle$ of A^{\wedge} with its Hilbert-space dual A^{\wedge} , so that i(V) and therefore i(U) are relatively weakly compact in A^{\wedge} . The the weak closure of i(U) in A is compact for $\sigma(A^{\wedge}, A^{\wedge})$ and is therefore compact for the coarser topology $\sigma(A^{\wedge}, i(A))$.

§ 1.3. Our form μ defines a duality (D_0) on $A \times A$ — which it is convenient to write $A_1 \times A_2$ — by

$$A_4 \times A_9 \rightarrow C$$

$$(\xi, \eta) \longrightarrow \mu (\xi \eta).$$

It is clear that this duality will not in general be separated.

Let $\mathcal M$ be the family obtained by saturating the family $\{U\}$ in A_1 for the duality (D_0) , and let $\mathcal M$ be the same family considered as a family in A_2 .

The sets of \mathfrak{M} and \mathfrak{N} are weakly bounded for (D_0) since

$$\sup \{ | \mu (\xi \eta) | : || \xi || \le 1 \} \le || \mu || || \eta ||.$$

The extension of μ to $A_1 \times A_2$ defines a duality (D) on $i(A_1) \times A_2$.

$$i(A_1) \times A_2 \rightarrow C$$

$$(\dot{\xi}, \eta) \longrightarrow \dot{\mu} (\dot{\xi} \eta).$$

Let $\mathcal{O}(\mathcal{H}_1 = i \, (\mathcal{O}) \mathcal{H}_1)$. Since i is continuous for p_0 and p, i(U) is bounded for p and so for the weak topology $\sigma(i(A_1), A_2)$, which is the weak topology defined by (D). It follows that the sets of $\mathcal{O}(\mathcal{H}_1)$ are weakly bounded for (D).

Since i is linear, to prove that \mathcal{M}_1 is saturated for (D) it suffices to prove that the i-images of absolutely convex weakly closed (for (D_0)) sets of \mathcal{M} are again weakly closed. Such a set M is closed for p_0 , and since i is the canonical map $A \to A/Z$ i is closed, so that i(M) is closed for p. Since it is absolutely convex and $A_2^{\wedge} = (i(A_1), p)^{\wedge}$, i(M) is also $\sigma(i(A_1), A_2^{\wedge})$ closed, i. e. is weakly closed for (D).

Finally, we define \mathcal{N}_2 to be the saturate, for $\langle i(A_1), A_2 \rangle$ of $i(\mathcal{N})$. It is clear that the sets of \mathcal{N}_2 are weakly bounded for (D).

§ 1.4. If λ is another linear form on A we now define:

 λ absolutely continuous with respect to μ

to mean:

 λ is $\sigma_{\mathcal{H}}$ -continuous on the sets of \mathcal{M} ,

(where $\sigma_{\rm O7}$ is defined by the duality (D_0)).

It follows that $\lambda(Z) = 0$:

$$\zeta \in Z$$
 $\mu(\zeta \eta) = 0$ $\forall \eta \in A$
$$\mu(\zeta N) = 0 \qquad \forall N \in \mathcal{N}.$$

Since $\zeta \in M$ for some $M \in \mathcal{M} (\mathcal{F} \subset \mathcal{M})$, the $\sigma_{\mathcal{H}}$ -continuity of λ on M shows that $\lambda(\zeta) = 0$.

 λ is thus well-defined on A/Z. We shall denote by $\dot{\lambda}$ the functional so defined, and shall prove that it is $\sigma_{\mathcal{H}_2}$ -continuous on the sets of \mathcal{H}_4 . For this it suffices to establish continuity for the coarser topology $\sigma_{\dot{\lambda}}(\mathcal{H})$.

Since $\lambda = \dot{\lambda} \circ i$ and i is the canonical map of M onto M/Z, it suffices ([B₁] §. 3.4) to prove that $\sigma_{i(\mathcal{H})}$ is the quotient by Z of $\sigma_{\mathcal{H}}$. This is immediate from consideration of the neighbourhoods for the two topologies since a $o_{\mathcal{H}}$ -neighbourhood $\{\xi \colon \sup_{\eta \in N} |\mu(\xi\eta)| < \varepsilon\}$ is saturated for the equivalence relation defined by $Z([B_1] \ \text{II} \ \S \ 3.4)$.

§ 1.5 We now apply Grothendieck's completion theorem to establish a Lebesgue-Nikodym theorem.

LEMMA. σ_{jj} is coarser than the p_0 -topology,

 $\sigma_{\mathcal{M}_4}$ is coarser then the *p*-topology.

PROOF. Since μ is positive

$$|\mu(\xi\eta)|^2 \leq \mu(\xi\xi^*) \mu(\eta^*\eta^{***}) \leq (p_0(\xi))^2 ||\mu|| ||\eta||^2.$$

Therefore

$$p(\xi) < 1 \Longrightarrow \sup \{ |\mu(\xi\eta)| : |\eta| \le 1 \} \le ||\mu||^{\frac{1}{2}}$$

so that a $\sigma_{\mathcal{M}}$ neighbourhood defined by M=U contains a p_0 neighbourhood, i. e. $\sigma_{\mathcal{M}} \subset p$ -topology. The second assertion is now immediate.

THEOREM 1. If $\zeta \in (A, \sigma_{m})^{\wedge}$

$$A \rightarrow C$$

$$\xi \rightarrow \dot{\mu} (\dot{\xi} \zeta)$$

defines a linear form A which is absolutely continuous with respect to μ .

PROOF. $\mu(\dot{\xi} \cdot)$ is $\sigma_{\gamma \chi_4}$ continuous on A_2 for all $\xi \in A_1$,

$$(\{\dot{\xi}\} \in \mathcal{M}_1)$$
, and so extends (uniquely) to $(A_2, \sigma_{\gamma)\mathcal{H}_1})^{\wedge} \supset (A_2, \sigma_{\gamma)\mathcal{H}_1})^{\wedge}$.

This extension defines $\mu(\xi\zeta)$.

 $\zeta\mu: \xi \to \mu(\xi\zeta)$ is clearly linear on A. To prove that it is absolute continuous with respect to μ , let $M \in \mathcal{M}$, $\epsilon > 0$. If $\zeta = \{P\}$ (a $\sigma_{\mathcal{M}}$ minimal

Cauchy filter on $A_2([B_1] \text{ II } \S 3.7)$, there exists P such that

$$\sup \{|\dot{\mu}(\dot{\xi}(\zeta-P))|: \xi \in M\} < \varepsilon/2.$$

Choose $\pi \in P$. $\{\pi\} \in \mathcal{H}$, and so $|\mu(\xi\pi)| < \varepsilon/2$ implies that

$$|\zeta\mu(\xi)| = |\dot{\mu}(\dot{\xi}\zeta)| < \varepsilon \text{ for } \xi \in M,$$

i.e., $\zeta \mu$ is $\sigma_{\mathcal{A}}$ -continuous on M.

THEOREM 2. If λ is absolutely continuous with respect to μ there exists $\zeta \in (A, \sigma_{\text{OM}})^{\wedge}$ such that $\lambda = \zeta \mu$.

PROOF. λ is σ_{γ_i} -continuous on the sets of \mathcal{M} , by definition, therefore $\dot{\lambda}$ is $\sigma_{i(\gamma_i)}$ -continuous on the sets of $i(\mathcal{M}) = \mathcal{M}_1$, and so λ is σ_{γ_2} -continuous on the sets of \mathcal{M}_1 since $\sigma_{i(\gamma_i)} \subset \sigma_{\gamma_2}$. Thus $\dot{\lambda} \in (A_2^{\wedge}, \sigma_{\gamma_1})^{\wedge}$ by Grothendieck's theorem.

Now $\sigma_{\mathcal{M}} \subset p_0$ -topology and so, if $Z_{\mathcal{M}}$ denotes the adherence of 0 in $(A_2, \sigma_{\mathcal{M}})^{\wedge}$,

$$(A_2, p_0)^{\wedge}/Z_{\mathcal{W}} = A_2^{\wedge}/Z_{\mathcal{W}} \subset (A_2, \sigma_{\mathcal{W}})^{\wedge}$$

by [F₁] Prop. 2.3. It follows that

$$(1) \qquad (A_2^{\wedge}/Z_{\mathcal{O}_{\mathcal{H}}}, \sigma_{\mathcal{O}_{\mathcal{H}}})^{\wedge} \subset ((A_2, \sigma_{\mathcal{O}_{\mathcal{H}}})^{\wedge}, \sigma_{\mathcal{H}})^{\wedge}.$$

Since $\sigma_{\mathcal{M}_4}$ is clearly the associated separated topology on $(A_2, \sigma_{\mathcal{M}})^{\wedge}$, we have

(2)
$$((A_2, \sigma_{\zeta)/\zeta})^{\wedge}, \sigma_{\zeta)/\zeta_1})^{\wedge} = (A_2, \sigma_{\zeta)/\zeta})^{\wedge}.$$

Finally, since, denoting by Z_0 the adherence of 0 in $(A_2,p_0)^*$, it is easy to verify that $Z_0=Z_{\mathcal{M}}$, we have

$$\begin{split} A_2 &= A_2 \hat{\ }/Z_0 \quad \text{by} \quad [B_1] \text{ II § 3.8,} \\ &= A_2 \hat{\ }/Z_0)\chi \ , \end{split}$$

there follows, from (1) and (2),

$$(A_2^{\wedge}, \sigma_{\mathcal{M}})^{\wedge} \subset (A_2, \sigma_{\mathcal{M}})^{\wedge}$$
.

This shows that $\dot{\lambda}$, as a linear form an A_2 , is represented via the duality (D) by $\zeta \in (A_2, \sigma_{OH})^{\wedge}$. Thus

$$\lambda(\xi) = \dot{\lambda}(\dot{\xi}) = \lim \dot{\mu}(\dot{\xi} P),$$

where $\xi = \{P\}$ is a $\sigma_{\mathcal{H}_1}$ Cauchy filter on A_2 .

$$\lambda(\xi) = \dot{\mu} \, (\dot{\xi} \, \lim \, P)$$

since $\dot{\mu}(\dot{\xi})$ is $\sigma_{\mathcal{M}_4}$ -continuous A_2 , $(\{\dot{\xi}\} \in \mathcal{M}_4)$, and so

$$\lambda(\xi) = \dot{\mu}(\dot{\xi}\zeta) = (\zeta\mu)(\xi).$$

§ 1.6. We apply our abstract Lebesgue-Nikodym theorem to Radon measures on a compact space.

Let T be a compact Hausdorff space. We take A to be $\mathcal{K}(T)$, the algebra of continuous real-valued functions with compact supports, (which here coincides with $\mathcal{C}(T)$ —continuous functions). Our involution is the identity map, and the norm on A is the uniform norm, $\|\xi\| = \sup_{t \in T} |\xi(t)|$. (A has a unit and is complete for this norm). We take μ to be a positive Radon measure, and so μ is continuous for the norm of A.

If λ is a Radon measure on T which is absolutely continuous with respect to μ in the sense of $[B_3]$ V § 5.5 we have shown $[F_2]$ Prop. 3.1 that it is $\sigma_{\mathcal{H}}$ -continuous on K (in the present context $\mathcal{M} = \mathcal{S}_p$ $\mathcal{H} = \mathcal{S}_2$ and $\mathcal{H} \mathcal{S} = \mathcal{S}_p$, in the notation of $[F_2]$). In order to apply our abstract Lebesgue-Nikodym theorem we must show that λ is $\sigma_{\mathcal{S}_2}$ -continuous on \mathcal{M} , the family obtained by saturating $\{U\}$. It clearly suffices to establish $\sigma_{\mathcal{S}_2}$ -continuity on the weak closure of U for the duality (D_0) . However, U is already weakly closed (in \mathcal{H}_1), for if this were not so there would exist $f \in \mathcal{H}_1 \cap U^c$ ($|f(t_0)| > 1$ for some $t_0 \in T$) which is weakly adherent to U, i.e. given $\varepsilon > 0$ and $\varphi \in \mathcal{H}_2$ there would exist $h \in U$ such that $|\mu((f - h)\varphi)| < \varepsilon$, which is clearly false.

Finally, we observe that the space $(A, \sigma_{\gamma / l})^{\wedge}$ of Theorems 1 and 2 is here $L(\mu)$, by $[F_1]$ Prop. 3.4, since for compact T $L_{loc}(\mu) = L(\mu)$ and $\mathcal{K} \mathcal{S} = \mathcal{S}$. Now $[F_1]$ Prop. 2.7 and Prop. 3.4 ensure that $\zeta \mu$ as here defined for $\zeta \in L(\mu)$ is none other than the product $\xi \mu$ of integration theory. Our Lebesgue Nikodym theorem now asserts that λ is absolutely continuous with respect to μ if and only if $\lambda = \zeta \mu$.

§ 2.1 We now consider an extension of Theorems 1 and 2 which will enable us to establish the Lebesgue-Nikodym theorem for Radon measures on a locally-compact space. The extension has very little in the way of novel features now that the more restricted Theorems 1 and 2 have been established, but in the interests of ease of presentation it seemed worthwhile to establish the simpler results first.

We consider a *-algebra A which is the inductive limit, as a topological vector space ([B₂] II § 4), of a directed family $\{A_j\}_J$ of normed * subalgebras A_j with norms $|\ \|_j$. Let μ be a linear form on A having the properties $F_{1,\,2,\,3}$ of § 1.2. As in § 1.2 μ defines a prehilbert structure on A, with semi-norm p_0 and associated norm p, and $A^* = (A, p_0)^*$ with norm p is a Hilbert space. If $U_j = \{\xi \in A_j : |\xi|_j \le 1\}$ and $V = \{\xi \in A : p_0(\xi) \le 1\}$, since

$$(p_0(\xi))^2 = \mu(\xi\xi^*) \le ||\mu||_1 ||\xi\xi^*||_1 \le ||\mu||_1 ||\xi||_1^2$$

if $\xi \in A_j$ (where $\|\mu\|_j$ is the norm of the restriction of μ to A_j), we have

$$l^{\tau}_{j} \subset m_{j} \ l^{\tau}$$
 for some $m_{j} > 0$.

It follows that if, as before, i is the canonical map of A into the separated completion A^{\wedge} , then the weak closures in A^{\wedge} of the sets $i(U_j)$ are compact for $\sigma(A^{\wedge}, i(A))$.

We define, as before, a duality (D_0) on $A_1 \times A_2$ and now take as \mathcal{M} the saturate for (D_0) of $\{U_j\}_J$ considered as a family of subsets of A_1 . \mathcal{M} will be the same family considered as a family of subsets of A_2 . \mathcal{M}_1 and \mathcal{M}_2 , families in $i(A_1)$ and A_2 , respectively, are defined as before. We define absolute continuity of another linear form λ with respect to μ as in $\{1, \}$ and Theorems 1 and 2 can then be established in this new context, the only change on the argument that is needed is an obvious modification of the proof of the lemma preceeding Theorem 1.

§ 2.2 In applying the theorems to Radon measures on a locally compact space T we take the A_j to be the *-normed algebras $\mathcal{K}(K_j)$, where $\{K_j\}_J$ are the compact sets of T. A Radon measure μ on T has the properties $F_{1,2,3}$. If λ is absolutely continuous with respect to μ (in the sense of $[B_3]$ V § 5.5) we have seen ($[F_2]$ Prop. 3.1) that it is $\sigma_{\mathcal{K}_2 \cup \mathcal{I}_2}$ -continuous on the sets of $\mathcal{K}_1 \cup \mathcal{I}_1$, in the notation of $[F_2]$, so that to show that λ is absolutely continuous with respect to μ in the present sense it suffices to observe i) that each U_j is contained in a set of $\mathcal{K}_1 \cup \mathcal{I}_1$ of the form fS_0 where $f \in \mathcal{K}$ has the value 1 on K_j and $S_0 = \{\varphi \in \mathcal{K}: |\varphi| \leq 1\}$, and ii) that $\mathcal{K}_2 \cup \mathcal{I}_2 \subset \mathcal{M}$ since

each gS is contained in a set $gc S_0$, where c is a constant, and $gc S_0 \subset dU_j$ for some constant d and support $(g) \subset K_j$.

Finally, in interpreting the conclusions of our abstract Lebesgue-Nikodym theorem in the present context we note that $\sigma_{\mathcal{M}} = \sigma_{\mathcal{K}_1 \, \mathcal{S}_1}$: i) above, shows that $\sigma_{\mathcal{M}} \subset \sigma_{\,\mathcal{K}_1 \, \mathcal{S}_1}$, and ii) shows that $\sigma_{\,\mathcal{K}_1 \, \mathcal{S}_1} \subset \sigma_{\,\mathcal{M}}$. Thus $(\mathcal{K}, \, \sigma_{\,\mathcal{M}})$ is isomorphic, as a topological vector space, with $L_{\mathrm{loc}}(\mu)$.

REFERENCES

- [B,] N. BOURBAKI, Topologie Générale, Chapters I and II, 3rd Edition, Hermann Paris 1961.
- [B₂] N. BOURBAKI, Espaces Vectoriels Topologiques, Chapters I and II, 2nd Edition, Hermann, Paris 1966.
- [B₃] N. BOURBAKI, Intégration, Chapters I-IV 2nd Edition Hermann, Paris 1965 Chapter V, Hermann, Paris 1956.
- [F₁] B. FISHEL, A structure related to the theory of integration, Proc. L.M.S. (3) 14 (1964) 415-30.
- [F₂] B. FISHEL, A structure related to the theory of integration II, Proc. L.M.S. (3) 16 (1966) 403-414.
- [F₃] B. FISHEL, Division of distributions and the Lebesgue-Nikodym theorem, Math. Annalen 173 (1967) 281-286.
- [K] G. KÖTHE, Topologische lineare Räume, Springer, Berlin 1960.
- [N] M. A. NEUMARK, Normierte Algebren, Deutscher Verlag der Wissenschaften, Berlin 1965.
- [R] C. E. RICKART, General theory of Banach algebras, Van Nostrand, Princeton 1960.
- [S] H. H. Schaefer, Topological Vector Spaces, Macmillan, New York 1966.

Istituto Matematico « Leonida Tonelli » Via Derna, Pisa.

Westfield College, (University of London), Hampstead, N. W. 3.